1
|
Takamori S. Presynaptic Molecular Determinants of Quantal Size. Front Synaptic Neurosci 2016; 8:2. [PMID: 26903855 PMCID: PMC4744840 DOI: 10.3389/fnsyn.2016.00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/25/2016] [Indexed: 01/22/2023] Open
Abstract
The quantal hypothesis for the release of neurotransmitters at the chemical synapse has gained wide acceptance since it was first worked out at the motor endplate in frog skeletal muscle in the 1950’s. Considering the morphological identification of synaptic vesicles (SVs) at the nerve terminals that appeared to be homogeneous in size, the hypothesis proposed that signal transduction at synapses is mediated by the release of neurotransmitters packed in SVs that are individually uniform in size; the amount of transmitter in a synaptic vesicle is called a quantum. Although quantal size—the amplitude of the postsynaptic response elicited by the release of neurotransmitters from a single vesicle—clearly depends on the number and sensitivity of the postsynaptic receptors, accumulating evidence has also indicated that the amount of neurotransmitters stored in SVs can be altered by various presynaptic factors. Here, I provide an overview of the concepts and underlying presynaptic molecular underpinnings that may regulate quantal size.
Collapse
Affiliation(s)
- Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University Kyoto, Japan
| |
Collapse
|
2
|
Baron J, Blex C, Rohrbeck A, Rachakonda SK, Birnbaumer L, Ahnert-Hilger G, Brunk I. The α-subunit of the trimeric GTPase Go2 regulates axonal growth. J Neurochem 2013; 124:782-94. [PMID: 23373526 DOI: 10.1111/jnc.12123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/23/2012] [Accepted: 12/09/2012] [Indexed: 11/30/2022]
Abstract
The Goα splice variants Go1α and Go2α are subunits of the most abundant G-proteins in brain, Go1 and Go2. Only a few interacting partners binding to Go1α have been described so far and splice variant-specific differences are not known. Using a yeast two-hybrid screen with constitutively active Go2α as bait, we identified Rap1GTPase activating protein (Rap1GAP) and Girdin as interacting partners of Go2α, which was confirmed by co-immunoprecipitation. Comparison of subcellular fractions from brains of wild type and Go2α-/- mice revealed no differences in the overall expression level of Girdin or Rap1GAP. However, we found higher amounts of active Rap1-GTP in brains of Go2α deficient mutants, indicating that Go2α may increase Rap1GAP activity, thereby effecting the Rap1 activation/deactivation cycle. Rap1 has been shown to be involved in neurite outgrowth and given a Rap1GAP-Go2α interaction, we found that the loss of Go2α affected axonal outgrowth. Axons of cultured cortical and hippocampal neurons prepared from embryonic Go2α-/- mice grew longer and developed more branches than those from wild-type mice. Taken together, we provide evidence that Go2α regulates axonal outgrowth and branching.
Collapse
Affiliation(s)
- Jens Baron
- Center for Anatomy, Institute for Integrative Neuroanatomy, Functional Cell Biology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers. J Neurosci 2011; 31:1313-22. [PMID: 21273416 DOI: 10.1523/jneurosci.4060-10.2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Agonists at μ-opioid receptors (MORs) represent the gold standard for the treatment of severe pain. A key element of opioid analgesia is the depression of nociceptive information at the first synaptic relay in spinal pain pathways. The underlying mechanisms are, however, largely unknown. In spinal cord slices with dorsal roots attached prepared from young rats, we determined the inhibitory effect of the selective MOR agonist [d-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) on monosynaptic Aδ- and C-fiber-evoked EPSCs in lamina I neurons. DAMGO depressed presynaptically Aδ- and C-fiber-mediated responses, indicating that MORs are expressed on central terminals of both fiber types. We next addressed the mechanisms of presynaptic inhibition. The effect of DAMGO at both Aδ- and C-fiber terminals was mainly mediated by an inhibition of N-type voltage-dependent Ca(2+) channels (VDCCs), and to a lesser extent of P/Q-type VDCCs. Inhibition by DAMGO was not reduced by K(+) channel blockers. The rate of miniature EPSCs was reduced by DAMGO in a dose-dependent manner. The opioid also reduced Ca(2+)-dependent, ionomycin-induced EPSCs downstream of VDCCs. DAMGO had no effect on the kinetics of vesicle exocytosis in C-fiber terminals, but decreased the rate of unloading of Aδ-fiber boutons moderately, as revealed by two-photon imaging of styryl dye destaining. Together, these results suggest that binding of opioids to MORs reduces nociceptive signal transmission at central Aδ- and C-fiber synapses mainly by inhibition of presynaptic N-type VDCCs. P/Q-type VDCCs and the transmitter release machinery are targets of opioid action as well.
Collapse
|
4
|
Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J Neurosci 2010; 30:7634-45. [PMID: 20519538 DOI: 10.1523/jneurosci.0141-10.2010] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity.
Collapse
|
5
|
Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 2010; 30:2-12. [PMID: 20053882 DOI: 10.1523/jneurosci.4074-09.2010] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles (SVs) store neurotransmitters and release them by exocytosis. The vesicular neurotransmitter transporters discriminate which transmitter will be sequestered and stored by the vesicles. However, it is unclear whether the neurotransmitter phenotype of SVs is solely defined by the transporters or whether it is associated with additional proteins. Here we have compared the protein composition of SVs enriched in vesicular glutamate (VGLUT-1) and GABA transporters (VGAT), respectively, using quantitative proteomics. Of >450 quantified proteins, approximately 50 were differentially distributed between the populations, with only few of them being specific for SVs. Of these, the most striking differences were observed for the zinc transporter ZnT3 and the vesicle proteins SV2B and SV31 that are associated preferentially with VGLUT-1 vesicles, and for SV2C that is associated mainly with VGAT vesicles. Several additional proteins displayed a preference for VGLUT-1 vesicles including, surprisingly, synaptophysin, synaptotagmins, and syntaxin 1a. Moreover, MAL2, a membrane protein of unknown function distantly related to synaptophysins and SCAMPs, cofractionated with VGLUT-1 vesicles. Both subcellular fractionation and immunolocalization at the light and electron microscopic level revealed that MAL2 is a bona-fide membrane constituent of SVs that is preferentially associated with VGLUT-1-containing nerve terminals. We conclude that SVs specific for different neurotransmitters share the majority of their protein constituents, with only few vesicle proteins showing preferences that, however, are nonexclusive, thus confirming that the vesicular transporters are the only components essential for defining the neurotransmitter phenotype of a SV.
Collapse
|
6
|
Brunk I, Blex C, Sanchis-Segura C, Sternberg J, Perreau-Lenz S, Bilbao A, Hörtnagl H, Baron J, Juranek J, Laube G, Birnbaumer L, Spanagel R, Ahnert-Hilger G. Deletion of Go2alpha abolishes cocaine-induced behavioral sensitization by disturbing the striatal dopamine system. FASEB J 2008; 22:3736-46. [PMID: 18606864 DOI: 10.1096/fj.08-111245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The alpha-subunits of the trimeric Go class of GTPases, comprising the splice variants Go1alpha and Go2alpha, are abundantly expressed in brain and reside on both plasma membrane and synaptic vesicles. Go2alpha is involved in the vesicular storage of monoamines but its physiological relevance is still obscure. We now show that genetic depletion of Go2alpha reduces motor activity induced by dopamine-enhancing drugs like cocaine, as repeated injections of cocaine fail to provoke behavioral sensitization in Go2alpha(-/-) mice. In Go2alpha(-/-) mice, D1 receptor signaling in the striatum is attenuated due to a reduced expression of Golf alpha and Gs alpha. Following cocaine treatment, Go2alpha(-/-) mice have lower D1 and higher D2 receptor amounts compared to wild-type mice. The lack of behavioral sensitization correlates with reduced dopamine levels in the striatum and decreased expression of tyrosine hydroxylase. One reason for the neurochemical changes may be a reduced uptake of monoamines by synaptic vesicles from Go2alpha(-/-) mice as a consequence of a lowered set point for filling. We conclude that Go2alpha optimizes vesicular filling which is instrumental for normal dopamine functioning and for the development of drug-induced behavioral sensitization.
Collapse
Affiliation(s)
- Irene Brunk
- Institute for Integrative Neuroanatomy, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Changes in the response to release of a single synaptic vesicle have generally been attributed to postsynaptic modification of receptor sensitivity, but considerable evidence now demonstrates that alterations in vesicle filling also contribute to changes in quantal size. Receptors are not saturated at many synapses, and changes in the amount of transmitter per vesicle contribute to the physiological regulation of release. On the other hand, the presynaptic factors that determine quantal size remain poorly understood. Aside from regulation of the fusion pore, these mechanisms fall into two general categories: those that affect the accumulation of transmitter inside a vesicle and those that affect vesicle size. This review will summarize current understanding of the neurotransmitter cycle and indicate basic, unanswered questions about the presynaptic regulation of quantal size.
Collapse
Affiliation(s)
- Robert H Edwards
- Department of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
8
|
Schwartz EJ, Blackmer T, Gerachshenko T, Alford S. Presynaptic G-protein-coupled receptors regulate synaptic cleft glutamate via transient vesicle fusion. J Neurosci 2007; 27:5857-68. [PMID: 17537956 PMCID: PMC6672243 DOI: 10.1523/jneurosci.1160-07.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When synaptic vesicles fuse with the plasma membrane, they may completely collapse or fuse transiently. Transiently fusing vesicles remain structurally intact and therefore have been proposed to represent a form of rapid vesicle recycling. However, the impact of a transient synaptic vesicle fusion event on neurotransmitter release, and therefore on synaptic transmission, has yet to be determined. Recently, the molecular mechanism by which a serotonergic presynaptic G-protein-coupled receptor (GPCR) regulates synaptic vesicle fusion and inhibits synaptic transmission was identified. By making paired electrophysiological recordings in the presence and absence of low-affinity antagonists, we now demonstrate that activation of this presynaptic GPCR lowers the peak synaptic cleft glutamate concentration independently of the probability of vesicle fusion. Furthermore, this change in cleft glutamate concentration differentially inhibits synaptic NMDA and AMPA receptor-mediated currents. We conclude that a presynaptic GPCR regulates the profile of glutamate in the synaptic cleft through altering the mechanism of vesicle fusion leading to qualitative as well as quantitative changes in neural signaling.
Collapse
Affiliation(s)
- Eric J. Schwartz
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Trillium Blackmer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Tatyana Gerachshenko
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Simon Alford
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
9
|
Brunk I, Höltje M, von Jagow B, Winter S, Sternberg J, Blex C, Pahner I, Ahnert-Hilger G. Regulation of vesicular monoamine and glutamate transporters by vesicle-associated trimeric G proteins: new jobs for long-known signal transduction molecules. Handb Exp Pharmacol 2007:305-25. [PMID: 16722242 DOI: 10.1007/3-540-29784-7_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters of neurons and neuroendocrine cells are concentrated first in the cytosol and then in either small synaptic vesicles ofpresynaptic terminals or in secretory vesicles by the activity of specific transporters of the plasma and the vesicular membrane, respectively. In the central nervous system the postsynaptic response depends--amongst other parameters-on the amount of neurotransmitter stored in a given vesicle. Neurotransmitter packets (quanta) vary over a wide range which may be also due to a regulation of vesicular neurotransmitter filling. Vesicular filling is regulated by the availability of transmitter molecules in the cytoplasm, the amount of transporter molecules and an electrochemical proton-mediated gradient over the vesicular membrane. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq. Galphao2 and Galphaq regulate vesicular monoamine transporter (VMAT) activities in brain and platelets, respectively. Galphao2 also regulates vesicular glutamate transporter (VGLUT) activity by changing its chloride dependence. It appears that the vesicular content activates the G protein, suggesting a signal transduction from the luminal site which might be mediated by a vesicular G protein-coupled receptor or as an alternative possibility by the transporter itself. Thus, G proteins control transmitter storage and thereby probablylink the regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- I Brunk
- AG Funktionelle Zellbiologie, Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Synaptic vesicles are key organelles in neurotransmission. Vesicle integral or membrane-associated proteins mediate the various functions the organelle fulfills during its life cycle. These include organelle transport, interaction with the nerve terminal cytoskeleton, uptake and storage of low molecular weight constituents, and the regulated interaction with the pre-synaptic plasma membrane during exo- and endocytosis. Within the past two decades, converging work from several laboratories resulted in the molecular and functional characterization of the proteinaceous inventory of the synaptic vesicle compartment. However, up until recently and due to technical difficulties, it was impossible to screen the entire organelle thoroughly. Recent advances in membrane protein identification and mass spectrometry (MS) have dramatically promoted this field. A comparison of different techniques for elucidating the proteinaceous composition of synaptic vesicles revealed numerous overlaps but also remarkable differences in the protein constituents of the synaptic vesicle compartment, indicating that several protein separation techniques in combination with differing MS approaches are required to identify and characterize the synaptic vesicle proteome. This review highlights the power of various gel separation techniques and MS analyses for the characterization of the proteome of highly purified synaptic vesicles. Furthermore, the newly detected protein assignments to synaptic vesicles, especially those proteins which are new to the inventory of the synaptic vesicle proteome, are critically discussed.
Collapse
Affiliation(s)
- Jacqueline Burré
- Institute of Cell Biology and Neuroscience, Neurochemistry, JW Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
11
|
Liguz-Lecznar M, Skangiel-Kramska J. Vesicular glutamate transporters VGLUT1 and VGLUT2 in the developing mouse barrel cortex. Int J Dev Neurosci 2007; 25:107-14. [PMID: 17289331 DOI: 10.1016/j.ijdevneu.2006.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022] Open
Abstract
Three vesicular glutamate transporters have been identified in mammals. Two of them, VGLUT1 and VGLUT2, define the glutamatergic phenotype and their distribution in the brain is almost complementary. In the present study we examined the distribution and expression levels of these two VGLUTs during postnatal development of the mouse barrel cortex. We also investigated changes in the localization of VGLUT1 and VGLUT2 within particular compartments of the barrel field (barrels/septa) during its development. We found differences in the time course of developmental expression, with VGLUT1 peaking around P14, while VGLUT2 increased gradually until adulthood. Over the examined period (P3 - adult) both transporters had stronger expression in the barrel interiors, and in this compartment VGLUT2 dominated, whereas in the inter-barrel septa VGLUT1 dominated over VGLUT2. Furthermore, we found that some nerve terminals in the barrel cortex coexpressed both transporters until adulthood. Colocalization was observed within the barrels, but not within the septa.
Collapse
Affiliation(s)
- M Liguz-Lecznar
- Laboratory of Molecular Basis of Brain Plasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | | |
Collapse
|
12
|
Winter S, Brunk I, Walther DJ, Höltje M, Jiang M, Peter JU, Takamori S, Jahn R, Birnbaumer L, Ahnert-Hilger G. Galphao2 regulates vesicular glutamate transporter activity by changing its chloride dependence. J Neurosci 2006; 25:4672-80. [PMID: 15872115 PMCID: PMC6725018 DOI: 10.1523/jneurosci.0549-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical neurotransmitters, including monoamines, acetylcholine, glutamate, GABA, and glycine, are loaded into synaptic vesicles by means of specific transporters. Vesicular monoamine transporters are under negative regulation by alpha subunits of trimeric G-proteins, including Galpha(o2) and Galpha(q). Furthermore, glutamate uptake, mediated by vesicular glutamate transporters (VGLUTs), is decreased by the nonhydrolysable GTP-analog guanylylimidodiphosphate. Using mutant mice lacking various Galpha subunits, including Galpha(o1), Galpha(o2), Galpha(q), and Galpha11, and a Galpha(o2)-specific monoclonal antibody, we now show that VGLUTs are exclusively regulated by Galpha(o2). G-protein activation does not affect the electrochemical proton gradient serving as driving force for neurotransmitter uptake; rather, Galpha(o2) exerts its action by specifically affecting the chloride dependence of VGLUTs. All VGLUTs show maximal activity at approximately 5 mm chloride. Activated Galpha(o2) shifts this maximum to lower chloride concentrations. In contrast, glutamate uptake by vesicles isolated from Galpha(o2-/-) mice have completely lost chloride activation. Thus, Galpha(o2) acts on a putative regulatory chloride binding domain that appears to modulate transport activity of vesicular glutamate transporters.
Collapse
Affiliation(s)
- Sandra Winter
- AG Funktionelle Zellbiologie, Centrum für Anatomie, Charité Universitätsmedizin Berlin, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nakamura K, Hioki H, Fujiyama F, Kaneko T. Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain. J Comp Neurol 2006; 492:263-88. [PMID: 16217795 DOI: 10.1002/cne.20705] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vesicular glutamate transporter 1 (VGluT1) and VGluT2 accumulate neurotransmitter glutamate into synaptic vesicles at presynaptic terminals, and their antibodies are thus considered to be a good marker for glutamatergic axon terminals. In the present study, we investigated the postnatal development and maturation of glutamatergic neuronal systems by single- and double-immunolabelings for VGluT1 and VGluT2 in mouse forebrain including the telencephalon and diencephalon. VGluT2 immunoreactivity was widely distributed in the forebrain, particularly in the diencephalon, from postnatal day 0 (P0) to adulthood, suggesting relatively early maturation of VGluT2-loaded glutamatergic axons. In contrast, VGluT1 immunoreactivity was intense only in the limbic regions at P0, and drastically increased in the other telencephalic and diencephalic regions during three postnatal weeks. Interestingly, VGluT1 immunoreactivity was frequently colocalized with VGluT2 immunoreactivity at single axon terminal-like profiles in layer IV of the primary somatosensory area from P5 to P10 and in the ventral posteromedial thalamic nucleus from P0 to P14. This was in sharp contrast to the finding that almost no colocalization was found in glomeruli of the olfactory bulb, patchy regions of the caudate-putamen, and the ventral posterolateral thalamic nucleus, where moderate to intense immunoreactivities for VGluT1 and VGluT2 were intermingled with each other in neuropil during postnatal development. The present results indicate that VGluT2-loaded glutamatergic axons maturate earlier than VGluT1-laden axons in the mouse telencephalic and diencephalic regions, and suggest that VGluT1 plays a transient developmental role in some glutamatergic systems that mainly use VGluT2 in the adulthood.
Collapse
Affiliation(s)
- Kouichi Nakamura
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
14
|
Santos TG, Souza DO, Tasca CI. GTP uptake into rat brain synaptic vesicles. Brain Res 2006; 1070:71-6. [PMID: 16405924 DOI: 10.1016/j.brainres.2005.10.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 10/21/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
Uptake of neurotransmitters into synaptic vesicles is driven by an electrochemical gradient generated by a vacuolar-type proton pump ATPase. This uptake implies a key role for synaptic vesicles in the regulation of neurotransmitter systems. Guanine nucleoside and nucleotides are involved in the inhibition of glutamate-induced cellular responses via an extracellular action and diverse trophic, proliferative, and modulatory effects of guanine nucleotides on neural cells have been shown. Here, we characterized the uptake of GTP into synaptic vesicles isolated from whole rat brain, by using a tritiated poorly-hydrolyzable GTP analog, 5'-guanylylimidodiphosphate ([3H]GppNHp). Uptake of GTP into synaptic vesicles is saturable, time- and temperature-dependent, and relies on a proton-eletrochemical gradient. However, [3H]GMP and [3H]GDP radioactive labeling in synaptic vesicles is not dependent on temperature and vesicular ATPase activity, which indicates that these nucleotides only bind to and are not taken up into synaptic vesicles. GTP is taken up by the same eletrochemical gradient-dependent transport system, as are neurotransmitters storage, which indicates that this guanine nucleotide may also function as a neurotransmitter.
Collapse
Affiliation(s)
- Tiago G Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | | | | |
Collapse
|
15
|
Persson S, Boulland JL, Aspling M, Larsson M, Fremeau RT, Edwards RH, Storm-Mathisen J, Chaudhry FA, Broman J. Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. J Comp Neurol 2006; 497:683-701. [PMID: 16786558 DOI: 10.1002/cne.20987] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To evaluate whether the organization of glutamatergic fibers systems in the lumbar cord is also evident at other spinal levels, we examined the immunocytochemical distribution of vesicle glutamate transporters 1 and 2 (VGLUT1, VGLUT2) at several different levels of the rat spinal cord. We also examined the expression of VGLUTs in an ascending sensory pathway, the spinocervical tract, and colocalization of VGLUT1 and VGLUT2. Mainly small VGLUT2-immunoreactive varicosities occurred at relatively high densities in most areas, with the highest density in laminae I-II. VGLUT1 immunolabeling, including small and medium-sized to large varicosities, was more differentiated, with the highest density in the deep dorsal horn and in certain nuclei such as the internal basilar nucleus, the central cervical nucleus, and the column of Clarke. Lamina I and IIo displayed a moderate density of small VGLUT1 varicosities at all spinal levels, although in the spinal enlargements a uniform density of such varicosities was evident throughout laminae I-II in the medial half of the dorsal horn. Corticospinal tract axons displayed VGLUT1, indicating that the corticospinal tract is an important source of small VGLUT1 varicosities. VGLUT1 and VGLUT2 were cocontained in small numbers of varicosities in laminae III-IV and IX. Anterogradely labeled spinocervical tract terminals in the lateral cervical nucleus were VGLUT2 immunoreactive. In conclusion, the principal distribution patterns of VGLUT1 and VGLUT2 are essentially similar throughout the rostrocaudal extension of the spinal cord. The mediolateral differences in VGLUT1 distribution in laminae I-II suggest dual origins of VGLUT1-immunoreactive varicosities in this region.
Collapse
Affiliation(s)
- Stefan Persson
- Department of Experimental Medical Science, Division for Neuroscience, and Lund University Pain Research Center, Lund University, S-221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Natochin M, Campbell TN, Barren B, Miller LC, Hameed S, Artemyev NO, Braun JEA. Characterization of the G alpha(s) regulator cysteine string protein. J Biol Chem 2005; 280:30236-41. [PMID: 15972823 DOI: 10.1074/jbc.m500722200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine string protein (CSP) is an abundant regulated secretory vesicle protein that is composed of a string of cysteine residues, a linker domain, and an N-terminal J domain characteristic of the DnaJ/Hsp40 co-chaperone family. We have shown previously that CSP associates with heterotrimeric GTP-binding proteins (G proteins) and promotes G protein inhibition of N-type Ca2+ channels. To elucidate the mechanisms by which CSP modulates G protein signaling, we examined the effects of CSP(1-198) (full-length), CSP(1-112), and CSP(1-82) on the kinetics of guanine nucleotide exchange and GTP hydrolysis. In this report, we demonstrate that CSP selectively interacts with G alpha(s) and increases steady-state GTP hydrolysis. CSP(1-198) modulation of G alpha(s) was dependent on Hsc70 (70-kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein), whereas modulation by CSP(1-112) was Hsc70-SGT-independent. CSP(1-112) preferentially associated with the inactive GDP-bound conformation of G alpha(s). Consistent with the stimulation of GTP hydrolysis, CSP(1-112) increased guanine nucleotide exchange of G alpha(s). The interaction of native G alpha(s) and CSP was confirmed by coimmunoprecipitation and showed that G alpha(s) associates with CSP. Furthermore, transient expression of CSP in HEK cells increased cellular cAMP levels in the presence of the beta2 adrenergic agonist isoproterenol. Together, these results demonstrate that CSP modulates G protein function by preferentially targeting the inactive GDP-bound form of G alpha(s) and promoting GDP/GTP exchange. Our results show that the guanine nucleotide exchange activity of full-length CSP is, in turn, regulated by Hsc70-SGT.
Collapse
Affiliation(s)
- Michael Natochin
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Ahnert-Hilger G, Höltje M, Pahner I, Winter S, Brunk I. Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem Pharmacol 2004; 150:140-60. [PMID: 14517724 DOI: 10.1007/s10254-003-0020-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- G Ahnert-Hilger
- Institut für Anatomie und Neurowissenschaftliches Zentrum der Charité, Humboldt-Universität zu Berlin, Philippstr. 12, 10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|
18
|
Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney RE, Bell AW, Bergeron JJM, McPherson PS. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci U S A 2004; 101:3833-8. [PMID: 15007177 PMCID: PMC374330 DOI: 10.1073/pnas.0308186101] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tandem MS has identified 209 proteins of clathrin-coated vesicles (CCVs) isolated from rat brain. An overwhelming abundance of peptides were assigned to the clathrin coat with a 1:1 stoichiometry observed for clathrin heavy and light chains and a 2:1 stoichiometry of clathrin heavy chain with clathrin adaptor protein heterotetramers. Thirty-two proteins representing many of the known components of synaptic vesicles (SVs) were identified, supporting that a main function for brain CCVs is to recapture SVs after exocytosis. A ratio of vesicle-N-ethylmaleimide-sensitive factor attachment protein receptors to target-N-ethylmaleimide-sensitive factor attachment protein receptors, similar to that previously detected on SVs, supports a single-step model for SV sorting during CCV-mediated recycling of SVs. The uncovering of eight previously undescribed proteins, four of which have to date been linked to clathrin-mediated trafficking, further attests to the value of the current organelle-based proteomics strategy.
Collapse
Affiliation(s)
- Francois Blondeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada H3A 2B4
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT, Edwards RH, Storm-Mathisen J, Chaudhry FA. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 2004; 480:264-80. [PMID: 15515175 DOI: 10.1002/cne.20354] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three closely related proteins transport glutamate into synaptic vesicles for release by exocytosis. Complementary patterns of expression in glutamatergic terminals have been reported for VGLUT1 and VGLUT2. VGLUT3 shows expression by many cells not considered to be glutamatergic. Here we describe the changes in VGLUT expression that occur during development. VGLUT1 expression increases gradually after birth and eventually predominates over the other isoforms in telencephalic regions. Expressed at high levels shortly after birth, VGLUT2 declines with age in multiple regions, in the cerebellum by 14-fold. In contrast, Coexpression of the two isoforms occurs transiently during development as well as permanently in a restricted subset of glutamatergic terminals in the adult. VGLUT3 is transiently expressed at high levels by select neuronal populations, including terminals in the cerebellar nuclei, scattered neurons in the cortex, and progenitor-like cells, implicating exocytotic glutamate release in morphogenesis and development. VGLUT3 also colocalizes extensively during development with the neuronal vesicular monoamine transporter VMAT2, with the vesicular acetylcholine transporter VAChT, and with the vesicular gamma-aminobutyric acid transporter VGAT. Such coexpression occurs particularly at some specific developmental stages and is restricted to certain sets of cells. In skeletal muscle, VGLUT3 localizes to granular organelles in the axon terminal as well as in the muscle sarcoplasm. The results suggest novel mechanisms and roles for regulated transmitter release.
Collapse
Affiliation(s)
- Jean-Luc Boulland
- Institute of Basic Medical Sciences and the Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|