1
|
Xia K, Shang J, Sun J, Zhu W, Fu P. Expanding the Chemical Diversity of Secondary Metabolites Produced by Two Marine-Derived Enterocin- and Wailupemycin-Producing Streptomyces Strains. ACS OMEGA 2023; 8:28886-28897. [PMID: 37576654 PMCID: PMC10413459 DOI: 10.1021/acsomega.3c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
To expand the chemical diversity of secondary metabolites produced by two marine-derived enterocin- and wailupemycin-producing Streptomyces strains, OUCMDZ-3434 and OUCMDZ-2599, precursor feeding and solid fermentation strategies were used. Two new compounds, wailupemycins Q (1) and R (2), were isolated from the extracts of liquid and solid fermentation of OUCMDZ-3434. Furthermore, during the fermentation of OUCMDZ-3434, p-fluorobenzoic acid was added as the key biosynthetic precursor, which resulted in the isolation of eight new fluorinated enterocin and wailupemycin derivatives (3-10) and 10 previously reported analogues (11-20). From the solid fermentation extract of OUCMDZ-2599, a new sulfur-containing compound thiotetromycin B (21) and its known analogue thiotetromycin (22) were identified. Moreover, the solid fermentation strategy effectively activated the biosynthesis of siderophores (23-25) of strain OUCMDZ-2599. Compound 3 showed moderate antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus subsp. aureus with MIC values of 4 μg/mL. Compounds 23-25 were significantly capable of binding Fe(III).
Collapse
Affiliation(s)
- Kunyu Xia
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Jiaxu Shang
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Jiwen Sun
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, People’s Republic of China
| | - Peng Fu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, People’s Republic of China
| |
Collapse
|
2
|
WANG M, ZHANG W, WANG N. Covalent flavoproteins: types, occurrence, biogenesis and catalytic mechanisms. Chin J Nat Med 2022; 20:749-760. [DOI: 10.1016/s1875-5364(22)60194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 11/03/2022]
|
3
|
Koser L, Grassin C, Merten C, Bach T. Absolute Configuration of the Polyketide Natural Product (-)-Enterocin. Org Lett 2022; 24:6903-6907. [PMID: 36130083 DOI: 10.1021/acs.orglett.2c02525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The absolute configuration of the polyketide natural product (-)-enterocin was established by two independent approaches. In the first approach, synthetic enterocin with a defined configuration was compared to the natural product. While identical in all scalar properties, the compound displayed an opposite specific rotation and a different chiral HPLC retention time when compared with (-)-enterocin. In a second approach, the vibrational circular dichroism (VCD) of the natural product was measured and shown to be opposite to the calculated VCD of its enantiomer.
Collapse
Affiliation(s)
- Lilla Koser
- TUM School of Natural Sciences, Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Corentin Grassin
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Thorsten Bach
- TUM School of Natural Sciences, Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
4
|
Bouthillette LM, Aniebok V, Colosimo DA, Brumley D, MacMillan JB. Nonenzymatic Reactions in Natural Product Formation. Chem Rev 2022; 122:14815-14841. [PMID: 36006409 DOI: 10.1021/acs.chemrev.2c00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosynthetic mechanisms of natural products primarily depend on systems of protein catalysts. However, within the field of biosynthesis, there are cases in which the inherent chemical reactivity of metabolic intermediates and substrates evades the involvement of enzymes. These reactions are difficult to characterize based on their reactivity and occlusion within the milieu of the cellular environment. As we continue to build a strong foundation for how microbes and higher organisms produce natural products, therein lies a need for understanding how protein independent or nonenzymatic biosynthetic steps can occur. We have classified such reactions into four categories: intramolecular, multicomponent, tailoring, and light-induced reactions. Intramolecular reactions is one of the most well studied in the context of biomimetic synthesis, consisting of cyclizations and cycloadditions due to the innate reactivity of the intermediates. There are two subclasses that make up multicomponent reactions, one being homologous multicomponent reactions which results in dimeric and pseudodimeric natural products, and the other being heterologous multicomponent reactions, where two or more precursors from independent biosynthetic pathways undergo a variety of reactions to produce the mature natural product. The third type of reaction discussed are tailoring reactions, where postmodifications occur on the natural products after the biosynthetic machinery is completed. The last category consists of light-induced reactions involving ecologically relevant UV light rather than high intensity UV irradiation that is traditionally used in synthetic chemistry. This review will cover recent nonenzymatic biosynthetic mechanisms and include sources for those reviewed previously.
Collapse
Affiliation(s)
- Leah M Bouthillette
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Victor Aniebok
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Dominic A Colosimo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - David Brumley
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - John B MacMillan
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| |
Collapse
|
5
|
Discovery of prescopranone, a key intermediate in scopranone biosynthesis. J Antibiot (Tokyo) 2022; 75:305-311. [PMID: 35444295 DOI: 10.1038/s41429-022-00521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
A key intermediate in scopranone biosynthesis, prescopranone, accumulated in the mycelium of Streptomyces avermitilis SUKA carrying the biosynthetic gene cluster for scopranone lacking the sprT encoding the monooxygenase. The structure of prescopranone was elucidated by NMR and other spectral data. Prescopranone consists of a 2-pyranone ring with two atypical scoop-like moieties (1-ethyl-1-propenyl and 2-ethylbutyl groups), which was deduced as a product of the modular polyketide syntheses encoded by sprA, sprB, and sprC. Prescopranone inhibited bone morphogenetic protein (BMP)-induced alkaline phosphatase activity in a BMP receptor mutant cell line.
Collapse
|
6
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
7
|
Martín JF, Liras P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics (Basel) 2022; 11:antibiotics11010082. [PMID: 35052959 PMCID: PMC8773403 DOI: 10.3390/antibiotics11010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Naringenin and its glycosylated derivative naringin are flavonoids that are synthesized by the phenylpropanoid pathway in plants. We found that naringenin is also formed by the actinobacterium Streptomyces clavuligerus, a well-known microorganism used to industrially produce clavulanic acid. The production of naringenin in S. clavuligerus involves a chalcone synthase that uses p-coumaric as a starter unit and a P450 monoxygenase, encoded by two adjacent genes (ncs-ncyP). The p-coumaric acid starter unit is formed by a tyrosine ammonia lyase encoded by an unlinked, tal, gene. Deletion and complementation studies demonstrate that these three genes are required for biosynthesis of naringenin in S. clavuligerus. Other actinobacteria chalcone synthases use caffeic acid, ferulic acid, sinapic acid or benzoic acid as starter units in the formation of different antibiotics and antitumor agents. The biosynthesis of naringenin is restricted to a few Streptomycess species and the encoding gene cluster is present also in some Saccharotrix and Kitasatospora species. Phylogenetic comparison of S. clavuligerus naringenin chalcone synthase with homologous proteins of other actinobacteria reveal that this protein is closely related to chalcone synthases that use malonyl-CoA as a starter unit for the formation of red-brown pigment. The function of the core enzymes in the pathway, such as the chalcone synthase and the tyrosine ammonia lyase, is conserved in plants and actinobacteria. However, S. clavuligerus use a P450 monooxygenase proposed to complete the cyclization step of the naringenin chalcone, whereas this reaction in plants is performed by a chalcone isomerase. Comparison of the plant and S. clavuligerus chalcone synthases indicates that they have not been transmitted between these organisms by a recent horizontal gene transfer phenomenon. We provide a comprehensive view of the molecular genetics and biochemistry of chalcone synthases and their impact on the development of antibacterial and antitumor compounds. These advances allow new bioactive compounds to be obtained using combinatorial strategies. In addition, processes of heterologous expression and bioconversion for the production of naringenin and naringenin-derived compounds in yeasts are described.
Collapse
|
8
|
Li LY, Hu YL, Sun JL, Yu LB, Shi J, Wang ZR, Guo ZK, Zhang B, Guo WJ, Tan RX, Ge HM. Resistance and phylogeny guided discovery reveals structural novelty of tetracycline antibiotics. Chem Sci 2022; 13:12892-12898. [DOI: 10.1039/d2sc03965f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Using resistance gene genome mining strategy and refinement with chain length factor, we obtained 25 distinct tetracycline biosynthetic gene clusters and a novel tetracycline. The biosynthesis of the highly modified tetracycline was investigated.
Collapse
Affiliation(s)
- Ling Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jia Lin Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Long Bo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Bio-technology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Jie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Shen Q, Dai G, Li A, Liu Y, Zhong G, Li X, Ren X, Sui H, Fu J, Jiao N, Zhang Y, Bian X, Zhou H. Genome-Guided Discovery of Highly Oxygenated Aromatic Polyketides, Saccharothrixins D-M, from the Rare Marine Actinomycete Saccharothrix sp. D09. JOURNAL OF NATURAL PRODUCTS 2021; 84:2875-2884. [PMID: 34784196 DOI: 10.1021/acs.jnatprod.1c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Angucyclines and angucyclinones are aromatic polyketides with intriguing structures and therapeutic value. Genome mining of the rare marine actinomycete Saccharothrix sp. D09 led to the identification of a type II polyketide synthase biosynthetic gene cluster, sxn, which encodes several distinct subclasses of oxidoreductases, implying that this strain has the potential to produce novel polycyclic aromatic polyketides with unusual redox modifications. The "one strain-many compounds" (OSMAC) strategy and comparative metabolite analysis facilitated the discovery of 20 angucycline derivatives from the D09 strain, including six new highly oxygenated saccharothrixins D-I (1-6), four new glycosylated saccharothrixins J-M (7-10), and 10 known analogues (11-20). Their structures were elucidated based on detailed HRESIMS, NMR spectroscopic, and X-ray crystallographic analysis. With the help of gene disruption and heterologous expression, we proposed their plausible biosynthetic pathways. In addition, compounds 3, 4, and 8 showed antibacterial activity against Helicobacter pylori with MIC values ranging from 16 to 32 μg/mL. Compound 3 also revealed anti-inflammatory activity by inhibiting the production of NO with an IC50 value of 28 μM.
Collapse
Affiliation(s)
- Qiyao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yang Liu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoju Li
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangmei Ren
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haiyan Sui
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun Fu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nianzhi Jiao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Activation of Secondary Metabolism in Red Soil-Derived Streptomycetes via Co-Culture with Mycolic Acid-Containing Bacteria. Microorganisms 2021; 9:microorganisms9112187. [PMID: 34835313 PMCID: PMC8622677 DOI: 10.3390/microorganisms9112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous research has demonstrated a promising capacity of streptomycetes isolated from red soils to produce novel secondary metabolites, most of which, however, remain to be explored. Co-culturing with mycolic acid-containing bacteria (MACB) has been used successfully in activating the secondary metabolism in Streptomyces. Here, we co-cultured 44 strains of red soil-derived streptomycetes with four MACB of different species in a pairwise manner and analyzed the secondary metabolites. The results revealed that each of the MACB strains induced changes in the metabolite profiles of 35–40 streptomycetes tested, of which 12–14 streptomycetes produced “new” metabolites that were not detected in the pure cultures. Moreover, some of the co-cultures showed additional or enhanced antimicrobial activity compared to the pure cultures, indicating that co-culture may activate the production of bioactive compounds. From the co-culture-induced metabolites, we identified 49 putative new compounds. Taking the co-culture of Streptomyces sp. FXJ1.264 and Mycobacterium sp. HX09-1 as a case, we further explored the underlying mechanism of co-culture activation and found that it most likely relied on direct physical contact between the two living bacteria. Overall, our results verify co-culture with MACB as an effective approach to discover novel natural products from red soil-derived streptomycetes.
Collapse
|
11
|
Koser L, Lechner VM, Bach T. Biomimetic Total Synthesis of Enterocin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lilla Koser
- Technische Universität München School of Natural Sciences Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 85747 Garching Germany
| | - Vivian Miles Lechner
- Technische Universität München School of Natural Sciences Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 85747 Garching Germany
| | - Thorsten Bach
- Technische Universität München School of Natural Sciences Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
12
|
Koser L, Lechner VM, Bach T. Biomimetic Total Synthesis of Enterocin. Angew Chem Int Ed Engl 2021; 60:20269-20273. [PMID: 34278701 PMCID: PMC8457242 DOI: 10.1002/anie.202108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Indexed: 02/06/2023]
Abstract
The first chemical total synthesis of the highly oxygenated polyketide enterocin has been accomplished. The key step of the synthesis was a late‐stage biomimetic reaction cascade involving two intramolecular aldol reactions in which each step proceeded in 52 % yield (averaged) and which established four of the seven stereogenic centers. The pivotal precursor for the cascade reaction was assembled from three readily available building blocks. A chiral dithioacetal with two stereogenic centers originating from L‐arabinose represented the core fragment to both ends of which the other building blocks were attached by aldol reactions. The remaining stereogenic center was installed by Davis oxygenation immediately prior to the key step.
Collapse
Affiliation(s)
- Lilla Koser
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Vivian Miles Lechner
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
13
|
Frensch B, Lechtenberg T, Kather M, Yunt Z, Betschart M, Kammerer B, Lüdeke S, Müller M, Piel J, Teufel R. Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides. Nat Commun 2021; 12:1431. [PMID: 33664266 PMCID: PMC7933358 DOI: 10.1038/s41467-021-21432-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
The structural complexity and bioactivity of natural products often depend on enzymatic redox tailoring steps. This is exemplified by the generation of the bisbenzannulated [5,6]-spiroketal pharmacophore in the bacterial rubromycin family of aromatic polyketides, which exhibit a wide array of bioactivities such as the inhibition of HIV reverse transcriptase or DNA helicase. Here we elucidate the complex flavoenzyme-driven formation of the rubromycin pharmacophore that is markedly distinct from conventional (bio)synthetic strategies for spiroketal formation. Accordingly, a polycyclic aromatic precursor undergoes extensive enzymatic oxidative rearrangement catalyzed by two flavoprotein monooxygenases and a flavoprotein oxidase that ultimately results in a drastic distortion of the carbon skeleton. The one-pot in vitro reconstitution of the key enzymatic steps as well as the comprehensive characterization of reactive intermediates allow to unravel the intricate underlying reactions, during which four carbon-carbon bonds are broken and two CO2 become eliminated. This work provides detailed insight into perplexing redox tailoring enzymology that sets the stage for the (chemo)enzymatic production and bioengineering of bioactive spiroketal-containing polyketides. Rubromycin family of natural products belongs to aromatic polyketides with diverse bioactivities, but details of their biosynthesis are limited. Here, the authors report the complete in vitro reconstitution of enzymatic formation of the spiroketal moiety of rubromycin polyketides, driven by flavin-dependent enzymes, and characterize reaction intermediates.
Collapse
Affiliation(s)
- Britta Frensch
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Thorsten Lechtenberg
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Michel Kather
- BIOSS Center for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Zeynep Yunt
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | - Martin Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Bernd Kammerer
- BIOSS Center for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, 79104, Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Cowled MS, Lacey E, Karuso P, Piggott AM. Rechoreographing Enterocin’s Ballet of Isomers: Structure Revision of Enterocins C, D, and F. Org Lett 2020; 22:9688-9692. [DOI: 10.1021/acs.orglett.0c03745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael S. Cowled
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ernest Lacey
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Peter Karuso
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew M. Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
15
|
Beaupre BA, Moran GR. N5 Is the New C4a: Biochemical Functionalization of Reduced Flavins at the N5 Position. Front Mol Biosci 2020; 7:598912. [PMID: 33195440 PMCID: PMC7662398 DOI: 10.3389/fmolb.2020.598912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
For three decades the C4a-position of reduced flavins was the known site for covalency within flavoenzymes. The reactivity of this position of the reduced isoalloxazine ring with the dioxygen ground-state triplet established the C4a as a site capable of one-electron chemistry. Within the last two decades new types of reduced flavin reactivity have been documented. These studies reveal that the N5 position is also a protean site of reactivity, that is capable of nucleophilic attack to form covalent bonds with substrates. In addition, though the precise mechanism of dioxygen reactivity is yet to be definitively demonstrated, it is clear that the N5 position is directly involved in substrate oxygenation in some enzymes. In this review we document the lineage of discoveries that identified five unique modes of N5 reactivity that collectively illustrate the versatility of this position of the reduced isoalloxazine ring.
Collapse
Affiliation(s)
- Brett A Beaupre
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Youssef DTA, Almagthali H, Shaala LA, Schmidt EW. Secondary Metabolites of the Genus Didemnum: A Comprehensive Review of Chemical Diversity and Pharmacological Properties. Mar Drugs 2020; 18:E307. [PMID: 32545321 PMCID: PMC7344992 DOI: 10.3390/md18060307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Tunicates (ascidians) are common marine invertebrates that are an exceptionally important source of natural products with biomedical and pharmaceutical applications, including compounds that are used clinically in cancers. Among tunicates, the genus Didemnum is important because it includes the most species, and it belongs to the most speciose family (Didemnidae). The genus Didemnum includes the species D. molle, D. chartaceum, D. albopunctatum, and D. obscurum, as well as others, which are well known for their chemically diverse secondary metabolites. To date, investigators have reported secondary metabolites, usually including bioactivity data, for at least 69 members of the genus Didemnum, leading to isolation of 212 compounds. Many of these compounds exhibit valuable biological activities in assays targeting cancers, bacteria, fungi, viruses, protozoans, and the central nervous system. This review highlights compounds isolated from genus Didemnum through December 2019. Chemical diversity, pharmacological activities, geographical locations, and applied chemical methods are described.
Collapse
Affiliation(s)
- Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadeel Almagthali
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacognosy, College of Pharmacy, Taif University, Al-Haweiah 21974, Saudi Arabia
| | - Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Wang J, Zhang R, Chen X, Sun X, Yan Y, Shen X, Yuan Q. Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Microb Cell Fact 2020; 19:110. [PMID: 32448179 PMCID: PMC7247197 DOI: 10.1186/s12934-020-01367-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Aromatic polyketides have attractive biological activities and pharmacological properties. Different from other polyketides, aromatic polyketides are characterized by their polycyclic aromatic structure. The biosynthesis of aromatic polyketides is usually accomplished by the type II polyketide synthases (PKSs), which produce highly diverse polyketide chains by sequential condensation of the starter units with extender units, followed by reduction, cyclization, aromatization and tailoring reactions. Recently, significant progress has been made in characterization and engineering of type II PKSs to produce novel products and improve product titers. In this review, we briefly summarize the architectural organizations and genetic contributions of PKS genes to provide insight into the biosynthetic process. We then review the most recent progress in engineered biosynthesis of aromatic polyketides, with emphasis on generating novel molecular structures. We also discuss the current challenges and future perspectives in the rational engineering of type II PKSs for large scale production of aromatic polyketides.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
18
|
Zheng L, Jiang X, Zhang Q, Zhu Y, Zhang H, Zhang W, Saurav K, Liu J, Zhang C. Discovery and Biosynthesis of Neoenterocins Indicate a Skeleton Rearrangement of Enterocin. Org Lett 2019; 21:9066-9070. [PMID: 31657934 DOI: 10.1021/acs.orglett.9b03460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liujuan Zheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaodong Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Kumar Saurav
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinsong Liu
- Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
19
|
Wan X, Yao G, Liu Y, Chen J, Jiang H. Research Progress in the Biosynthetic Mechanisms of Marine Polyether Toxins. Mar Drugs 2019; 17:E594. [PMID: 31652489 PMCID: PMC6835853 DOI: 10.3390/md17100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
Marine polyether toxins, mainly produced by marine dinoflagellates, are novel, complex, and diverse natural products with extensive toxicological and pharmacological effects. Owing to their harmful effects during outbreaks of marine red tides, as well as their potential value for the development of new drugs, marine polyether toxins have been extensively studied, in terms of toxicology, pharmacology, detection, and analysis, structural identification, as well as their biosynthetic mechanisms. Although the biosynthetic mechanisms of marine polyether toxins are still unclear, certain progress has been made. In this review, research progress and current knowledge on the biosynthetic mechanisms of polyether toxins are summarized, including the mechanisms of carbon skeleton deletion, pendant alkylation, and polyether ring formation, along with providing a summary of mined biosynthesis-related genes. Finally, future research directions and applications of marine polyether toxins are discussed.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
20
|
Chen L, Du S, Qu W, Guo F, Wang G. Biosynthetic potential of culturable bacteria associated with
Apostichopus japonicus. J Appl Microbiol 2019; 127:1686-1697. [DOI: 10.1111/jam.14453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 11/28/2022]
Affiliation(s)
- L. Chen
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - S. Du
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - W.‐Y. Qu
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - F.‐R. Guo
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - G.‐Y. Wang
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| |
Collapse
|
21
|
Grammbitter GLC, Schmalhofer M, Karimi K, Shi YM, Schöner TA, Tobias NJ, Morgner N, Groll M, Bode HB. An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments. J Am Chem Soc 2019; 141:16615-16623. [DOI: 10.1021/jacs.8b10776] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gina L. C. Grammbitter
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Maximilian Schmalhofer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kudratullah Karimi
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Yi-Ming Shi
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Tim A. Schöner
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Nicholas J. Tobias
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| | - Nina Morgner
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt am Main and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Max-von-Laue-Straße 9 and 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide. Curr Opin Chem Biol 2018; 47:47-53. [DOI: 10.1016/j.cbpa.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 11/22/2022]
|
23
|
Iqbal Z, Han LC, Soares-Sello AM, Nofiani R, Thormann G, Zeeck A, Cox RJ, Willis CL, Simpson TJ. Investigations into the biosynthesis of the antifungal strobilurins. Org Biomol Chem 2018; 16:5524-5532. [PMID: 30027987 PMCID: PMC6085771 DOI: 10.1039/c8ob00608c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022]
Abstract
The strobilurins are important antifungal metabolites isolated from a number of basidiomycetes and have been valuable leads for the development of commercially important fungicides. Isotopic labelling studies with early and advanced intermediates confirm for the first time that they are produced via a linear tetraketide, primed with the rare benzoate starter unit, itself derived from phenylalanine via cinnamate. Isolation of a novel biphenyl metabolite, pseudostrobilurin B, provides evidence for the involvement of an epoxide in the key rearrangement to form the β-methoxyacrylate moiety essential for biological activity. Formation of two bolineol related metabolites, strobilurins Y and Z, also probably involves epoxide intermediates. Time course studies indicate a likely biosynthetic pathway from strobilurin A, with the simplest non-subsubstituted benzoate ring, to strobilurin G with a complex dioxepin terpenoid-derived substituent. Precursor-directed biosynthetic studies allow production of a number of novel ring-halogenated analogues as well as a new pyridyl strobilurin. These studies also provide evidence for a non-linear biosynthetic relationship between strobilurin A and strobilurin B.
Collapse
Affiliation(s)
- Zafar Iqbal
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Li-Chen Han
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Anna M. Soares-Sello
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Risa Nofiani
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Gerald Thormann
- Institut für Organische und Biomolekulare Chemie
, Georg-August Universität
,
Tammannstraße 2
, 37077 Göttingen
, Germany
| | - Axel Zeeck
- Institut für Organische und Biomolekulare Chemie
, Georg-August Universität
,
Tammannstraße 2
, 37077 Göttingen
, Germany
| | - Russell J. Cox
- Institut für Organische Chemie Chemistry
, Schneiderberg 1B, Leibniz Universität
,
30167 Hannover
, Germany
| | - Christine L. Willis
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| | - Thomas J. Simpson
- School of Chemistry
, University of Bristol
,
Cantocks Close
, Bristol
, BS8 1TS
, UK
.
;
| |
Collapse
|
24
|
Khan RA. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm J 2018; 26:739-753. [PMID: 29991919 PMCID: PMC6036106 DOI: 10.1016/j.jsps.2018.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
The role and contributions of natural products chemistry in advancements of the physical and biological sciences, its interdisciplinary domains, and emerging of new avenues by providing novel applications, constructive inputs, thrust, comprehensive understanding, broad perspective, and a new vision for future is outlined. The developmental prospects in bio-medical, health, nutrition, and other interrelated sciences along with some of the emerging trends in the subject area are also discussed as part of the current review of the basic and core developments, innovation in techniques, advances in methodology, and possible applications with their effects on the sciences in general and natural products chemistry in particular. The overview of the progress and ongoing developments in broader areas of the natural products chemistry discipline, its role and concurrent economic and scientific implications, contemporary objectives, future prospects as well as impending goals are also outlined. A look at the natural products chemistry in providing scientific progress in various disciplines is deliberated upon.
Collapse
Affiliation(s)
- Riaz A. Khan
- Department of Medicinal Chemistry, Qassim University, Qassim 51452, Saudi Arabia
- Manav Rachna International University, National Capital Region, Faridabad, HR 121 004, India
| |
Collapse
|
25
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
26
|
Jackson DR, Shakya G, Patel AB, Mohammed LY, Vasilakis K, Wattana-Amorn P, Valentic TR, Milligan JC, Crump MP, Crosby J, Tsai SC. Structural and Functional Studies of the Daunorubicin Priming Ketosynthase DpsC. ACS Chem Biol 2018; 13:141-151. [PMID: 29161022 DOI: 10.1021/acschembio.7b00551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Daunorubicin is a type II polyketide, one of a large class of polyaromatic natural products with anticancer, antibiotic, and antiviral activity. Type II polyketides are formed by the assembly of malonyl-CoA building blocks, though in rare cases, biosynthesis is initiated by the incorporation of a nonmalonyl derived starter unit, which adds molecular diversity to the poly-β-ketone backbone. Priming mechanisms for the transfer of novel starter units onto polyketide synthases (PKS) are still poorly understood. Daunorubicin biosynthesis incorporates a unique propionyl starter unit thought to be selected for by a subclass ("DpsC type") of priming ketosynthases (KS III). To date, however, no structural information exists for this subclass of KS III enzymes. Although selectivity for self-acylation with propionyl-CoA has previously been implied, we demonstrate that DpsC shows no discrimination for self-acylation or acyl-transfer to the cognate acyl carrier protein, DpsG with short acyl-CoAs. We present five crystal structures of DpsC, including apo-DpsC, acetyl-DpsC, propionyl-DpsC, butyryl-DpsC, and a cocrystal of DpsC with a nonhydrolyzable phosphopantetheine (PPant) analogue. The DpsC crystal structures reveal the architecture of the active site, the molecular determinants for catalytic activity and homology to O-malonyl transferases, but also indicate distinct differences. These results provide a structural basis for rational engineering of starter unit selection in type II polyketide synthases.
Collapse
Affiliation(s)
- David R. Jackson
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Gaurav Shakya
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Avinash B. Patel
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Lina Y. Mohammed
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kostas Vasilakis
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Pakorn Wattana-Amorn
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Timothy R. Valentic
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jacob C. Milligan
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Matthew P. Crump
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - John Crosby
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Shiou-Chuan Tsai
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
27
|
Preparation and Characterization of the Favorskiiase Flavoprotein EncM and Its Distinctive Flavin-N5-Oxide Cofactor. Methods Enzymol 2018; 604:523-540. [DOI: 10.1016/bs.mie.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Miyanaga A. Structure and function of polyketide biosynthetic enzymes: various strategies for production of structurally diverse polyketides. Biosci Biotechnol Biochem 2017; 81:2227-2236. [DOI: 10.1080/09168451.2017.1391687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
29
|
Zeng F, Zang J, Zhang S, Hao Z, Dong J, Lin Y. AFEAP cloning: a precise and efficient method for large DNA sequence assembly. BMC Biotechnol 2017; 17:81. [PMID: 29137618 PMCID: PMC5686892 DOI: 10.1186/s12896-017-0394-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022] Open
Abstract
Background Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. Methods The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. Results We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. Conclusions AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist’s toolbox. Electronic supplementary material The online version of this article (doi: 10.1186/s12896-017-0394-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jinping Zang
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Suhua Zhang
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Zhimin Hao
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jingao Dong
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Yibin Lin
- McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, 77030, USA.
| |
Collapse
|
30
|
Flavin-catalyzed redox tailoring reactions in natural product biosynthesis. Arch Biochem Biophys 2017; 632:20-27. [DOI: 10.1016/j.abb.2017.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/21/2022]
|
31
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
32
|
Liu N, Hung YS, Gao SS, Hang L, Zou Y, Chooi YH, Tang Y. Identification and Heterologous Production of a Benzoyl-Primed Tricarboxylic Acid Polyketide Intermediate from the Zaragozic Acid A Biosynthetic Pathway. Org Lett 2017; 19:3560-3563. [PMID: 28605916 PMCID: PMC5673471 DOI: 10.1021/acs.orglett.7b01534] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zaragozic acid A (1) is a potent cholesterol lowering, polyketide natural product made by various filamentous fungi. The reconstitution of enzymes responsible for the initial steps of the biosynthetic pathway of 1 is accomplished using an engineered fungal heterologous host. These initial steps feature the priming of a benzoic acid starter unit onto a highly reducing polyketide synthase (HRPKS), followed by oxaloacetate extension and product release to generate a tricarboxylic acid containing product 2. The reconstitution studies demonstrated that only three enzymes, HRPKS, citrate synthase, and hydrolase, are needed in A. nidulans to produce the structurally complex product.
Collapse
Affiliation(s)
- Nicholas Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Yiu-Sun Hung
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Shu-Shan Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Leibniz Hang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
33
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Crüsemann M, O’Neill EC, Larson CB, Melnik AV, Floros DJ, da Silva RR, Jensen PR, Dorrestein PC, Moore BS. Prioritizing Natural Product Diversity in a Collection of 146 Bacterial Strains Based on Growth and Extraction Protocols. JOURNAL OF NATURAL PRODUCTS 2017; 80:588-597. [PMID: 28335604 PMCID: PMC5367486 DOI: 10.1021/acs.jnatprod.6b00722] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In order to expedite the rapid and efficient discovery and isolation of novel specialized metabolites, while minimizing the waste of resources on rediscovery of known compounds, it is crucial to develop efficient approaches for strain prioritization, rapid dereplication, and the assessment of favored cultivation and extraction conditions. Herein we interrogated bacterial strains by systematically evaluating cultivation and extraction parameters with LC-MS/MS analysis and subsequent dereplication through the Global Natural Product Social Molecular Networking (GNPS) platform. The developed method is fast, requiring minimal time and sample material, and is compatible with high-throughput extract analysis, thereby streamlining strain prioritization and evaluation of culturing parameters. With this approach, we analyzed 146 marine Salinispora and Streptomyces strains that were grown and extracted using multiple different protocols. In total, 603 samples were analyzed, generating approximately 1.8 million mass spectra. We constructed a comprehensive molecular network and identified 15 molecular families of diverse natural products and their analogues. The size and breadth of this network shows statistically supported trends in molecular diversity when comparing growth and extraction conditions. The network provides an extensive survey of the biosynthetic capacity of the strain collection and a method to compare strains based on the variety and novelty of their metabolites. This approach allows us to quickly identify patterns in metabolite production that can be linked to taxonomy, culture conditions, and extraction methods, as well as informing the most valuable growth and extraction conditions.
Collapse
Affiliation(s)
- Max Crüsemann
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Ellis C. O’Neill
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Charles B. Larson
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexey V. Melnik
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dimitrios J Floros
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ricardo R. da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Research Support Center in Natural and Synthetic Products, Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Paul R. Jensen
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Pieter C. Dorrestein
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bradley S. Moore
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Lin CI, McCarty RM, Liu HW. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angew Chem Int Ed Engl 2017; 56:3446-3489. [PMID: 27505692 PMCID: PMC5477795 DOI: 10.1002/anie.201603291] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Chemical reactions that are named in honor of their true, or at least perceived, discoverers are known as "name reactions". This Review is a collection of biological representatives of named chemical reactions. Emphasis is placed on reaction types and catalytic mechanisms that showcase both the chemical diversity in natural product biosynthesis as well as the parallels with synthetic organic chemistry. An attempt has been made, whenever possible, to describe the enzymatic mechanisms of catalysis within the context of their synthetic counterparts and to discuss the mechanistic hypotheses for those reactions that are currently active areas of investigation. This Review has been categorized by reaction type, for example condensation, nucleophilic addition, reduction and oxidation, substitution, carboxylation, radical-mediated, and rearrangements, which are subdivided by name reactions.
Collapse
Affiliation(s)
- Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Reid M McCarty
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| |
Collapse
|
36
|
Lin C, McCarty RM, Liu H. Die Enzymologie organischer Umwandlungen: Namensreaktionen in biologischen Systemen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201603291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chia‐I. Lin
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Reid M. McCarty
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Hung‐wen Liu
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| |
Collapse
|
37
|
Friedrich S, Hemmerling F, Lindner F, Warnke A, Wunderlich J, Berkhan G, Hahn F. Characterisation of the Broadly-Specific O-Methyl-transferase JerF from the Late Stages of Jerangolid Biosynthesis. Molecules 2016; 21:molecules21111443. [PMID: 27801873 PMCID: PMC6273487 DOI: 10.3390/molecules21111443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/03/2022] Open
Abstract
We describe the characterisation of the O-methyltransferase JerF from the late stages of jerangolid biosynthesis. JerF is the first known example of an enzyme that catalyses the formation of a non-aromatic, cyclic methylenolether. The enzyme was overexpressed in E. coli and the cell-free extracts were used in bioconversion experiments. Chemical synthesis gave access to a series of substrate surrogates that covered a broad structural space. Enzymatic assays revealed a broad substrate tolerance and high regioselectivity of JerF, which makes it an attractive candidate for an application in chemoenzymatic synthesis with particular usefulness for late stage application on 4-methoxy-5,6-dihydro-2H-pyran-2-one-containing natural products.
Collapse
Affiliation(s)
- Steffen Friedrich
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Franziska Hemmerling
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Frederick Lindner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Anna Warnke
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Johannes Wunderlich
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Gesche Berkhan
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Frank Hahn
- Zentrum für Biomolekulare Wirkstoffe, Leibniz-Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany.
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
38
|
Hemmerling F, Hahn F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J Org Chem 2016; 12:1512-50. [PMID: 27559404 PMCID: PMC4979870 DOI: 10.3762/bjoc.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Hahn
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
39
|
Abstract
The α-pyrone moiety is a structural feature found in a huge variety of biologically active metabolites. In recent times new insights into additional biosynthetic mechanisms, yielding in such six-membered unsaturated ester ring residues have been obtained. The purpose of this mini-review is to give a brief overview of α-pyrones and the mechanisms forming the basis of their natural synthesis. Especially the chain interconnecting enzymes, showing homology to ketosynthases which catalyze Claisen-like condensation reactions, will be presented.
Collapse
Affiliation(s)
- Till F Schäberle
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| |
Collapse
|
40
|
Teufel R, Agarwal V, Moore BS. Unusual flavoenzyme catalysis in marine bacteria. Curr Opin Chem Biol 2016; 31:31-9. [PMID: 26803009 DOI: 10.1016/j.cbpa.2016.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 11/27/2022]
Abstract
Ever since the discovery of the flavin cofactor more than 80 years ago, flavin-dependent enzymes have emerged as ubiquitous and versatile redox catalysts in primary metabolism. Yet, the recent advances in the discovery and characterization of secondary metabolic pathways exposed new roles for flavin-mediated catalysis in the generation of structurally complex natural products. Here, we review a selection of key biosynthetic flavoenzymes from marine bacterial secondary metabolism and illustrate how their functional and mechanistic investigation expanded our view of the cofactor's chemical repertoire and led to the discovery of a previously unknown flavin redox state.
Collapse
Affiliation(s)
- Robin Teufel
- ZBSA, Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Bradley S Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics. Curr Top Microbiol Immunol 2016; 398:273-302. [DOI: 10.1007/82_2016_503] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Ferreira ELF, Williams DE, Ióca LP, Morais-Urano RP, Santos MFC, Patrick BO, Elias LM, Lira SP, Ferreira AG, Passarini MRZ, Sette LD, Andersen RJ, Berlinck RGS. Structure and Biogenesis of Roussoellatide, a Dichlorinated Polyketide from the Marine-Derived Fungus Roussoella sp. DLM33. Org Lett 2015; 17:5152-5. [PMID: 26444492 DOI: 10.1021/acs.orglett.5b02060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of the fungal metabolite roussoellatide (1) has been established by spectroscopic and X-ray diffraction analyses. Results from feeding experiments with [1-(13)C]acetate, [2-(13)C]acetate, and [1,2-(13)C]acetate were consistent with a biosynthetic pathway to the unprecedented skeleton of 1 involving Favorskii rearrangements in separate pentaketides, subsequently joined via an intermolecular Diels-Alder reaction.
Collapse
Affiliation(s)
- Everton L F Ferreira
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Mario F C Santos
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Brian O Patrick
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Luciana M Elias
- Departamento de Ciências Exatas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo , CP 9, Agronomia, CEP 13418-900, Piracicaba, SP, Brazil
| | - Simone P Lira
- Departamento de Ciências Exatas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo , CP 9, Agronomia, CEP 13418-900, Piracicaba, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos , 13565-905, São Carlos, SP, Brazil
| | - Michel R Z Passarini
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas , CEP 13140-000, Paulínia, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" , 1515, Rio Claro, SP, Brazil
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
43
|
Teufel R, Stull F, Meehan MJ, Michaudel Q, Dorrestein PC, Palfey B, Moore BS. Biochemical Establishment and Characterization of EncM's Flavin-N5-oxide Cofactor. J Am Chem Soc 2015; 137:8078-85. [PMID: 26067765 DOI: 10.1021/jacs.5b03983] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquitous flavin-dependent monooxygenases commonly catalyze oxygenation reactions by means of a transient C4a-peroxyflavin. A recent study, however, suggested an unprecedented flavin-oxygenating species, proposed as the flavin-N5-oxide (Fl(N5[O])), as key to an oxidative Favorskii-type rearrangement in the biosynthesis of the bacterial polyketide antibiotic enterocin. This stable superoxidized flavin is covalently tethered to the enzyme EncM and converted into FADH2 (Fl(red)) during substrate turnover. Subsequent reaction of Fl(red) with molecular oxygen restores the postulated Fl(N5[O]) via an unknown pathway. Here, we provide direct evidence for the Fl(N5[O]) species via isotope labeling, proteolytic digestion, and high-resolution tandem mass spectrometry of EncM. We propose that formation of this species occurs by hydrogen-transfer from Fl(red) to molecular oxygen, allowing radical coupling of the formed protonated superoxide and anionic flavin semiquinone at N5, before elimination of water affords the Fl(N5[O]) cofactor. Further biochemical and spectroscopic investigations reveal important features of the Fl(N5[O]) species and the EncM catalytic mechanism. We speculate that flavin-N5-oxides may be intermediates or catalytically active species in other flavoproteins that form the anionic semiquinone and promote access of oxygen to N5.
Collapse
Affiliation(s)
- Robin Teufel
- †Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States
| | - Frederick Stull
- ‡Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Meehan
- §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California 92093, United States
| | - Quentin Michaudel
- ⊥Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pieter C Dorrestein
- †Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States.,§Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California 92093, United States
| | - Bruce Palfey
- ‡Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States.,∥Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bradley S Moore
- †Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093, United States.,§Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California 92093, United States
| |
Collapse
|
44
|
Jensen PR, Moore BS, Fenical W. The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 2015; 32:738-51. [PMID: 25730728 PMCID: PMC4414829 DOI: 10.1039/c4np00167b] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review covers the initial discovery of the marine actinomycete genus Salinispora through its development as a model for natural product research. A focus is placed on the novel chemical structures reported with reference to their biological activities and the synthetic and biosynthetic studies they have inspired. The time line of discoveries progresses from more traditional bioassay-guided approaches through the application of genome mining and genetic engineering techniques that target the products of specific biosynthetic gene clusters. This overview exemplifies the extraordinary biosynthetic diversity that can emanate from a narrowly defined genus and supports future efforts to explore marine taxa in the search for novel natural products.
Collapse
Affiliation(s)
- Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA.
| | | | | |
Collapse
|
45
|
Genotype-driven isolation of enterocin with novel bioactivities from mangrove-derived Streptomyces qinglanensis 172205. Appl Microbiol Biotechnol 2015; 99:5825-32. [DOI: 10.1007/s00253-015-6574-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 01/03/2023]
|
46
|
Lu S, Nishimura S, Hirai G, Ito M, Kawahara T, Izumikawa M, Sodeoka M, Shin-ya K, Tsuchida T, Kakeya H. Saccharothriolides A-C, novel phenyl-substituted 10-membered macrolides isolated from a rare actinomycete Saccharothrix sp. Chem Commun (Camb) 2015; 51:8074-7. [PMID: 25869768 DOI: 10.1039/c5cc01953b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new 10-membered macrolides, saccharothriolides A-C (1-3), were discovered from a rare actinomycete Saccharothrix sp. A1506. All of the sp(3) carbons in the 10-membered ring had chirality, which was determined by extensive spectroscopic analysis and TDDFT-calculation of ECD spectra. Saccharothriolide B (2) exhibited cytotoxicity against human tumor cell lines HeLa and HT1080.
Collapse
Affiliation(s)
- Shan Lu
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Franke J, Ishida K, Hertweck C. Plasticity of the Malleobactin Pathway and Its Impact on Siderophore Action in Human Pathogenic Bacteria. Chemistry 2015; 21:8010-4. [DOI: 10.1002/chem.201500757] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 12/23/2022]
|
48
|
Bonet B, Teufel R, Crüsemann M, Ziemert N, Moore BS. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin. JOURNAL OF NATURAL PRODUCTS 2015; 78:539-42. [PMID: 25382643 PMCID: PMC4380194 DOI: 10.1021/np500664q] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora's promising secondary metabolome.
Collapse
Affiliation(s)
- Bailey Bonet
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92037, United States
| | - Robin Teufel
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92037, United States
| | - Max Crüsemann
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92037, United States
| | - Nadine Ziemert
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92037, United States
- E-mail:
| | - Bradley S. Moore
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92037, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- E-mail:
| |
Collapse
|
49
|
Chang C, Huang R, Yan Y, Ma H, Dai Z, Zhang B, Deng Z, Liu W, Qu X. Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into polyketide carbon scaffolds. J Am Chem Soc 2015; 137:4183-90. [PMID: 25763681 DOI: 10.1021/jacs.5b00728] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selective modification of carbon scaffolds via biosynthetic engineering is important for polyketide structural diversification. Yet, this scope is currently restricted to simple aliphatic groups due to (1) limited variety of CoA-linked extender units, which lack aromatic structures and chemical reactivity, and (2) narrow acyltransferase (AT) specificity, which is limited to aliphatic CoA-linked extender units. In this report, we uncovered and characterized the first aromatic CoA-linked extender unit benzylmalonyl-CoA from the biosynthetic pathways of splenocin and enterocin in Streptomyces sp. CNQ431. Its synthesis employs a deamination/reductive carboxylation strategy to convert phenylalanine into benzylmalonyl-CoA, providing a link between amino acid and CoA-linked extender unit synthesis. By characterization of its selection, we further validated that AT domains of splenocin, and antimycin polyketide synthases are able to select this extender unit to introduce the phenyl group into their dilactone scaffolds. The biosynthetic machinery involved in the formation of this extender unit is highly versatile and can be potentially tailored for tyrosine, histidine and aspartic acid. The disclosed aromatic extender unit, amino acid-oriented synthetic pathway, and aromatic-selective AT domains provides a systematic breakthrough toward current knowledge of polyketide extender unit formation and selection, and also opens a route for further engineering of polyketide carbon scaffolds using amino acids.
Collapse
Affiliation(s)
- Chenchen Chang
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Rong Huang
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Yan Yan
- ‡State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hongmin Ma
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Zheng Dai
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Benying Zhang
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Wen Liu
- ‡State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xudong Qu
- †Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|
50
|
Kong JQ. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 2015. [DOI: 10.1039/c5ra08196c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phenylalanine ammonia-lyase, a versatile enzyme with industrial and medical applications.
Collapse
Affiliation(s)
- Jian-Qiang Kong
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products
- Beijing
- China
| |
Collapse
|