1
|
Nangarlia A, Hassen FF, Canziani G, Bandi P, Talukder C, Zhang F, Krauth D, Gary EN, Weiner DB, Bieniasz P, Navas-Martin S, O'Keefe BR, Ang CG, Chaiken I. Irreversible Inactivation of SARS-CoV-2 by Lectin Engagement with Two Glycan Clusters on the Spike Protein. Biochemistry 2023; 62:2115-2127. [PMID: 37341186 PMCID: PMC10663058 DOI: 10.1021/acs.biochem.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Host cell infection by SARS-CoV-2, similar to that by HIV-1, is driven by a conformationally metastable and highly glycosylated surface entry protein complex, and infection by these viruses has been shown to be inhibited by the mannose-specific lectins cyanovirin-N (CV-N) and griffithsin (GRFT). We discovered in this study that CV-N not only inhibits SARS-CoV-2 infection but also leads to irreversibly inactivated pseudovirus particles. The irreversibility effect was revealed by the observation that pseudoviruses first treated with CV-N and then washed to remove all soluble lectin did not recover infectivity. The infection inhibition of SARS-CoV-2 pseudovirus mutants with single-site glycan mutations in spike suggested that two glycan clusters in S1 are important for both CV-N and GRFT inhibition: one cluster associated with the RBD (receptor binding domain) and the second with the S1/S2 cleavage site. We observed lectin antiviral effects with several SARS-CoV-2 pseudovirus variants, including the recently emerged omicron, as well as a fully infectious coronavirus, therein reflecting the breadth of lectin antiviral function and the potential for pan-coronavirus inactivation. Mechanistically, observations made in this work indicate that multivalent lectin interaction with S1 glycans is likely a driver of the lectin infection inhibition and irreversible inactivation effect and suggest the possibility that lectin inactivation is caused by an irreversible conformational effect on spike. Overall, lectins' irreversible inactivation of SARS-CoV-2, taken with their breadth of function, reflects the therapeutic potential of multivalent lectins targeting the vulnerable metastable spike before host cell encounter.
Collapse
Affiliation(s)
- Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Farah Fazloon Hassen
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Gabriela Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Praneeta Bandi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Choya Talukder
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Douglas Krauth
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ebony N Gary
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - David B Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- Department of Microbiology and Immunology, Center for Molecular Virology & Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Philadelphia, Pennsylvania 19102, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Charles G Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
2
|
Armario-Najera V, Blanco-Perera A, Shenoy SR, Sun Y, Marfil S, Muñoz-Basagoiti J, Perez-Zsolt D, Blanco J, Izquierdo-Useros N, Capell T, O'Keefe BR, Christou P. Physicochemical characterization of the recombinant lectin scytovirin and microbicidal activity of the SD1 domain produced in rice against HIV-1. PLANT CELL REPORTS 2022; 41:1013-1023. [PMID: 35178612 PMCID: PMC9034974 DOI: 10.1007/s00299-022-02834-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro. We analyzed the thermodynamic properties of SD1 compared to full-size SVN (produced in E. coli) by isothermal titration and differential scanning calorimetry to characterize the specific interactions between SVN/SD1 and gp120 as well as to high-mannose oligosaccharides. SVN bound with moderate affinity (Kd = 1.5 µM) to recombinant gp120, with 2.5-fold weaker affinity to nonamannoside (Kd of 3.9 µM), and with tenfold weaker affinity to tetramannoside (13.8 µM). The melting temperature (Tm) of full-size SVN was 59.1 °C and the enthalpy of unfolding (ΔHunf) was 16.4 kcal/mol, but the Tm fell when SVN bound to nonamannoside (56.5 °C) and twice as much energy was required for unfolding (ΔHunf = 33.5 kcal/mol). Interestingly, binding to tetramannoside destabilized the structure of SD1 (ΔTm ~ 11.5 °C) and doubled the enthalpy of unfolding, suggesting a dimerization event. The similar melting phenomenon shared by SVN and SD1 in the presence of oligomannose confirmed their conserved oligosaccharide-binding mechanisms. SD1 expressed in transgenic rice was able to neutralize HIV-1 in vitro. SD1 expressed in rice, therefore, is suitable as a microbicide component.
Collapse
Affiliation(s)
- Victoria Armario-Najera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Amaya Blanco-Perera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Shilpa R Shenoy
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, 21702, USA
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Yi Sun
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | | | | | - Julià Blanco
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
- Chair of AIDS and Related Diseases, University of Vic-Central University of Catalonia, 08500, Vic, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA.
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Carbone DA, Pellone P, Lubritto C, Ciniglia C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics (Basel) 2021; 10:746. [PMID: 34202941 PMCID: PMC8234452 DOI: 10.3390/antibiotics10060746] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
During the last year, science has been focusing on the research of antivirally active compounds overall after the SARS-CoV-2 pandemic, which caused a great amount of deaths and the downfall of the economy in 2020. Photosynthetic organisms such as microalgae are known to be a reservoir of bioactive secondary metabolites; this feature, coupled with the possibility of achieving very high biomass levels without excessive energetic expenses, make microalgae worthy of attention in the search for new molecules with antiviral effects. In this work, the antiviral effects of microalgae against some common human or animal viruses were considered, focusing our attention on some possible effects against SARS-CoV-2. We summed up the data from the literature on microalgae antiviral compounds, from the most common ones, such as lectins, polysaccharides and photosynthetic pigments, to the less known ones, such as unidentified proteins. We have discussed the effects of a microalgae-based genetic engineering approach against some viral diseases. We have illustrated the potential antiviral benefits of a diet enriched in microalgae.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| | - Paola Pellone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Carmine Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
- National Institute of Nuclear Physics, Complesso Universitario di Monte S, 80126 Naples, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| |
Collapse
|
4
|
Wang B, Yang Z, Gao D, Wang F, Liu M, Chen G, Ma L, Yu X. Design of fusion protein for efficient preparation of cyanovirin-n and rapid enrichment of pseudorabies virus. Biotechnol Lett 2021; 43:1575-1583. [PMID: 33969451 PMCID: PMC8106970 DOI: 10.1007/s10529-021-03141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Cyanovirin-N (CVN) is a cyanobacterial protein with potent neutralizing activity against enveloped virus. To achieve the economic and functional production of CVN, the CVN N-terminally fused with CL7(A mutant of the Colicin E7 Dnase) was utilized to improve the solubility and stability of CVN fusion protein (CL7-CVN). Additionally, to improve the detection limit of existing PRV diagnostic assays, CL7-CVN was used for Pseudorabies virus (PRV) enrichment from larger sample volumes. RESULTS CVN fused with CL7 was efficiently expressed at a level of ~ 40% of the total soluble protein in E. coli by optimizing the induction conditions. Also, the stability of CVN fusion protein was enhanced, and 10 mg of CVN with a purity of ~ 99% were obtained from 1 g of cells by one-step affinity purification with the digestion of HRV 3C protease. Moreover, both purified CVN and CL7-CVN could effectively inhibit the infection of PRV to PK15 cells. Considering the bioactivity of CL7-CVN, we explored a strategy for PRV enrichment from larger samples. CONCLUSIONS CL7 effectively promoted the soluble expression of CVN fusion protein and improved its stability, which was meaningful for its purification and application. The design of CVN fusion protein provides an efficient approach for the economical and functional production of CVN and a new strategy for PRV enrichment.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062 China
| | - Zhi Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062 China
| | - Dan Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062 China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062 China
| | - Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062 China
| | - Guanjun Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062 China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062 China
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062 China
| |
Collapse
|
5
|
Antiviral Cyanometabolites-A Review. Biomolecules 2021; 11:biom11030474. [PMID: 33810129 PMCID: PMC8004682 DOI: 10.3390/biom11030474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystisviridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. The sulfated polysaccharide, calcium spirulan (CA-SP), inhibited infection by enveloped viruses, stimulated the immune system’s response, and showed antitumor activity. Microginins, the linear peptides, inhibit angiotensin-converting enzyme (ACE), therefore, their use in the treatment of COVID-19 patients with injury of the ACE2 expressing organs is considered. In addition, many cyanobacterial extracts were revealed to have antiviral activities, but the active agents have not been identified. This fact provides a good basis for further studies on the therapeutic potential of these microorganisms.
Collapse
|
6
|
Carpine R, Sieber S. Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Agarwal R, Trivedi J, Mitra D. High yield production of recombinant cyanovirin-N (antiviral lectin) exhibiting significant anti-HIV activity, from a rationally selected Escherichia coli strain. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Habibi P, Daniell H, Soccol CR, Grossi‐de‐Sa MF. The potential of plant systems to break the HIV-TB link. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1868-1891. [PMID: 30908823 PMCID: PMC6737023 DOI: 10.1111/pbi.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20-fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource-limited setting because plant-made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti-TB therapy (ATT), including drug interactions, drug-related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant-made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioprocess Engineering and BiotechnologyFederal University of ParanáCuritibaPRBrazil
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
| | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Catholic University of BrasíliaBrasíliaDFBrazil
- Post Graduation Program in BiotechnologyUniversity PotiguarNatalRNBrazil
| |
Collapse
|
9
|
Siqueira AS, Lima ARJ, Aguiar DCF, Santos AS, Vianez Júnior JLDSG, Gonçalves EC. Genomic screening of new putative antiviral lectins from Amazonian cyanobacteria based on a bioinformatics approach. Proteins 2018; 86:1047-1054. [PMID: 30035823 PMCID: PMC7167734 DOI: 10.1002/prot.25577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Lectins are proteins of nonimmune origin, which are capable of recognizing and binding to glycoconjugate moieties. Some of them can block the interaction of viral glycoproteins to the host cell receptors acting as antiviral agents. Although cyanobacterial lectins have presented broad biotechnological potential, little research has been directed to Amazonian Cyanobacterial diversity. In order to identify new antiviral lectins, we performed genomic analysis in seven cyanobacterial strains from Coleção Amazônica de Cianobactérias e Microalgas (CACIAM). We found 75 unique CDS presenting one or more lectin domains. Since almost all were annotated as hypothetical proteins, we used homology modeling and molecular dynamics simulations to evaluate the structural and functional properties of three CDS that were more similar to known antiviral lectins. Nostoc sp. CACIAM 19 as well as Tolypothrix sp. CACIAM 22 strains presented cyanovirin‐N homologues whose function was confirmed by binding free energy calculations. Asn, Glu, Thr, Lys, Leu, and Gly, which were described as binding residues for cyanovirin, were also observed on those structures. As for other known cyanovirins, those residues in both our models also made favorable interactions with dimannose. Finally, Alkalinema sp. CACIAM 70d presented one CDS, which was identified as a seven‐bladed beta‐propeller structure with binding sites predicted for sialic acid and N‐acetylglucosamine. Despite its singular structure, our analysis suggested this molecule as a new putative antiviral lectin. Overall, the identification and the characterization of new lectins and their homologues are a promising area in antiviral research, and Amazonian cyanobacteria present biotechnological potential to be explored in this regard.
Collapse
Affiliation(s)
- Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular – Instituto de Ciências BiológicasUniversidade Federal do ParáBelém‐PennsylvaniaBrazil
| | - Alex Ranieri Jerônimo Lima
- Laboratório de Tecnologia Biomolecular – Instituto de Ciências BiológicasUniversidade Federal do ParáBelém‐PennsylvaniaBrazil
| | - Delia Cristina Figueira Aguiar
- Laboratório de Tecnologia Biomolecular – Instituto de Ciências BiológicasUniversidade Federal do ParáBelém‐PennsylvaniaBrazil
| | - Alberdan Silva Santos
- Laboratórios de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular – Instituto de Ciências Naturais – Universidade Federal do ParáBelém‐PennsylvaniaBrazil
| | | | - Evonnildo Costa Gonçalves
- Laboratório de Tecnologia Biomolecular – Instituto de Ciências BiológicasUniversidade Federal do ParáBelém‐PennsylvaniaBrazil
| |
Collapse
|
10
|
Unexpected synergistic HIV neutralization by a triple microbicide produced in rice endosperm. Proc Natl Acad Sci U S A 2018; 115:E7854-E7862. [PMID: 30061386 PMCID: PMC6099877 DOI: 10.1073/pnas.1806022115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our paper provides an approach for the durable deployment of anti-HIV agents in the developing world. We developed a transgenic rice line expressing three microbicidal proteins (the HIV-neutralizing antibody 2G12 and the lectins griffithsin and cyanovirin-N). Simultaneous expression in the same plant allows the crude seed extract to be used directly as a topical microbicide cocktail, avoiding the costs of multiple downstream processes. This groundbreaking strategy is realistically the only way that microbicidal cocktails can be manufactured at a cost low enough for the developing world, where HIV prophylaxis is most in demand. The transmission of HIV can be prevented by the application of neutralizing monoclonal antibodies and lectins. Traditional recombinant protein manufacturing platforms lack sufficient capacity and are too expensive for developing countries, which suffer the greatest disease burden. Plants offer an inexpensive and scalable alternative manufacturing platform that can produce multiple components in a single plant, which is important because multiple components are required to avoid the rapid emergence of HIV-1 strains resistant to single microbicides. Furthermore, crude extracts can be used directly for prophylaxis to avoid the massive costs of downstream processing and purification. We investigated whether rice could simultaneously produce three functional HIV-neutralizing proteins (the monoclonal antibody 2G12, and the lectins griffithsin and cyanovirin-N). Preliminary in vitro tests showed that the cocktail of three proteins bound to gp120 and achieved HIV-1 neutralization. Remarkably, when we mixed the components with crude extracts of wild-type rice endosperm, we observed enhanced binding to gp120 in vitro and synergistic neutralization when all three components were present. Extracts of transgenic plants expressing all three proteins also showed enhanced in vitro binding to gp120 and synergistic HIV-1 neutralization. Fractionation of the rice extracts suggested that the enhanced gp120 binding was dependent on rice proteins, primarily the globulin fraction. Therefore, the production of HIV-1 microbicides in rice may not only reduce costs compared to traditional platforms but may also provide functional benefits in terms of microbicidal potency.
Collapse
|
11
|
Lotfi H, Sheervalilou R, Zarghami N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BIOIMPACTS : BI 2018. [PMID: 29977835 DOI: 10.1517/bi.2018.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable of inhibiting the HIV cell entry in a highly specific manner. Methods: This review article presents an overview of attempts conducted on different expression systems for the recombinant production of CVN. We have also assessed the potential of the final recombinant product, as an effective anti-HIV microbicide, comparing prokaryotic and eukaryotic expression systems. Results: Artificial production of CVN is a challenging task because the desirable anti-HIV activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during recombinant production. Thus, inexpensive and functional production of rCVN requires an effective expression system which must be found among the bacteria, yeast, and transgenic plants, for the subsequent satisfying medical application. Moreover, the strong anti-HIV potential of CVN in trace concentrations (micromolar to picomolar) was reported for the in vitro and in vivo tests. Conclusion: To produce pharmaceutically effective CVN, we first need to identify the best expression system, with Escherichia coli, Pichia pastoris , Lactic acid bacteria and transgenic plants being possible candidates. For this reason, heterologous production of this valuable protein is a serious challenge. Since different obstacles influence clinical trials on microbicides in the field of HIV prevention, these items should be considered for evaluating the CVN activity in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Hajie Lotfi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Lotfi H, Sheervalilou R, Zarghami N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. ACTA ACUST UNITED AC 2017; 8:139-151. [PMID: 29977835 PMCID: PMC6026528 DOI: 10.15171/bi.2018.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
![]()
Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable of inhibiting the HIV cell entry in a highly specific manner.
Methods: This review article presents an overview of attempts conducted on different expression systems for the recombinant production of CVN. We have also assessed the potential of the final recombinant product, as an effective anti-HIV microbicide, comparing prokaryotic and eukaryotic expression systems.
Results: Artificial production of CVN is a challenging task because the desirable anti-HIV activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during recombinant production. Thus, inexpensive and functional production of rCVN requires an effective expression system which must be found among the bacteria, yeast, and transgenic plants, for the subsequent satisfying medical application. Moreover, the strong anti-HIV potential of CVN in trace concentrations (micromolar to picomolar) was reported for the in vitro and in vivo tests.
Conclusion: To produce pharmaceutically effective CVN, we first need to identify the best expression system, with Escherichia coli, Pichia pastoris , Lactic acid bacteria and transgenic plants being possible candidates. For this reason, heterologous production of this valuable protein is a serious challenge. Since different obstacles influence clinical trials on microbicides in the field of HIV prevention, these items should be considered for evaluating the CVN activity in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Hajie Lotfi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Singh RS, Walia AK, Khattar JS, Singh DP, Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. Int J Biol Macromol 2017; 102:475-496. [PMID: 28437766 DOI: 10.1016/j.ijbiomac.2017.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Lectins are ubiquitous proteins/glycoproteins of non-immune origin that bind reversibly to carbohydrates in non-covalent and highly specific manner. These lectin-glycan interactions could be exploited for establishment of novel therapeutics, targeting the adherence stage of viruses and thus helpful in eliminating wide spread viral infections. Here the review focuses on the haemagglutination activity, carbohydrate specificity and characteristics of cyanobacterial lectins. Cyanobacterial lectins exhibiting high specificity towards mannose or complex glycans have potential role as anti-viral agents. Prospective role of cyanobacterial lectins in targeting various diseases of worldwide concern such as HIV, hepatitis, herpes, influenza and ebola viruses has been discussed extensively. The review also lays emphasis on recent studies involving structural analysis of glycan-lectin interactions which in turn influence their mechanism of action. Altogether, the promising approach of these cyanobacterial lectins provides insight into their use as antiviral agents.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India.
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India
| | | | - Davinder Pal Singh
- Department of Botany, Punjabi University, Patiala 147 002, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science & Technology Institute, Kyrewood House, Tenbury Wells, Worcestershire WR1 8SG, UK
| |
Collapse
|
14
|
Madeira LM, Szeto TH, Ma JKC, Drake PMW. Rhizosecretion improves the production of Cyanovirin-N in Nicotiana tabacum through simplified downstream processing. Biotechnol J 2016; 11:910-919. [PMID: 26901579 PMCID: PMC4929045 DOI: 10.1002/biot.201500371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/09/2015] [Accepted: 02/19/2016] [Indexed: 11/06/2022]
Abstract
Rhizosecretion has many advantages for the production of recombinant pharmaceuticals, notably facile downstream processing from hydroponic medium. The aim of this study was to increase yields of the HIV microbicide candidate, Cyanovirin-N (CV-N), obtained using this production platform and to develop a simplified methodology for its downstream processing from hydroponic medium. Placing hydroponic cultures on an orbital shaker more than doubled the concentration of CV-N in the hydroponic medium compared to plants which remained stationary, reaching a maximum of approximately 20μg/ml in one week, which is more than 3 times higher than previously reported yields. The protein composition of the hydroponic medium, the rhizosecretome, was characterised in plants cultured with or without the plant growth regulator alpha-napthaleneacetic acid by LC-ESI-MS/MS, and CV-N was the most abundant protein. The issue of large volumes in the rhizosecretion system was addressed by using ion exchange chromatography to concentrate CV-N and partially remove impurities. The semi-purified CV-N was demonstrated to bind to HIV gp120 in an ELISA and to neutralise HIVBa-L with an IC50 of 6nM in a cell-based assay. Rhizosecretion is therefore a practicable and inexpensive method for the production of functional CV-N.
Collapse
Affiliation(s)
- Luisa M Madeira
- Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Tim H Szeto
- Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Pascal M W Drake
- Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
15
|
Vamvaka E, Evans A, Ramessar K, Krumpe LRH, Shattock RJ, O'Keefe BR, Christou P, Capell T. Cyanovirin-N produced in rice endosperm offers effective pre-exposure prophylaxis against HIV-1BaL infection in vitro. PLANT CELL REPORTS 2016; 35:1309-19. [PMID: 27007716 PMCID: PMC7815165 DOI: 10.1007/s00299-016-1963-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/27/2016] [Indexed: 05/19/2023]
Abstract
Cyanovirin-N produced in rice endosperm provides efficient pre-exposure prophylaxis against HIV-1 BaL infection in vitro. Cyanovirin-N (CV-N) is a lectin with potent antiviral activity that has been proposed as a component of microbicides for the prevention of infection with Human immunodeficiency virus (HIV). The production of protein-based microbicide components requires a platform that is sufficiently economical and scalable to meet the demands of the large at-risk population, particularly in resource poor developing countries. We, therefore, expressed CV-N in rice endosperm, because the dried seed is ideal for storage and transport and crude extracts could be prepared locally and used as a microbicide component without further purification. We found that crude extracts from rice seeds expressing up to 10 µg CV-N per gram dry seed weight showed dose-dependent gp120 binding activity, confirming that the protein was soluble, correctly folded and active. The recombinant lectin ((OS)CV-N) reduced the infectivity of HIV-1BaL (an R5 virus strain representing the majority of transmitted infections) by ~90 % but showed only weak neutralization activity against HIV-1RF (representative of X4 virus, rarely associated with transmission), suggesting it would be highly effective for pre-exposure prophylaxis against the vast majority of transmitted strains. Crude extracts expressing (OS)CV-N showed no toxicity towards human cells at working dilutions indicating that microbicide components produced in rice endosperm are safe for direct application as topical microbicides in humans.
Collapse
Affiliation(s)
- E Vamvaka
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - A Evans
- Department of Medicine, Imperial College London, Norfolk Place, London, UK
| | - K Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - L R H Krumpe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, USA
| | - R J Shattock
- Department of Medicine, Imperial College London, Norfolk Place, London, UK
| | - B R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA
| | - P Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - T Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain.
| |
Collapse
|
16
|
O'Keefe BR, Murad AM, Vianna GR, Ramessar K, Saucedo CJ, Wilson J, Buckheit KW, da Cunha NB, Araújo ACG, Lacorte CC, Madeira L, McMahon JB, Rech EL. Engineering soya bean seeds as a scalable platform to produce cyanovirin-N, a non-ARV microbicide against HIV. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:884-92. [PMID: 25572960 PMCID: PMC4529388 DOI: 10.1111/pbi.12309] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/04/2014] [Accepted: 11/06/2014] [Indexed: 05/03/2023]
Abstract
There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 μg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development.
Collapse
Affiliation(s)
- Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - André M Murad
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Giovanni R Vianna
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Koreen Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Carrie J Saucedo
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
- Leidos, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Wilson
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | | | - Nicolau B da Cunha
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Ana Claudia G Araújo
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Cristiano C Lacorte
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| | - Luisa Madeira
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
- Division of Clinical Sciences, St. George's, University of London, London, UK
| | - James B McMahon
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Elibio L Rech
- EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology, Brasília, DF, Brazil
| |
Collapse
|
17
|
Wu C, Chen W, Chen J, Han B, Peng Z, Ge F, Wei B, Liu M, Zhang M, Qian C, Hou Z, Liu G, Guo C, Wang Y, Kitazato K, Yu G, Zou C, Xiong S. Preparation of monoPEGylated Cyanovirin-N's derivative and its anti-influenza A virus bioactivity in vitro and in vivo. J Biochem 2015; 157:539-48. [PMID: 25713409 PMCID: PMC8356848 DOI: 10.1093/jb/mvv013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/31/2014] [Indexed: 11/12/2022] Open
Abstract
Influenza A virus (IAV) has been raising public health and safety concerns worldwide. Cyanovirin-N (CVN) is a prominent anti-IAV candidate, but both cytotoxicity and immunogenicity have hindered the development of this protein as a viable therapy. In this article, linker-CVN (LCVN) with a flexible and hydrophilic polypeptide at the N-terminus was efficiently produced from the cytoplasm of Escherichia coli at a >15-l scale. PEGylation at the N-terminal α-amine of LCVN was also reformed as 20 kDa PEGylated linkered Cyanovirin-N (PEG20k-LCVN). The 50% effective concentrations of PEG20k-LCVN were 0.43 ± 0.11 µM for influenza A/HK/8/68 (H3N2) and 0.04 ± 0.02 µM for A/Swan/Hokkaido/51/96 (H5N3), dramatically lower than that of the positive control, Ribavirin (2.88 ± 0.66 × 10(3) µM and 1.79 ± 0.62 × 10(3) µM, respectively). A total of 12.5 µM PEG20k-LCVN effectively inactivate the propagation of H3N2 in chicken embryos. About 2.0 mg/kg/day PEG20k-LCVN increased double the survival rate (66.67%, P = 0.0378) of H3N2 infected mice, prolonged the median survival period, downregulated the mRNA level of viral nuclear protein and decreased (attenuated) the pathology lesion in mice lung. A novel PEGylated CVN derivative, PEG20k-LCVN, exhibited potent and strain-dependent anti-IAV activity in nanomolar concentrations in vitro, as well as in micromolar concentration in vivo.
Collapse
Affiliation(s)
- Chongchao Wu
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wei Chen
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jia Chen
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bo Han
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zhou Peng
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Feng Ge
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bo Wei
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mingxian Liu
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Meiying Zhang
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chuiwen Qian
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zhibo Hou
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ge Liu
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chaowan Guo
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yifei Wang
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kaio Kitazato
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Guoying Yu
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chunbin Zou
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Department of Cellular Biology, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Department of Pharmacy, College of Food and Pharmacy & Medical, Zhejiang Ocean University, Zhoushan 316002, People's Republic of China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki Prefecture 852-8521, Japan; and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N. Transgenic Res 2013; 22:1225-9. [DOI: 10.1007/s11248-013-9730-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
|
19
|
Patsalo V, Raleigh DP, Green DF. Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands. Biochemistry 2011; 50:10698-712. [PMID: 22032696 PMCID: PMC3234137 DOI: 10.1021/bi201411c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyanovirin-N (CVN) is an 11 kDa pseudosymmetric cyanobacterial lectin that has been shown to inhibit infection by the human immunodeficiency virus by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work, we describe rationally designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson-Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 M GuaHCl against chemical denaturation, relative to a previously characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding.
Collapse
Affiliation(s)
- Vadim Patsalo
- Department of Applied Mathematics and Statistics Stony Brook University Stony Brook, New York 11794 USA
- Laufer Center for Physical and Quantitative Biology Stony Brook University Stony Brook, New York 11794 USA
| | - Daniel P. Raleigh
- Department of Chemistry Stony Brook University Stony Brook, New York 11794 USA
- Graduate Program in Biochemistry and Structural Biology Stony Brook University Stony Brook, New York 11794 USA
| | - David F. Green
- Department of Applied Mathematics and Statistics Stony Brook University Stony Brook, New York 11794 USA
- Laufer Center for Physical and Quantitative Biology Stony Brook University Stony Brook, New York 11794 USA
- Department of Chemistry Stony Brook University Stony Brook, New York 11794 USA
- Graduate Program in Biochemistry and Structural Biology Stony Brook University Stony Brook, New York 11794 USA
| |
Collapse
|
20
|
Abstract
Most human immunodeficiency virus (HIV) transmissions in women occur through the cervicovaginal mucosa, which is coated by a bacterial biofilm including Lactobacillus. This commensal bacterium has a role in maintaining a healthy mucosa and can be genetically engineered to produce antiviral peptides. Here, we report a 63% reduction in transmission of a chimeric simian/HIV (SHIV(SF162P3)) after repeated vaginal challenges of macaques treated with Lactobacillus jensenii expressing the HIV-1 entry inhibitor cyanovirin-N. Furthermore, peak viral loads in colonized macaques with breakthrough infection were reduced sixfold. Colonization and prolonged antiviral protein secretion by the genetically engineered lactobacilli did not cause any increase in proinflammatory markers. These findings lay the foundation for an accessible and durable approach to reduce heterosexual transmission of HIV in women, which is coitally independent, inexpensive, and enhances the natural protective effects of the vaginal microflora.
Collapse
|
21
|
Designed oligomers of cyanovirin-N show enhanced HIV neutralization. Proc Natl Acad Sci U S A 2011; 108:14079-84. [PMID: 21799112 DOI: 10.1073/pnas.1108777108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanovirin-N (CV-N) is a small, cyanobacterial lectin that neutralizes many enveloped viruses, including human immunodeficiency virus type I (HIV-1). This antiviral activity is attributed to two homologous carbohydrate binding sites that specifically bind high mannose glycosylation present on envelope glycoproteins such as HIV-1 gp120. We created obligate CV-N oligomers to determine whether increasing the number of binding sites has an effect on viral neutralization. A tandem repeat of two CV-N molecules (CVN(2)) increased HIV-1 neutralization activity by up to 18-fold compared to wild-type CV-N. In addition, the CVN(2) variants showed extensive cross-clade reactivity and were often more potent than broadly neutralizing anti-HIV antibodies. The improvement in activity and broad cross-strain HIV neutralization exhibited by these molecules holds promise for the future therapeutic utility of these and other engineered CV-N variants.
Collapse
|
22
|
Antiviral activity of recombinant cyanovirin-N against HSV-1. Virol Sin 2010; 25:432-9. [PMID: 21221922 DOI: 10.1007/s12250-010-3131-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/30/2010] [Indexed: 10/18/2022] Open
Abstract
In this study, a standard strain of HSV-1 (strain SM(44)) was used to investigate the antiviral activity of the recombinant Cyanovirin-N (CV-N) against Herpes simplex virus type 1 (HSV-1) in vitro and in vivo. Cytopathic effect (CPE) and MTT assays were used to evaluate the effect of CV-N on HSV-1 in Vero cells. The number of copies of HSV-DNA was detected by real-time fluorescence quantitative PCR (FQ-PCR). The results showed that CV-N had a low cytotoxicity on Vero cells with a CC(50) of 359.03 ± 0.56 μg/mL, and that it could not directly inactivate HSV-1 infectivity. CV-N not only reduced the CPE of HSV-1 when added before or after viral infection, with a 50% inhibitory concentration (IC(50)) with 2.26 and 30.16 μg/mL respectively, but it also decreased the copies of HSV-1 DNA in infected host cells. The encephalitis model for HSV-1 infection was conducted in Kunming mice, and treated with three dosages of CV-N (0.5, 5 & 10 mg/kg) which was administered intraperitoneally at 2h, 3d, 5d, 7d post infection. The duration for the appearance of symptoms of encephalitis and the survival days were recorded and brain tissue samples were obtained for pathological examination (HE staining). Compared with the untreated control group, in the 5mg/kg CV-N and 10mg/kg CV-N treated groups, the mice suffered light symptoms and the number of survival days were more than 9 d and 14 d respectively. HE staining also showed that in 5mg/kg CV-N and 10mg/kg CV-N treated groups, the brain cells did not show visible changes, except for a slight inflammation. Our results demonstrated that CV-N has pronounced antiviral activity against HSV-1 both in vitro and in vivo, and it would be a promising new candidate for anti-HSV therapeutics.
Collapse
|
23
|
Vorontsov II, Miyashita O. Solution and crystal molecular dynamics simulation study of m4-cyanovirin-N mutants complexed with di-mannose. Biophys J 2010; 97:2532-40. [PMID: 19883596 DOI: 10.1016/j.bpj.2009.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 11/19/2022] Open
Abstract
Cyanovirin-N (CVN) is a highly potent anti-HIV carbohydrate-binding agent that establishes its microbicide activity through interaction with mannose-rich glycoprotein gp120 on the virion surface. The m4-CVN and P51G-m4-CVN mutants represent simple models for studying the high-affinity binding site, B(M). A recently determined 1.35 A high-resolution structure of P51G-m4-CVN provided details on the di-mannose binding mechanism, and suggested that the Arg-76 and Glu-41 residues are critical components of high mannose specificity and affinity. We performed molecular-dynamics simulations in solution and a crystal environment to study the role of Arg-76. Network analysis and clustering were used to characterize the dynamics of Arg-76. The results of our explicit solvent solution and crystal simulations showed a significant correlation with conformations of Arg-76 proposed from x-ray crystallographic studies. However, the crystal simulation showed that the crystal environment strongly biases conformational sampling of the Arg-76 residue. The solution simulations demonstrated no conformational preferences for Arg-76, which would support its critical role as the residue that locks the ligand in the bound state. Instead, a comparative analysis of trajectories from >50 ns of simulation for two mutants revealed the existence of a very stable eight-hydrogen-bond network between the di-mannose ligand and predominantly main-chain atoms. This network may play a key role in the specific recognition and strong binding of mannose oligomers in CVN and its homologs.
Collapse
Affiliation(s)
- Ivan I Vorontsov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
24
|
The antiviral protein cyanovirin-N: the current state of its production and applications. Appl Microbiol Biotechnol 2010; 86:805-12. [DOI: 10.1007/s00253-010-2470-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/24/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
|
25
|
Soluble cytoplasmic expression, rapid purification, and characterization of cyanovirin-N as a His-SUMO fusion. Appl Microbiol Biotechnol 2009; 85:1051-60. [PMID: 19547966 PMCID: PMC7080120 DOI: 10.1007/s00253-009-2078-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 11/14/2022]
Abstract
Cyanovirin-N (CVN) is a promising antiviral candidate that has an extremely low sequence homology with any other known proteins. The efficient and soluble expression of biologically functional recombinant CVN (rCVN) is still an obstacle due to insufficient yield, aggregation, and abnormal modification. Here, we describe an improved approach to preparing native rCVN from Escherichia coli more efficiently. A fusion gene consisting of cvn and sumo (small ubiquitin-related modifier) and a hexahistidine tag was constructed according to the codon bias of the host cell. This small ubiquitin-related modifier (SUMO)-fused CVN is expressed in the cytoplasm of E. coli in a folded and soluble form (>30% of the total soluble protein), yielding 3 to 4 mg of native rCVN from 1 g of wet cells to a purity up to 97.6%. Matrix-assisted laser desorption ionization coupled to time-of-flight mass spectrometry and reverse-phase high-performance liquid chromatographic analysis showed that the purified rCVN was an intact and homogeneous protein with a molecular weight of 11,016.68 Da. Potent antiviral activity of rCVN against herpes simplex virus type 1 and human immunodeficiency virus type 1/IIIB was confirmed in a dose-dependent manner at nanomolar concentrations. Thus, the His-SUMO double-fused CVN provides an efficient approach for the soluble expression of rCVN in the cytoplasm of E. coli, allowing an alternative system to develop bioprocess for the large-scale production of this antiviral candidate.
Collapse
|
26
|
Liu Y, Carroll JR, Holt LA, McMahon J, Giomarelli B, Ghirlanda G. Multivalent interactions with gp120 are required for the anti-HIV activity of Cyanovirin. Biopolymers 2009; 92:194-200. [PMID: 19235857 DOI: 10.1002/bip.21173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyanovirin-N (CV-N) is a cyanobacterial lectin that binds to specific oligomannoses on the surface of gp120, resulting in nanomolar antiviral activity against HIV. In its monomeric form, CV-N contains two functional carbohydrate-binding domains, A and B. When refolded at high concentration, the protein can form a domain-swapped dimer. To clarify the role of multiple-binding sites in CV-N, we previously designed a monomeric mutant, P51G-m4-CVN, in which the binding site on domain A was rendered ineffective by four mutations (m4); in addition, a hinge region mutation (P51G) hinders the formation of a domain swapped dimer. The protein bound gp120 with diminished affinity and was completely inactive against HIV. Here, we present two mutants, DeltaQ50-m4-CVN and S52P-m4-CVN, which fold exclusively as domain-swapped dimers while containing the four mutations that abolish domain A. The dimers contain two intact B domains, thus restoring multivalency. DeltaQ50-m4-CVN and S52P-m4-CVN bind gp120 at low-nanomolar concentrations and recover in part the antiviral activity of wt CV-N. These results indicate that the number of carbohydrate binding domains, rather than their identity, is crucial to CV-N functionality.
Collapse
Affiliation(s)
- Yinan Liu
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | | | | | | | | |
Collapse
|
27
|
Fromme R, Katiliene Z, Giomarelli B, Bogani F, Mc Mahon J, Mori T, Fromme P, Ghirlanda G. A monovalent mutant of cyanovirin-N provides insight into the role of multiple interactions with gp120 for antiviral activity. Biochemistry 2007; 46:9199-207. [PMID: 17636873 DOI: 10.1021/bi700666m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanovirin-N (CV-N) is a 101 amino acid cyanobacterial lectin with potent antiviral activity against HIV, mediated by high-affinity binding to branched N-linked oligomannosides on the viral surface envelope protein gp120. The protein contains two carbohydrate-binding domains, A and B, each of which binds short oligomannosides independently in vitro. The interaction to gp120 could involve either a single domain or both domains simultaneously; it is not clear which mode would elicit the antiviral activity. The model is complicated by the formation of a domain-swapped dimer form, in which part of each domain is exchanged between two monomers, which contains four functional carbohydrate-binding domains. To clarify whether multivalent interactions with gp120 are necessary for the antiviral activity, we engineered a novel mutant, P51G-m4-CVN, in which the binding site on domain A has been knocked out; in addition, a [P51G] mutation prevents the formation of domain-swapped dimers under physiological conditions. Here, we present the crystal structures at 1.8 A of the free and of the dimannose-bound forms of P51G-m4-CVN, revealing a monomeric structure in which only domain B is bound to dimannose. P51G-m4-CVN binds gp120 with an affinity almost 2 orders of magnitude lower than wt CV-N and is completely inactive against HIV. The tight binding to gp120 is recovered in the domain-swapped version of P51G-m4-CVN, prepared under extreme conditions. Our findings show that the presence of at least two oligomannoside-binding sites, either by the presence of intact domains A and B or by formation of domain-swapped dimers, is essential for activity.
Collapse
Affiliation(s)
- Raimund Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu X, Lagenaur LA, Simpson DA, Essenmacher KP, Frazier-Parker CL, Liu Y, Tsai D, Rao SS, Hamer DH, Parks TP, Lee PP, Xu Q. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrob Agents Chemother 2006; 50:3250-9. [PMID: 17005802 PMCID: PMC1610104 DOI: 10.1128/aac.00493-06] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Women are at significant risk of human immunodeficiency virus (HIV) infection, with the cervicovaginal mucosa serving as a major portal for virus entry. Female-initiated preventatives, including topical microbicides, are urgently needed to help curtail the HIV/AIDS pandemic. Here we report on the development of a novel, live microbicide that employs a natural vaginal strain of Lactobacillus jensenii engineered to deliver the potent HIV inhibitor cyanovirin-N (CV-N). To facilitate efficient expression of CV-N by this bacterium, the L. jensenii 1153 genome was sequenced, allowing identification of native regulatory elements and sites for the chromosomal integration of heterologous genes. A CV-N expression cassette was optimized and shown to produce high levels of structurally intact CV-N when expressed in L. jensenii. Lactobacillus-derived CV-N was capable of inhibiting CCR5-tropic HIV(BaL) infectivity in vitro with a 50% inhibitory concentration of 0.3 nM. The CV-N expression cassette was stably integrated as a single copy into the bacterial chromosome and resolved from extraneous plasmid DNA without adversely affecting the bacterial phenotype. This bacterial strain was capable of colonizing the vagina and producing full-length CV-N when administered intravaginally to mice during estrus phase. The CV-N-producing Lactobacillus was genetically stable when propagated in vitro and in vivo. This work represents a major step towards the development of an inexpensive yet durable protein-based microbicide to block the heterosexual transmission of HIV in women.
Collapse
|
29
|
Barrientos LG, Matei E, Lasala F, Delgado R, Gronenborn AM. Dissecting carbohydrate-Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral entry inhibition. Protein Eng Des Sel 2006; 19:525-35. [PMID: 17012344 DOI: 10.1093/protein/gzl040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The HIV-inactivating protein Cyanovirin-N (CV-N) is a cyanobacterial lectin that exhibits potent antiviral activity at nanomolar concentrations by interacting with high-mannose carbohydrates on viral glycoproteins. To date there is no molecular explanation for this potent virucidal activity, given the experimentally measured micromolar affinities for small sugars and the problems encountered with aggregation and precipitation of high-mannose/CV-N complexes. Here, we present results for two CV-N variants, CV-N(mutDA) and CV-N(mutDB), compare their binding properties with monomeric [P51G]CV-N (a stabilized version of wtCV-N) and test their in vitro activities. The mutations in CV-N(mutDA) and CV-N(mutDB) comprise changes in amino acids that alter the trimannose specificity of domain A(M) and abolish the sugar binding site on domain B(M), respectively. We demonstrate that carbohydrate binding via domain B(M) is essential for antiviral activity, whereas alterations in sugar binding specificity on domain A(M) have little effect on envelope glycoprotein recognition and antiviral activity. Changes in A(M), however, affect the cross-linking activity of CV-N. Our findings augment and clarify the existing models of CV-N binding to N-linked glycans on viral glycoproteins, and demonstrate that the nanomolar antiviral potency of CV-N is related to the constricted and spatially crowded arrangement of the mannoses in the glycan clusters on viral glycoproteins and not due to CV-N induced virus particle agglutination, making CV-N a true viral entry inhibitor.
Collapse
Affiliation(s)
- Laura G Barrientos
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
30
|
Helle F, Wychowski C, Vu-Dac N, Gustafson KR, Voisset C, Dubuisson J. Cyanovirin-N inhibits hepatitis C virus entry by binding to envelope protein glycans. J Biol Chem 2006; 281:25177-83. [PMID: 16809348 DOI: 10.1074/jbc.m602431200] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inhibition of viruses at the stage of viral entry provides a route for therapeutic intervention. Because of difficulties in propagating hepatitis C virus (HCV) in cell culture, entry inhibitors have not yet been reported for this virus. However, with the development of retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recent progress in amplification of HCV in cell culture (HCVcc), studying HCV entry is now possible. In addition, these systems are essential for the identification and the characterization of molecules that block HCV entry. The lectin cyanovirin-N (CV-N) has initially been discovered based on its potent activity against human immunodeficiency virus. Because HCV envelope glycoproteins are highly glycosylated, we sought to determine whether CV-N has an antiviral activity against this virus. CV-N inhibited the infectivity of HCVcc and HCVpp at low nanomolar concentrations. This inhibition is attributed to the interaction of CV-N with HCV envelope glycoproteins. In addition, we showed that the carbohydrate binding property of CV-N is involved in the anti-HCV activity. Finally, CV-N bound to HCV envelope glycoproteins and blocked the interaction between the envelope protein E2 and CD81, a cell surface molecule involved in HCV entry. These data demonstrate that targeting the glycans of HCV envelope proteins is a promising approach in the development of antiviral therapies to combat a virus that is a major cause of chronic liver diseases. Furthermore, CV-N is a new invaluable tool to further dissect the early steps of HCV entry into host cells.
Collapse
Affiliation(s)
- François Helle
- Centre National de la Recherche Scientifique, Institut de Biologie de Lille (Unité Mixte de Recherche 8161), Institut Pasteur de Lille, 59021 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
31
|
Percudani R, Montanini B, Ottonello S. The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes. Proteins 2006; 60:670-8. [PMID: 16003744 DOI: 10.1002/prot.20543] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel protein family homologous to the sugar-binding antiviral protein cyanovirin-N (CVN) is described. CVN, an 11-kDa protein that, by binding to the high-mannose moiety of certain viral surface glycoproteins, blocks virus entry into target cells, has thus far been identified only in the cyanobacterium Nostoc ellipsosporum. Here we show that CVN belongs to a protein family identified by analysis of transcript sequences deriving from a gene expression profiling study conducted in the truffle Tuber borchii. Members of this family (named CyanoVirin-N Homology) are found in filamentous ascomycetes and in the fern Ceratopteris richardii. As revealed by 3D structure-based searches, all CVNH proteins have a predicted fold that matches the so far unique fold of the cyanobacterial polypeptide. The CVNH domain is a versatile protein module. In ferns and cyanobacteria it is found in secretory proteins. In filamentous ascomycetes it is found in nonsecretory monodomain proteins as well as part of multidomain proteins bearing functionally related modules such as the peptidoglycan and chitin-binding domain LysM. Transcript abundance data further indicate that the expression of different CVNH forms is modulated in response to nutrient availability. These findings have implications for the understanding of protein-oligosaccharide interaction in fungi and plants, and provide candidate polypeptides to be tested and exploited as antiviral agents.
Collapse
Affiliation(s)
- Riccardo Percudani
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy.
| | | | | |
Collapse
|
32
|
Sexton A, Drake PM, Mahmood N, Harman SJ, Shattock RJ, Ma JKC. Transgenic plant production of Cyanovirin-N, an HIV microbicide. FASEB J 2006; 20:356-8. [PMID: 16354721 DOI: 10.1096/fj.05-4742fje] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyanovirin-N (CV-N) is a microbicide candidate that inactivates a wide range of HIV strains by binding to gp120. Production of CV-N, or any protein microbicide, needs to be at extremely high levels and low cost to have an impact on global health. Thus, it is unlikely that fermentor-based systems will be suitable, including recombinant E. coli, where CV-N aggregates and dimers have consistently been found. Transgenic plants may provide a suitable expression system for protein microbicides, as production can be easily and economically scaled up. Here, Nicotiana tabacum was transformed with a gene encoding CV-N to explore proof of concept for the production of CV-N in transgenic plants. Plant-derived rCV-N was recoverable at levels of 130 ng/mg of fresh leaf tissue, or at least 0.85% of total soluble plant protein. Western blot analysis demonstrated that virtually all of the rCV-N was expressed in the desired monomeric form. Functionality was demonstrated by specific binding to gp120 and protection of T-cells from in vitro HIV infection. Hydroponic culturing of transgenic plants demonstrated CV-N rhizosecretion at levels of 0.64 mug/ml hydroponic media after 24 days. Therefore, we suggest that transgenic plants have the potential to provide strategies for large-scale protein microbicide production.
Collapse
Affiliation(s)
- Amy Sexton
- Centre for Infection, Department of Cellular and Molecular Medicine, St. George's University of London, London, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Singh S, Kate BN, Banerjee UC. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 2005; 25:73-95. [PMID: 16294828 DOI: 10.1080/07388550500248498] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cyanobacteria (blue-green algae) are photosynthetic prokaryotes used as food by humans. They have also been recognized as an excellent source of vitamins and proteins and as such are found in health food stores throughout the world. They are also reported to be a source of fine chemicals, renewable fuel and bioactive compounds. This potential is being realized as data from research in the areas of the physiology and chemistry of these organisms are gathered and the knowledge of cyanobacterial genetics and genetic engineering increased. Their role as antiviral, anti-tumour, antibacterial, anti-HIV and a food additive have been well established. The production of cyanobacteria in artificial and natural environments has been fully exploited. In this review the use of cyanobacteria and microalgae, production processes and biosynthesis of pigments, colorants and certain bioactive compounds are discussed in detail. The genetic manipulation of cyanobacteria and microalgae to improve their quality are also described at length.
Collapse
Affiliation(s)
- Sawraj Singh
- Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | | |
Collapse
|
34
|
Asres K, Seyoum A, Veeresham C, Bucar F, Gibbons S. Naturally derived anti-HIV agents. Phytother Res 2005; 19:557-81. [PMID: 16161055 DOI: 10.1002/ptr.1629] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The urgent need for new anti-HIV/AIDS drugs is a global concern. In addition to obvious economical and commercial hurdles, HIV/AIDS patients are faced with multifarious difficulties associated with the currently approved anti-HIV drugs. Adverse effects, the emergence of drug resistance and the narrow spectrum of activity have limited the therapeutic usefulness of the various reverse transcriptase and protease inhibitors that are currently available on the market. This has driven many scientists to look for new anti-retrovirals with better efficacy, safety and affordability. As has always been the case in the search for cures, natural sources offer great promise. Several natural products, mostly of plant origin have been shown to possess promising activities that could assist in the prevention and/or amelioration of the disease. Many of these anti-HIV agents have other medicinal values as well, which afford them further prospective as novel leads for the development of new drugs that can deal with both the virus and the various disorders that characterize HIV/AIDS. The aim of this review is to report new discoveries and updates pertaining to anti-HIV natural products. In the review anti-HIV agents have been classified according to their chemical classes rather than their target in the HIV replicative cycle, which is the most frequently encountered approach. Perusal of the literature revealed that most of these promising naturally derived anti-HIV compounds are flavonoids, coumarins, terpenoids, alkaloids, polyphenols, polysaccharides or proteins. It is our strong conviction that the results and experiences with many of the anti-HIV natural products will inspire and motivate even more researchers to look for new leads from plants and other natural sources.
Collapse
Affiliation(s)
- Kaleab Asres
- Department of Pharmacognosy, School of Pharmacy, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | | | | | | | | |
Collapse
|
35
|
Colleluori DM, Tien D, Kang F, Pagliei T, Kuss R, McCormick T, Watson K, McFadden K, Chaiken I, Buckheit RW, Romano JW. Expression, purification, and characterization of recombinant cyanovirin-N for vaginal anti-HIV microbicide development. Protein Expr Purif 2005; 39:229-36. [PMID: 15642474 DOI: 10.1016/j.pep.2004.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Cyanovirin-N (CV-N) is a prokaryotic protein under development as a topical anti-HIV microbicide, an urgent and necessary approach to prevent HIV transmission in at-risk populations worldwide. We have expressed recombinant CV-N as inclusion bodies in the cytoplasm of Escherichia coli. A purification scheme has been developed that exploits the physicochemical properties of this protein, in particular its stability in a harsh inclusion body purification scheme. Under the conditions developed, this system yields 140 mg of highly purified CV-N per liter of high-density cell culture, which represents a 14-fold increase over the best recombinant CV-N yield reported to date. This purification scheme results in monomeric CV-N as analyzed by SDS-PAGE, isoelectric focusing, and reverse phase- and size exclusion-HPLC. This recombinantly expressed and refolded CV-N binds to gp120 with nanomolar affinity and retains its potent anti-HIV activities in cell-based assays. The expression and purification system described herein provides a better means for the mass production of CV-N for further microbicide development.
Collapse
Affiliation(s)
- Diana M Colleluori
- Biosyn, Incorporated, 1800 Byberry Road, Building 13, Huntingdon Valley, PA 19006, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Barrientos LG, Lasala F, Delgado R, Sanchez A, Gronenborn AM. Flipping the switch from monomeric to dimeric CV-N has little effect on antiviral activity. Structure 2005; 12:1799-807. [PMID: 15458629 DOI: 10.1016/j.str.2004.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/19/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
Cyanovirin-N can exist in solution in monomeric and domain-swapped dimeric forms, with HIV-antiviral activity being reported for both. Here we present results for CV-N variants that form stable solution dimers: the obligate dimer [DeltaQ50]CV-N and the preferential dimer [S52P]CV-N. These variants exhibit comparable DeltaG values (10.6 +/- 0.5 and 9.4 +/- 0.5 kcal.mol(-1), respectively), similar to that of stabilized, monomeric [P51G]CV-N (9.8 +/- 0.5 kcal.mol(-1)), but significantly higher than wild-type CV-N (4.1 +/- 0.2 kcal.mol(-1)). During folding/unfolding, no stably folded monomer was observed under any condition for the obligate dimer [DeltaQ50]CV-N, whereas two monomeric, metastable species were detected for [S52P]CV-N at low concentrations. This is in contrast to our previous results for [P51G]CV-N and wild-type CV-N, for which the dimeric forms were found to be the metastable species. The dimeric mutants exhibit comparable antiviral activity against HIV and Ebola, similar to that of wild-type CV-N and the stabilized [P51G]CV-N variant.
Collapse
Affiliation(s)
- Laura G Barrientos
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
37
|
Han Z, Simpson JT, Fivash MJ, Fisher R, Mori T. Identification and characterization of peptides that bind to cyanovirin-N, a potent human immunodeficiency virus-inactivating protein. Peptides 2004; 25:551-61. [PMID: 15165709 DOI: 10.1016/j.peptides.2004.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 02/25/2004] [Indexed: 11/23/2022]
Abstract
Cyanovirin-N (CV-N) exerts a potent human immunodeficiency virus (HIV)-inactivating activity against diverse strains of HIV by binding to the viral surface envelope glycoprotein gp120 and blocking its essential interactions with cellular receptors. Based on previous thermodynamic analyses, it has been speculated that discrete protein-protein interactions might play an important ancillary role in the CV-N/gp120 binding event, in addition to the interactions of CV-N with specific oligosaccharides present on gp120. Here, we report the identification and characterization of CV-N-binding peptides, which were isolated by screening of M13 phage-displayed peptide libraries. After performing three rounds of biopanning of the libraries against biotinylated CV-N, a CV-N-binding motif, X3CX6(W/F)(Y/F)CX2(Y/F), was evident. A vector was designed to express CV-N-binding peptides as a fusion with thioredoxin (Trx) containing a penta-His affinity tag. The CV-N-binding peptides fused with His-tagged Trx inhibited binding of the corresponding peptide-bearing phages to CV-N, confirming that the peptides possessed CV-N-binding activity. Optical biosensor binding studies showed that the one of the CV-N-binding peptide, TN10-1, bound to CV-N with a KD value of 1.9 microM. The results of alanine scanning mutagenesis of the peptide showed that aromatic residues at positions 11, 12, and 16, as well as the conformational structure of the peptide secured by a disulfide bond, were important for the binding interactions. A series of competitive binding assays confirmed that gp120 inhibited CV-N binding of the corresponding peptide-bearing phages, and suggested that TN10-1 peptides were mimicking the protein component of gp120 rather than mimicking specific oligosaccharides present on gp120.
Collapse
Affiliation(s)
- Zhaozhong Han
- Molecular Targets Development Program, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
38
|
O'Keefe BR, Smee DF, Turpin JA, Saucedo CJ, Gustafson KR, Mori T, Blakeslee D, Buckheit R, Boyd MR. Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin. Antimicrob Agents Chemother 2003; 47:2518-25. [PMID: 12878514 PMCID: PMC166092 DOI: 10.1128/aac.47.8.2518-2525.2003] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The novel antiviral protein cyanovirin-N (CV-N) was initially discovered based on its potent activity against the human immunodeficiency virus (HIV). Subsequent studies identified the HIV envelope glycoproteins gp120 and gp41 as molecular targets of CV-N. More recently, mechanistic studies have shown that certain high-mannose oligosaccharides (oligomannose-8 and oligomannose-9) found on the HIV envelope glycoproteins comprise the specific sites to which CV-N binds. Such selective, carbohydrate-dependent interactions may account, at least in part, for the unusual and unexpected spectrum of antiviral activity of CV-N described herein. We screened CV-N against a broad range of respiratory and enteric viruses, as well as flaviviruses and herpesviruses. CV-N was inactive against rhinoviruses, human parainfluenza virus, respiratory syncytial virus, and enteric viruses but was moderately active against some herpesvirus and hepatitis virus (bovine viral diarrhea virus) strains (50% effective concentration [EC(50)] = approximately 1 micro g/ml) while inactive against others. Remarkably, however, CV-N and related homologs showed highly potent antiviral activity against almost all strains of influenza A and B virus, including clinical isolates and a neuraminidase inhibitor-resistant strain (EC(50) = 0.004 to 0.04 micro g/ml). When influenza virus particles were pretreated with CV-N, viral titers were lowered significantly (>1,000-fold). Further studies identified influenza virus hemagglutinin as a target for CV-N, showed that antiviral activity and hemagglutinin binding were correlated, and indicated that CV-N's interactions with hemagglutinin involved oligosaccharides. These results further reveal new potential avenues for antiviral therapeutics and prophylaxis targeting specific oligosaccharide-comprised sites on certain enveloped viruses, including HIV, influenza virus, and possibly others.
Collapse
Affiliation(s)
- Barry R O'Keefe
- Molecular Targets Development Program, Center for Cancer Research, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|