1
|
Chang CW, Lai YS, Lamb LS, Townes TM. Broad T-cell receptor repertoire in T-lymphocytes derived from human induced pluripotent stem cells. PLoS One 2014; 9:e97335. [PMID: 24828440 PMCID: PMC4020825 DOI: 10.1371/journal.pone.0097335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/16/2014] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have enormous potential for the treatment of inherited and acquired disorders. Recently, antigen-specific T lymphocytes derived from hiPSCs have been reported. However, T lymphocyte populations with broad T cell receptor (TCR) diversity have not been generated. We report that hiPSCs derived from skin biopsy are capable of producing T lymphocyte populations with a broad TCR repertoire. In vitro T cell differentiation follows a similar developmental program as observed in vivo, indicated by sequential expression of CD7, intracellular CD3 and surface CD3. The γδ TCR locus is rearranged first and is followed by rearrangement of the αβ locus. Both γδ and αβ T cells display a diverse TCR repertoire. Upon activation, the cells express CD25, CD69, cytokines (TNF-α, IFN-γ, IL-2) and cytolytic proteins (Perforin and Granzyme-B). These results suggest that most, if not all, mechanisms required to generate functional T cells with a broad TCR repertoire are intact in our in vitro differentiation protocol. These data provide a foundation for production of patient-specific T cells for the treatment of acquired or inherited immune disorders and for cancer immunotherapy.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
- UAB Stem Cell Institute, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
| | - Yi-Shin Lai
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
- UAB Stem Cell Institute, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
| | - Lawrence S. Lamb
- Department of Medicine, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
- Cell Therapy Lab, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
| | - Tim M. Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
- UAB Stem Cell Institute, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
2
|
Kohli S, Ahuja S, Rani V. Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr Cardiol Rev 2013; 7:262-71. [PMID: 22758628 PMCID: PMC3322445 DOI: 10.2174/157340311799960618] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 01/08/2012] [Accepted: 01/08/2011] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. This is initially a compensatory mechanism but sustained hypertrophy may lead to heart failure. The growing knowledge of transcriptional control mechanisms is helpful in the development of novel therapies. This review summarizes the role of cardiac transcription factors in cardiac hypertrophy, emphasizing their potential as attractive therapeutic targets to prevent the onset of heart failure and sudden death as they can be converging targets for current therapy.
Collapse
Affiliation(s)
- Shrey Kohli
- Department of Biotechnology, Jaypee Institute of Information Technology University, NOIDA 210307, India
| | | | | |
Collapse
|
3
|
Abstract
Notch is a crucial cell signaling pathway in metazoan development. By means of cell-cell interactions, Notch signaling regulates cellular identity, proliferation, differentiation and apoptosis. Within the last decade, numerous studies have shown an important role for this pathway in the development and homeostasis of mammalian stem cell populations. Hematopoietic stem cells (HSCs) constitute a well-defined population that shows self-renewal and multi-lineage differentiation potential, with the clinically relevant capacity to repopulate the hematopoietic system of an adult organism. Here, we review the emergence, development and maintenance of HSCs during mammalian embryogenesis and adulthood, with respect to the role of Notch signaling in hematopoietic biology.
Collapse
|
4
|
Riveros C, Mellor D, Gandhi KS, McKay FC, Cox MB, Berretta R, Vaezpour SY, Inostroza-Ponta M, Broadley SA, Heard RN, Vucic S, Stewart GJ, Williams DW, Scott RJ, Lechner-Scott J, Booth DR, Moscato P. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010; 5:e14176. [PMID: 21152067 PMCID: PMC2995726 DOI: 10.1371/journal.pone.0014176] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/20/2010] [Indexed: 12/03/2022] Open
Abstract
Background Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). Conclusions/Significance Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
Collapse
Affiliation(s)
- Carlos Riveros
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Drew Mellor
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Kaushal S. Gandhi
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Fiona C. McKay
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Mathew B. Cox
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - S. Yahya Vaezpour
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mario Inostroza-Ponta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Simon A. Broadley
- School of Medicine, Griffith University, Brisbane, Australia
- Department of Neurology, Gold Coast Hospital, Southport, Australia
| | - Robert N. Heard
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Stephen Vucic
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Graeme J. Stewart
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | | | - Rodney J. Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Jeanette Lechner-Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - David R. Booth
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, St Lucia, Australia
- * E-mail:
| | | |
Collapse
|
5
|
Braunstein M, Anderson MK. Developmental progression of fetal HEB(-/-) precursors to the pre-T-cell stage is restored by HEBAlt. Eur J Immunol 2010; 40:3173-82. [PMID: 21061441 DOI: 10.1002/eji.201040360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 08/12/2010] [Accepted: 08/20/2010] [Indexed: 02/06/2023]
Abstract
Gene knockout studies have shown that the E-protein transcription factor HEB is required for normal thymocyte development. We have identified a unique form of HEB, called HEBAlt, which is expressed only during the early stages of T-cell development, whereas HEBCan is expressed throughout T-cell development. Here, we show that HEB(-/-) precursors are inhibited at the β-selection checkpoint of T-cell development due to impaired expression of pTα and function of CD3ε, both of which are necessary for pre-TCR signaling. Transgenic expression of HEBAlt in HEB(-/-) precursors, however, upregulated pTα and allowed development to CD4(+) CD8(+) stage in fetal thymocytes. Moreover, HEBAlt did overcome the CD3ε signaling defect in HEB(-/-) Rag-1(-/-) thymocytes. The HEBAlt transgene did not permit Rag-1(-/-) precursors to bypass β-selection, indicating that it was not acting as a dominant negative inhibitor of other E-proteins. Therefore, our results provide the first mechanistic evidence that HEBAlt plays a critical role in early T-cell development and show that it can collaborate with fetal thymic stromal elements to create a regulatory environment that supports T-cell development past the β-selection checkpoint.
Collapse
Affiliation(s)
- Marsela Braunstein
- Sunnybrook Health Sciences Centre and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Kutlesa S, Zayas J, Valle A, Levy RB, Jurecic R. T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system. Exp Hematol 2009; 37:909-23. [PMID: 19447159 DOI: 10.1016/j.exphem.2009.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. MATERIALS AND METHODS EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. RESULTS The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Talpha, RAG-1, and T-cell receptor-Vbeta genes; and 3) produced interferon-gamma in response to T-cell receptor stimulation. CONCLUSIONS These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation.
Collapse
Affiliation(s)
- Snjezana Kutlesa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Fla. 33136, USA
| | | | | | | | | |
Collapse
|
7
|
Singh H, Pongubala JMR, Medina KL. Gene Regulatory Networks that Orchestrate the Development of B Lymphocyte Precursors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 596:57-62. [PMID: 17338175 DOI: 10.1007/0-387-46530-8_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The B cell developmental pathway represents a leading model within the hematopoietc system for the analysis of gene regulatory networks, which orchestrate cell fate specification and commitment. Considerable progress is being made in the characterization of regulatory components that comprise such networks and examining their connectivity. These components include the cytokine receptors Flk2 and IL-7R as well as the transcription factors PU.1, Ikaros, E2A, EBF and Pax-5. We review recent experimental evidence concerning the molecular functions of these regulatory components and attempt to connect them in sequentially acting and inter-dependent regulatory modules.
Collapse
Affiliation(s)
- Harinder Singh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Howard Hughes Medical Institute, USA.
| | | | | |
Collapse
|
8
|
David-Fung ES, Yui MA, Morales M, Wang H, Taghon T, Diamond RA, Rothenberg EV. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol Rev 2006; 209:212-36. [PMID: 16448545 PMCID: PMC4157939 DOI: 10.1111/j.0105-2896.2006.00355.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Precursors entering the T-cell developmental pathway traverse a progression of states characterized by distinctive patterns of gene expression. Of particular interest are regulatory genes, which ultimately control the dwell time of cells in each state and establish the mechanisms that propel them forward to subsequent states. Under particular genetic and developmental circumstances, the transitions between these states occur with different timing, and environmental feedbacks may shift the steady-state accumulations of cells in each state. The fetal transit through pro-T-cell stages is faster than in the adult and subject to somewhat different genetic requirements. To explore causes of such variation, this review presents previously unpublished data on differentiation gene activation in pro-T cells of pre-T-cell receptor-deficient mutant mice and a quantitative comparison of the profiles of transcription factor gene expression in pro-T-cell subsets of fetal and adult wildtype mice. Against a background of consistent gene expression, several regulatory genes show marked differences between fetal and adult expression profiles, including those encoding two basic helix-loop-helix antagonist Id factors, the Ets family factor SpiB and the Notch target gene Deltex1. The results also reveal global differences in regulatory alterations triggered by the first T-cell receptor-dependent selection events in fetal and adult thymopoiesis.
Collapse
|
9
|
Abstract
The Notch signaling pathway is among the most commonly used communication channels in animal cells. Recent studies have demonstrated that this pathway is indispensable for cells in various stages of maturation, including terminal differentiation. One main focus in mammalian studies is the role of Notch in embryonic and postembryonic stem cell systems. In this review, the roles of Notch signaling in various mammalian stem and early progenitor cells are summarized.
Collapse
Affiliation(s)
- Shigeru Chiba
- Department of Cell Therapy and Transplantation Medicine, University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan.
| |
Collapse
|
10
|
Dumon S, Heath VL, Tomlinson MG, Göttgens B, Frampton J. Differentiation of murine committed megakaryocytic progenitors isolated by a novel strategy reveals the complexity of GATA and Ets factor involvement in megakaryocytopoiesis and an unexpected potential role for GATA-6. Exp Hematol 2006; 34:654-63. [PMID: 16647571 DOI: 10.1016/j.exphem.2006.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The differentiation of megakaryocytes is characterized by polyploidization and cytoplasmic maturation leading to platelet production. Studying these processes is hindered by the paucity of bone marrow megakaryocytes and their precursors. We describe a method for the expansion and purification of committed megakaryocyte progenitors and demonstrate their usefulness by studying changes in the expression of Ets and GATA family transcription factors throughout megakaryocytopoiesis. METHODS A two-step serum-free method was developed. Cells isolated using this method were analyzed for surface marker expression by flow cytometry, and for their ability to differentiate using single-cell culture. Purified progenitors were induced to differentiate and analyzed with respect to their ploidy by flow cytometry and expression of specific genes by RT-PCR. RESULTS A population of Lin- c-kit+ CD45+ CD41+ CD31+ CD34low CD9low FcgammaRII/IIIlow Sca-1med/low committed megakaryocyte progenitors was purified. These cells could be differentiated efficiently, achieving ploidy of up to 128N. Analysis of RNA demonstrated the expected increases in expression of key megakaryocyte-associated genes. RT-PCR analysis also revealed that a range of Ets and GATA factors are expressed, their individual levels and patterns of expression varying widely. Surprisingly, we find that GATA-6 is specifically expressed in late differentiated megakaryocytes and has the potential to regulate megakaryocyte-expressed genes in cooperation with Ets factors. CONCLUSION Purified primary megakaryocytic progenitors are able to differentiate as a cohort into fully mature megakaryocytes. The number of cells obtainable, and the synchrony of the differentiation process, facilitates analysis of the dynamics of molecular processes involved in megakaryocytopoiesis. The expression pattern of Ets and GATA family transcription factors reveals the complexity of the involvement of these key megakaryocytic regulators. The finding of GATA-6 expression and demonstration of its functional activity suggests a novel mechanism for the regulation of certain genes late in megakaryocytopoiesis.
Collapse
Affiliation(s)
- Stephanie Dumon
- Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
11
|
Abstract
Thymic involution is the hallmark of hematopoietic aging. Because T cell differentiation is a multistep process that occurs non-cell autonomously, aging defects can occur at multiple points along the developmental pathway, both in the T progenitors themselves and in the thymic stromal cells that support their development. Here we review the evidence for age-related thymopoiesis defects at key steps in the production of naïve mature T cells, highlighting the importance of the interaction between stromal aging and progenitor aging.
Collapse
Affiliation(s)
- Valerie P Zediak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, 264 John Morgan Building, Philadelphia, PA 19104, USA
| | | |
Collapse
|
12
|
Abstract
Helix-loop-helix (HLH) proteins are transcriptional regulators that control a wide variety of developmental pathways in both invertebrate and vertebrate organisms. Results obtained in the past decade have shown that HLH proteins also contribute to the development of lymphoid lineages. A subset of HLH proteins, the 'E proteins', seems to be particularly important for proper lymphoid development. Members of the E protein family include E12, E47, E2-2 and HEB. The E proteins contribute to B lineage- and T lineage-specific gene expression programs, regulate lymphocyte survival and cellular proliferation, activate the rearrangement of antigen receptor genes and control progression through critical developmental checkpoints. This review discusses HLH proteins in lymphocyte development and homeostasis.
Collapse
Affiliation(s)
- Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92903, USA.
| |
Collapse
|
13
|
Sundrud MS, Vancompernolle SE, Eger KA, Bruno TC, Subramaniam A, Mummidi S, Ahuja SK, Unutmaz D. Transcription factor GATA-1 potently represses the expression of the HIV-1 coreceptor CCR5 in human T cells and dendritic cells. Blood 2005; 106:3440-8. [PMID: 16091457 PMCID: PMC1895046 DOI: 10.1182/blood-2005-03-0857] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CC chemokine receptor 5 (CCR5) is the major HIV-1 coreceptor and its expression levels are a critical determinant of HIV-1 infection. However, the molecular mechanisms of CCR5 regulation in primary targets of HIV-1 remain unknown. Despite binding to conserved DNA elements, we show that the transcription factors GATA binding protein 1 (GATA-1) and GATA-3 differentially suppress the expression of CCR5 in stem-cell-derived dendritic cells and primary human T-cell subsets. In addition, GATA-1 expression was also more potent than GATA-3 in suppressing T helper 1 (Th1)-associated genes, interferon-gamma (IFNgamma), and CXC chemokine receptor-3 (CXCR3). GATA-1, but not GATA-3, potently suppressed CCR5 transcription, thereby rendering human T cells resistant to CCR5-tropic HIV-1 infection. However, GATA-1 could also serve as a surrogate for GATA-3 in its canonic role of programming Th2 gene expression. These findings provide insight into GATA-3-mediated gene regulation during T-cell differentiation. Importantly, decoding the mechanisms of GATA-1-mediated repression of CCR5 may offer an opportunity to develop novel approaches to inhibit CCR5 expression in T cells.
Collapse
Affiliation(s)
- Mark S Sundrud
- Department of Microbiology and Immunology, Vanderbilt University Medical School, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin CW, Liu TY, Chen SU, Wang KT, Medeiros LJ, Hsu SM. CD94 1A transcripts characterize lymphoblastic lymphoma/leukemia of immature natural killer cell origin with distinct clinical features. Blood 2005; 106:3567-74. [PMID: 16046525 DOI: 10.1182/blood-2005-02-0519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most lymphoblastic lymphomas (LBLs) are regarded as neoplasms of immature T cells because they express cytoplasmic CD3 and frequently carry T-cell receptor (TCR) gene rearrangements. Immature natural killer (NK) and T cells, however, have a common bipotent T/NK-cell precursor in the thymus, and NK cells also express cytoplasmic CD3. Thus, some LBLs could arise from immature NK cells. Mature NK cells express 2 CD94 transcripts: 1A, induced by interleukin 15 (IL-15), and 1B constitutively. Because immature NK cells require IL-15 for development, CD94 1A transcripts could be a marker of NK-LBL. To test this hypothesis, we used laser capture microdissection to isolate IL-15 receptor alpha(+) lymphoid cells from the thymus and showed that these cells contained CD94 1A transcripts. We then assessed for CD94 transcripts in 21 cases of LBL that were cytoplasmic CD3(+), nuclear terminal deoxynucleotidyl transferase positive (TdT(+)), and CD56(-), consistent with either the T-cell or NK-cell lineage. We found that 7 LBLs expressed CD94 1A transcripts without TCR gene rearrangements, suggesting NK-cell lineage. Patients with NK-LBL were younger than patients with T-LBL (15 years versus 33 years; P = .11) and had a better 2-year survival (100% versus 27%; P < .01). These results improve the current classification of LBL and contribute to our understanding of NK-cell differentiation.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- CD3 Complex/metabolism
- Cell Differentiation
- Child
- Child, Preschool
- Disease-Free Survival
- Female
- Gene Expression Regulation, Leukemic
- Gene Rearrangement, T-Lymphocyte
- Humans
- Infant
- Infant, Newborn
- Interleukin-15/metabolism
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Leukemia/metabolism
- Leukemia/mortality
- Leukemia/pathology
- Male
- Microdissection/methods
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily D/biosynthesis
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Interleukin-15
- Receptors, Interleukin-2/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Chung-Wu Lin
- Department of Pathology, National Taiwan University College of Medicine, Taipei
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Lymphocyte production in the bone marrow and the thymus is reduced during aging, but why this decline occurs has not been fully elucidated. The ability to isolate hematopoietic stem and progenitor cells using sophisticated flow cytometric strategies and to manipulate them in vitro and in vivo has provided insights into the effects of aging on primary lymphopoiesis. These analyses have showed that intrinsic changes in hematopoietic precursors that affect their proliferative potential are one factor that contributes to the age-related decline in B- and T-cell production. This and other age-related defects may be exacerbated by changes in the lymphopoietic support potential of the bone marrow and thymic microenvironments as well as by age-induced fluctuations in the production of various endocrine hormones. Particular attention with regard to the latter point has focused on changes in the production of sex steroids, growth hormone, and insulin-like growth factor-I. The present review summarizes recent studies of how age-related perturbations affect primary lymphopoiesis and highlights how the data necessitate the reevaluation of a number of existing paradigms.
Collapse
Affiliation(s)
- Hyeyoung Min
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The B cell developmental pathway represents a leading model within the hematopoietic system for the analysis of genetic networks, which orchestrate cell fate specification and commitment. Considerable progress is being achieved in the characterization of regulatory components that comprise such networks and examining their connectivity. These components include the cytokine receptors Flk2 and IL-7R as well as the transcription factors PU.1, Ikaros, Bcl11a, E2A, EBF, and Pax-5. Based on new experimental evidence, a comprehensive model is proposed that invokes sequentially acting and inter-dependent regulatory modules that instruct the generation of B cell precursors from multipotential hematopoietic progenitors. RECENT FINDINGS The transcription factor PU.1 regulates the generation of lymphoid progenitors that express Flk2 and IL-7R. IL-7R receptor signaling appears to function in specification of the B cell fate. The transcription factor EBF can bypass the requirement for PU.1 and E2A in early B cell development. Pax-5 expression and function are contingent on EBF. SUMMARY Assembly of gene regulatory networks involved in cell fate specification may facilitate the efficient and directed generation of lineage-specific hematopoietic progenitors from embryonic stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Kay L Medina
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, Chicago, Illinois 60367, USA
| | | |
Collapse
|
17
|
Hager-Theodorides AL, Dessens JT, Outram SV, Crompton T. The transcription factor Gli3 regulates differentiation of fetal CD4- CD8- double-negative thymocytes. Blood 2005; 106:1296-304. [PMID: 15855276 PMCID: PMC1274277 DOI: 10.1182/blood-2005-03-0998] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma 3 (Gli3) is a transcription factor involved in patterning and oncogenesis. Here, we demonstrate a role for Gli3 in thymocyte development. Gli3 is differentially expressed in fetal CD4- CD8- double-negative (DN) thymocytes and is most highly expressed at the CD44+ CD25- DN (DN1) and CD44- CD25- (DN4) stages of development but was not detected in adult thymocytes. Analysis of null mutants showed that Gli3 is involved at the transitions from DN1 to CD44+ CD25+ DN (DN2) cell and from DN to CD4+ CD8+ double-positive (DP) cell. Gli3 is required for differentiation from DN to DP thymocyte, after pre-T-cell receptor (TCR) signaling but is not necessary for pre-TCR-induced proliferation or survival. The effect of Gli3 was dose dependent, suggesting its direct involvement in the transcriptional regulation of genes controlling T-cell differentiation during fetal development.
Collapse
Affiliation(s)
| | | | | | - Tessa Crompton
- Reprints: Tessa Crompton, Division of Cell and Molecular Biology, Faculty of Life Sciences, Imperial College London, Sir Alexander Fleming Bldg, South Kensington Campus, London SW7 2AZ, United Kingdom; e-mail:
| |
Collapse
|
18
|
Kohu K, Sato T, Ohno SI, Hayashi K, Uchino R, Abe N, Nakazato M, Yoshida N, Kikuchi T, Iwakura Y, Inoue Y, Watanabe T, Habu S, Satake M. Overexpression of the Runx3 Transcription Factor Increases the Proportion of Mature Thymocytes of the CD8 Single-Positive Lineage. THE JOURNAL OF IMMUNOLOGY 2005; 174:2627-36. [PMID: 15728469 DOI: 10.4049/jimmunol.174.5.2627] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Runx family of transcription factors is thought to regulate the differentiation of thymocytes. Runx3 protein is detected mainly in the CD4(-)8(+) subset of T lymphocytes. In the thymus of Runx3-deficient mice, CD4 expression is de-repressed and CD4(-)8(+) thymocytes do not develop. This clearly implicates Runx3 in CD4 silencing, but does not necessarily prove its role in the differentiation of CD4(-)8(+) thymocytes per se. In the present study, we created transgenic mice that overexpress Runx3 and analyzed the development of thymocytes in these animals. In the Runx3-transgenic thymus, the number of CD4(-)8(+) cells was greatly increased, whereas the numbers of CD4(+)8(+) and CD4(+)8(-) cells were reduced. The CD4(-)8(+) transgenic thymocytes contained mature cells with a TCR(high)HSA(low) phenotype. These cells were released from the thymus and contributed to the elevated level of CD4(-)8(+) cells relative to CD4(+)8(-) cells in the spleen. Runx3 overexpression also increased the number of mature CD4(-)8(+) thymocytes in mice with class II-restricted, transgenic TCR and in mice with a class I-deficient background, both of which are favorable for CD4(+)8(-) lineage selection. Thus, Runx3 can drive thymocytes to select the CD4(-)8(+) lineage. This activity is likely to be due to more than a simple silencing of CD4 gene expression.
Collapse
Affiliation(s)
- Kazuyoshi Kohu
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Theoretic and, in particular, mathematic models can help biologists to select and design experiments, to highlight general principles, to discriminate similar and to link different phenomena, and to predict novel features. Specifically, they contribute to an understanding of latent mechanisms and crucial parameters of biologic processes. The following review gives an overview of recent developments in the field of hematopoietic tissue stem cell modeling. RECENT FINDINGS A number of experimental findings on heterogeneity, flexibility, and plasticity of hematopoietic and other tissue stem cells are challenging the classic stem cell concept of a predefined intrinsic stem cell program. Self-organizing systems provide a more elegant and comprehensive alternative to explain experimental data. SUMMARY Within the last few decades, modeling approaches in stem cell biology have evolved and now encompass a broad spectrum of phenomena, ranging from the cellular level to the tissue level. The application of theoretic models is currently suggesting that we abandon the classic assumption of a strict developmental hierarchy and understand stem cell organization as a dynamic, functional process. Such a perspective has implications for a prospective characterization of tissue stem cells (eg, regarding gene expression profiles and genetic regulation patterns).
Collapse
Affiliation(s)
- Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany.
| | | |
Collapse
|
20
|
Elagib KE, Xiao M, Hussaini IM, Delehanty LL, Palmer LA, Racke FK, Birrer MJ, Ganapathy-Kanniappan S, Shanmugasundaram G, McDevitt MA, Goldfarb AN. Jun blockade of erythropoiesis: role for repression of GATA-1 by HERP2. Mol Cell Biol 2004; 24:7779-94. [PMID: 15314183 PMCID: PMC506977 DOI: 10.1128/mcb.24.17.7779-7794.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although Jun upregulation and activation have been established as critical to oncogenesis, the relevant downstream pathways remain incompletely characterized. In this study, we found that c-Jun blocks erythroid differentiation in primary human hematopoietic progenitors and, correspondingly, that Jun factors block transcriptional activation by GATA-1, the central regulator of erythroid differentiation. Mutagenesis of c-Jun suggested that its repression of GATA-1 occurs through a transcriptional mechanism involving activation of downstream genes. We identified the hairy-enhancer-of-split-related factor HERP2 as a novel gene upregulated by c-Jun. HERP2 showed physical interaction with GATA-1 and repressed GATA-1 transcriptional activation. Furthermore, transduction of HERP2 into primary human hematopoietic progenitors inhibited erythroid differentiation. These results thus define a novel regulatory pathway linking the transcription factors c-Jun, HERP2, and GATA-1. Furthermore, these results establish a connection between the Notch signaling pathway, of which the HERP factors are a critical component, and the GATA family, which participates in programming of cellular differentiation.
Collapse
Affiliation(s)
- Kamaleldin E Elagib
- University of Virginia School of Medicine, P.O. Box 800904, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
This review explores the evolutionary origins of lymphocyte development by focusing on the transcription factors that direct mammalian lymphocyte development today. Gene expression data suggest that the programs to make lymphocytes involve the same transcription factor ensembles in all animals with lymphocytes. Most of these factors, GATA, Runx, PU.1/Spi, EBF/Olf, Ikaros, and Pax-2/5/8 family members, are also encoded in the genomes of animals without lymphocytes. We consider the functions of these factors in animals without lymphocytes in terms of discrete program components, which could have been assembled in a new way to create the lymphocyte developmental program approximately 500 My ago.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
22
|
Freitas CS, Dalmau SR, Abdelhay E. Differential expression of notch signaling-related transcripts accompanies Pro-thymocyte proliferation and phenotype transition induced by epidermal growth factor plus insulin in fetal thymus organ cultures. Mem Inst Oswaldo Cruz 2004; 99:381-8. [PMID: 15322627 DOI: 10.1590/s0074-02762004000400007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thymus regression upon stressing stimuli, such as infectious diseases, is followed by organ reconstitution, paralleling its development in ontogeny. A narrow window of thymus development was here studied, encompassing the pro-T lymphoid precursor expansion during specification stages, by the use of epidermal growth factor plus insulin (INS) in murine fetal thymus organ cultures. Aiming to disclose signaling pathways related to these stages, cultured thymus lobes had their RNA extracted, for the search of transcripts differentially expressed using RNAse protection assays and reverse transcriptase-polymerase chain reactions. We found no difference that could explain INS-driven thymocyte growth, in the pattern of transcripts for death/proliferation mediators, or for a series of growth factor receptors and transcriptional regulators known as essential for thymus development. Thymocyte suspensions from cultured lobes, stained for phenotype analysis by fluorescence activated cell sorting, showed a decreased staining for Notch1 protein at cell surfaces upon INS addition. We analyzed the expression of Notch-related elements, and observed the recruitment of a specific set of transcripts simultaneous and compatible with INS-driven thymocyte growth, namely, transcripts for Notch3, for its ligand Jagged2, and for Deltex1, a mediator of a poorly characterized alternative pathway downstream of the Notch receptor.
Collapse
Affiliation(s)
- Claudia Sondermann Freitas
- Laboratório de Biologia Molecular Maury Miranda, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-900, Brazil.
| | | | | |
Collapse
|
23
|
Laiosa MD, Wyman A, Murante FG, Fiore NC, Staples JE, Gasiewicz TA, Silverstone AE. Cell proliferation arrest within intrathymic lymphocyte progenitor cells causes thymic atrophy mediated by the aryl hydrocarbon receptor. THE JOURNAL OF IMMUNOLOGY 2004; 171:4582-91. [PMID: 14568932 DOI: 10.4049/jimmunol.171.9.4582] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix transcription factor, in lymphocytes by the immunosuppressive environmental contaminant 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to cause thymic atrophy in every species studied. We set out to identify the specific hemopoietic cellular populations in which the AHR was activated to lead to thymic atrophy and to determine the effect of AHR activation in those cellular populations. Initially, we examined whether AHR activation in intrathymic dendritic cells could mediate TCDD-induced thymic atrophy. It was found that thymic atrophy occurred only when the AHR could be activated in the thymocytes but not hemopoietic-derived dendritic cells or other APCs. We next analyzed the effect of TCDD on the proliferation of thymocytes in vivo. There was a significant increase in the percentage of thymocytes in the G(1) phase of the cell cycle and a significant decrease in the percentage of S plus G(2)/M thymocytes, especially in the CD4(-)CD8(-)CD3(-) triple-negative intrathymic progenitor cell population 24 h after exposure to 30 micro g/kg TCDD. Furthermore, by 12 h after exposure to TCDD, we observed approximately 60% reduction of 5-bromo-2'-deoxyuridine incorporation in specific intrathymic progenitor cell populations. This reduction persisted for at least 6 days. These data indicate that intrathymic progenitor cells are direct targets of TCDD in the thymus and suggest that TCDD causes thymic atrophy by reducing entrance into cell cycle in these populations.
Collapse
Affiliation(s)
- Michael D Laiosa
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Notch proteins are used repeatedly to direct developmental cell fate decisions in multiple organs. During hematopoiesis and immune development, Notch is critical for T/B lineage specification and for generation of splenic marginal zone B cells. In early embryonic development, Notch is crucial for generating hematopoietic stem cells. Emerging data suggest that Notch may also modulate the differentiation and activity of peripheral T cells. Understanding the specific regulation of the Notch pathway in different contexts and its interaction with other signaling pathways remains an important challenge to comprehend the full spectrum of Notch effects. In this review, we critically assess recent findings regarding the function of Notch in the hematolymphoid system.
Collapse
Affiliation(s)
- Ivan Maillard
- Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|