1
|
Casasco BS, Garcez-do-Carmo L, Conceição IM. The effects of Tityus bahiensis scorpion venom on the contractility of jejunum, vas deferens, and the aorta is differentially affected by tetrodotoxin. Toxicon 2021; 202:123-131. [PMID: 34582832 DOI: 10.1016/j.toxicon.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
The pharmacological effects of the crude venom of the scorpion Tityus serrulatus or its isolated toxins have been widely studied. However, few studies are available on Tityus bahiensis venom. We recently discovered that T. serrulaus venom leads to the release of tetrodotoxin-resistant acetylcholine. Thus, our objective was to verify whether T. bahiensis venom could have a similar action in the jejunum. Furthermore, we evaluated the possibility that this action occur in other tissues innervated by the autonomic nervous system. Thus, organ bath studies were conducted to evaluate the contractile and relaxant effects of venom on the jejunum, vas deferens and aorta of rats in the presence or absence of tetrodotoxin. We observed that jejunum, vas deferens and aorta contracted when the T. bahiensis venom was applied. In the jejunum, the venom reveals a contractile component resistant to tetrodotoxin. It also was able to relax pre-contracted preparations of jejunum and aorta but not vas deferens. Only in the aorta, the relaxation was resistant to tetrodotoxin. The effects of scorpion venoms are attributed to its action on ionic channels leading to neuronal depolarization and neurotransmitter release. Our results indicated that a similar mechanism is present in the observed effects of the venom. However, another mechanism must be present in the venom-induced contraction in the jejunum and relaxation in the aorta. Possible involvement of tetrodotoxin-resistant sodium channels or non-neuronal release of neurotransmitters is discussed. We emphasize that the study of the Tityus scorpion's venom, especially T. bahiensis, is of great importance because it can unveil unknown pharmacological and physiological mechanisms of excitable cells.
Collapse
Affiliation(s)
- Bianca Serra Casasco
- Toxins Mechanism of Action Research Group (MATx), Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Lúcia Garcez-do-Carmo
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Isaltino Marcelo Conceição
- Toxins Mechanism of Action Research Group (MATx), Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
2
|
In Vitro Contraction of Isolated Cauda Epididymal Duct Smooth Muscle as a Complimentary Approach to Physiological, Pathological, Toxicological, and Pharmacological Studies on Epididymal Function. Methods Mol Biol 2021. [PMID: 33423227 DOI: 10.1007/978-1-0716-1091-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Contraction of cauda epididymal duct (CE) smooth muscle is one of the very first events of the seminal emission phase of ejaculation. The contraction of CE smooth muscle is governed by a complex interaction of hormones, autacoids, and by the neurotransmitters released from the epididymal intramural nerve endings, and any impairment in the CE smooth muscle contraction has the potential to impair male fertility. Apart the obvious pathophysiological and toxicological importance of CE smooth muscle contraction, modulation of CE contraction has pharmaceutical interest offering a druggable target to development of drugs to improve/impair male fertility. The in vitro contraction experiments constitute a valuable approach to an in-depth evaluation of functional and molecular changes resulting from pathologies or drug exposure. Therefore, this chapter consists in a description of in vitro pharmacological reactivity contractility of the epididymal duct in a controlled medium, maintained at 30 °C of temperature and continuously bubbled with 95% O2 and 5% CO2 to obtain cumulative concentration-response curves that has been fundamental to some of our investigations on epididymal physiology, toxicology, and pharmacology.
Collapse
|
3
|
Matos TS, Silva AKO, Quintela AL, Francisco das Chagas Pinto L, Canuto KM, Braz-Filho R, Fonseca MJS, Luna-Costa AM, Paz IA, Nascimento NRF, Silveira ER, Pessoa ODL. Neuroinhibitory meroterpenoid compounds from Cordia oncocalyx. Fitoterapia 2017; 123:65-72. [DOI: 10.1016/j.fitote.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
|
4
|
Effects of in vitro, acute and chronic treatment with fluoxetine on the sympathetic neurotransmission of rat vas deferens. Auton Neurosci 2017; 203:17-24. [DOI: 10.1016/j.autneu.2016.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 11/24/2022]
|
5
|
Tsounapi P, Honda M, Dimitriadis F, Shimizu S, Shiomi T, Hikita K, Saito M, Tomita S, Sofikitis N, Takenaka A. Antioxidant treatment ameliorates diabetes-induced dysfunction of the vas deferens in a rat model. Andrologia 2017; 50. [PMID: 28224697 DOI: 10.1111/and.12795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) affects the male ejaculatory function. This study was designed to evaluate the role of oxidative stress in the development of diabetes-induced dysfunction of vas deferens (VD) in the rat. DM was induced by streptozotocin in 40 male Wistar rats. Subsequently, the diabetic animals were divided into three groups: DM group, DM + Eda group and DM + Tau group. These groups were administered saline, edaravone and taurine, respectively, daily for 4 weeks. Another group of ten rats served as a control group. DM was diagnosed in the 40 streptozotocin-injected rats. DM significantly reduced the VD weight. Additionally, DM induced in vitro VD hypercontractility, VD histological abnormalities and increased the serum and VD tissue concentration of malondialdehyde. VD immunohistochemistry revealed overexpression of three markers of oxidative stress. DM significantly reduced serum testosterone levels. No live birth was documented in all DM rats in mating experiments. Antioxidants significantly improved all the aforementioned parameters, except the testosterone levels. This study indicates a deleterious impact of DM-induced oxidative stress on VD histological and functional features. Antioxidant treatment may provide an adjunct tool to alleviate ejaculatory disorders for male patients with type 1 diabetes.
Collapse
Affiliation(s)
- P Tsounapi
- Division of Urology, Department of Surgery, Faculty of Medicine, Tottori University, Yonago, Japan
| | - M Honda
- Division of Urology, Department of Surgery, Faculty of Medicine, Tottori University, Yonago, Japan
| | - F Dimitriadis
- Department of Urology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - S Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - T Shiomi
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - K Hikita
- Division of Urology, Department of Surgery, Faculty of Medicine, Tottori University, Yonago, Japan
| | - M Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - S Tomita
- Department of Pharmacology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - N Sofikitis
- Department of Urology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - A Takenaka
- Division of Urology, Department of Surgery, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
6
|
Stereoselectivity of butylidenephthalide on non-adrenergic prejunctional voltage-dependent Ca 2+ channels in prostatic portion of rat vas deferens. Eur J Pharmacol 2016; 786:47-52. [DOI: 10.1016/j.ejphar.2016.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
|
7
|
Bomfim GHS, García García A, Jurkiewicz A, Jurkiewicz NH. Relationship between central behavioral effects and peripheral sympathetic neurotransmission functionality during acute cocaine withdrawal syndrome in adult rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 42:63-76. [PMID: 26579734 DOI: 10.3109/00952990.2015.1094082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Acute cocaine withdrawal syndrome (ACWS) is characterized as a set of organic alterations triggered by abrupt discontinuation of chronic cocaine consumption, usually occurring at 24-40 hours after withdrawal. However, little is known about the relationship between central and peripheral sympathetic neurotransmission during ACWS. OBJECTIVE AND METHODS We investigated the mechanisms involved in central and peripheral sympathetic neurotransmission and how ACWS affects the sympathetic functionality. Cocaine was administered twice daily for 5 days in Wistar rats (at least 5 in each group): on the first and second day, 15 mg/kg/i.p.; third day, 20 mg/kg/i.p.; and finally in the last two days, 30 mg/kg/i.p. Subsequently, at 1, 24, 48 and 120 h after cocaine administration the following experiments were done: (i) at the central level, behavioral tests of open-field and elevated plus maze; and (ii) at the peripheral level, tests of catecholamine release, function of α2-adrenergic receptors (α2-ARs), imidazoline receptors (I(1,2)-Rs), L-type voltage-gated (Ca(v1.2)) Ca(2+) channels and α1-ARs. RESULTS During ACWS, rats showed hypolocomotion and exacerbation of anxiogenic-effects 24 h after cocaine withdrawal. Likewise, a decrease in the catecholamine release and activity of α2-ARs/I(1,2)-Rs at 24-48 h after cocaine withdrawal was observed. A decrease in Ca(v1.2) channels and α1-ARs function at 48 h after cocaine withdrawal was observed. CONCLUSIONS The relationship of central and peripheral sympathetic neurotransmission during ACWS possibly due to a failure in activation and/or inactivation of presynaptic α2-ARs/I(1,2)-Rs, may offer a potential target for attenuating ACWS.
Collapse
Affiliation(s)
| | - Antonio García García
- b Instituto Teófilo Hernando del Medicamento , Universidad Autónoma de Madrid , Madrid , Spain
| | - Aron Jurkiewicz
- a Department of Pharmacology , Escola Paulista de Medicina, Universidade Federal de São Paulo , Brazil
| | | |
Collapse
|
8
|
Muzi-Filho H, Souza AM, Bezerra CGP, Boldrini LC, Takiya CM, Oliveira FL, Nesi RT, Valença SS, Silva AMS, Zapata-Sudo G, Sudo RT, Einicker-Lamas M, Vieyra A, Lara LS, Cunha VMN. Rats undernourished in utero have altered Ca2+ signaling and reduced fertility in adulthood. Physiol Rep 2015; 3:3/10/e12587. [PMID: 26508737 PMCID: PMC4632956 DOI: 10.14814/phy2.12587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca(2+)- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The ex vivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca(2+) transport due to the uncoupling of Ca(2+)-stimulated ATP hydrolysis and ATP-driven Ca(2+) flux, and the downregulation of both sarco-endoplasmic reticulum Ca(2+)-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats.
Collapse
Affiliation(s)
- Humberto Muzi-Filho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Alessandro M Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila G P Bezerra
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo C Boldrini
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Directorate of Metrology Applied Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe L Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata T Nesi
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel S Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ananssa M S Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto T Sudo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Valeria M N Cunha
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
10
|
Influence of acute treatment with sibutramine on the sympathetic neurotransmission of the young rat vas deferens. Eur J Pharmacol 2014; 738:118-24. [PMID: 24886880 DOI: 10.1016/j.ejphar.2014.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 11/21/2022]
Abstract
The effects of acute treatment with sibutramine on the peripheral sympathetic neurotransmission in vas deferens of young rats were still not evaluated. Therefore, we carried out this study in order to verify the effects of acute sibutramine treatment on the neuronal- and exogenous agonist-induced contractions of the young rat vas deferens. Young 45-day-old male Wistar rats were pretreated with sibutramine 6 mg/kg and after 4h the vas deferens was used for experiment. The acute treatment with sibutramine was able to increase the potency (pD2) of noradrenaline and phenylephrine. Moreover, the efficacy (Emax) of noradrenaline was increased while the efficacy of serotonin and nicotine were decreased. The maximum effect induced by a single concentration of tyramine was diminished in the vas deferens from treated group. Moreover, the leftward shift of the noradrenaline curves promoted by uptake blockers (cocaine and corticosterone) and β-adrenoceptor antagonist (propranolol) was reduced in the vas deferens of treated group. The initial phasic and secondary tonic components of the neuronal-evoked contractions of vas deferens from treated group at the frequencies of 2 Hz were decreased. Moreover, only the initial phasic component at 5 Hz was diminished by the acute treatment with sibutramine. In conclusion, we showed that the acute treatment with sibutramine in young rats was able to affect the peripheral sympathetic nervous system by inhibition of noradrenaline uptake and reduction of the neuronal content of this neurotransmitter, leading to an enhancement of vas deferens sensitivity to noradrenaline.
Collapse
|
11
|
Effect of noni (Morinda citrifolia Linn.) fruit and its bioactive principles scopoletin and rutin on rat vas deferens contractility: an ex vivo study. ScientificWorldJournal 2014; 2014:909586. [PMID: 25045753 PMCID: PMC4090441 DOI: 10.1155/2014/909586] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022] Open
Abstract
This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1-40 mg/mL), scopoletin (1-200 μg/mL), and rutin hydrate (0.6-312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α 1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60-100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (<40 mg/mL) and dopaminergic agonistic effect at higher concentrations (>60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5-5 mg/mL) and rutin hydrate (0.5-5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.
Collapse
|
12
|
A comparison of histamine effects on the sympathetic neurotransmission of testicular capsule and rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:719-31. [DOI: 10.1007/s00210-014-0979-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/30/2014] [Indexed: 11/26/2022]
|
13
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
14
|
Vyas BA, Desai NY, Patel PK, Joshi SV, Shah DR. Effect of Boerhaavia diffusa in experimental prostatic hyperplasia in rats. Indian J Pharmacol 2014; 45:264-9. [PMID: 23833370 PMCID: PMC3696298 DOI: 10.4103/0253-7613.111946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/14/2012] [Accepted: 02/26/2013] [Indexed: 11/09/2022] Open
Abstract
Objective: Present investigation was undertaken to study the effectiveness of hydroalcoholic extract of roots of Boerhaavia diffusa in experimental benign prostatic hyperplasia (BPH) in rats using various animal models. Materials and Methods: BPH in rats was induced by subcutaneous injection of testosterone (5 mg/kg) daily for 28 days. Rats were divided in to five groups (six rats each). A negative control group received arachis oil (1 ml/kg s.c.) and four groups were injected testosterone. These four groups were further divided into reference group (finasteride 1 mg/kg), model group (testosterone), study group A (B. diffusa 100 mg/kg), and study group B (B. diffusa 250 mg/kg). On the 29th day, rats were sacrificed and body weight, prostate weight, bladder weight, and serum testosterone level were measured and histological studies were carried out. Further in vitro analysis of B. diffusa extract on contractility of isolated rat vas deferens and prostate gland, produced by exogenously administered agonists were carried out. All results were expressed as mean ± SEM. 0 Data were analyzed by one-way analysis of variance followed by Tukey's test. Results: B. diffusa (100 mg/kg) treatment for 28 days resulted in significant inhibition of prostate growth (P < 0.05). Drug extract did not have significant change on serum testosterone level. Histopathological analysis of prostate gland supported above results. Results of in vitro experiment suggest that extracts had attenuated the contractile responses of isolated vas deferens and prostate gland to exogenously applied agonists. Conclusion: The results suggested that treatment with B. diffusa may improve symptoms of disease and inhibit the increased prostate size. In vitro study implies that herbal extracts has the machinery to produce beneficial effect on prostatic smooth muscle, which would relieve the urinary symptoms of disease. B. diffusa could be a potential source of new treatment of prostatic hyperplasia.
Collapse
Affiliation(s)
- Bhavin A Vyas
- Department of Pharmacology, Maliba Pharmacy College, Bardoli, Mahuva Road, Surat, Gujarat, India
| | | | | | | | | |
Collapse
|
15
|
Musial DC, da Silva Júnior ED, da Silva RM, Miranda-Ferreira R, Lima-Landman MTR, Jurkiewicz A, García AG, Jurkiewicz NH. Increase of angiotensin-converting enzyme activity and peripheral sympathetic dysfunction could contribute to hypertension development in streptozotocin-induced diabetic rats. Diab Vasc Dis Res 2013; 10:498-504. [PMID: 23975725 DOI: 10.1177/1479164113496441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetes augments the risk of hypertension. Although several factors have been implicated in the development of such hypertensive state, we designed this study to investigate blood pressure development, the activity of angiotensin-converting enzyme (ACE) in blood as well as sympathetic neurotransmission in the vas deferens of diabetic rats. We used streptozotocin (STZ)-induced diabetic rats (60 mg/kg) in order to evaluate the systolic blood pressure (SBP), ACE activity and peripheral sympathetic neurotransmission. We observed the following changes of parameters: increase of SBP, decrease of heart rate, augmentation of plasma ACE activity, enhancement of phasic and tonic vas deferens contractions elicited by electrical stimulation at 5 Hz, increase of maximal response to noradrenaline (NA) and decrease of adenosine triphosphate (ATP)-elicited contraction of vasa deferentia. The results reveal that in the development of hypertension in diabetic rats, augmentation of circulating ACE activity precedes the sympathetic dysfunction. Additionally, it seems that the purinergic and noradrenergic neurotransmission is compromised.
Collapse
Affiliation(s)
- Diego C Musial
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Ejaculatory dysfunction may occur after many different disorders ranging from traumatic spinal cord injury to diabetes mellitus. With an understanding of the many facets and nuances of the ejaculatory apparatus, both anatomic and neurologic, the well-versed clinician can proceed along a safe, efficient, and appropriate treatment algorithm to help affected men and their partners achieve parenthood.
Collapse
Affiliation(s)
- Elizabeth Phillips
- Division of Urology, Boston University School of Medicine, Shapiro Center, Suite 3B, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
17
|
Koslov DS, Andersson KE. Physiological and pharmacological aspects of the vas deferens-an update. Front Pharmacol 2013; 4:101. [PMID: 23986701 PMCID: PMC3749770 DOI: 10.3389/fphar.2013.00101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/29/2013] [Indexed: 12/22/2022] Open
Abstract
The vas deferens, a muscular conduit conveying spermatozoa from the epididymis to the urethra, has been used as a model tissue for smooth muscle pharmacological and physiological advancements. Many drugs, notably α-adrenergic antagonists, have effects on contractility and thus normal ejaculation, incurring significant side effects for patients that may interfere with compliance. A more thorough understanding of the innervation and neurotransmitter pharmacology of the vas has indicated that this is a highly complex structure and a model for co-transmission at the synapse. Recent models have shown clinical scenarios that alter the vas contraction. This review covers structure, receptors, neurotransmitters, smooth muscle physiology, and clinical implications of the vas deferens.
Collapse
Affiliation(s)
- David S Koslov
- Wake Forest Baptist Medical Center, Medical Center Boulevard Winston-Salem, NC, USA
| | | |
Collapse
|
18
|
Muzi-Filho H, Bezerra CGP, Souza AM, Boldrini LC, Takiya CM, Oliveira FL, Nesi RT, Valença SS, Einicker-Lamas M, Vieyra A, Lara LS, Cunha VMN. Undernutrition affects cell survival, oxidative stress, Ca2+ handling and signaling pathways in vas deferens, crippling reproductive capacity. PLoS One 2013; 8:e69682. [PMID: 23922775 PMCID: PMC3724910 DOI: 10.1371/journal.pone.0069682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Background The aim of this work was to investigate the mechanisms by which chronic malnutrition (CM) affects vas deferens function, leading to compromised reproductive capacity. Previous studies have shown that maternal malnutrition affects the reproductive tracts of adult male offspring. However, little is known about the effects of CM, a widespread life-long condition that persists from conception throughout growth to adult life. Methodology/Principal Findings Young adult male rats, which were chronically malnourished from weaning, presented decreased total and haploid cells in the vas deferens, hypertrophy of the muscle layer in the epididymal portion of the vas deferens and intense atrophy of the muscular coat in its prostatic portion. At a molecular level, the vas deferens tissue of CM rats exhibited a huge rise in lipid peroxidation and protein carbonylation, evidence of an accentuated increase in local reactive oxygen species levels. The kinetics of plasma membrane Ca2+-ATPase activity and its kinase-mediated phosphorylation by PKA and PKC in the vas deferens revealed malnutrition-induced modifications in velocity, Ca2+ affinity and regulation of Ca2+ handling proteins. The severely crippled content of the 12-kDa FK506 binding protein, which controls passive Ca2+ release from the sarco(endo) plasmic reticulum, revealed another target of malnutrition related to intracellular Ca2+ handling, with a potential effect on forward propulsion of sperm cells. As a possible compensatory response, malnutrition led to enhanced sarco(endo) plasmic reticulum Ca2+-ATPase activity, possibly caused by stimulatory PKA-mediated phosphorylation. Conclusions/Significance The functional correlates of these cellular and molecular hallmarks of chronic malnutrition on the vas deferens were an accentuated reduction in fertility and fecundity.
Collapse
Affiliation(s)
- Humberto Muzi-Filho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Camila G. P. Bezerra
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro M. Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo C. Boldrini
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe L. Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata T. Nesi
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel S. Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Lucienne S. Lara
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- * E-mail:
| | - Valeria M. N. Cunha
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Rodriguez J, Muzi-Filho H, Valverde R, Quintas L, Noel F, Einicker-Lamas M, Cunha V. Rat vas deferens SERCA2 is modulated by Ca2+/calmodulin protein kinase II-mediated phosphorylation. Braz J Med Biol Res 2013; 46:227-34. [PMID: 23558856 PMCID: PMC3854380 DOI: 10.1590/1414-431x20122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022] Open
Abstract
Ca2+ pumps are important players in smooth muscle contraction.
Nevertheless, little information is available about these pumps in the vas
deferens. We have determined which subtype of sarco(endo)plasmic reticulum
Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens
(RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The
thapsigargin-sensitive Ca2+-ATPase from a membrane fraction
containing the highest SERCA levels in the RVD homogenate has the same molecular
mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high
affinity for Ca2+ (Ca0.5 = 780 nM) and a low sensitivity
to vanadate (IC50 = 41 µM). These facts indicate that SERCA2 is
present in the RVD. Immunoblotting for CaM and
Ca2+/calmodulin-dependent protein kinase II (CaMKII) showed the
expression of these two regulatory proteins. Ca2+ and CaM increased
serine-phosphorylated residues of the 115-kDa protein, indicating the
involvement of CaMKII in the regulatory phosphorylation of SERCA2.
Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive
Ca2+ accumulation in the lumen of vesicles derived from these
membranes. These data establish that SERCA2 in the RVD is modulated by
Ca2+ and CaM, possibly via CaMKII, in a process that results in
stimulation of Ca2+ pumping activity.
Collapse
Affiliation(s)
| | | | | | | | - F. Noel
- Universidade Federal do Rio de Janeiro, Brasil
| | - M. Einicker-Lamas
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Brasil
| | | |
Collapse
|
20
|
Köse MG, Erdem ȘR, Peșkircioğlu ÇL, Çaylak B. Effects of Angiogenesis Inhibition by Spironolactone on Isolated Vas Deferens Contractility in an Experimental Varicocele Model in Rats. Urology 2012; 80:816-21. [DOI: 10.1016/j.urology.2012.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 10/27/2022]
|
21
|
Karacay S, Sözübir S, Bilge SS, Aksoz E, Ekingen G, Guvenç BH. Subsequent alterations in the contractile property of the vas deferens according to duration of spermatic cord torsion. Fertil Steril 2011; 96:1234-8. [PMID: 21890132 DOI: 10.1016/j.fertnstert.2011.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To determine whether twisting of the ipsilateral vas deferens results in alteration of its contractility. DESIGN Experimental study. SETTING University animal lab. ANIMAL(S) 24 male Wistar rats. INTERVENTION(S) All the rats in the experimental groups underwent spermatic cord torsion. Durations of torsion were 45 minutes, 3 hours, and 24 hours in groups 2, 3, and 4, respectively. In groups 2 and 3, subgroups b were created to evaluate late effects using in vitro pharmacological techniques. MAIN OUTCOME MEASURE(S) The contractility of the vas deferens was evaluated in groups 1, 2a, 3a, and 4 right after and in groups 2b and 3b 48 hours after the initial operation. RESULT(S) Group 4 and subgroups 2b and 3a had significantly diminished responses compared with the control group, whereas in subgroups 2a and 3b, the responses to noradrenaline and to single-pulse field stimulation were not significantly different. CONCLUSION(S) The impairment of contractility with the twisting of the vas deferens might be another factor responsible for subfertility, particularly that related to sperm transport. The unfavorable late change in short duration of torsion may be the result of either ischemia and reperfusion injury or sympathetic overactivation in the acute period of torsion.
Collapse
Affiliation(s)
- Safak Karacay
- Yeditepe University Faculty of Medicine, Department of Pediatric Surgery and Pediatric Urology, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
22
|
Heydari F, Mehr SE, Samini M. alpha(1)- and alpha(2)-Adrenoceptor hyporesponsiveness in isolated bisected vas deferens of bile duct-ligated rats. AUTONOMIC & AUTACOID PHARMACOLOGY 2010; 30:193-196. [PMID: 20345427 DOI: 10.1111/j.1474-8673.2010.00455.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
It has been suggested that cholestasis accompanied with changes in autonomic balance and hyporesponsiveness in muscarinic and adrenergic receptors of some organs, e.g. cardiovascular system. Increased plasma levels of epinephrine and norepinephrine has been shown during cholestasis suggesting augmented activity of sympathetic nervous system. In this study we evaluate both alpha(1) and alpha(2) responsiveness in isolated rat vas deferens, as a tissue with rich adrenergic innervations. Epididymal and prostatic halves of vas deferens responsiveness have been studied to phenylephrine and clonidine respectively in three groups of un-operated, sham-operated (sham), and bile duct-ligated (BDL) rats. Our results indicate that in vas deferens of BDL animals, the concentration-response curve of both phenylephrine and clonidine shifted to rightward compared to control group, while the position of concentration-response curve of sham group did not change significantly (P > 0.05). EC(50) of phenylephrine and IC(50) of clonidine were increased showing a decreased responsiveness of tissue to phenylephrine (P < 0.05) and clonidine (P < 0.001) in BDL rats. In this study, both subtype of alpha-adrenoceptors (alpha(1) and alpha(2)) has been studied in cholestatic rat vas deference. Our results showed that cholestasis induce hyporesponsiveness to phenylephrine and clonidine. These results are consistent with previous reports, suggesting the hyporesponsiveness of alpha(1)-adrenoceptors in pulmonary artery and papillary muscle and mesenteric beds. Our conclusion is that the cholestasis induces hyporesponsiveness to phenylephrine and clonidine in epididymal (alpha(1)-adrenoceptors) and prostatic (alpha(2)-adrenoceptors) halves of rat vas deferens respectively. Although the logical explanation to this hyporesponsiveness is the down regulation but it has been suggested that it is not because of down regulation.
Collapse
Affiliation(s)
- F Heydari
- Department of Pharmacology, School of Pharmacy Islamic Azad University, Yakhchal, Shariati, Tehran, Iran
| | | | | |
Collapse
|
23
|
He G, Ma X, Lu J, Meng J, Chen Y, Jia M, Luo X. Alpha2 adrenoceptors modulate histamine release from sympathetic nerves in the guinea pig vas deferens. Neuropharmacology 2009; 57:506-10. [PMID: 19638279 DOI: 10.1016/j.neuropharm.2009.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/28/2022]
|
24
|
Allosteric interaction of the anticholinergic drug [N-(4-phenyl)-phenacyl-l-hyoscyamine] (Phenthonium) with nicotinic receptors of post-ganglionic sympathetic neurons of the rat vas deferens. Eur J Pharmacol 2009; 616:229-35. [PMID: 19540221 DOI: 10.1016/j.ejphar.2009.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/27/2009] [Accepted: 06/08/2009] [Indexed: 11/22/2022]
Abstract
Phenthonium (Phen), a quaternary analog of hyoscyamine, is a blocker of muscarinic activity and an allosteric blocker of alpha(1)2betagammaepsilon nicotinic receptors. Specifically, Phenthonium increases the spontaneous release of acetylcholine at the motor endplate without depolarizing the muscle or inhibiting cholinesterase activity. This paper compares Phenthonium's effects on sympathetic transmission and on ganglionic nicotinic receptor activation. Neurotransmitter release and twitch of the rat vas deferens were induced either by electrical stimulation or by 1,1-dimethyl-4-phenylpiperazine (DMPP) activation of nicotinic receptors. Contractions independent of transmitter release were induced by noradrenaline and adenosine 5'-triphosphate (ATP). Phenthonium inhibited transmitter release and depressed twitch without changing the responsiveness to noradrenaline or ATP. Twitch depression did not occur after K(+)-channel blockade with 4-aminopyridine (4-AP) or charybdotoxin. DMPP had a similar effect, but high concentrations induced contraction of non-stimulated organs. Incubation of Phenthonium inhibited further DMPP twitch depression and non-competitively depressed the contractile responses elicited by DMPP. Furthermore, mecamylamine, but neither methyllycaconitine nor atropine, blocked the contraction elicited by DMPP. Phenthonium and DMPP are K(+)-channel openers that primarily inhibit sympathetic transmission. Contraction induced by DMPP was probably mediated by neuronal nicotinic receptor other than the alpha7 subtype. The blockade of DMPP contractile response was unrelated to Phenthonium's antimuscarinic or K(+)-channel opening activities. Since Phenthonium's quaternary chemical structure limits its membrane diffusion, the non-competitive inhibition of DMPP excitatory responses should be linked to allosteric interaction with neuronal nicotinic receptors that putatively qualify Phenthonium as a novel modulator of cholinergic synapses.
Collapse
|
25
|
Quintas LEM, Noël F. Mechanisms of adaptive supersensitivity in vas deferens. Auton Neurosci 2009; 146:38-46. [PMID: 19188094 DOI: 10.1016/j.autneu.2009.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/27/2008] [Accepted: 01/06/2009] [Indexed: 10/24/2022]
Abstract
Adaptive supersensitivity is a phenomenon characteristic of excitable tissues and discloses as a compensatory adjustment of tissue's response to unrelated stimulatory endogenous and exogenous substances after chronic interruption of excitatory neurotransmission. The mechanisms underlying such higher postjunctional sensitivity have been postulated for a variety of cell types. In smooth muscles, especially the vas deferens with its rich sympathetic innervation, the mechanisms responsible for supersensitivity are partly understood and appear to be different from one species to another. The present review provides a general understanding of adaptive supersensitivity and emphasizes early and recent information about the putative mechanisms involved in this phenomenon in rodent vas deferens.
Collapse
Affiliation(s)
- Luis Eduardo M Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, ICB, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, J-17, Rio de Janeiro 21941-902, Brazil.
| | | |
Collapse
|
26
|
Scaramello CB, Muzi-Filho H, Zapata-Sudo G, Sudo RT, Cunha VDM. FKBP12 Depletion Leads to Loss of Sarcoplasmic Reticulum Ca2+ Stores in Rat Vas Deferens. J Pharmacol Sci 2009; 109:185-92. [DOI: 10.1254/jphs.08064fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Ruan YC, Wang Z, Du JY, Zuo WL, Guo JH, Zhang J, Wu ZL, Wong HY, Chung YW, Chan HC, Zhou WL. Regulation of smooth muscle contractility by the epithelium in rat vas deferens: role of ATP-induced release of PGE2. J Physiol 2008; 586:4843-57. [PMID: 18755753 DOI: 10.1113/jphysiol.2008.154096] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies suggest that the epithelium might modulate the contractility of smooth muscle. However, the mechanisms underlying this regulation are unknown. The present study investigated the regulation of smooth muscle contraction by the epithelium in rat vas deferens and the possible factor(s) involved. Exogenously applied ATP inhibited electrical field stimulation (EFS)-evoked smooth muscle contraction in an epithelium-dependent manner. As the effects of ATP on smooth muscle contractility were abrogated by inhibitors of prostaglandin synthesis, but not by those of nitric oxide synthesis, prostaglandins might mediate the effects of ATP. Consistent with this idea, PGE(2) inhibited EFS-evoked smooth muscle contraction independent of the epithelium, while ATP and UTP induced the release of PGE(2) from cultured rat vas deferens epithelial cells, but not smooth muscle cells. The ATP-induced PGE(2) release from vas deferens epithelial cells was abolished by U73122, an inhibitor of phospholipase C (PLC) and BAPTA AM, a Ca(2+) chelator. ATP also transiently increased [Ca(2+)](i) in vas deferens epithelial cells. This effect of ATP on [Ca(2+)](i) was independent of extracellular Ca(2+), but abolished by the P2 receptor antagonist RB2 and U73122. In membrane potential measurements using a voltage-sensitive dye, PGE(2), but not ATP, hyperpolarized vas deferens smooth muscle cells and this effect of PGE(2) was blocked by MDL12330A, an adenylate cyclase inhibitor, and the chromanol 293B, a blocker of cAMP-dependent K(+) channels. Taken together, our results suggest that ATP inhibition of vas deferens smooth muscle contraction is epithelium dependent. The data also suggest that ATP activates P2Y receptor-coupled Ca(2+) mobilization leading to the release of PGE(2) from epithelial cells, which in turn activates cAMP-dependent K(+) channels in smooth muscle cells leading to the hyperpolarization of membrane voltage and the inhibition of vas deferens contraction. Thus, the present findings suggest a novel regulatory mechanism by which the epithelium regulates the contractility of smooth muscle.
Collapse
Affiliation(s)
- Ye Chun Ruan
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
He G, Hu J, Ma X, Li M, Wang H, Meng J, Jia M, Luo X. Sympathetic histamine exerts different pre- and post-synaptic functions according to the frequencies of nerve stimulation in guinea pig vas deferens. J Neurochem 2008; 106:1710-9. [DOI: 10.1111/j.1471-4159.2008.05532.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Gilmore AJ, Billing RL, Einstein R. The effects on heart rate and temperature of mice and vas deferens responses to noradrenaline when their cage mates are subjected to daily restraint stress. Lab Anim 2008; 42:140-8. [PMID: 18435872 DOI: 10.1258/la.2007.06030e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Performing stressful procedures in view of cage mates may cause stress in observer animals. However, it is not known if stressful procedures performed in close proximity to, but not in view of cage mates are stressful for the (observer) cage mates. Radiotelemetry and postmortem in vitro studies of the vas deferens were used to determine the effects of stress on observers. Heart rate (HR) and core body temperature (cBT) were recorded for 1 h following weighing of a cage mate or 1 h during restraint of a cage mate and the hour following return of the restrained mouse to the cage. This procedure was repeated daily for 15 days. HR and cBT were increased in observers during both restraint and weighing of cage mates. Analysis of the area under the curve showed that HR and cBT in observers were significantly higher during restraint of a cage mate than after weighing of a cage mate. When mice were returned to the cage after weighing or restraint, HR and cBT were significantly higher in the cage mates of restrained animals. Comparison between days 1, 3, 7 and 14 found that, as the experiment progressed, HR and cBT were significantly reduced in the observer mice during the hour following return of the cage mates after restraint. Results from previous studies have shown that chronic stress causes the vas deferens to become hypersensitive to exogenous application of noradrenaline (NAd). In this study, vas deferens from observers of restraint had a significantly increased response to NAd. These results indicate that stressful procedures should be conducted in isolation from other mice.
Collapse
Affiliation(s)
- A J Gilmore
- Department of Pharmacology, University of Sydney, Australia
| | | | | |
Collapse
|
30
|
Winter KL, Isbister GK, Schneider JJ, Konstantakopoulos N, Seymour JE, Hodgson WC. An examination of the cardiovascular effects of an ‘Irukandji’ jellyfish, Alatina nr mordens. Toxicol Lett 2008; 179:118-23. [DOI: 10.1016/j.toxlet.2008.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
31
|
Sanbe A, Tanaka Y, Fujiwara Y, Tsumura H, Yamauchi J, Cotecchia S, Koike K, Tsujimoto G, Tanoue A. Alpha1-adrenoceptors are required for normal male sexual function. Br J Pharmacol 2007; 152:332-40. [PMID: 17603545 PMCID: PMC2042949 DOI: 10.1038/sj.bjp.0707366] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Alpha(1)-adrenoceptor antagonists are extensively used in the treatment of hypertension and lower urinary tract symptoms associated with benign prostatic hyperplasia. Among the side effects, ejaculatory dysfunction occurs more frequently with drugs that are relatively selective for alpha(1A)-adrenoceptors compared with other drugs of this class. This suggests that alpha(1A)-adrenoceptors may contribute to ejaculation. However, this has not been studied at the molecular level. EXPERIMENTAL APPROACH The physiological contribution of each alpha(1)-adrenoceptor subtype was characterized using alpha(1)-adrenoceptor subtype-selective knockout (KO) mice (alpha(1A)-, alpha(1B)- and alpha(1D)-AR KO mice) since the subtype-specific drugs available are only moderately selective. We analysed the role of alpha(1)-adrenoceptors in the blood pressure and vascular response as well as ejaculation by determining these variables in alpha(1)-adrenoceptor subtype-selective KO mice and in mice with all their alpha(1)-adrenoceptor subtypes deleted (alpha(1)-AR triple-KO mice). KEY RESULTS The pregnancy rate was reduced by 50% in alpha(1A)-adrenoceptor KO mice, and this reduction was dramatically enhanced in alpha(1)-adrenoceptor triple-KO mice. Contractile tension of the vas deferens in response to noradrenaline was markedly decreased in alpha(1A)-adrenoceptor KO mice, and this contraction was completely abolished in alpha(1)-adrenoceptor triple-KO mice. This attenuation of contractility was also observed in the electrically stimulated vas deferens. CONCLUSIONS AND IMPLICATIONS These results demonstrate that alpha(1)-adrenoceptors, particularly alpha(1A)-adrenoceptors, are required for normal contractility of the vas deferens and consequent sperm ejaculation as well as having a function in fertility.
Collapse
Affiliation(s)
- A Sanbe
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schaefer U, Machida T, Vorlova S, Strickland S, Levi R. The plasminogen activator system modulates sympathetic nerve function. ACTA ACUST UNITED AC 2006; 203:2191-200. [PMID: 16940168 PMCID: PMC2118409 DOI: 10.1084/jem.20060077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sympathetic neurons synthesize and release tissue plasminogen activator (t-PA). We investigated whether t-PA modulates sympathetic activity. t-PA inhibition markedly reduced contraction of the guinea pig vas deferens to electrical field stimulation (EFS) and norepinephrine (NE) exocytosis from cardiac synaptosomes. Recombinant t-PA (rt-PA) induced exocytotic and carrier-mediated NE release from cardiac synaptosomes and cultured neuroblastoma cells; this was a plasmin-independent effect but was potentiated by a fibrinogen cleavage product. Notably, hearts from t-PA–null mice released much less NE upon EFS than their wild-type (WT) controls (i.e., a 76.5% decrease; P < 0.01), whereas hearts from plasminogen activator inhibitor-1 (PAI-1)–null mice released much more NE (i.e., a 275% increase; P < 0.05). Furthermore, vasa deferentia from t-PA–null mice were hyporesponsive to EFS (P < 0.0001) but were normalized by the addition of rt-PA. In contrast, vasa from PAI-1–null mice were much more responsive (P < 0.05). Coronary NE overflow from hearts subjected to ischemia/reperfusion was much smaller in t-PA–null than in WT control mice (P < 0.01). Furthermore, reperfusion arrhythmias were significantly reduced (P < 0.05) in t-PA–null hearts. Thus, t-PA enhances NE release from sympathetic nerves and contributes to cardiac arrhythmias in ischemia/reperfusion. Because the risk of arrhythmias and sudden cardiac death is increased in hyperadrenergic conditions, targeting the NE-releasing effect of t-PA may have valuable therapeutic potential.
Collapse
Affiliation(s)
- Ulrich Schaefer
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
33
|
Jurkiewicz NH, Caricati-Neto A, Verde LF, Avellar MCW, Reuter HR, Jurkiewicz A. Sympathetic neurotransmission in the rat testicular capsule: functional characterization and identification of mRNA encoding alpha1-adrenoceptor subtypes. Eur J Pharmacol 2006; 543:141-50. [PMID: 16822496 DOI: 10.1016/j.ejphar.2006.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/11/2006] [Accepted: 05/19/2006] [Indexed: 12/01/2022]
Abstract
The rat testicular capsule is a thin tissue surrounding the testis, whose precise function is still unknown. We have studied the contractile effects of electrical field stimulation, noradrenaline, and the blockade by antagonists of adrenergic receptors, in order to characterize sympathetic neurotransmission, and adrenoceptor subtypes. In addition, reverse transcription polymerase chain reaction (RT-PCR) assays were made to check for the expression of the three known subtypes of alpha(1)-adrenoceptors. The effects of electrical field stimulation (2 to 20 Hz, 1 ms, 60 V) were almost totally abolished by depletion of neuronal noradrenaline storage with reserpine (10 mg/Kg), but not by the purinergic receptor antagonist suramin (10(-5) M), indicating that noradrenaline, but not ATP, was involved in contractions. The selective alpha(1)-adrenoceptor antagonist prazosin (10(-7) M) was more effective than the selective alpha(2)-adrenoceptor antagonist idazoxan (10(-7) M) to inhibit contractions induced by electrical field stimulation, pointing out a major involvement of alpha(1)-adrenoceptor. When noradrenaline was used instead of electrical field stimulation, it showed a high potency (pD(2)=7.9). Noradrenaline-induced contractions were competitively blocked by the selective alpha(1A)-adrenoceptor antagonists WB 4101 (pA(2)=8.88), phentolamine (pA(2)=8.39) and by the alpha(1B)-adrenoceptor antagonist spiperone (pA(2)=8.57), indicating the presence of functional alpha(1A)- and alpha(1B)-adrenoceptors. In addition, contractions were not blocked by the selective alpha(1D)-adrenoceptor antagonist BMY 7378 (up to 10(-6) M), while selective alpha(2)-adrenoceptor antagonists showed low pA(2) values (yohimbine, 7.25 and idazoxan, 7.49), suggesting a minor role, if any, for alpha(1D)- and alpha(2)-adrenoceptors. To check the proportionate role of alpha(1A)- and alpha(1B)-adrenoceptors, we blocked alpha(1B)-adrenoceptors with chloroethylclonidine (CEC, 30 microM, 45 min), that reduced the maximal effect of noradrenaline by about 60%. The remnant CEC-insensitive noradrenaline contraction was assumed to be unrelated to alpha(1B)-adrenoceptor, and was inhibited by 5-methyl-urapidil (pA(2)=8.94) and by the Ca(2+) channel blocker nifedipine (3 microM), confirming the involvement of alpha(1A)-adrenoceptors. The presence of mRNA encoding alpha(1A)- and alpha(1B)-adrenoceptor was also shown on RT-PCR assays. Unexpectedly, alpha(1D)-transcripts were also detected in these assays. Taken together, our results show that ATP co-transmission could not be detected, and that neurotransmission involves the interaction of noradrenaline with both alpha(1A)- and alpha(1B)-, but not with alpha(1D)- or alpha(2)-adrenoceptor. The fact that the functional alpha(1D)-adrenoceptor could not be detected in spite of the presence of the corresponding mRNA, remains to be investigated.
Collapse
MESH Headings
- Acetyl-CoA C-Acyltransferase/metabolism
- Adenosine Triphosphate/metabolism
- Adrenergic Uptake Inhibitors/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Clonidine/analogs & derivatives
- Clonidine/pharmacology
- Dioxanes/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Male
- Muscle Contraction/drug effects
- Nifedipine/pharmacology
- Norepinephrine/metabolism
- Norepinephrine/pharmacology
- Prazosin/pharmacology
- Purinergic P2 Receptor Antagonists
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Purinergic P2/metabolism
- Reserpine/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Spiperone/pharmacology
- Suramin/pharmacology
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Testis/drug effects
- Testis/innervation
- Testis/metabolism
Collapse
|
34
|
Yono M, Latifpour J, Takahashi W, Pouresmail M, Afiatpour P, Weiss RM. Age-related changes in the properties of the endothelin receptor system at protein and mRNA levels in the rat vas deferens. J Recept Signal Transduct Res 2005; 24:53-66. [PMID: 15344879 DOI: 10.1081/rrs-120034106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As age-related changes occur in the properties of the endothelin (ET) receptor system in several mammalian tissues, and as there are significant amounts of functional ET receptors in the vas deferens, we investigated the age-related changes in the ET receptor system at the protein and mRNA levels in the rat vas deferens. The ET system was investigated in the vasa deferentia of 3 weeks, 3 months and 22 months old rats. ET receptors were characterized and quantified at the protein level by radioligand receptor binding, and gene transcript levels of ET-1, ET-3, ET converting enzyme-1 (ECE-1), and ET(A) and ET(B) receptor subtypes were quantified by real-time reverse transcription polymerase chain reaction (RT-PCR). The results of radioligand receptor binding assays demonstrate that there is a higher density of total ET receptors in the vas deferens of 3 weeks old rats than in 3 months and 22 months old rats, and that the predominant ET receptor is of the ET(A) subtype in all three ages. Real-time RT-PCR data show that the predominant mRNA expression of ETs and their receptors in all age groups studied are ET-1 and the ET(A) receptor subtype, respectively. Furthermore, ET-1, ET-3, ECE-1, and ET(A) and ET(B) receptor subtype mRNAs are expressed at higher levels in the 3 weeks old rats as compared with the other two age groups. These results demonstrate the presence of age-related changes in the properties of the ET receptor system at both protein and mRNA levels in the rat vas deferens.
Collapse
Affiliation(s)
- Makoto Yono
- Section of Urology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Flavonoids are phenolic compounds that are widely distributed in higher plants and therefore are ingested by humans and animals with their regular foods, but also have various pharmacological properties. In the present study we have investigated the effect of galangin, a member of the flavonol class, on the contractile response elicited by electrical field stimulation (EFS) in the rat isolated vas deferens. Galangin (10(-8)-3 x 10(-4) M) produced a concentration- dependent inhibition of the EFS-evoked contractile response, with only a minimal inhibitory effect on phenylephrine-induced contractions. The inhibitory effect of galangin was unaffected by atropine (10(-6) M) plus hexamethonium (10(-4) M), a combination of the NK(1) receptor antagonist SR 140333 (10(-7) M), the NK(2) receptor antagonist SR 48968 (10(-6) M) and the NK(3) receptor antagonist SR 142801 (10(-7) M), L-NAME (3 x 10(-4) M), naloxone (10(-6) M) or yohimbine (10(-7) M). However, the vanilloid receptor antagonist capsazepine (10(-5) M) significantly reduced the inhibitory effect of galangin. It is concluded that the galangin inhibits excitatory transmission of the rat vas deferens with a mechanism involving, at least in part, vanilloid receptors.
Collapse
Affiliation(s)
- Raffaele Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy.
| | | |
Collapse
|
36
|
Westfall DP, Todorov LD, Mihaylova-Todorova ST. ATP as a cotransmitter in sympathetic nerves and its inactivation by releasable enzymes. J Pharmacol Exp Ther 2002; 303:439-44. [PMID: 12388622 DOI: 10.1124/jpet.102.035113] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP and norepinephrine (NE) are cotransmitters released from many postganglionic sympathetic nerves. In this article, we review the evidence for ATP and NE cotransmission in the rodent vas deferens with special attention to the mechanisms involved in removing the cotransmitters from the neuroeffector junction. Although the clearance of NE is well understood (e.g., the primary mechanism being reuptake into the nerves), the clearance of ATP is just beginning to be explained. The general belief has been that ATP is metabolized by cell-fixed ecto-nucleotidases. It now seems, however, that when ATP is released from nerves as a transmitter there is a concomitant release of nucleotidases that rapidly degrade ATP sequentially to ADP, AMP, and adenosine, thereby terminating the action of ATP. In the guinea pig vas deferens, there appear to be at least two enzymes, one that converts ATP to ADP and ADP to AMP (an ATPDase) and a second enzyme that converts AMP to adenosine (an AMPase). An important feature of this process is that the transmitter-metabolizing nucleotidases are released into the synaptic space as opposed to being fixed to cell membranes. A preliminary characterization of these enzymes suggests that the releasable ATPDase exhibits some similarities to known ectonucleoside triphosphate/diphosphohydrolases, whereas the releasable AMPase exhibits some similarities to ecto-5'-nucleotidases.
Collapse
Affiliation(s)
- David P Westfall
- Department of Pharmacology, University of Nevada School of Medicine, Howard Medical Sciences Building MS 318, Reno, NV 89557-0046, USA.
| | | | | |
Collapse
|