1
|
Luna-Munguia H, Gasca-Martinez D, Garay-Cortes A, Coutiño D, Regalado M, de Los Rios E, Villaseñor P, Hidalgo-Flores F, Flores-Guapo K, Benito BY, Concha L. Selective Medial Septum Lesions in Healthy Rats Induce Longitudinal Changes in Microstructure of Limbic Regions, Behavioral Alterations, and Increased Susceptibility to Status Epilepticus. Mol Neurobiol 2024; 61:1-21. [PMID: 38443731 DOI: 10.1007/s12035-024-04069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Septo-hippocampal pathway, crucial for physiological functions and involved in epilepsy. Clinical monitoring during epileptogenesis is complicated. We aim to evaluate tissue changes after lesioning the medial septum (MS) of normal rats and assess how the depletion of specific neuronal populations alters the animals' behavior and susceptibility to establishing a pilocarpine-induced status epilepticus. Male Sprague-Dawley rats were injected into the MS with vehicle or saporins (to deplete GABAergic or cholinergic neurons; n = 16 per group). Thirty-two animals were used for diffusion tensor imaging (DTI); scanned before surgery and 14 and 49 days post-injection. Fractional anisotropy and apparent diffusion coefficient were evaluated in the fimbria, dorsal hippocampus, ventral hippocampus, dorso-medial thalamus, and amygdala. Between scans 2 and 3, animals were submitted to diverse behavioral tasks. Stainings were used to analyze tissue alterations. Twenty-four different animals received pilocarpine to evaluate the latency and severity of the status epilepticus 2 weeks after surgery. Additionally, eight different animals were only used to evaluate the neuronal damage inflicted on the MS 1 week after the molecular surgery. Progressive changes in DTI parameters in both white and gray matter structures of the four evaluated groups were observed. Behaviorally, the GAT1-saporin injection impacted spatial memory formation, while 192-IgG-saporin triggered anxiety-like behaviors. Histologically, the GABAergic toxin also induced aberrant mossy fiber sprouting, tissue damage, and neuronal death. Regarding the pilocarpine-induced status epilepticus, this agent provoked an increased mortality rate. Selective septo-hippocampal modulation impacts the integrity of limbic regions crucial for certain behavioral skills and could represent a precursor for epilepsy development.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico.
| | - Deisy Gasca-Martinez
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
- Unidad de Analisis Conductual, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Alejandra Garay-Cortes
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Daniela Coutiño
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Mirelta Regalado
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Ericka de Los Rios
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
- Unidad de Microscopia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Paulina Villaseñor
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Fernando Hidalgo-Flores
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Karen Flores-Guapo
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Brandon Yair Benito
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Luis Concha
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| |
Collapse
|
2
|
Tang G, Zhou H, Zeng C, Jiang Y, Li Y, Hou L, Liao K, Tan Z, Wu H, Tang Y, Cheng Y, Ling X, Guo Q, Xu H. Alterations of apparent diffusion coefficient from ultra high b-values in the bilateral thalamus and striatum in MRI-negative drug-resistant epilepsy. Epilepsia Open 2024; 9:1515-1525. [PMID: 38943548 PMCID: PMC11296122 DOI: 10.1002/epi4.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/01/2024] [Accepted: 05/26/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVE Subcortical nuclei such as the thalamus and striatum have been shown to be related to seizure modulation and termination, especially in drug-resistant epilepsy. Enhance diffusion-weighted imaging (eDWI) technique and tri-component model have been used in previous studies to calculate apparent diffusion coefficient from ultra high b-values (ADCuh). This study aimed to explore the alterations of ADCuh in the bilateral thalamus and striatum in MRI-negative drug-resistant epilepsy. METHODS Twenty-nine patients with MRI-negative drug-resistant epilepsy and 18 healthy controls underwent eDWI scan with 15 b-values (0-5000 s/mm2). The eDWI parameters including standard ADC (ADCst), pure water diffusion (D), and ADCuh were calculated from the 15 b-values. Regions-of-interest (ROIs) analyses were conducted in the bilateral thalamus, caudate nucleus, putamen, and globus pallidus. ADCst, D, and ADCuh values were compared between the MRI-negative drug-resistant epilepsy patients and controls using multivariate generalized linear models. Inter-rater reliability was assessed using the intra-class correlation coefficient (ICC) and Bland-Altman (BA) analysis. False discovery rate (FDR) method was applied for multiple comparisons correction. RESULTS ADCuh values in the bilateral thalamus, caudate nucleus, putamen, and globus pallidus in MRI-negative drug-resistant epilepsy were significantly higher than those in the healthy control subjects (all p < 0.05, FDR corrected). SIGNIFICANCE The alterations of the ADCuh values in the bilateral thalamus and striatum in MRI-negative drug-resistant epilepsy might reflect abnormal membrane water permeability in MRI-negative drug-resistant epilepsy. ADCuh might be a sensitive measurement for evaluating subcortical nuclei-related brain damage in epilepsy patients. PLAIN LANGUAGE SUMMARY This study aimed to explore the alterations of apparent diffusion coefficient calculated from ultra high b-values (ADCuh) in the subcortical nuclei such as the bilateral thalamus and striatum in MRI-negative drug-resistant epilepsy. The bilateral thalamus and striatum showed higher ADCuh in epilepsy patients than healthy controls. These findings may add new evidences of subcortical nuclei abnormalities related to water and ion hemostasis in epilepsy patients, which might help to elucidate the underlying epileptic neuropathophysiological mechanisms and facilitate the exploration of therapeutic targets.
Collapse
Affiliation(s)
- Guixian Tang
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Hailing Zhou
- Department of RadiologyCentral People's Hospital of ZhanjiangZhanjiangChina
| | - Chunyuan Zeng
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yuanfang Jiang
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Ying Li
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Lu Hou
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Kai Liao
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zhiqiang Tan
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Huanhua Wu
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yongjin Tang
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yong Cheng
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Xueying Ling
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Qiang Guo
- Epilepsy Center, Guangdong 999 Brain HospitalAffiliated Brain Hospital of Jinan UniversityGuangzhouChina
| | - Hao Xu
- Department of Nuclear Medicine, PET/CT‐MRI Center, Center of Cyclotron and PET RadiopharmaceuticalsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
3
|
Almeida AJD, Hobson BA, Saito N, Bruun DA, Porter VA, Harvey DJ, Garbow JR, Chaudhari AJ, Lein PJ. Quantitative T 2 mapping-based longitudinal assessment of brain injury and therapeutic rescue in the rat following acute organophosphate intoxication. Neuropharmacology 2024; 249:109895. [PMID: 38437913 PMCID: PMC11227117 DOI: 10.1016/j.neuropharm.2024.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies. In this study we used a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP), to test the hypothesis that T2 measures obtained from brain magnetic resonance imaging (MRI) scans provide quantitative metrics of brain injury and therapeutic efficacy. Adult male Sprague Dawley rats were imaged on a 7T MRI scanner at 3, 7 and 28 days post-exposure to DFP or vehicle (VEH) with or without treatment with the standard of care antiseizure drug, midazolam (MDZ); a novel antiseizure medication, allopregnanolone (ALLO); or combination therapy with MDZ and ALLO (DUO). Our results show that mean T2 values in DFP-exposed animals were: (1) higher than VEH in all volumes of interest (VOIs) at day 3; (2) decreased with time; and (3) decreased in the thalamus at day 28. Treatment with ALLO or DUO, but not MDZ alone, significantly decreased mean T2 values relative to untreated DFP animals in the piriform cortex at day 3. On day 28, the DUO group showed the most favorable T2 characteristics. This study supports the utility of T2 mapping for longitudinally monitoring brain injury and highlights the therapeutic potential of ALLO as an adjunct therapy to mitigate chronic morbidity associated with acute OP intoxication.
Collapse
Affiliation(s)
- Alita Jesal D Almeida
- Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA; Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA.
| | - Naomi Saito
- Department of Public Health Sciences, University of California-Davis School of Medicine, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, USA.
| | - Valerie A Porter
- Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA; Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California-Davis School of Medicine, Davis, CA, 95616, USA.
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Abhijit J Chaudhari
- Department of Radiology, University of California-Davis School of Medicine, Sacramento, CA, 95817, USA; Center for Molecular and Genomic Imaging, Department of Biomedical Engineering, University of California-Davis College of Engineering, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Pascoal VDB, Marchesini RB, Athié MCP, Matos AHB, Conte FF, Pereira TC, Secolin R, Gilioli R, Malheiros JM, Polli RS, Tannús A, Covolan L, Pascoal LB, Vieira AS, Cavalheiro EA, Cendes F, Lopes-Cendes I. Modulating Expression of Endogenous Interleukin 1 Beta in the Acute Phase of the Pilocarpine Model of Epilepsy May Change Animal Survival. Cell Mol Neurobiol 2023; 43:367-380. [PMID: 35061107 DOI: 10.1007/s10571-022-01190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
The pilocarpine-induced (PILO) model has helped elucidate the electrophysiological and molecular aspects related to mesial temporal lobe epilepsy. It has been suggested that the extensive cell death and edema observed in the brains of these animals could be induced by increased inflammatory responses, such as the rapid release of the inflammatory cytokine interleukin 1 beta (Il1b). In this study, we investigate the role of endogenous Il1b in the acute phase of the PILO model. Our aim is twofold. First, we want to determine whether it is feasible to silence Il1b in the central nervous system using a non-invasive procedure. Second, we aim to investigate the effect of silencing endogenous Il1b and its antagonist, Il1rn.We used RNA interference applied non-invasively to knockdown Il1b and its endogenous antagonist Il1rn. We found that knocking down Il1b prior to pilocarpine injection increased the mortality rate of treated animals. Furthermore, we observed that, when exposing the animals to more Il1b by silencing its endogenous antagonist Il1rn, there was a better response to status epilepticus with decreased animal mortality in the acute phase of the PILO model. Thus, we show the feasibility of using a novel, less invasive approach to study genes involved in the inflammatory response in the central nervous system. Furthermore, our results provide suggestive evidence that modulating endogenous Il1b improves animal survival in the acute phase of the PILO model and may have effects that extend into the chronic phase.
Collapse
Affiliation(s)
- V D B Pascoal
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - R B Marchesini
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - M C P Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - A H B Matos
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - F F Conte
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - T C Pereira
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil
| | - R Secolin
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - R Gilioli
- Multidisciplinary Centre for Biological Investigation (CEMIB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - J M Malheiros
- Centro de Imagens e Espectroscopia por Ressonancia Magnetica (CIERMag), Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - R S Polli
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - A Tannús
- Centro de Imagens e Espectroscopia por Ressonancia Magnetica (CIERMag), Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
| | - L Covolan
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - L B Pascoal
- Laboratory of Cell Signaling, School of Medical Sciences, University of Campinas - (UNICAMP), Campinas, SP, Brazil
| | - A S Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - (UNICAMP), Campinas, SP, Brazil
| | - E A Cavalheiro
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, (UNIFESP), Sao Paulo, SP, Brazil
| | - F Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas - (UNICAMP); and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - I Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil.
| |
Collapse
|
5
|
Alcohol abuse has a potential association with unfavourable clinical course and brain atrophy in patients with status epilepticus. Clin Radiol 2022; 77:e287-e294. [PMID: 35093234 DOI: 10.1016/j.crad.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
AIM To evaluate chronological changes on serial magnetic resonance imaging (MRI) examinations and clinical prognosis in patients with status epilepticus (SE), as well as the effect of alcohol abuse and heavy alcohol use on clinicoradiological findings. MATERIALS AND METHODS This retrospective, single-centre study was approved by the institutional review board. Among 345 patients with seizures between January 2010 and October 2021, 27 patients with SE who had undergone both initial MRI (within a week after onset) and follow-up MRI (within 1 month after the initial MRI) were included. Five and three patients with concurrent or previous alcohol abuse and heavy alcohol-use history were included, respectively, and they were classified into the AL (Alcohol use) group. The remaining 19 patients were classified into the non-AL group. Two neuroradiologists independently evaluated both initial and follow-up MRI examinations of each patient; MRI findings were compared between the AL and non-AL groups using Fisher's exact test. In 15 patients, including four patients from the AL group, clinical information 6 months after the onset of SE was available; this information was compared between the two groups. RESULTS Brain atrophy (5/8 versus 2/19, p=0.011; odds ratio, 12.29 [95% confidence interval, 1.32-189.2]) and unfavourable clinical course with uncontrollable seizures (3/4 versus 1/11, p=0.033; odds ratio, 30[1.43-638.19]) were significantly more frequent in the AL group than in the non-AL group. CONCLUSION Among patients with SE, alcohol abuse and heavy alcohol-use history were associated with unfavourable seizure control and brain atrophy.
Collapse
|
6
|
Luna-Munguia H, Marquez-Bravo L, Concha L. Longitudinal changes in gray and white matter microstructure during epileptogenesis in pilocarpine-induced epileptic rats. Seizure 2021; 90:130-140. [DOI: 10.1016/j.seizure.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
|
7
|
Tilelli CQ, Flôres LR, Cota VR, Castro OWD, Garcia-Cairasco N. Amygdaloid complex anatomopathological findings in animal models of status epilepticus. Epilepsy Behav 2021; 121:106831. [PMID: 31864944 DOI: 10.1016/j.yebeh.2019.106831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Temporal lobe epileptic seizures are one of the most common and well-characterized types of epilepsies. The current knowledge on the pathology of temporal lobe epilepsy relies strongly on studies of epileptogenesis caused by experimentally induced status epilepticus (SE). Although several temporal lobe structures have been implicated in the epileptogenic process, the hippocampal formation is the temporal lobe structure studied in the greatest amount and detail. However, studies in human patients and animal models of temporal lobe epilepsy indicate that the amygdaloid complex can be also an important seizure generator, and several pathological processes have been shown in the amygdala during epileptogenesis. Therefore, in the present review, we systematically selected, organized, described, and analyzed the current knowledge on anatomopathological data associated with the amygdaloid complex during SE-induced epileptogenesis. Amygdaloid complex participation in the epileptogenic process is evidenced, among others, by alterations in energy metabolism, circulatory, and fluid regulation, neurotransmission, immediate early genes expression, tissue damage, cell suffering, inflammation, and neuroprotection. We conclude that major efforts should be made in order to include the amygdaloid complex as an important target area for evaluation in future research on SE-induced epileptogenesis. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Cristiane Queixa Tilelli
- Laboratory of Physiology, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Bairro Belvedere, Divinópolis, MG 35.501-296, Brazil.
| | - Larissa Ribeiro Flôres
- Laboratory of Physiology, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Bairro Belvedere, Divinópolis, MG 35.501-296, Brazil
| | - Vinicius Rosa Cota
- Laboratory of Neuroengineering and Neuroscience (LINNce), Department of Electrical Engineering, Campus Santo Antônio, Universidade Federal de São João del-Rei, Praça Frei Orlando, 170, Centro, São João Del Rei, MG 36307-352, Brazil
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Campus A. C. Simões, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió, AL 57072-970, Brazil
| | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Department of Physiology, School of Medicine, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
8
|
Zeng JY, Hu XQ, Xu JF, Zhu WJ, Wu HY, Dong FJ. Diagnostic Accuracy of Arterial Spin-Labeling MR Imaging in Detecting the Epileptogenic Zone: Systematic Review and Meta-analysis. AJNR Am J Neuroradiol 2021; 42:1052-1060. [PMID: 33766822 PMCID: PMC8191675 DOI: 10.3174/ajnr.a7061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND A noninvasive, safe, and economic imaging technique is required to identify epileptogenic lesions in the brain. PURPOSE Our aim was to perform a meta-analysis evaluating the accuracy of arterial spin-labeling in localizing the epileptic focus in the brain and the changes in the blood perfusion in these regions. DATA SOURCES Our sources were the PubMed and EMBASE data bases. STUDY SELECTION English language studies that assessed the diagnostic accuracy of arterial spin-labeling for detecting the epileptogenic zone up to July 2019 were included. DATA ANALYSIS The symptomatogenic foci of seizures in the brain were determined and used as the references. The relevant studies were evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The outcomes were evaluated using the pooled sensitivity, pooled specificity, pooled accuracy, diagnostic odds ratio, area under the summary receiver operating characteristic curve, and likelihood ratio. DATA SYNTHESIS Six studies that included 174 patients qualified for this meta-analysis. The pooled sensitivity, pooled specificity, and area under the summary receiver operating characteristic curve were 0.74 (95% CI, 0.65-0.82), 0.35 (95% CI, 0.03-0.90), and 0.73 (95% CI, 0.69-0.76), respectively. The accuracy of arterial spin-labeling for localizing the epileptic focus was 0.88 (accuracy in arterial spin-labeling/all perfusion changes in arterial spin-labeling) in cases of a positive arterial spin-labeling result. The epileptogenic zone exhibited hyperperfusion or hypoperfusion. LIMITATIONS Only a few studies were enrolled due to the strict inclusion criteria. CONCLUSIONS Arterial spin-labeling can be used for assessing, monitoring, and reviewing, postoperatively, patients with epilepsy. Blood perfusion changes in the brain may be closely related to the seizure time and pattern.
Collapse
Affiliation(s)
- J Y Zeng
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
| | - X Q Hu
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station (X.H.), Jinan University, Guangzhou, China
| | - J F Xu
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
| | - W J Zhu
- QQ Music Business group of Tencent Music Entertainment Group (W.Z.), Shenzhen People's Hospital, Shenzhen, China
| | - H Y Wu
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
| | - F J Dong
- From the Department of Ultrasound (J.Z., X.H., J.X., H.W., F.D.), First Affiliated Hospital of Southern University of Science and Technology, Second Clinical College of Jinan University, Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Reddy SD, Wu X, Kuruba R, Sridhar V, Reddy DS. Magnetic resonance imaging analysis of long-term neuropathology after exposure to the nerve agent soman: correlation with histopathology and neurological dysfunction. Ann N Y Acad Sci 2020; 1480:116-135. [PMID: 32671850 PMCID: PMC7708405 DOI: 10.1111/nyas.14431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/09/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Nerve agents (NAs) produce acute and long-term brain injury and dysfunction, as evident from the Japan and Syria incidents. Magnetic resonance imaging (MRI) is a versatile technique to examine such chronic anatomical, functional, and neuronal damage in the brain. The objective of this study was to investigate long-term structural and neuronal lesion abnormalities in rats exposed to acute soman intoxication. T2-weighted MRI images of 10 control and 17 soman-exposed rats were acquired using a Siemens MRI system at 90 days after soman exposure. Quantification of brain tissue volumes and T2 signal intensity was conducted using the Inveon Research Workplace software and the extent of damage was correlated with histopathology and cognitive function. Soman-exposed rats showed drastic hippocampal atrophy with neuronal loss and reduced hippocampal volume (HV), indicating severe damage, but had similar T2 relaxation times to the control group, suggesting limited scarring and fluid density changes despite the volume decrease. Conversely, soman-exposed rats displayed significant increases in lateral ventricle volumes and T2 times, signifying strong cerebrospinal fluid expansion in compensation for tissue atrophy. The total brain volume, thalamic volume, and thalamic T2 time were similar in both groups, however, suggesting that some brain regions remained more intact long-term after soman intoxication. The MRI neuronal lesions were positively correlated with the histological markers of neurodegeneration and neuroinflammation 90 days after soman exposure. The predominant MRI hippocampal atrophy (25%) was highly consistent with massive reduction (35%) of neuronal nuclear antigen-positive (NeuN+ ) principal neurons and parvalbumin-positive (PV+ ) inhibitory interneurons within this brain region. The HV was significantly correlated with both inflammatory markers of GFAP+ astrogliosis and IBA1+ microgliosis. The reduced HV was also directly correlated with significant memory deficits in the soman-exposed cohort, confirming a possible neurobiological basis for neurological dysfunction. Together, these findings provide powerful insight on long-term region-specific neurodegenerative patterns after soman exposure and demonstrate the feasibility of in vivo neuroimaging to monitor neuropathology, predict the risk of neurological deficits, and evaluate response to medical countermeasures for NAs.
Collapse
Affiliation(s)
- Sandesh D Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Vidya Sridhar
- Texas A&M Institute for Preclinical Studies, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
11
|
Evaluation of the impact of compound C11 a new anticonvulsant candidate on cognitive functions and hippocampal neurogenesis in mouse brain. Neuropharmacology 2019; 163:107849. [PMID: 31706991 DOI: 10.1016/j.neuropharm.2019.107849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Searching for the new and effective anticonvulsants in our previous study we developed a new hybrid compound C-11 derived from 2-(2,5-dioxopyrrolidin-1-yl) propanamide. C11 revealed high efficacy in acute animal seizure models such as the maximal electroshock model (MES), the pentylenetetrazole model (PTZ) and the 6 Hz (6 Hz, 32 mA) seizure model, as well as in the kindling model of epilepsy induced by repeated injection of PTZ in mice. In the aim of further in vivo C11 characterization, in the current studies we evaluated its influence on cognitive functions, neurodegeneration and neurogenesis process in mice after chronical treatment. All experiments were performed on 6 weeks old male C57/BL mice. The following drugs were used: C11, levetiracetam (LEV), ethosuximide (ETS) and lacosamide (LCM). We analyzed proliferation, migration and differentiation of newborn cells as well as neurodegenerative changes in a mouse brain after long-term treatment with aforementioned AEDs. Additionally, we evaluated changes in learning and memory functions in response to chronic C11, LEV, LCM and ETS treatment. C11 as well as LEV and ETS did not disturb the proliferation of newborn cells compared to the control mice, whereas LCM treatment significantly decreased it. Chronic AEDs therapy did not induce significant neurodegenerative changes. Behavioral studies with using Morris Water Maze test did not indicate any disturbances in the spatial learning and memory after C11 as well as LEV and ETS treatment in comparison to the control group except LCM mice where significant dysfunctions in time, distance and direct swim to the platform were observed. Interestingly, results obtained from in vivo MRI spectroscopy showed a statistically significant increase of one of the neurometabolites- N-acetyloaspartate (NAA) for LCM and LEV mice. A new hybrid compound C11 in contrast to LCM has no negative impact on the process of neurogenesis and neurodegeneration in the mouse hippocampus. Furthermore, chronic treatment with C11 turned out to have no negative impact on cognitive functions of treated mice, which, is certainly of great importance for further more advanced preclinical and especially clinical trials.
Collapse
|
12
|
Mamalyga ML, Mamalyga LM. Role of Monoaminergic Systems of the CNS in Different Periods after Status Epilepticus and Its Relation to Cerebral Hemodynamics. Bull Exp Biol Med 2019; 167:17-23. [DOI: 10.1007/s10517-019-04451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 10/26/2022]
|
13
|
Guerriero RM, Gaillard WD. Imaging modalities to diagnose and localize status epilepticus. Seizure 2019; 68:46-51. [DOI: 10.1016/j.seizure.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023] Open
|
14
|
Neuroimaging Biomarkers of Experimental Epileptogenesis and Refractory Epilepsy. Int J Mol Sci 2019; 20:ijms20010220. [PMID: 30626103 PMCID: PMC6337422 DOI: 10.3390/ijms20010220] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022] Open
Abstract
This article provides an overview of neuroimaging biomarkers in experimental epileptogenesis and refractory epilepsy. Neuroimaging represents a gold standard and clinically translatable technique to identify neuropathological changes in epileptogenesis and longitudinally monitor its progression after a precipitating injury. Neuroimaging studies, along with molecular studies from animal models, have greatly improved our understanding of the neuropathology of epilepsy, such as the hallmark hippocampus sclerosis. Animal models are effective for differentiating the different stages of epileptogenesis. Neuroimaging in experimental epilepsy provides unique information about anatomic, functional, and metabolic alterations linked to epileptogenesis. Recently, several in vivo biomarkers for epileptogenesis have been investigated for characterizing neuronal loss, inflammation, blood-brain barrier alterations, changes in neurotransmitter density, neurovascular coupling, cerebral blood flow and volume, network connectivity, and metabolic activity in the brain. Magnetic resonance imaging (MRI) is a sensitive method for detecting structural and functional changes in the brain, especially to identify region-specific neuronal damage patterns in epilepsy. Positron emission tomography (PET) and single-photon emission computerized tomography are helpful to elucidate key functional alterations, especially in areas of brain metabolism and molecular patterns, and can help monitor pathology of epileptic disorders. Multimodal procedures such as PET-MRI integrated systems are desired for refractory epilepsy. Validated biomarkers are warranted for early identification of people at risk for epilepsy and monitoring of the progression of medical interventions.
Collapse
|
15
|
Mamalyga ML, Mamalyga LM. [The effect of status epilepticus on autonomic regulation of the heart and its functional capabilities in different postictal periods]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:48-54. [PMID: 32207731 DOI: 10.17116/jnevro201911911248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To study the postictal changes in the autonomic regulation of the heart rhythm and its functional capabilities in different periods after epistatus and to assess the risk of life-threatening arrhythmias. MATERIAL AND METHODS The study was conducted on Wistar rats after epileptic status (ES). Telemonitoring of EEG and ECG was performed in the online mode using the system of the company 'ADInstruments'. Functional stress test with dobutamine was used. RESULTS ES leads to a long-lasting disturbance of autonomic regulation (AR) of the heart and reduces its functional capabilities. The heart's AR balance is shifted towards sympathetic tonus 5 days after ES. This increases the predictors of life-threatening arrhythmias. The decrease in SWD activity increases the activity of parasympathetic tonus 10 days after ES. However, this is due to the tension of regulation mechanisms and the risk of life-threatening arrhythmias. CONCLUSION The high degree of seizure activity of the brain in the ES predetermines prolonged postictal disorders of the AR heart, which reduce its functional capabilities and increase the risk of life-threatening arrhythmias.
Collapse
Affiliation(s)
- M L Mamalyga
- Bakulev National Medical Research Center of Cardiovascular Surgery, Moscow, Russia
| | - L M Mamalyga
- Institute of biology and chemistry of Moscow Pedagogical State University, Moscow, Russia
| |
Collapse
|
16
|
Santana-Gómez CE, Valle-Dorado MG, Domínguez-Valentín AE, Hernández-Moreno A, Orozco-Suárez S, Rocha L. Neuroprotective effects of levetiracetam, both alone and combined with propylparaben, in the long-term consequences induced by lithium-pilocarpine status epilepticus. Neurochem Int 2018; 120:224-232. [PMID: 30213635 DOI: 10.1016/j.neuint.2018.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022]
Abstract
Status epilepticus (SE) is a neurological condition that frequently induces severe neuronal injury in the hippocampus, subsequent epileptogenesis and pharmacoresistant spontaneous recurrent seizures (SRS). The repeated administration of LEV (a broad-spectrum antiepileptic drug) during the post-SE period does not prevent the subsequent development of SRS. However, this treatment reduces SE-induced neurodegeneration in the hippocampus. Conversely, propylparaben (PPB) is a widely used antimicrobial that blocks voltage-dependent Na+ channels, induces neuroprotection and reduces epileptiform activity in vitro. The present study attempted to determine if the neuroprotective effects induced by LEV are augmented when combined with a sub-effective dose of PPB. Long-term SE-induced consequences (hyperexcitability, high glutamate release, neuronal injury and volume loss) were evaluated in the hippocampus of rats. LEV alone, as well as combined with PPB, did not prevent the occurrence of SRS. However, animals treated with LEV plus PPB showed high prevalence of low frequency oscillations (0.1-4 Hz and 8-90 bands, p < 0.001) and low prevalence of high frequency activity (90-250 bands, p < 0.001) during the interictal period. In addition, these animals presented lower extracellular levels of glutamate, decreased rate of neurodegeneration and a similar hippocampal volume compared to the control conditions. This study's results suggest that LEV associated with PPB could represent a new therapeutic strategy to reduce long-term consequences induced by SE that facilitate pharmacoresistant SRS.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, Specialties Hospital, National Medical Center SXXI, Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
17
|
Volumetric response of the adult brain to seizures depends on the developmental stage when systemic inflammation was induced. Epilepsy Behav 2018; 78:280-287. [PMID: 29128467 DOI: 10.1016/j.yebeh.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023]
Abstract
Inflammation has detrimental influences on the developing brain including triggering the epileptogenesis. On the other hand, seizure episodes may induce inflammatory processes and further increase of brain excitability. The present study focuses on the problem whether transitory systemic inflammation during developmental period may have critical importance to functional and/or structural features of the adult brain. An inflammatory status was induced with lipopolysaccharide (LPS) in 6- or 30-day-old rats. Two-month-old rats which experienced the inflammation and untreated controls received injections of pilocarpine, and the intensity of their seizure behavior was rated during a 6-hour period. Three days thereafter, the animals were perfused; their brains were postfixed and subjected to magnetic resonance imaging (MRI) scans. Then, volumes of the brain and of its main regions were assessed. LPS injections alone performed at different developmental stages led to different changes in the volume of adult brain and also to different susceptibility to seizures induced in adulthood. Moreover, the LPS pretreatments modified different volumetric responses of the brain and of its regions to seizures. The responses showed strong inverse correlations with the intensity of seizures but exclusively in rats treated with LPS on postnatal day 30. It could be concluded that generalized inflammation elicited at developmental stages may have strong age-dependent effects on the adult brain regarding not only its susceptibility to action of a seizuregenic agent but also its volumetric reactivity to seizures.
Collapse
|
18
|
Gaxiola-Valdez I, Singh S, Perera T, Sandy S, Li E, Federico P. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI. Brain 2017; 140:2895-2911. [PMID: 29053782 DOI: 10.1093/brain/awx241] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
Neurological dysfunction following epileptic seizures is a well-recognized phenomenon. Several potential mechanisms have been suggested to explain postictal dysfunction, with alteration in cerebral blood flow being one possibility. These vascular disturbances may be long lasting and localized to brain areas involved in seizure generation and propagation, as supported by both animal and human studies. Therefore, measuring perfusion changes in the postictal period may help localize the seizure onset zone. Arterial spin labelling is a non-invasive, rapid and reproducible magnetic resonance imaging technique that measures cerebral perfusion. To this end, we measured postictal perfusion in patients with drug resistant focal epilepsy who were admitted to our seizure-monitoring unit for presurgical evaluation. Twenty-one patients were prospectively recruited and underwent arterial spin labelling scanning within 90 min of a habitual seizure. Patients also underwent a similar scan in the interictal period, after they were seizure-free for at least 24 h. The acquired scans were subtracted to identify the areas of significant postictal hypoperfusion. The location of the maximal hypoperfusion was compared to the presumed seizure onset zone to assess for concordance. Also, the localizing value of this technique was compared to other structural and functional imaging modalities. Postictal perfusion reductions of >15 units (ml/100 g/l) were seen in 15/21 patients (71.4%). In 12/15 (80%) of these patients, the location of the hypoperfusion was partially or fully concordant with the location of the presumed seizure onset zone. This technique compared favourably to other neuroimaging modalities, being similar or superior to structural magnetic resonance imaging in 52% of cases, ictal single-photon emission computed tomography in 60% of cases and interictal positron emission tomography in 71% of cases. Better arterial spin labelling results were obtained in patients in whom the seizure onset zone was discernible based on non-invasive data. Thus, this technique is a safe, non-invasive and relatively inexpensive tool to detect postictal hypoperfusion that may provide useful data to localize the seizure onset zone. This technique may be incorporated into the battery of conventional investigations for presurgical evaluation of patients with drug resistant focal epilepsy.
Collapse
Affiliation(s)
- Ismael Gaxiola-Valdez
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada
| | - Shaily Singh
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Tefani Perera
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada
| | - Sherry Sandy
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Emmy Li
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada.,Department of Neuroscience, University of Calgary, Calgary, Canada
| | - Paolo Federico
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Department of Neuroscience, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
19
|
Filipovic T, Popovic KS, Ihan A, Vodusek DB. Dynamic Susceptibility Contrast Enhanced (DSC) MRI Perfusion and Plasma Cytokine Levels in Patients after Tonic-clonic Seizures. Radiol Oncol 2017; 51:277-285. [PMID: 28959164 PMCID: PMC5611992 DOI: 10.1515/raon-2017-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/14/2017] [Indexed: 11/15/2022] Open
Abstract
Background Inflammatory events in brain parenchyma and glial tissue are involved in epileptogenesis. Blood concentration of cytokines is shown to be elevated after tonic-clonic seizures. As a result of inflammation, blood-brain barrier leakage occurs. This can be documented by imaging techniques, such is dynamic susceptibility contrast enhanced (DSC) MRI perfusion. Our aim was to check for postictal brain inflammation by studying DSC MRI perfusion and plasma level of cytokines. We looked for correlations between number and type of introducing seizures, postictal plasma level of cytokines and parameters of DSC MRI perfusion. Furthermore, we looked for correlation of those parameters and course of the disease over one year follow up. Patients and methods We prospectively enrolled 30 patients, 8–24 hours after single or repeated tonic-clonic seizures. Results 25 of them had normal perfusion parameters, while 5 had hyperperfusion. Patients with hyperperfusion were tested again, 3 months later. Two of 5 had hyperperfusion also on control measurements. Number of index seizures negatively correlated with concentration of proinflammatory cytokines IL-10, IFN-ϒ and TNF-α in a whole cohort. In patients with hyperperfusion, there were significantly lower concentrations of antiinflammatory cytokine IL-4 and higher concentrations of proinflammatory TNF-a. Conclusions Long lasting blood- brain barrier disruption may be crucial for epileptogenesis in selected patients.
Collapse
Affiliation(s)
- Tatjana Filipovic
- Division of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Alojz Ihan
- Institute of Immunology, Medical School, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
20
|
Girard N, Guedj E, Chauvel P, Bartolomei F, McGonigal A. Spontaneous seizure remission following status epilepticus in drug-resistant epilepsy due to focal cortical dysplasia. Epilepsy Res 2017; 137:73-77. [PMID: 28950221 DOI: 10.1016/j.eplepsyres.2017.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 11/17/2022]
Abstract
We describe a patient with chronic pharmacoresistant epilepsy related to right parietal focal cortical dysplasia (FCD), who became seizure-free following an episode of convulsive status epilepticus (SE). Magnetic resonance imaging (MRI) and fludeoxyglucose positron emission tomography (FDG-PET) were performed before and after SE. Longitudinal MRI scans showed a stable appearance of the FCD with no new signal change. However, diffusion tensor imaging showed altered white matter fiber tract orientation in posterior cortices, especially in proximity to the lesion, at 3 years post-SE. FDG-PET showed more widespread hypometabolism 3 years after SE. The unusual occurrence of spontaneous seizure remission following SE in the context of FCD-related epilepsy, in association with neuroimaging evolution, suggests possible cerebral reorganization triggered by SE as a mechanism in this case.
Collapse
Affiliation(s)
- Nadine Girard
- Department of Neuroradiology, Aix-Marseille University, AP-HM, Marseille, France
| | - Eric Guedj
- Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Timone University Hospital, France; CERIMED, Aix-Marseille University, Marseille, France; Institut de Neurosciences de la Timone, UMR 7289, CNRS Aix-Marseille Université, Marseille, France
| | - Patrick Chauvel
- Neurological Institute Epilepsy Center, Cleveland Clinic, Cleveland OH 44195; Aix Marseille University, Institut de Neurosciences des Systèmes, UMR 1106, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille University, Institut de Neurosciences des Systèmes, UMR 1106, Marseille, France; Department of Clinical Neurophysiology, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Aileen McGonigal
- Aix Marseille University, Institut de Neurosciences des Systèmes, UMR 1106, Marseille, France; Department of Clinical Neurophysiology, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
21
|
Neuroimaging in animal models of epilepsy. Neuroscience 2017; 358:277-299. [DOI: 10.1016/j.neuroscience.2017.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
22
|
Chen G, Lei D, Ren J, Zuo P, Suo X, Wang DJJ, Wang M, Zhou D, Gong Q. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study. Sci Rep 2016; 6:28867. [PMID: 27374369 PMCID: PMC4931466 DOI: 10.1038/srep28867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/06/2016] [Indexed: 02/05/2023] Open
Abstract
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Collapse
Affiliation(s)
- Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.,Department of Radiology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jiechuan Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Panli Zuo
- Siemens Healthcare, MR Collaborations NE Asia, Beijing, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | | | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital &the People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
RNA sequencing reveals region-specific molecular mechanisms associated with epileptogenesis in a model of classical hippocampal sclerosis. Sci Rep 2016; 6:22416. [PMID: 26935982 PMCID: PMC4776103 DOI: 10.1038/srep22416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 01/20/2023] Open
Abstract
We report here the first complete transcriptome analysis of the dorsal (dDG) and ventral dentate gyrus (vDG) of a rat epilepsy model presenting a hippocampal lesion with a strict resemblance to classical hippocampal sclerosis (HS). We collected the dDG and vDG by laser microdissection 15 days after electrical stimulation and performed high-throughput RNA-sequencing. There were many differentially regulated genes, some of which were specific to either of the two sub-regions in stimulated animals. Gene ontology analysis indicated an enrichment of inflammation-related processes in both sub-regions and of axonal guidance and calcium signaling processes exclusively in the vDG. There was also a differential regulation of genes encoding molecules involved in synaptic function, neural electrical activity and neuropeptides in stimulated rats. The data presented here suggests, in the time point analyzed, a remarkable interaction among several molecular components which takes place in the damaged hippocampi. Furthermore, even though similar mechanisms may function in different regions of the DG, the molecular components involved seem to be region specific.
Collapse
|
24
|
Suchomelova L, Lopez-Meraz ML, Niquet J, Kubova H, Wasterlain CG. Hyperthermia aggravates status epilepticus-induced epileptogenesis and neuronal loss in immature rats. Neuroscience 2015; 305:209-24. [PMID: 26259902 DOI: 10.1016/j.neuroscience.2015.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/20/2015] [Accepted: 08/03/2015] [Indexed: 01/16/2023]
Abstract
This study tightly controlled seizure duration and severity during status epilepticus (SE) in postnatal day 10 (P10) rats, in order to isolate hyperthermia as the main variable and to study its consequences. Body temperature was maintained at 39 ± 1 °C in hyperthermic SE rats (HT+SE) or at 35 ± 1 °C in normothermic SE animals (NT+SE) during 30 min of SE, which was induced by lithium-pilocarpine (3 mEq/kg, 60 mg/kg) and terminated by diazepam and cooling to NT. All video/EEG measures of SE severity were similar between HT+SE and NT+SE pups. At 24h, neuronal injury was present in the amygdala in the HT+SE group only, and was far more severe in the hippocampus in HT+SE than NT+SE pups. Separate groups of animals were monitored four months later for spontaneous recurrent seizures (SRS). Only HT+SE animals developed convulsive SRS. Both HT+SE and NT+SE animals developed electrographic SRS (83% vs. 55%), but SRS frequency and severity were higher in hyperthermic animals (12.5 ± 3.5 vs. 4.2 ± 2.0 SRS/day). The density of hilar neurons was lower, thickness of the amygdala and perirhinal cortex was reduced, and lateral ventricles were enlarged in HT+SE over NT+SE littermates and HT/NT controls. In this model, hyperthermia greatly increased the epileptogenicity of SE and its neuropathological sequelae.
Collapse
Affiliation(s)
- L Suchomelova
- Veterans Administration Greater Los Angeles Healthcare System, Epilepsy Research (151), 11 301 Wilshire Boulevard, Building 114, Room 139, Los Angeles, CA 90073, USA.
| | - M L Lopez-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Veracruz 91190, Mexico
| | - J Niquet
- Veterans Administration Greater Los Angeles Healthcare System, Epilepsy Research (151), 11 301 Wilshire Boulevard, Building 114, Room 139, Los Angeles, CA 90073, USA
| | - H Kubova
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 14220, Czech Republic
| | - C G Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, VA Medical Center (127), 11 301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| |
Collapse
|
25
|
Early brain magnetic resonance imaging can predict short and long-term outcomes after organophosphate poisoning in a rat model. Neurotoxicology 2015; 48:206-16. [DOI: 10.1016/j.neuro.2015.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/17/2015] [Accepted: 04/15/2015] [Indexed: 12/20/2022]
|
26
|
Cartagena AM, Young GB, Lee DH, Mirsattari SM. Reversible and irreversible cranial MRI findings associated with status epilepticus. Epilepsy Behav 2014; 33:24-30. [PMID: 24614522 DOI: 10.1016/j.yebeh.2014.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE There is limited information on neuroimaging changes in status epilepticus (SE). The objective of this study was to characterize the abnormalities associated with SE in cranial MRI of patients with SE. METHODS A retrospective review of our records from 2001 to 2010 identified 203 patients with SE. Magnetic resonance imaging (MRI) changes considered were not attributable to any neurological disorder. RESULTS Ten patients who met the inclusion criteria were found to have significant abnormalities. Magnetic resonance imaging findings included increased T2 signal changes in the gray and/or white matter with corresponding diffusion-weighted imaging (DWI) abnormalities (n=9). Apparent diffusion coefficient (ADC) values were both reduced (n=3) and increased (n=3). Other findings included changes affecting one hemisphere, a perilesional and homologous region, hippocampal changes, and findings in the thalamus, basal ganglia, brain stem, and cerebellum. CONCLUSIONS Magnetic resonance imaging changes were diffuse. Notably, MRI changes were found to involve the brain stem, cerebellum, basal ganglia, and thalamus. Magnetic resonance imaging changes in the latter areas have not been previously well described. In addition, MRI changes tended to evolve after 1week; therefore, serial MRI is recommended in order to follow and highlight the MRI changes related to the neuroanatomic involvement seen in status epilepticus.
Collapse
Affiliation(s)
- A M Cartagena
- Department of Neurology/Clinical Neurophysiolgy, Detroit Medical Center, Wayne State University, Detroit, Michigan, USA; Department of Clinical Neurological Sciences, Western University, London, Canada.
| | - G B Young
- Department of Clinical Neurological Sciences, Western University, London, Canada
| | - D H Lee
- Department of Clinical Neurological Sciences, Western University, London, Canada; Department of Medical Imaging, Western University, London, Canada
| | - S M Mirsattari
- Department of Clinical Neurological Sciences, Western University, London, Canada; Department of Medical Imaging, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Psychology, Western University, London, Canada
| |
Collapse
|
27
|
Abstract
Epilepsy is one of the most common chronic neurological conditions worldwide. Anti-epileptic drugs (AEDs) can suppress seizures, but do not affect the underlying epileptic state, and many epilepsy patients are unable to attain seizure control with AEDs. To cure or prevent epilepsy, disease-modifying interventions that inhibit or reverse the disease process of epileptogenesis must be developed. A major limitation in the development and implementation of such an intervention is the current poor understanding, and the lack of reliable biomarkers, of the epileptogenic process. Neuroimaging represents a non-invasive medical and research tool with the ability to identify early pathophysiological changes involved in epileptogenesis, monitor disease progression, and assess the effectiveness of possible therapies. Here we will provide an overview of studies conducted in animal models and in patients with epilepsy that have utilized various neuroimaging modalities to investigate epileptogenesis.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Building 144, Royal Parade, Parkville, VIC, 3010, Australia,
| | | | | | | |
Collapse
|
28
|
Ginseng extract attenuates early MRI changes after status epilepticus and decreases subsequent reduction of hippocampal volume in the rat brain. Epilepsy Res 2014; 108:223-31. [DOI: 10.1016/j.eplepsyres.2013.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/15/2013] [Accepted: 11/21/2013] [Indexed: 11/21/2022]
|
29
|
Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 2014; 21:663-88. [PMID: 24251566 PMCID: PMC4101766 DOI: 10.2174/0929867320666131119152201] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/04/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G Biagini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Laboratorio di Epilettologia Sperimentale, Universita di Modena e Reggio Emilia, Via Campi, 287, 41125 Modena, Italy.
| |
Collapse
|
30
|
Mariotti R, Fattoretti P, Malatesta M, Nicolato E, Sandri M, Zancanaro C. Forced mild physical training improves blood volume in the motor and hippocampal cortex of old mice. J Nutr Health Aging 2014; 18:178-83. [PMID: 24522471 DOI: 10.1007/s12603-013-0384-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To assess the effect of mild forced physical training on cerebral blood volume (CBV) and other brain parameters in old mice. SETTING Treadmill in the animal house. PARTICIPANTS Thirty old (>25 mo) male mice were randomly assigned to one of three groups, exercise (E), exercise plus testosterone (T) (ET), and rest (C). INTERVENTION Mild physical training on treadmill (30 min a day at belt speed = 8 m/min, five days a week) with or without one weekly injection of testosterone. MEASUREMENTS CBV, quantitative transverse relaxation time (T2) maps, and cortical thickness were measured by magnetic resonance imaging. RESULTS A significant increase of CBV was found in the motor and hippocampal cortex of E and ET mice; cortical thickness was not affected. T2 maps analysis suggested that water distribution did not change. T administration did not add to the effect of physical training. CONCLUSION This work provides first quantitative evidence that exercise initiated at old age is able to improve the hemodynamic status of the brain cortex in key regions for movement and cognition without inducing edema.
Collapse
Affiliation(s)
- R Mariotti
- Prof. Carlo Zancanaro, DSNNMM, Sezione di Anatomia e Istologia; Strada Le Grazie 8, I-37134 Verona, Italy. Tel. +39 045 8027155; Fax. +39 045 8027163, E-mail address:
| | | | | | | | | | | |
Collapse
|
31
|
Hindriks R, Meijer HGE, van Gils SA, van Putten MJAM. Phase-locking of epileptic spikes to ongoing delta oscillations in non-convulsive status epilepticus. Front Syst Neurosci 2013; 7:111. [PMID: 24379763 PMCID: PMC3863724 DOI: 10.3389/fnsys.2013.00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/26/2013] [Indexed: 12/05/2022] Open
Abstract
The EEG of patients in non-convulsive status epilepticus (NCSE) often displays delta oscillations or generalized spike-wave discharges. In some patients, these delta oscillations coexist with intermittent epileptic spikes. In this study we verify the prediction of a computational model of the thalamo-cortical system that these spikes are phase-locked to the delta oscillations. We subsequently describe the physiological mechanism underlying this observation as suggested by the model. It is suggested that the spikes reflect inhibitory stochastic fluctuations in the input to thalamo-cortical relay neurons and phase-locking is a consequence of differential excitability of relay neurons over the delta cycle. Further analysis shows that the observed phase-locking can be regarded as a stochastic precursor of generalized spike-wave discharges. This study thus provides an explanation of intermittent spikes during delta oscillations in NCSE and might be generalized to other encephathologies in which delta activity can be observed.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Clinical Neurophysiology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente Enschede, Netherlands ; Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra Barcelona, Spain
| | - Hil G E Meijer
- Department of Electrical Engineering, Mathematics and Computer Science, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente Enschede, Netherlands
| | - Stephan A van Gils
- Department of Electrical Engineering, Mathematics and Computer Science, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente Enschede, Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente Enschede, Netherlands ; Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente Enschede, Netherlands
| |
Collapse
|
32
|
Kantorovich S, Astary GW, King MA, Mareci TH, Sarntinoranont M, Carney PR. Influence of neuropathology on convection-enhanced delivery in the rat hippocampus. PLoS One 2013; 8:e80606. [PMID: 24260433 PMCID: PMC3832660 DOI: 10.1371/journal.pone.0080606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/03/2013] [Indexed: 01/08/2023] Open
Abstract
Local drug delivery techniques, such as convention-enhanced delivery (CED), are promising novel strategies for delivering therapeutic agents otherwise limited by systemic toxicity and blood-brain-barrier restrictions. CED uses positive pressure to deliver infusate homogeneously into interstitial space, but its distribution is dependent upon appropriate tissue targeting and underlying neuroarchitecture. To investigate effects of local tissue pathology and associated edema on infusate distribution, CED was applied to the hippocampi of rats that underwent electrically-induced, self-sustaining status epilepticus (SE), a prolonged seizure. Infusion occurred 24 hours post-SE, using a macromolecular tracer, the magnetic resonance (MR) contrast agent gadolinium chelated with diethylene triamine penta-acetic acid and covalently attached to albumin (Gd-albumin). High-resolution T1- and T2-relaxation-weighted MR images were acquired at 11.1 Tesla in vivo prior to infusion to generate baseline contrast enhancement images and visualize morphological changes, respectively. T1-weighted imaging was repeated post-infusion to visualize final contrast-agent distribution profiles. Histological analysis was performed following imaging to characterize injury. Infusions of Gd-albumin into injured hippocampi resulted in larger distribution volumes that correlated with increased injury severity, as measured by hyperintense regions seen in T2-weighted images and corresponding histological assessments of neuronal degeneration, myelin degradation, astrocytosis, and microglial activation. Edematous regions included the CA3 hippocampal subfield, ventral subiculum, piriform and entorhinal cortex, amygdalar nuclei, middle and laterodorsal/lateroposterior thalamic nuclei. This study demonstrates MR-visualized injury processes are reflective of cellular alterations that influence local distribution volume, and provides a quantitative basis for the planning of local therapeutic delivery strategies in pathological brain regions.
Collapse
Affiliation(s)
- Svetlana Kantorovich
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, Florida, United States of America
- Department of Pediatrics, Division of Pediatric Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Garrett W. Astary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Michael A. King
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
- Malcom Randall Veterans Affairs Medical Center, Gainesville, University of Florida, Gainesville, Florida, United States of America
| | - Thomas H. Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Paul R. Carney
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, Florida, United States of America
- Department of Pediatrics, Division of Pediatric Neurology, University of Florida, Gainesville, Florida, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
33
|
Radu BM, Bramanti P, Osculati F, Flonta ML, Radu M, Bertini G, Fabene PF. Neurovascular unit in chronic pain. Mediators Inflamm 2013; 2013:648268. [PMID: 23840097 PMCID: PMC3687484 DOI: 10.1155/2013/648268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/08/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms. Possible biases in experiments supporting this theory and its translational potentials are discussed. Moving beyond an exclusive focus on the role of the endothelium, we propose that our understanding of the mechanisms subserving chronic pain will benefit from the extension of research efforts to the NVU as a whole. In this view, the available evidence on the interaction between analgesic drugs and the NVU is here reviewed. Chronic pain comorbidities, such as neuroinflammatory and neurodegenerative diseases, are also discussed in view of NVU changes, together with innovative pharmacological solutions targeting NVU components in chronic pain treatment.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | | | | | - Maria-Luisa Flonta
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mihai Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania
| | - Giuseppe Bertini
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Paolo Francesco Fabene
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
34
|
Pizzini FB, Farace P, Manganotti P, Zoccatelli G, Bongiovanni LG, Golay X, Beltramello A, Osculati A, Bertini G, Fabene PF. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI. Magn Reson Imaging 2013; 31:1001-5. [PMID: 23623332 DOI: 10.1016/j.mri.2013.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/24/2013] [Accepted: 03/24/2013] [Indexed: 12/28/2022]
Abstract
Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment.
Collapse
Affiliation(s)
- Francesca B Pizzini
- Department of Pathology and Diagnostics, Unit of Neuroradiology, University Hospital Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tirosh N, Nevo U. Neuronal activity significantly reduces water displacement: DWI of a vital rat spinal cord with no hemodynamic effect. Neuroimage 2013; 76:98-107. [PMID: 23507391 DOI: 10.1016/j.neuroimage.2013.02.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022] Open
Abstract
Changes in the diffusion weighted MRI (DWI) signal were observed to be correlated with neuronal activity during chemically induced brain activity, epileptic seizures, or visual stimulation. These changes suggest a possible reduction in water displacement that accompanies neuronal activity, but were possibly affected by other physiological mechanisms such as blood oxygenation level and blood flow. We developed an imaging experiment of an excised and vital newborn rat spinal cord to examine the effect of neuronal function on the displacement of water molecules as measured by DWI signal. This approach provides a DWI experiment of a vital mammalian CNS tissue in the absence of some of the systemic sources of noise. We detected a significant and reproducible drop with an average value of 19.5 ± 1.6% (mean ± SE) upon activation. The drop repeated itself in three orthogonal directions. ADC values corresponded to an oblate anisotropy. This result was validated by high resolution DWI of a fixed tissue, imaged with an ultra-high field MRI. The results support our working hypothesis that water displacement is affected by neuronal activation. These results further imply that water displacement might serve as a potential marker for brain function, and that, although commonly viewed as wholly electrochemical, neuronal activity includes a significant mechanical dimension that affects water displacement.
Collapse
Affiliation(s)
- Nitzan Tirosh
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | | |
Collapse
|
36
|
Kharatishvili I, Shan ZY, She DT, Foong S, Kurniawan ND, Reutens DC. MRI changes and complement activation correlate with epileptogenicity in a mouse model of temporal lobe epilepsy. Brain Struct Funct 2013; 219:683-706. [PMID: 23474541 DOI: 10.1007/s00429-013-0528-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/14/2013] [Indexed: 12/27/2022]
Abstract
The complex pathogenesis of temporal lobe epilepsy includes neuronal and glial pathology, synaptic reorganization, and an immune response. However, the spatio-temporal pattern of structural changes in the brain that provide a substrate for seizure generation and modulate the seizure phenotype is yet to be completely elucidated. We used quantitative magnetic resonance imaging (MRI) to study structural changes triggered by status epilepticus (SE) and their association with epileptogenesis and with activation of complement component 3 (C3). SE was induced by injection of pilocarpine in CD1 mice. Quantitative diffusion-weighted imaging and T2 relaxometry was performed using a 16.4-Tesla MRI scanner at 3 h and 1, 2, 7, 14, 28, 35, and 49 days post-SE. Following longitudinal MRI examinations, spontaneous recurrent seizures and interictal spikes were quantified using continuous video-EEG monitoring. Immunohistochemical analysis of C3 expression was performed at 48 h, 7 days, and 4 months post-SE. MRI changes were dynamic, reflecting different outcomes in relation to the development of epilepsy. Apparent diffusion coefficient changes in the hippocampus at 7 days post-SE correlated with the severity of the evolving epilepsy. C3 activation was found in all stages of epileptogenesis within the areas with significant MRI changes and correlated with the severity of epileptic condition.
Collapse
Affiliation(s)
- Irina Kharatishvili
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia,
| | | | | | | | | | | |
Collapse
|
37
|
Kumral E, Uncu G, Dönmez I, Cerrahoglu Sirin T, Alpaydin S, Çalli C, Kitis Ö. Impact of Poststroke Seizures on Neurological Deficits: Magnetic Resonance Diffusion-Weighted Imaging Study. Eur Neurol 2013; 69:200-6. [DOI: 10.1159/000345360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/07/2012] [Indexed: 11/19/2022]
|
38
|
Otte WM, Dijkhuizen RM, van Meer MPA, van der Hel WS, Verlinde SAMW, van Nieuwenhuizen O, Viergever MA, Stam CJ, Braun KPJ. Characterization of functional and structural integrity in experimental focal epilepsy: reduced network efficiency coincides with white matter changes. PLoS One 2012; 7:e39078. [PMID: 22808026 PMCID: PMC3395639 DOI: 10.1371/journal.pone.0039078] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/16/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although focal epilepsies are increasingly recognized to affect multiple and remote neural systems, the underlying spatiotemporal pattern and the relationships between recurrent spontaneous seizures, global functional connectivity, and structural integrity remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS Here we utilized serial resting-state functional MRI, graph-theoretical analysis of complex brain networks and diffusion tensor imaging to characterize the evolution of global network topology, functional connectivity and structural changes in the interictal brain in relation to focal epilepsy in a rat model. Epileptic networks exhibited a more regular functional topology than controls, indicated by a significant increase in shortest path length and clustering coefficient. Interhemispheric functional connectivity in epileptic brains decreased, while intrahemispheric functional connectivity increased. Widespread reductions of fractional anisotropy were found in white matter regions not restricted to the vicinity of the epileptic focus, including the corpus callosum. CONCLUSIONS/SIGNIFICANCE Our longitudinal study on the pathogenesis of network dynamics in epileptic brains reveals that, despite the locality of the epileptogenic area, epileptic brains differ in their global network topology, connectivity and structural integrity from healthy brains.
Collapse
Affiliation(s)
- Willem M Otte
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dedeurwaerdere S, Friedman A, Fabene PF, Mazarati A, Murashima YL, Vezzani A, Baram TZ. Finding a better drug for epilepsy: antiinflammatory targets. Epilepsia 2012; 53:1113-8. [PMID: 22691043 PMCID: PMC3389561 DOI: 10.1111/j.1528-1167.2012.03520.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This monograph summarizes one of the sessions of the XI Workshop on Neurobiology of Epilepsy (WONOEP), and provides a critical review of the current state of the field. Speakers and discussants focused on several broad topics: (1) the coexistence of inflammatory processes encompassing several distinct signal-transduction pathways with the epileptogenic process; (2) evidence for the contribution of specific inflammatory molecules and processes to the onset and progression of epilepsy, as well as to epilepsy-related morbidities including depression; (3) the complexity and intricate cross-talk of the pathways involved in inflammation, and the discrete, often opposite roles of a given mediator in neurons versus other cell types. These complexities highlight the challenges confronting the field as it aims to define inflammatory molecules as promising targets for epilepsy prevention and treatment.
Collapse
|
40
|
Jensen-Kondering U, Böhm R, Höcker J, Ruhe R, Brdon J, Ulmer S, Herdegen T, Jansen O. Normal values of quantitative T2′ in a spontaneously hypertensive stroke prone rat stem at 3T. Eur J Radiol 2012; 81:985-7. [DOI: 10.1016/j.ejrad.2011.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
|
41
|
The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability. Neurobiol Aging 2012; 33:1005.e23-35. [DOI: 10.1016/j.neurobiolaging.2011.09.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/22/2011] [Accepted: 09/30/2011] [Indexed: 12/11/2022]
|
42
|
Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent. Neuroimage 2012; 60:1149-55. [DOI: 10.1016/j.neuroimage.2012.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/07/2011] [Accepted: 01/05/2012] [Indexed: 12/19/2022] Open
|
43
|
Nehlig A. Hippocampal MRI and other structural biomarkers: experimental approach to epileptogenesis. Biomark Med 2012; 5:585-97. [PMID: 22003907 DOI: 10.2217/bmm.11.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present review is devoted to application of MRI techniques to the epileptic brain and the search for potential biomarkers of epileptogenicity and/or epileptogenesis in rodents that could be translated to the clinic. Diffusion-weighted imaging reveals very early changes in water movements. T(2)-weighted hypersignal indicates edema or gliosis within brain regions and is most often used along with histological assessment of neuronal loss. (31)P magnetic resonance spectroscopy measures the energy reserve of the tissue while (1)H spectroscopy assesses neuronal loss and mitochondrial dysfunction. (13)C spectroscopy analyzes, separately, neuronal and astrocytic metabolism and interactions between the two cell types. Finally, diffusion tensor imaging and tractography have been applied to the study of plasticity and show a good coherence with circuit changes assessed by Timm staining. The potential of these techniques as reliable biomarkers of epileptogenesis is still disputed. At the moment, one study has provided a reliable temporal evolution of the T(2) signal, predicting epileptogenesis in 100% of the cases, and further imaging approaches based on the techniques described here are still needed to identify potential early imaging biomarkers of epileptogenicity and/or epileptogenesis.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 666, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France.
| |
Collapse
|
44
|
Shrot S, Anaby D, Krivoy A, Makarovsky I, Rosman Y, Bloch-Shilderman E, Lazar S, Bar-Shir A, Cohen Y. Early in vivo MR spectroscopy findings in organophosphate-induced brain damage-potential biomarkers for short-term survival. Magn Reson Med 2012; 68:1390-8. [PMID: 22247007 DOI: 10.1002/mrm.24155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 11/08/2022]
Abstract
Organophosphates are highly toxic substances, which cause severe brain damage. The hallmark of the brain injury is major convulsions. The goal of this study was to assess the spatial and temporal MR changes in the brain of paraoxon intoxicated rats. T2-weighted MRI and ¹H-MR-spectroscopy were conducted before intoxication, 3 h, 24 h, and 8 days postintoxication. T2 prolongation mainly in the thalami and cortex was evident as early as 3 h after intoxication (4-6% increase in T2 values, P < 0.05). On spectroscopy, N-acetyl aspartate (NAA)/creatine and NAA/choline levels significantly decreased 3 h postintoxication (>20% decrease, P < 0.005), and 3 h lactate peak was evident in all intoxicated animals. On the 8th day, although very little T2 changes were evident, NAA/creatine and choline/creatine were significantly decreased (>15%, P < 0.05). Animals who succumbed had extensive cortical edema, significant higher lactate levels and a significant decrease in NAA/creatine and NAA/choline levels compared to animals which survived the experiment. Organophosphates-induced brain damage is obvious on MR data already 3 h postintoxication. In vivo spectroscopic changes are more sensitive for assessing long-term injury than T2-weighted MR imaging. Early spectroscopic findings might be used as biomarkers for the severity of the intoxication and might predict early survival.
Collapse
Affiliation(s)
- Shai Shrot
- Chemical, Biological and Nuclear Medicine Branch, Medical Corps, IDF, Tel-Hashomer Military Base, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chatzikonstantinou A, Gass A, Förster A, Hennerici MG, Szabo K. Features of acute DWI abnormalities related to status epilepticus. Epilepsy Res 2011; 97:45-51. [PMID: 21802259 DOI: 10.1016/j.eplepsyres.2011.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/01/2011] [Accepted: 07/03/2011] [Indexed: 12/01/2022]
Abstract
We analyzed the phenomenon of transient regional diffusion-weighted MRI (DWI) hyperintensity in a series of status epilepticus (SE) patients with respect to seizure type, epileptogenic lesions and EEG findings. A prospective series of 54 patients (30 men, 24 women, mean age 61.5 years) admitted with SE was analyzed with regard to clinical semiology, EEG and MRI findings including DWI and EEG recordings in the acute peri-ictal phase. DWI abnormalities occurred most frequently in patients with complex-partial SE (27/50%) and generalized SE (18/33.3%). Forty patients (74.1%) had symptomatic, 13/24.1% cryptogenic and 1/1.9% idiopathic epilepsies. On DWI, the hippocampus was affected in 37/68.5% cases, often in combination with other brain areas (15/40.5%), in particular the pulvinar was affected in 14/25.9% patients. Bilateral DWI changes were found in 8/14.8% patients. No correlation with a specific seizure type was observed. In 21/38.9%, DWI changes were ipsilateral to the epileptogenic brain lesion (p<0.001) and in 5/9.3% contralateral, whereas in the majority of patients, either bilateral changes or no specific epileptogenic lesion were found. EEG abnormalities correlated with lateralization of DWI abnormalities in 44/81.5% (p<0.001). The most common localization of DWI abnormalities associated with ictal activity was the hippocampus and the pulvinar. Combined DWI-MRI and EEG analysis provides clues to seizure localization and propagation, as well as to identify brain structures affected by continuous or frequent ictal activity. This large series of patients with different features (SE type and cause, various epileptogenic lesions) demonstrates the heterogeneity of the phenomenon of peri-ictal DWI changes.
Collapse
|
46
|
Unrath A, Müller HP, Ludolph AC, Kassubek J. Reversible Cortical Diffusion Restriction, Hyperperfusion and T2-Hyperintensity Caused by Two Different Types of Epileptic Seizure. Clin Neuroradiol 2011; 22:239-43. [DOI: 10.1007/s00062-011-0089-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022]
|
47
|
Waln O, Adamolekun B. Cessation of refractory post-traumatic tremor after convulsive status epilepticus. Parkinsonism Relat Disord 2011; 17:710-1. [PMID: 21683645 DOI: 10.1016/j.parkreldis.2011.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/22/2011] [Accepted: 05/23/2011] [Indexed: 11/17/2022]
|
48
|
Geloso MC, Corvino V, Michetti F. Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 2011; 58:729-38. [DOI: 10.1016/j.neuint.2011.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/02/2011] [Accepted: 03/08/2011] [Indexed: 12/29/2022]
|
49
|
Norwood BA, Bumanglag AV, Osculati F, Sbarbati A, Marzola P, Nicolato E, Fabene PF, Sloviter RS. Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single "cryptic" episode of focal hippocampal excitation in awake rats. J Comp Neurol 2010; 518:3381-407. [PMID: 20575073 DOI: 10.1002/cne.22406] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In refractory temporal lobe epilepsy, seizures often arise from a shrunken hippocampus exhibiting a pattern of selective neuron loss called "classic hippocampal sclerosis." No single experimental injury has reproduced this specific pathology, suggesting that hippocampal atrophy might be a progressive "endstage" pathology resulting from years of spontaneous seizures. We posed the alternative hypothesis that classic hippocampal sclerosis results from a single excitatory event that has never been successfully modeled experimentally because convulsive status epilepticus, the insult most commonly used to produce epileptogenic brain injury, is too severe and necessarily terminated before the hippocampus receives the needed duration of excitation. We tested this hypothesis by producing prolonged hippocampal excitation in awake rats without causing convulsive status epilepticus. Two daily 30-minute episodes of perforant pathway stimulation in Sprague-Dawley rats increased granule cell paired-pulse inhibition, decreased epileptiform afterdischarge durations during 8 hours of subsequent stimulation, and prevented convulsive status epilepticus. Similarly, one 8-hour episode of reduced-intensity stimulation in Long-Evans rats, which are relatively resistant to developing status epilepticus, produced hippocampal discharges without causing status epilepticus. Both paradigms immediately produced the extensive neuronal injury that defines classic hippocampal sclerosis, without giving any clinical indication during the insult that an injury was being inflicted. Spontaneous hippocampal-onset seizures began 16-25 days postinjury, before hippocampal atrophy developed, as demonstrated by sequential magnetic resonance imaging. These results indicate that classic hippocampal sclerosis is uniquely produced by a single episode of clinically "cryptic" excitation. Epileptogenic insults may often involve prolonged excitation that goes undetected at the time of injury.
Collapse
Affiliation(s)
- Braxton A Norwood
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Martinez Y, N'Gouemo P. Blockade of the sodium calcium exchanger exhibits anticonvulsant activity in a pilocarpine model of acute seizures in rats. Brain Res 2010; 1366:211-6. [PMID: 20888801 DOI: 10.1016/j.brainres.2010.09.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that the sodium calcium exchanger (NCX) may contribute to the etiology of pentylenetetrazol-induced seizures. Here we further investigated the role of NCX in the etiology of seizures by quantifying the effects of KB-R7943 and SN-6, potent inhibitors of the reverse mode of NCX subtypes 3 (NCX3) and 1 (NCX1), respectively, on the occurrence of acute seizures and status epilepticus induced by intraperitoneal administration of pilocarpine, a muscarinic acetylcholine receptor agonist. Pretreatment with KB-R7943 significantly reduced the incidence of pilocarpine-induced seizures and status epilepticus in 22-56% of treated animals. In the remaining animals that exhibited seizures, KB-R7943 pretreatment delayed the onset of seizures and status epilepticus, and reduced seizure severity. Delayed onset of seizures and reduced seizure severity also were seen following pretreatment with SN-6. These findings suggest that altered NCX activity may contribute to the pathophysiology of pilocarpine-induced seizures and status epilepticus.
Collapse
Affiliation(s)
- Yuris Martinez
- Department of Pediatrics, Bldg D, Room 285, Georgetown University Medical Center, 3900 Reservoir Rd, NW, Washington DC 20057, USA
| | | |
Collapse
|