1
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Yarawsky AE, Ori AL, English LR, Whitten ST, Herr AB. Convergent behavior of extended stalk regions from staphylococcal surface proteins with widely divergent sequence patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523059. [PMID: 36711672 PMCID: PMC9881980 DOI: 10.1101/2023.01.06.523059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus epidermidis and S. aureus are highly problematic bacteria in hospital settings. This stems, at least in part, from strong abilities to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized multicellular aggregates of bacteria, which, when formed on indwelling medical devices, lead to infections that are difficult to treat. Cell wall-anchored (CWA) proteins are known to be important players in biofilm formation and infection. Many of these proteins have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of the S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction or other significant conformational changes. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.
Collapse
Affiliation(s)
- Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrea L. Ori
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Sciences Baccalaureate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lance R. English
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Steven T. Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Pramanik U, Chakraborty S, Bhattacharyya K, Mukherjee S. An intrinsically disordered protein in F127 hydrogel: Fluorescence correlation spectroscopy and structural diversity of beta casein. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Di Gioacchino M, Bianconi A, Burghammer M, Ciasca G, Bruni F, Campi G. Myelin basic protein dynamics from out-of-equilibrium functional state to degraded state in myelin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183256. [PMID: 32145283 DOI: 10.1016/j.bbamem.2020.183256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/15/2023]
Abstract
Living matter is a quasi-stationary out-of-equilibrium system; in this physical condition, structural fluctuations at nano- and meso-scales are needed to understand the physics behind its biological functionality. Myelin has a simple ultrastructure whose fluctuations show correlated disorder in its functional out-of-equilibrium state. However, there is no information on the relationship between this correlated disorder and the dynamics of the intrinsically disordered Myelin Basic Protein (MBP) which is expected to influence the membrane structure and overall functionality. In this work, we have investigated the role of this protein structural dynamics in the myelin ultrastructure fluctuations in various conditions, by using synchrotron Scanning micro X Ray Diffraction and Small Angle X ray Scattering. We have induced the crossover from out-of-equilibrium functional state to in-equilibrium degeneration changing the pH to values far from physiological condition. The observed compression of the cytosolic layer thickness probes that the intrinsic large MBP fluctuations preserve the cytosol structure also in the degraded state. Thus, the transition of myelin ultrastructure from correlated to uncorrelated disordered state, is principally affected by the deformation of the membrane and extracellular domain.
Collapse
Affiliation(s)
- Michael Di Gioacchino
- Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy; Institute of Crystallography, CNR, via Salaria, Km 29.300, 00015 Monterotondo, Roma, Italy; Rome International Center for Materials Science Superstripes (RICMASS), Via dei Sabelli 119A, 00185 Roma, Italy.
| | - Antonio Bianconi
- Institute of Crystallography, CNR, via Salaria, Km 29.300, 00015 Monterotondo, Roma, Italy; Rome International Center for Materials Science Superstripes (RICMASS), Via dei Sabelli 119A, 00185 Roma, Italy; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP220, 38043 Grenoble Cedex, France
| | - Gabriele Ciasca
- Physics Institute, Catholic University of Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy
| | - Fabio Bruni
- Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
| | - Gaetano Campi
- Institute of Crystallography, CNR, via Salaria, Km 29.300, 00015 Monterotondo, Roma, Italy
| |
Collapse
|
5
|
Yarawsky AE, English LR, Whitten ST, Herr AB. The Proline/Glycine-Rich Region of the Biofilm Adhesion Protein Aap Forms an Extended Stalk that Resists Compaction. J Mol Biol 2017; 429:261-279. [PMID: 27890783 PMCID: PMC5363081 DOI: 10.1016/j.jmb.2016.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022]
Abstract
Staphylococcus epidermidis is one of the primary bacterial species responsible for healthcare-associated infections. The most significant virulence factor for S. epidermidis is its ability to form a biofilm, which renders the bacteria highly resistant to host immune responses and antibiotic action. Intercellular adhesion within the biofilm is mediated by the accumulation-associated protein (Aap), a cell wall-anchored protein that self-assembles in a zinc-dependent manner. The C-terminal portion of Aap contains a 135-aa-long, proline/glycine-rich region (PGR) that has not yet been characterized. The region contains a set of 18 nearly identical AEPGKP repeats. Analysis of the PGR using biophysical techniques demonstrated the region is a highly extended, intrinsically disordered polypeptide with unusually high polyproline type II helix propensity. In contrast to many intrinsically disordered polypeptides, there was a minimal temperature dependence of the global conformational state of PGR in solution as measured by analytical ultracentrifugation and dynamic light scattering. Furthermore, PGR was resistant to conformational collapse or α-helix formation upon the addition of the osmolyte trimethylamine N-oxide or the cosolvent 2,2,2-trifluoroethanol. Collectively, these results suggest PGR functions as a resilient, extended stalk that projects the rest of Aap outward from the bacterial cell wall, promoting intercellular adhesion between cells in the biofilm. This work sheds light on regions of low complexity often found near the attachment point of bacterial cell wall-anchored proteins.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Graduate Program in Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lance R English
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Steven T Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Andrew B Herr
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1262-77. [DOI: 10.1016/j.bbamem.2016.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/30/2016] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
|
7
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
8
|
Lee DW, Banquy X, Kristiansen K, Min Y, Ramachandran A, Boggs JM, Israelachvili JN. Adsorption mechanism of myelin basic protein on model substrates and its bridging interaction between the two surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3159-3166. [PMID: 25706854 DOI: 10.1021/acs.langmuir.5b00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myelin basic protein (MBP) is an intrinsically disordered (unstructured) protein known to play an important role in the stability of myelin's multilamellar membrane structure in the central nervous system. The adsorption of MBP and its capacity to interact with and bridge solid substrates has been studied using a surface forces apparatus (SFA) and a quartz crystal microbalance with dissipation (QCM-D). Adsorption experiments show that MBP molecules adsorb to the surfaces in a swollen state before undergoing a conformational change into a more compact structure with a thickness of ∼3 nm. Moreover, this compact structure is able to interact with nearby mica surfaces to form adhesive bridges. The measured adhesion force (energy) between two bridged surfaces is 1.0 ± 0.1 mN/m, (Ead = 0.21 ± 0.02 mJ/m(2)), which is slightly smaller than our previously reported adhesion force of 1.7 mN/m (Ead = 0.36 mJ/m(2)) for MBP adsorbed on two supported lipid bilayers (Lee et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E768-E775). The saturated surface concentration of compact MBP on a single SiO2 surface reaches a stable value of 310 ± 10 ng/cm(2) regardless of the bulk MBP concentration. A kinetic three-step adsorption model was developed that accurately fits the adsorption data. The developed model is a general model, not limited to intrinsically disordered proteins, that can be extended to the adsorption of various chemical compounds that undergo chemical reactions and/or conformational changes upon adsorbing to surfaces. Taken together with our previously published data (Lee et al., Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E768-E775), the present results confirm that conformational changes of MBP upon adsorption are a key for strong adhesion, and that such conformational changes are strongly dependent on the nature of the surfaces.
Collapse
Affiliation(s)
- Dong Woog Lee
- †Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Xavier Banquy
- ‡Canada Research Chair in Bio-inspired Materials and Interfaces, Faculty of Pharmacy, Université de Montréal C.P. 6128, succursale Centre Ville, Montréal, Québec H3C 3J7, Canada
| | - Kai Kristiansen
- †Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Younjin Min
- §Department of Polymer Engineering, University of Akron, Akron, Ohio United States
| | - Arun Ramachandran
- ∥Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Joan M Boggs
- ⊥Department of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- #Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | - Jacob N Israelachvili
- †Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- ∇Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Schraut KG, Jakob SB, Weidner MT, Schmitt AG, Scholz CJ, Strekalova T, El Hajj N, Eijssen LMT, Domschke K, Reif A, Haaf T, Ortega G, Steinbusch HWM, Lesch KP, Van den Hove DL. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice. Transl Psychiatry 2014; 4:e473. [PMID: 25335169 PMCID: PMC4350514 DOI: 10.1038/tp.2014.107] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022] Open
Abstract
The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt genotype, PS exposure and their interaction.
Collapse
Affiliation(s)
- K G Schraut
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - S B Jakob
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - M T Weidner
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - A G Schmitt
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - C J Scholz
- Laboratory for Microarray Applications, Interdisciplinary Center for Clinical Research, University of Wuerzburg, Wuerzburg, Germany
| | - T Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands,Institute for Hygiene and Tropical Medicine, New University of Lisbon, Lisbon, Portugal
| | - N El Hajj
- Institute of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - L M T Eijssen
- Department of Bioinformatics-BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - K Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - T Haaf
- Institute of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - G Ortega
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - H W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - K P Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands,Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, University of Wuerzburg, 97080 Wuerzburg, Germany. E-mail:
| | - D L Van den Hove
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Dror Y, Hopp M. Hair for brain trade-off, a metabolic bypass for encephalization. SPRINGERPLUS 2014; 3:562. [PMID: 25332862 PMCID: PMC4190188 DOI: 10.1186/2193-1801-3-562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/15/2014] [Indexed: 02/03/2023]
Abstract
Hair loss in humans is perplexing and raises many hypothetical explanations. This paper suggests that hair loss in humans is metabolically related to encephalization; and that hair covered hominids would have been unable to evolve large brains because of a dietary restriction of several amino acids which are essential for hair and brain development. We use simulations to imply that hair loss must have preceded increase in brain size & volume. In this respect we see hair loss as a major force in human evolution. We assume that hair reduction required favorable climatic conditions and must have been quick. Using evolutionary and ecological time scales, we pinpoint hair loss to a period around 2.2-2.4 million years ago. The dating is further supported by a rapid selection at that time of the sialic acid deletion mutation which may have protected growing human brains against calcium ion flux. In summary we view encephalization, in part, as a metabolic trade-off between hair and brain. Other biochemical changes may have intervened in the process too; and the deletion mutation of sialic acid hydroxylation may have been involved as well.
Collapse
Affiliation(s)
- Yosef Dror
- Biochemistry and Human Nutrition, Faculty of Agriculture, The Hebrew University, 76100 Rehovot, Israel
| | - Michael Hopp
- Department of Geography, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Jaramillo-Tatis S, Vassall KA, Bamm VV, Harauz G. Regulatory effect of the glial Golli-BG21 protein on the full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein). Biochem Biophys Res Commun 2014; 447:633-7. [PMID: 24751520 DOI: 10.1016/j.bbrc.2014.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/12/2022]
Abstract
The gene in the oligodendrocyte lineage (golli) encodes a number of proteins essential for myelination, comprising Golli and classic isoforms that are expressed in a developmentally-regulated manner. The Golli-interacting-protein (GIP) was previously discovered in a search for potential interacting partners of the Golli-isoform BG21, and was realised to be an acidic phosphatase belonging to the family of RNA-polymerase-2, small-subunit, C-terminal phosphatases (viz., SCP1). Here, we refer to this protein as mSCP1/GIP. In subsequent in vitro studies of recombinant murine SCP1/GIP, the inability to produce an active full-length version of the protein under native conditions necessitated the study of a truncated form ΔN-rmSCP1/GIP, but with inconclusive results regarding its interaction with BG21 [13]. We have since developed a new SUMO-expression and purification protocol for the preparation of a functional, full-length mGIP/SCP1, with no additional purification tags. Here, the interaction between mSCP1/GIP (with intact N-terminus) and BG21 is shown to be different than for the truncation mutant studied previously. Specifically, this interaction shows a dual effect on the enzymatic activity of mSCP1/GIP by BG21: BG21 enhanced mSCP1/GIP phosphatase activity (Ka = 30 μM), whereas PKCα-phosphorylated BG21 inhibited its activity (Ki = 2.9 μM), suggesting a potential role of BG21 as a molecular switch ("quick-brake mechanism") on mSCP1/GIP. The successful production of an active, full-length mSCP1/GIP thus demonstrates a role for its N-terminus in regulation of phosphatase activity, in events such as the regulation of transcription in oligodendrocytes.
Collapse
Affiliation(s)
- Sergio Jaramillo-Tatis
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
12
|
Bakhti M, Aggarwal S, Simons M. Myelin architecture: zippering membranes tightly together. Cell Mol Life Sci 2014; 71:1265-77. [PMID: 24165921 PMCID: PMC11113231 DOI: 10.1007/s00018-013-1492-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/11/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Rapid nerve conduction requires the coating of axons by a tightly packed multilayered myelin membrane. In the central nervous system, myelin is formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion around an axon, resulting in the close apposition of adjacent myelin membrane bilayers. In this review, we discuss the physical principles underlying the zippering of the plasma membrane of oligodendrocytes at the cytoplasmic and extracellular leaflet. We propose that the interaction of the myelin basic protein with the cytoplasmic leaflet of the myelin bilayer triggers its polymerization into a fibrous network that drives membrane zippering and protein extrusion. In contrast, the adhesion of the extracellular surfaces of myelin requires the down-regulation of repulsive components of the glycocalyx, in order to uncover weak and unspecific attractive forces that bring the extracellular surfaces into close contact. Unveiling the mechanisms of myelin membrane assembly at the cytoplasmic and extracelluar sites may help to understand how the myelin bilayers are disrupted and destabilized in the different demyelinating diseases.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
- Present Address: Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Shweta Aggarwal
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - Mikael Simons
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| |
Collapse
|
13
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
14
|
Kattnig DR, Bund T, Boggs JM, Harauz G, Hinderberger D. Lateral self-assembly of 18.5-kDa myelin basic protein (MBP) charge component-C1 on membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2636-47. [DOI: 10.1016/j.bbamem.2012.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/23/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022]
|
15
|
Marshall H, Venkat M, Hti Lar Seng NS, Cahn J, Juers DH. The use of trimethylamine N-oxide as a primary precipitating agent and related methylamine osmolytes as cryoprotective agents for macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:69-81. [PMID: 22194335 PMCID: PMC3245723 DOI: 10.1107/s0907444911050360] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
Abstract
Both crystallization and cryoprotection are often bottlenecks for high-resolution X-ray structure determination of macromolecules. Methylamine osmolytes are known stabilizers of protein structure. One such osmolyte, trimethylamine N-oxide (TMAO), has seen occasional use as an additive to improve macromolecular crystal quality and has recently been shown to be an effective cryoprotective agent for low-temperature data collection. Here, TMAO and the related osmolytes sarcosine and betaine are investigated as primary precipitating agents for protein crystal growth. Crystallization experiments were undertaken with 14 proteins. Using TMAO, seven proteins crystallized in a total of 13 crystal forms, including a new tetragonal crystal form of trypsin. The crystals diffracted well, and eight of the 13 crystal forms could be effectively cryocooled as grown with TMAO as an in situ cryoprotective agent. Sarcosine and betaine produced crystals of four and two of the 14 proteins, respectively. In addition to TMAO, sarcosine and betaine were effective post-crystallization cryoprotective agents for two different crystal forms of thermolysin. Precipitation reactions of TMAO with several transition-metal ions (Fe(3+), Co(2+), Cu(2+) and Zn(2+)) did not occur with sarcosine or betaine and were inhibited for TMAO at lower pH. Structures of proteins from TMAO-grown crystals and from crystals soaked in TMAO, sarcosine or betaine were determined, showing osmolyte binding in five of the 12 crystals tested. When an osmolyte was shown to bind, it did so near the protein surface, interacting with water molecules, side chains and backbone atoms, often at crystal contacts.
Collapse
Affiliation(s)
- Haley Marshall
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Murugappan Venkat
- Department of Physics, Whitman College, Walla Walla, Washington, USA
| | - Nang San Hti Lar Seng
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Jackson Cahn
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
| | - Douglas H. Juers
- Program in Biochemistry, Biophysics and Molecular Biology, Whitman College, Walla Walla, Washington, USA
- Department of Physics, Whitman College, Walla Walla, Washington, USA
| |
Collapse
|
16
|
Szasz CS, Alexa A, Toth K, Rakacs M, Langowski J, Tompa P. Protein disorder prevails under crowded conditions. Biochemistry 2011; 50:5834-44. [PMID: 21634433 DOI: 10.1021/bi200365j] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crowding caused by the high concentrations of macromolecules in the living cell changes chemical equilibria, thus promoting aggregation and folding reactions of proteins. The possible magnitude of this effect is particularly important with respect to the physiological structure of intrinsically disordered proteins (IDPs), which are devoid of well-defined three-dimensional structures in vitro. To probe this effect, we have studied the structural state of three IDPs, α-casein, MAP2c, and p21(Cip1), in the presence of the crowding agents Dextran and Ficoll 70 at concentrations up to 40%, and also the small-molecule osmolyte, trimethylamine N-oxide (TMAO), at concentrations up to 3.6 M. The structures of IDPs under highly diluted and crowded conditions were compared by a variety of techniques, fluorescence spectroscopy, acrylamide quenching, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, fluorescence correlation spectroscopy (FCS), and far-UV and near-UV circular dichroism (CD) spectroscopy, which allow us to visualize various levels of structural organization within these proteins. We observed that crowding causes limited structural changes, which seem to reflect the functional requirements of these IDPs. α-Casein, a protein of nutrient function in milk, changes least under crowded conditions. On the other hand, MAP2c and, to a lesser degree, p21(Cip1), which carry out their functions by partner binding and accompanying partially induced folding, show signs of local structuring and also some global compaction upon crowded conditions, in particular in the presence of TMAO. The observations are compatible with the possible preformation of binding-competent conformations in these proteins. The magnitude of these changes, however, is far from that of the cooperative folding transitions elicited by crowding in denatured globular proteins; i.e., these IDPs do remain in a state of rapidly interconverting structural ensemble. Altogether, our results underline that structural disorder is the physiological state of these proteins.
Collapse
Affiliation(s)
- C S Szasz
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
17
|
Bund T, Boggs JM, Harauz G, Hellmann N, Hinderberger D. Copper uptake induces self-assembly of 18.5 kDa myelin basic protein (MBP). Biophys J 2011; 99:3020-8. [PMID: 21044600 DOI: 10.1016/j.bpj.2010.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/23/2010] [Accepted: 08/02/2010] [Indexed: 12/26/2022] Open
Abstract
Myelin basic protein (MBP) is predominantly found in the membranes of the myelin sheath of the central nervous system and is involved in important protein-protein and protein-lipid interactions in vivo and in vitro. Furthermore, divalent transition metal ions, especially Zn(2+) and Cu(2+), seem to directly affect the MBP-mediated formation and stabilization of the myelin sheath of the central nervous system. MBP belongs to the realm of intrinsically disordered proteins, and only fragmentary information is available regarding its partial structure(s) or supramolecular arrangements. Here, using standard continuous wave and modern pulse electron paramagnetic resonance methods, as well as dynamic light scattering, we demonstrate the uptake and specific coordination of two Cu(2+) atoms or one Zn(2+) atom per MBP molecule in solution. In the presence of phosphates, further addition of divalent metal ions above a characteristic threshold of four Cu(2+) atoms or two Zn(2+) atoms per MBP molecule leads to the formation of large MBP aggregates within the protein solution. In vivo, MBP-MBP interactions may thus be mediated by divalent cations.
Collapse
Affiliation(s)
- Timo Bund
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | | | | | |
Collapse
|
18
|
Dyksterhuis LB, Carter EA, Mithieux SM, Weiss AS. Tropoelastin as a thermodynamically unfolded premolten globule protein: The effect of trimethylamine N-oxide on structure and coacervation. Arch Biochem Biophys 2009; 487:79-84. [DOI: 10.1016/j.abb.2009.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 01/12/2023]
|
19
|
Behbehani GR, Saboury AA, Divsalar A. Thermodynamic study of the binding of calcium and magnesium ions with myelin basic protein using the extended solvation theory. Acta Biochim Biophys Sin (Shanghai) 2008; 40:964-9. [PMID: 18989578 DOI: 10.1111/j.1745-7270.2008.00477.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The interaction of myelin basic protein (MBP) from the bovine central nervous system with Ca2+ and Mg2+ ions, named as M2+, was studied by isothermal titration calorimetry at 27 degrees C in aqueous solution. The extended solvation model was used to reproduce the enthalpies of MBP+M2+ interactions. The solvation parameters recovered from the extended solvation model were attributed to the structural change of MBP due to the metal ion interaction. It was found that there is a set of two identical and noninteracting binding sites for Ca2+ and Mg2+ ions.
Collapse
Affiliation(s)
- G Rezaei Behbehani
- Chemistry Department, Imam Khomeini International University, Qazvin, Iran.
| | | | | |
Collapse
|
20
|
Libich DS, Harauz G. Solution NMR and CD spectroscopy of an intrinsically disordered, peripheral membrane protein: evaluation of aqueous and membrane-mimetic solvent conditions for studying the conformational adaptability of the 18.5 kDa isoform of myelin basic protein (MBP). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1015-29. [PMID: 18449534 DOI: 10.1007/s00249-008-0334-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 02/05/2023]
Abstract
The stability and secondary structure propensity of recombinant murine 18.5 kDa myelin basic protein (rmMBP, 176 residues) was assessed using circular dichroic and nuclear magnetic resonance spectroscopy (1H-15N HSQC experiments) to determine the optimal sample conditions for further NMR studies (i.e., resonance assignments and protein-protein interactions). Six solvent conditions were selected based on their ability to stabilise the protein, and their tractability to currently standard solution NMR methodology. Selected solvent conditions were further characterised as functions of concentration, temperature, and pH. The results of these trials indicated that 30% TFE-d2 in H2O (v/v), pH 6.5 at 300 K, and 100 mM KCl, pH 6.5 at 277 K were the best conditions to use for future solution NMR studies of MBP. Micelles of DPC were found to be inappropriate for backbone resonance assignments of rmMBP in this instance.
Collapse
Affiliation(s)
- David S Libich
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, ON, Canada
| | | |
Collapse
|
21
|
Behbehani GR, Saboury AA, Baghery AF. A Thermodynamic Study on the Binding of Calcium Ion with Myelin Basic Protein. J SOLUTION CHEM 2007. [DOI: 10.1007/s10953-007-9181-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Thompson DH, Zhou M, Grey J, Kim HK. Design, Synthesis, and Performance of NTA-modified Lipids as Templates for Histidine-tagged Protein Crystallization. CHEM LETT 2007. [DOI: 10.1246/cl.2007.956] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Bamm VV, Ahmed MAM, Ladizhansky V, Harauz G. Purification and spectroscopic characterization of the recombinant BG21 isoform of murine golli myelin basic protein. J Neurosci Res 2007; 85:272-84. [PMID: 17131428 DOI: 10.1002/jnr.21129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A recombinant form of the murine Golli-myelin basic protein (MBP) isoform BG21 (rmBG21) has been expressed in E. coli, and isolated to 96% purity via metal chelation chromatography. Characteristic yields were 6-8 mg protein per liter of culture in either minimal M9 or standard Luria-Bertani media. Circular dichroism spectroscopy showed that rmBG21 had a large proportion of random coil in aqueous solution, but gained alpha-helix in the presence of monosialoganglioside G(M1) and PI(4)P, as well as in the membrane-mimetic solvent trifluoroethanol. Bioinformatics analyses of the amino acid sequence of rmBG21 predicted an N-terminal calmodulin (CaM)-binding site. It was determined by fluorescence spectroscopy and dynamic light scattering that rmBG21 and CaM interacted weakly in a 1:1 ratio in a Ca(2+)-dependent manner. Solution NMR spectra of uniformly [(13)C(15)N]-labeled protein in aqueous buffer were consistent with it being an extended protein; spectral quality was independent of temperature. Thus, like "classic" MBP and the Golli-MBP isoform J37, rmBG21 is intrinsically disordered, implying multi functionality, and that its conformation depends on its environment and bound ligands.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Harauz G, Musse AA. A Tale of Two Citrullines—Structural and Functional Aspects of Myelin Basic Protein Deimination in Health and Disease. Neurochem Res 2006; 32:137-58. [PMID: 16900293 DOI: 10.1007/s11064-006-9108-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2006] [Indexed: 02/03/2023]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive post-translational modifications of MBP is dynamic during normal central nervous system (CNS) development and during myelin degeneration in multiple sclerosis (MS), affecting its interactions with the myelin membranes and with other molecules. In particular, the degree of deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes neurodegeneration due to autoimmune attack. That the degree of MBP deimination is also high in early CNS development indicates that this modification plays major physiological roles in myelin assembly. In this review, we describe the structural and functional consequences of MBP deimination in healthy and diseased myelin.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1.
| | | |
Collapse
|
25
|
Jiang J, Lafer EM, Sousa R. Crystallization of a functionally intact Hsc70 chaperone. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:39-43. [PMID: 16511258 PMCID: PMC2150933 DOI: 10.1107/s1744309105040303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 12/05/2005] [Indexed: 11/10/2022]
Abstract
Hsp70s are essential chaperones with roles in a variety of cellular processes and representatives in all kingdoms of life. They are comprised of a nucleotide-binding domain (NBD) and a protein substrate-binding domain (SBD). Structures of isolated NBDs and SBDs have been reported but, until recently, a functionally intact Hsp70 containing both the NBD and SBD has resisted structure determination. Here, it is reported that preparation of diffraction-quality crystals of functionally intact bovine Hsc70 required (i) deletion of part of the protein to reduce oligomerization, (ii) point mutations in the interface between the SBD and NBD and (iii) use of high concentrations of the structure-stabilizing agents glycerol and trimethylamine oxide (TMAO). The introduction of point mutations in interdomain interfaces and the use of the potent structure stabilizer TMAO may be generally useful in crystallization of multidomain proteins that exhibit interdomain motions.
Collapse
Affiliation(s)
- Jianwen Jiang
- Department of Biochemistry, University Of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Eileen M. Lafer
- Department of Biochemistry, University Of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Rui Sousa
- Department of Biochemistry, University Of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| |
Collapse
|
26
|
Hovagimyan KG, Gerig JT. Interactions of TrimethylamineN−Oxide and Water withcyclo-Alanylglycine. J Phys Chem B 2005; 109:24142-51. [PMID: 16375406 DOI: 10.1021/jp055075+] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The osmolyte trimethylamine N-oxide (TMAO) is one of a family of compounds found in living systems that can stabilize biomolecular tertiary structures. As a step in exploring the interactions between this material and polyamino acids, we have determined intermolecular 1H{1H} nuclear Overhauser effects (NOEs) between the protons of cyclo-alanylglycine and protons of solvent components in TMAO-water solutions. Comparison of the results to effects predicted on the basis of the molecular shape of the dipeptide and experimental translational diffusion coefficients suggests that both water and TMAO molecules have properties in the vicinity of the dipeptide that are different from those in the bulk solution. Changes of local concentrations of water and TMAO and changes in the diffusive behavior of these components near the dipeptide are rejected as possible explanations of the discrepancies between observed and calculated Overhauser effects. Rather, it is concluded that TMAO molecules, and the water molecules associated with them, participate to some extent in the formation of long-lived solute-solvent complexes. The aliphatic alcohol tert-butyl alcohol is structurally similar to TMAO. Overhauser effect studies of its interaction with cyclo-alanylglycine in tert-butyl alcohol-water suggest similar kinds of interactions are present in this system but that they are significantly weaker, presumably because of the lower polarity of this alcohol compared to TMAO.
Collapse
Affiliation(s)
- Karen G Hovagimyan
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
27
|
Polverini E, Boggs JM, Bates IR, Harauz G, Cavatorta P. Electron paramagnetic resonance spectroscopy and molecular modelling of the interaction of myelin basic protein (MBP) with calmodulin (CaM)—diversity and conformational adaptability of MBP CaM-targets. J Struct Biol 2004; 148:353-69. [PMID: 15522783 DOI: 10.1016/j.jsb.2004.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 07/30/2004] [Indexed: 11/26/2022]
Abstract
The classic 18.5 kDa isoform of murine myelin basic protein (mMBP) has been shown to bind calmodulin (CaM) strongly and specifically in vitro. Here, we have used site-directed spin labelling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy to map more precisely the sites of interaction of recombinant mMBP (rmMBP) with CaM. On the basis of these and previous experimental data, and the predictions of CaM-binding motifs using the Calmodulin Target Database (), three main segments of MBP were suggested for the interaction. The first site is located at the C-terminus; the second one lies in the central portion of the protein and forms an amphipathic alpha-helix in reconstituted myelin-mimetic systems; the third is quite close to the N-terminus. The murine Golli-MBP isoform J37 has also been shown to bind CaM in vitro, and an interaction site was predicted in the N-terminal Golli-specific portion of the protein. From these four segments, we selected peptide fragments of 12-14 residues in length, chosen on the bases of their amphipathicity and CaM-target characteristics. We modelled each of these peptides as alpha-helices, and performed docking simulations to investigate their interactions with the CaM peptide-binding tunnel. Different yet almost equally favourable CaM-binding modes were found for each of them. The experimental SDSL/EPR and theoretical modelling results were in good agreement, and supported the conjecture that there are several plausible CaM-binding sites in MBP, that could be induced into an alpha-helical conformation by their interaction with CaM and account for strong immobilisation of spin-labeled residues in all three segments. Phosphorylation and deimination were also emulated and simulated for known sites of MBP post-translational modification. The results obtained confirmed the appropriate utilisation of simple residue substitutions to mimic the natural modifications, and demonstrated molecular mechanisms by which MBP-CaM interactions could be modulated in vivo.
Collapse
Affiliation(s)
- Eugenia Polverini
- Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica, Università di Parma, Parco Area delle Scienze 7/A, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
28
|
Harauz G, Ishiyama N, Hill CMD, Bates IR, Libich DS, Farès C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 2004; 35:503-42. [PMID: 15219899 DOI: 10.1016/j.micron.2004.04.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is a major component of the myelin sheath in the central nervous system of higher vertebrates, and a member of a larger family of proteins with a multiplicity of forms and post-translational modifications (PTMs). The 18.5 kDa protein is the exemplar of the family, being most abundant in adult myelin, and thus the most-studied. It is peripherally membrane-associated, but has generally been investigated in isolated form. MBP is an 'intrinsically unstructured' protein with a high proportion (approximately 75%) of random coil, but postulated to have core elements of beta-sheet and alpha-helix. We review here the properties of the MBP family, especially of the 18.5 kDa isoform, and discuss how its three-dimensional (3D) structure may be resolved by direct techniques available to us, viz., X-ray and electron crystallography, and solution and solid-state NMR spectrometry. In particular, we emphasise that creating an appropriate environment in which the protein can adopt a physiologically relevant fold is crucial to such endeavours. By solving the 3D structure of 18.5 kDa MBP and the effects of PTMs, we will attain a better understanding of myelin architecture, and of the molecular mechanisms that transpire in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular Biology and Genetics, Biophysics Interdepartmental Group, University of Guelph, Room 230, Axelrod Building, 50 Stone Road East, Guelph, Ont., Canada N1G 2W1.
| | | | | | | | | | | |
Collapse
|
29
|
Bates IR, Feix JB, Boggs JM, Harauz G. An immunodominant epitope of myelin basic protein is an amphipathic alpha-helix. J Biol Chem 2003; 279:5757-64. [PMID: 14630913 DOI: 10.1074/jbc.m311504200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myelin basic protein is a candidate autoantigen in multiple sclerosis. One of its dominant antigenic epitopes is segment Pro85 to Pro96 (human sequence numbering, corresponding to Pro82 to Pro93 in the mouse). There have been several, contradictory predictions of secondary structure in this region; either beta-sheet, alpha-helix, random coil, or combinations thereof have all been proposed. In this paper, molecular dynamics and site-directed spin labeling in aqueous solution indicate that this segment forms a transient alpha-helix, which is stabilized in 30% trifluoroethanol. When bound to a myelin-like membrane surface, this antigenic segment exhibits a depth profile that is characteristic of an amphipathic alpha-helix, penetrating up to 12 A into the bilayer. The alpha-helix is tilted approximately 9 degrees, and the central lysine is in an ideal snorkeling position for side-chain interaction with the negatively charged phospholipid head groups.
Collapse
Affiliation(s)
- Ian R Bates
- Department of Molecular Biology and Genetics, and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
30
|
Libich DS, Hill CMD, Haines JD, Harauz G. Myelin basic protein has multiple calmodulin-binding sites. Biochem Biophys Res Commun 2003; 308:313-9. [PMID: 12901870 DOI: 10.1016/s0006-291x(03)01380-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Myelin basic protein (MBP) has been shown to bind calmodulin (CaM) in a specific Ca(2+)-dependent manner via a primary target sequence at its C-terminus [Protein Sci. 12 (2003) 1507]. Upon deimination of MBP, the nature of the interaction changed significantly, suggesting either a new binding site or different conformers with different affinities for CaM. In order to resolve this issue, we investigated here the CaM-binding properties of N- and C-terminal deletion mutants of MBP using Trp fluorescence spectroscopy and mass spectrometry. We conclude that there is an additional CaM-binding site on MBP in a central segment (we posit murine residues 82-93) that forms an amphipathic alpha-helix.
Collapse
Affiliation(s)
- David S Libich
- Department of Molecular Biology and Genetics, Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ont., Canada N1G 2W1
| | | | | | | |
Collapse
|
31
|
Bates IR, Boggs JM, Feix JB, Harauz G. Membrane-anchoring and charge effects in the interaction of myelin basic protein with lipid bilayers studied by site-directed spin labeling. J Biol Chem 2003; 278:29041-7. [PMID: 12748174 DOI: 10.1074/jbc.m302766200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myelin basic protein (MBP) maintains the compaction of the myelin sheath in the central nervous system by anchoring the cytoplasmic face of the two apposing bilayers and may also play a role in signal transduction. Site-directed spin labeling was done at eight matching sites in each of two recombinant murine MBPs, qC1 (charge +19) and qC8 charge (+13), which, respectively, emulate the native form of the protein (C1) and a post-translationally modified form (C8) that is increased in multiple sclerosis. When interacting with large unilamellar vesicles, most spin-labeled sites in qC8 were more mobile than those in qC1. Depth measurement via continuous wave power saturation indicated that the N-terminal and C-terminal sites in qC1 were located below the plane of the phospholipid headgroups. In qC8, the C-terminal domain dissociated from the membrane, suggesting a means by which the exposure of natural C8 to cytosolic enzymes and ligands might increase in vivo in multiple sclerosis. The importance of two Phe-Phe pairs in MBP to its interactions with lipids was investigated by separately mutating each pair to Ala-Ala. The mobility at F42A/F43A and especially F86A/F87A increased significantly. Depth measurements and helical wheel analysis indicated that the Phe-86/Phe-87 region could form a surface-seeking amphipathic alpha-helix.
Collapse
Affiliation(s)
- Ian R Bates
- Department of Molecular Biology and Genetics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
32
|
Libich DS, Hill CM, Bates IR, Hallett FR, Armstrong S, Siemiarczuk A, Harauz G. Interaction of the 18.5-kD isoform of myelin basic protein with Ca2+ -calmodulin: effects of deimination assessed by intrinsic Trp fluorescence spectroscopy, dynamic light scattering, and circular dichroism. Protein Sci 2003; 12:1507-21. [PMID: 12824496 PMCID: PMC2323942 DOI: 10.1110/ps.0303603] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of deimination (conversion of arginyl to citrullinyl residues) of myelin basic protein (MBP) on its binding to calmodulin (CaM) have been examined. Four species of MBP were investigated: unmodified recombinant murine MBP (rmMBP-Cit(0)), an engineered protein with six quasi-citrullinyl (i.e., glutaminyl) residues per molecule (rmMBP-qCit(6)), human component C1 (hMBP-Cit(0)), and human component C8 (hMBP-Cit(6)), both obtained from a patient with multiple sclerosis (MS). Both rmMBP-Cit(0) and hMBP-Cit(0) bound CaM in a Ca(2+)-dependent manner and primarily in a 1:1 stoichiometry, which was verified by dynamic light scattering. Circular dichroic spectroscopy was unable to detect any changes in secondary structure in MBP upon CaM-binding. Inherent Trp fluorescence spectroscopy and a single-site binding model were used to determine the dissociation constants: K(d) = 144 +/- 76 nM for rmMBP-Cit(0), and K(d) = 42 +/- 15 nM for hMBP-Cit(0). For rmMBP-qCit(6) and hMBP-Cit(6), the changes in fluorescence were suggestive of a two-site interaction, although the dissociation constants could not be accurately determined. These results can be explained by a local conformational change induced in MBP by deimination, exposing a second binding site with a weaker association with CaM, or by the existence of several conformers of deiminated MBP. Titration with the collisional quencher acrylamide, and steady-state and lifetime measurements of the fluorescence at 340 nm, showed both dynamic and static components to the quenching, and differences between the unmodified and deiminated proteins that were also consistent with a local conformational change due to deimination.
Collapse
Affiliation(s)
- David S. Libich
- Department of Molecular Biology and Genetics, and Biophysics Interdepartmental Group, and
| | - Christopher M.D. Hill
- Department of Molecular Biology and Genetics, and Biophysics Interdepartmental Group, and
| | - Ian R. Bates
- Department of Molecular Biology and Genetics, and Biophysics Interdepartmental Group, and
| | - F. Ross Hallett
- Department of Physics, and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Souzan Armstrong
- Photon Technology International, London, Ontario N6E 2S8, Canada
| | | | - George Harauz
- Department of Molecular Biology and Genetics, and Biophysics Interdepartmental Group, and
| |
Collapse
|
33
|
Hill CMD, Haines JD, Antler CE, Bates IR, Libich DS, Harauz G. Terminal deletion mutants of myelin basic protein: new insights into self-association and phospholipid interactions. Micron 2003; 34:25-37. [PMID: 12694855 DOI: 10.1016/s0968-4328(02)00058-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 18.5kDa isoform of myelin basic protein (MBP) has strong and probably specific interactions with phosphoinositides that are of interest regarding this protein's function, and in effecting its two-dimensional crystallization for structural determination. We have designed and constructed truncation mutants of recombinant 18.5kDa murine myelin basic protein (rmMBP) lacking either the N- or C-terminal third, i.e. rmMBPDeltaN and rmMBPDeltaC, respectively. Both variants rmMBPDeltaC and rmMBPDeltaN generally had a reduced ability to aggregate lipid vesicles, compared to the whole protein, especially at lower protein/lipid ratios. Lipid vesicle cosedimentation showed that both truncated variants exhibited altered binding with phosphatidylinositol (PI). Incubation of these proteins under monolayers comprising PI and a nickel-chelating lipid yielded crystalline arrays of rmMBPDeltaC (but not rmMBPDeltaN) in the absence of high salt or osmolytes, which are required for crystallization of whole protein. This result suggests that the C-terminal segment of MBP is a significant source of conformational heterogeneity, and its removal will facilitate future planar or three-dimensional crystallization attempts. Incubation of rmMBPDeltaN and rmMBPDeltaC under monolayers comprising phosphatidylinositol-4-phosphate and a nickel-chelating lipid yielded tubular structures of opposite chirality, suggesting a synergistic effect of both termini of MBP in organizing myelin lipids.
Collapse
Affiliation(s)
- Christopher M D Hill
- Department of Molecular Biology and Genetics, and Biophysics Interdepartmental Group, University of Guelph, Ont., Canada
| | | | | | | | | | | |
Collapse
|
34
|
Kar S, Florence GJ, Paterson I, Amos LA. Discodermolide interferes with the binding of tau protein to microtubules. FEBS Lett 2003; 539:34-6. [PMID: 12650922 DOI: 10.1016/s0014-5793(03)00181-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.
Collapse
Affiliation(s)
- Santwana Kar
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
35
|
Kaur J, Libich DS, Campagnoni CW, Wood DD, Moscarello MA, Campagnoni AT, Harauz G. Expression and properties of the recombinant murine Golli-myelin basic protein isoform J37. J Neurosci Res 2003; 71:777-84. [PMID: 12605403 DOI: 10.1002/jnr.10547] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A recombinant form of the murine Golli-myelin basic protein (MBP) isoform J37 (rmJ37) has been expressed in Escherichia coli and isolated to 95% purity via metal chelation and ion exchange chromatography. The protein did not aggregate lipid vesicles containing acidic phospholipids, unlike the 18.5 kDa isoform of MBP. This result is consistent with J37 having a functional role prior to the assembly of compact myelin. Circular dichroic spectroscopy showed that rmJ37 had a large proportion of random coil in aqueous solution but gained alpha-helix and beta-sheet in the presence of monosialoganglioside G(M1) and PI(4)P. Thus, like "classic" MBP, J37 is intrinsically unstructured, and its conformation depends on its environment and bound ligands. Analyses of the amino acid sequence of rmJ37 predicted an N-terminal calmodulin (CaM)-binding site. It was determined via a gel-shift assay and fluorescence spectroscopy that rmJ37 and CaM interacted in a 1:1 ratio in a Ca(2+)-dependent manner. However, the interaction was weak compared with 18.5 kDa MBP.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Molecular Biology and Genetics, and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|