1
|
Torequl Islam M, Shimul Bhuia M, Paulo Martins de Lima J, Paulo Araujo Maia F, Beatriz Herminia Ducati A, Douglas Melo Coutinho H. Phytanic acid, an inconclusive phytol metabolite: A review. Curr Res Toxicol 2023; 5:100120. [PMID: 37744206 PMCID: PMC10515296 DOI: 10.1016/j.crtox.2023.100120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Phytanic acid (PA: 3,7,11,15-tetramethylhexadecanoic acid) is an important biometabolite of the chlorophyll-derived diterpenoid phytol. Its biological sources (occurrence) and ADME (absorption, distribution, metabolism, and elimination) profile are well-discussed in the literature. Cumulative literature suggests that PA has beneficial as well as harmful biological roles in humans and other animals. This study aimed to sketch a brief summary of PA's beneficial and harmful pharmacological effects in test systems on the basis of existing literature reports. Literature findings propose that PA has anti-inflammatory and immunomodulatory, antidiabetic, anti-obesity, anticancer, and oocyte maturation effects. Although a high plasma PA-level mediated SLS remains controversial, it is evident to link it with Refsum's disease and other peroxisomal enzyme deficiency diseases in humans, including RCDP and LD; ZHDA and Alzheimer's disease; progressive ataxia and dysarthria; and an increased risk of some lymphomas such as LBL, FL, and NHL. PA exerts toxic effects on different kinds of cells, including neuronal, cardiac, and renal cells, through diverse pathways such as oxidative stress, mitochondrial disturbance, apoptosis, disruption of Na+/K+-ATPase activity, Ca2+ homeostasis, alteration of AChE and MAO activities, etc. PA is considered a cardiac biomarker in humans. In conclusion, PA may be one of the most important biometabolites in humans.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | | | | | | |
Collapse
|
2
|
Woodman TJ, Lloyd MD. Analysis of enzyme reactions using NMR techniques: A case study with α-methylacyl-CoA racemase (AMACR). Methods Enzymol 2023; 690:159-209. [PMID: 37858529 DOI: 10.1016/bs.mie.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
α-Methylacyl-CoA racemase (AMACR; P504S) catalyzes the conversion of R-2-methylacyl-CoA esters into their corresponding S-2-methylacyl-CoA epimers enabling their degradation by β-oxidation. The enzyme also catalyzes the key epimerization reaction in the pharmacological activation pathway of ibuprofen and related drugs. AMACR protein levels and enzymatic activity are increased in prostate cancer, and the enzyme is a recognized drug target. Key to the development of novel treatments based on AMACR inhibition is the development of functional assays. Synthesis of substrates and purification of recombinant human AMACR are described. Incubation of R- or S-2-methylacyl-CoA esters with AMACR in vitro resulted in formation of epimers (at a near 1-1 ratio at equilibrium) via removal of their α-protons to form an enolate intermediate followed by reprotonation. Conversion can be conveniently followed by incubation in buffer containing 2H2O followed by 1H NMR analysis to monitor conversion of the α-methyl doublet to a single peak upon deuterium incorporation. Incubation of 2-methylacyl-CoA esters containing leaving groups results in an elimination reaction, which was also characterized by 1H NMR. The synthesis of substrates, including a double labeled substrate for mechanistic studies, and subsequent analysis is also described.
Collapse
Affiliation(s)
- Timothy J Woodman
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| | - Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| |
Collapse
|
3
|
Mojanaga OO, Acharya KR, Lloyd MD. Recombinant protein production for structural and kinetic studies: A case study using M. tuberculosis α-methylacyl-CoA racemase (MCR). Methods Enzymol 2023; 690:1-37. [PMID: 37858526 DOI: 10.1016/bs.mie.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Modern drug discovery is a target-driven approach in which a particular protein such as an enzyme is implicated in the disease process. Commonly, small-molecule drugs are identified using screening, rational design, and structural biology approaches. Drug screening, testing and optimization is typically conducted in vitro, and copious amounts of protein are required. The advent of recombinant DNA technologies has resulted in a rise in proteins purified by affinity techniques, typically by incorporating an "affinity tag" at the N- or C-terminus. Use of these tagged proteins and affinity techniques comes with a host of issues. This chapter describes the production of an untagged enzyme, α-methylacyl-CoA racemase (MCR) from Mycobacterium tuberculosis, using a recombinant E. coli system. Purification of the enzyme on a 100 mg scale using tandem anion-exchange chromatographies (DEAE-sepharose and RESOURCE-Q columns), and size-exclusion chromatographies is described. A modified protocol allowing the purification of cationic proteins is also described, based on tandem cation-exchange chromatographies (using CM-sepharose and RESOURCE-S columns) and size-exclusion chromatographies. The resulting MCR protein is suitable for biochemical and structural biology applications. The described protocols have wide applicability to the purification of other recombinant proteins and enzymes without using affinity chromatography.
Collapse
Affiliation(s)
- Otsile O Mojanaga
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| | - Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| |
Collapse
|
4
|
Proteomic analysis of the effect of high-fat-diet and voluntary physical activity on mouse liver. PLoS One 2022; 17:e0273049. [PMID: 35981048 PMCID: PMC9387828 DOI: 10.1371/journal.pone.0273049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NALFD), characterized by an abnormal accumulation of triglycerides in hepatocytes, is closely linked to insulin resistance, metabolic syndrome, and changes in lipogenesis in the liver. The accumulation of hepatic lipids can lead to a range of pathologies from mild steatosis to severe cirrhosis. Endurance exercise is known to ameliorate the adverse health effects of NAFLD. Therefore, we aimed to investigate the effect of voluntary wheel running (VWR) on the metabolic changes in the livers of high-fat diet (HFD)-induced NAFLD mice and used LC-MS/MS (Liquid chromatography–mass spectrometry) to determine whether the tested intervention affected the protein expression profiles of the mouse livers. Male C57BL/6 mice were randomly divided into three groups: control (CON), high-fat diet sedentary group (HFD), high-fat diet VWR group (HFX). HFX group performed voluntary wheel running into individually cages, given a high-fat diet for 12 weeks. Food consumption, body weight, and running distance were measured every week. Using 2D (2-dimensional)-gel electrophoresis, we detected and quantitatively analyzed the protein expression with >2.0-fold change in the livers of HFD-fed mice, HFD-fed exercise (HFX) mice, and chow-fed mice. Body weight was significantly increased in HFD compared to CON (P < 0.05). The 2D-gel electrophoresis analysis indicated that there was a difference between CON and HFD groups, showing 31 increased and 27 decreased spots in the total 302 paired spots in the HFD group compared to CON. The analysis showed 43 increased and 17 decreased spots in the total 258 spots in the HFX group compared to CON. Moreover, 12 weeks of VWR showed an increase of 35 and a decrease of 8 spots in a total of 264 paired spots between HFD and HFX. LC-MS/MS of HFD group revealed that proteins involved in ketogenesis, lipid metabolism, and the metabolism of drugs and xenobiotics were upregulated, whereas detoxifying proteins, mitochondrial precursors, transport proteins, proteasomes, and proteins involved in amino acid metabolism were downregulated. On the other hand, VWR counteracted the protein expression profile of HFD-fed mice by upregulating molecular chaperones, gluconeogenesis-, detoxification-, proteasome-, and energy metabolism-related proteins. This study provided a molecular understanding of the HFD- and exercise-induced protein marker expression and presented the beneficial effects of exercise during pathophysiological conditions.
Collapse
|
5
|
Jiao T, Yang TT, Wang D, Gao ZQ, Wang JL, Tang BP, Liu QN, Zhang DZ, Dai LS. Characterization and expression analysis of immune-related genes in the red swamp crayfish, Procambarus clarkii in response to lipopolysaccharide challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 95:140-150. [PMID: 31629063 DOI: 10.1016/j.fsi.2019.09.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
To learn more about red swamp crayfish related genes in response to bacterial infections, we investigated immune-related genes induced by lipopolysaccharide (LPS) in the hepatopancreas using high-throughput sequencing method. In present the study, a total of 55,107 unigenes were identified, with an average length of 678 bp. A total of 2215 differentially expressed genes (DEGs) were found, including 669 up-regulated genes and 1546 down-regulated genes. The result of Gene ontology (GO) analysis revealed that 3017 DEGs were enriched in 19 biological process subcategories, 17 cellular component subcategories and 15 molecular function subcategories. The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that "ribosome" was the most abundant group, which had 34 DEGs. KEGG enrichment analysis identified several immune response pathways. Real-time quantitative reverse transcription-PCR (qRT-PCR) results exhibited that several immune responsive genes were greatly up-regulated following LPS stimulation as observed in the results of high-throughput sequencing. Overall, this study provides new insight into the immune defense mechanisms of P. clarkii against LPS infection.
Collapse
Affiliation(s)
- Ting Jiao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Dong Wang
- Instrumental Analysis Center, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Zhen-Qiu Gao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China.
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
6
|
Tian A, Pu K, Li B, Li M, Liu X, Gao L, Mao X. Weighted gene coexpression network analysis reveals hub genes involved in cholangiocarcinoma progression and prognosis. Hepatol Res 2019; 49:1195-1206. [PMID: 31177590 PMCID: PMC6899837 DOI: 10.1111/hepr.13386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 04/09/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
AIM Cholangiocarcinoma (CCA) is a highly malignant tumor found in the bile duct epithelial cells, and the second most common primary tumor of the liver. However, the pivotal roles of molecular biomarkers in oncogenesis of CCA are unclear. Therefore, we aim to explore the underlying mechanisms of progression and screen for novel prognostic biomarkers and treatment targets. METHOD The data of mRNA sequencing and clinical information of CCA patients in The Cancer Genome Atlas was analyzed by weighted gene coexpression network analysis (WGCNA). Modules and clinical traits were constructed according to Pearson's correlation analysis, and Gene Ontology and pathway enrichment analysis were applied. Hub genes of these modules were screened by intramodule analysis; Cytoscape with Search Tool for the Retrieval of Interacting Genes was utilized to visualize protein-protein interaction of these modules; hub genes of these modules were validated afterwards. Furthermore, the significance of these genes was confirmed by survival analysis. RESULTS Genes MRPS18A, CST1, and SCP2 were identified as candidate genes in the module, which was associated with clinical traits including pathological stage, histological grade, and liver function and which also affected overall survival of CCA patients. Nineteen hub genes were analyzed together and were associated with progression and prognosis of CCA. Survival analyses found that several of the multiple genes could serve as biomarkers to stratify CCA patients into low- and high-risk groups. CONCLUSION These candidate genes could be involved in progression of CCA, which could serve as novel prognostic markers and treatment targets. Moreover, most of them were first reported in CCA and deserve further research.
Collapse
Affiliation(s)
| | - Ke Pu
- Key Laboratory for Gastrointestinal Diseases of Gansu Province
| | | | - Min Li
- Departments of Infectious Diseases
| | - Xiaoguang Liu
- RheumatologyThe First Hospital of Lanzhou University
| | - Liping Gao
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xiaorong Mao
- Departments of Infectious Diseases,The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| |
Collapse
|
7
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
8
|
Bhattacharya C, Dey AS, Ayon NJ, Gutheil WG, Mukherji M. Efficient Purification and LC-MS/MS-based Assay Development for Ten-Eleven Translocation-2 5-Methylcytosine Dioxygenase. J Vis Exp 2018. [PMID: 30371677 DOI: 10.3791/57798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The epigenetic transcription regulation mediated by 5-methylcytosine (5mC) has played a critical role in eukaryotic development. Demethylation of these epigenetic marks is accomplished by sequential oxidation by ten-eleven translocation dioxygenases (TET1-3), followed by the thymine-DNA glycosylase-dependent base excision repair. Inactivation of the TET2 gene due to genetic mutations or by other epigenetic mechanisms is associated with a poor prognosis in patients with diverse cancers, especially hematopoietic malignancies. Here, we describe an efficient single step purification of enzymatically active untagged human TET2 dioxygenase using cation exchange chromatography. We further provide a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach that can separate and quantify the four normal DNA bases (A, T, G, and C), as well as the four modified cytosine bases (5-methyl, 5-hydroxymethyl, 5-formyl, and 5-carboxyl). This assay can be used to evaluate the activity of wild type and mutant TET2 dioxygenases.
Collapse
Affiliation(s)
- Chayan Bhattacharya
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City
| | - Aninda Sundar Dey
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City
| | - Navid J Ayon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City
| | - William G Gutheil
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City
| | - Mridul Mukherji
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City;
| |
Collapse
|
9
|
McIntosh AL, Storey SM, Huang H, Kier AB, Schroeder F. Sex-dependent impact of Scp-2/Scp-x gene ablation on hepatic phytol metabolism. Arch Biochem Biophys 2017; 635:17-26. [PMID: 29051070 DOI: 10.1016/j.abb.2017.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
While prior studies focusing on male mice suggest a role for sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x; DKO) on hepatic phytol metabolism, its role in females is unresolved. This issue was addressed using female and male wild-type (WT) and DKO mice fed a phytoestrogen-free diet without or with 0.5% phytol. GC/MS showed that hepatic: i) phytol was absent and its branched-chain fatty acid (BCFA) metabolites were barely detectable in WT control-fed mice; ii) accumulation of phytol as well as its peroxisomal metabolite BCFAs (phytanic acid » pristanic and 2,3-pristenic acids) was increased by dietary phytol in WT females, but only slightly in WT males; iii) accumulation of phytol and BCFA was further increased by DKO in phytol-fed females, but much more markedly in males. Livers of phytol-fed WT female mice as well as phytol-fed DKO female and male mice also accumulated increased proportion of saturated straight-chain fatty acids (LCFA) at the expense of unsaturated LCFA. Liver phytol accumulation was not due to increased SCP-2 binding/transport of phytol since SCP-2 bound phytanic acid, but not its precursor phytol. Thus, the loss of Scp-2/Scp-x contributed to a sex-dependent hepatic accumulation of dietary phytol and BCFA.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, United States
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States.
| |
Collapse
|
10
|
Liu M, Liu C, Chen H, Huang X, Zeng X, Zhou J, Mi S. Prevention of cholesterol gallstone disease by schaftoside in lithogenic diet-induced C57BL/6 mouse model. Eur J Pharmacol 2017; 815:1-9. [PMID: 28993159 DOI: 10.1016/j.ejphar.2017.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/24/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Schaftoside (SS) is a bioactive compound present in the Herba Desmodii Styracifolii (DS), a herb that has been used to treat cholelithiasis and urolithiasis in Chinese medicine. Whether SS inhibits cholesterol (Ch) gallstone formation has not been investigated. This study examined the effects of oral intake of SS on Ch gallstone formation in C57BL/6 mice fed a lithogenic diet. The rate of gallstone formation was recorded. Levels of Ch, triglycerides (TG) and bile salts (BS) were measured in the bile and serum. Liver histopathology was examined microscopically, and mRNA expression levels of key genes involved in cholesterol and bile metabolism were determined by qPCR. Mice fed SS were protected against gallstone formation, had increased biliary levels of BS, and reduced biliary Ch levels, resulting in a lower Ch saturation index (CSI). In addition, mice fed SS had lower serum TG and Ch levels, increased mRNA expression of liver X receptor α, ATP binding cassette transporter 5/8 (ABCG5/8), and ileal bile acid binding protein (IBABP) in the ileum, and of farnesoid X receptor and bile salt export protein (BSEP) in the liver and ileum. SS also protected against histologically determined liver damage. Overall, these data indicate that SS protects against Ch gallstone formation in mice, and that the effect is mediated by activation of ileal liver X receptor α and hepatic farnesoid X receptor.
Collapse
Affiliation(s)
- Meijing Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Changhui Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| | - Hao Chen
- College of food and drug, Anhui Science and Technology of University, Fengyang 233100, Anhui Province, PR China
| | - Xiaotao Huang
- Zhaoqing Medical College, Zhaoqing, Guangdong Province, PR China; Foshan University, Foshan, Guangdong Province, PR China.
| | - Xiaohui Zeng
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Province, PR China
| | - Juncheng Zhou
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Province, PR China
| | - Suiqing Mi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Jichang Road 12, Guangzhou 510405, Guangdong Province, PR China
| |
Collapse
|
11
|
Storey SM, Huang H, McIntosh AL, Martin GG, Kier AB, Schroeder F. Impact of Fabp1/Scp-2/Scp-x gene ablation (TKO) on hepatic phytol metabolism in mice. J Lipid Res 2017; 58:1153-1165. [PMID: 28411199 DOI: 10.1194/jlr.m075457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
Studies in vitro have suggested that both sterol carrier protein-2/sterol carrier protein-x (Scp-2/Scp-x) and liver fatty acid binding protein [Fabp1 (L-FABP)] gene products facilitate hepatic uptake and metabolism of lipotoxic dietary phytol. However, interpretation of physiological function in mice singly gene ablated in the Scp-2/Scp-x has been complicated by concomitant upregulation of FABP1. The work presented herein provides several novel insights: i) An 8-anilino-1-naphthalenesulfonic acid displacement assay showed that neither SCP-2 nor L-FABP bound phytol, but both had high affinity for its metabolite, phytanic acid; ii) GC-MS studies with phytol-fed WT and Fabp1/Scp-2/SCP-x gene ablated [triple KO (TKO)] mice showed that TKO exacerbated hepatic accumulation of phytol metabolites in vivo in females and less so in males. Concomitantly, dietary phytol increased hepatic levels of total long-chain fatty acids (LCFAs) in both male and female WT and TKO mice. Moreover, in both WT and TKO female mice, dietary phytol increased hepatic ratios of saturated/unsaturated and polyunsaturated/monounsaturated LCFAs, while decreasing the peroxidizability index. However, in male mice, dietary phytol selectively increased the saturated/unsaturated ratio only in TKO mice, while decreasing the peroxidizability index in both WT and TKO mice. These findings suggested that: 1) SCP-2 and FABP1 both facilitated phytol metabolism after its conversion to phytanic acid; and 2) SCP-2/SCP-x had a greater impact on hepatic phytol metabolism than FABP1.
Collapse
Affiliation(s)
- Stephen M Storey
- Departments of Physiology and Pharmacology Texas A&M Veterinary Medical Center, Texas A&M University, College Station, TX 77843
| | - Huan Huang
- Departments of Physiology and Pharmacology Texas A&M Veterinary Medical Center, Texas A&M University, College Station, TX 77843
| | - Avery L McIntosh
- Departments of Physiology and Pharmacology Texas A&M Veterinary Medical Center, Texas A&M University, College Station, TX 77843
| | - Gregory G Martin
- Departments of Physiology and Pharmacology Texas A&M Veterinary Medical Center, Texas A&M University, College Station, TX 77843
| | - Ann B Kier
- Pathobiology, Texas A&M Veterinary Medical Center, Texas A&M University, College Station, TX 77843
| | - Friedhelm Schroeder
- Departments of Physiology and Pharmacology Texas A&M Veterinary Medical Center, Texas A&M University, College Station, TX 77843
| |
Collapse
|
12
|
Nam DE, Kim OK, Park YK, Lee J. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts. J Med Food 2016; 19:62-7. [DOI: 10.1089/jmf.2015.3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Da-Eun Nam
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi, Korea
| | - Ok-Kyung Kim
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi, Korea
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi, Korea
| |
Collapse
|
13
|
Phytol in a pharma-medico-stance. Chem Biol Interact 2015; 240:60-73. [DOI: 10.1016/j.cbi.2015.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 01/02/2023]
|
14
|
Wanders RJA, Ferdinandusse S, Ebberink MS, Waterham HR. Phytanoyl-CoA Hydroxylase: A 2-Oxoglutarate-Dependent Dioxygenase Crucial for Fatty Acid Alpha-Oxidation in Humans. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phytanoyl-CoA hydroxylase belongs to the family of 2-oxoglutarate-dependent dioxygenases and plays a crucial role in the α-oxidation of fatty acids. The complete α-oxidation pathway involves five different enzymes localized in peroxisomes. Thus far, phytanoyl-CoA hydroxylase deficiency has remained the only genetically determined inborn error of metabolism affecting the α-oxidation pathway. In this chapter we describe the current state of knowledge on fatty acid α-oxidation with special emphasis on phytanoyl-CoA hydroxylase and its deficiency in Refsum disease.
Collapse
Affiliation(s)
- Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Merel S. Ebberink
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| |
Collapse
|
15
|
Cerqueira DM, Tran U, Romaker D, Abreu JG, Wessely O. Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts. Dev Biol 2014; 394:54-64. [PMID: 25127994 DOI: 10.1016/j.ydbio.2014.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/29/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022]
Abstract
The kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney.
Collapse
Affiliation(s)
- Débora M Cerqueira
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA; Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas-CCS, Av. Carlos Chagas Filho, 373 bloco F2 sala 15, Rio de Janeiro 21949-590, Brazil
| | - Uyen Tran
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA
| | - Daniel Romaker
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA
| | - José G Abreu
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas-CCS, Av. Carlos Chagas Filho, 373 bloco F2 sala 15, Rio de Janeiro 21949-590, Brazil
| | - Oliver Wessely
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Qu X, Allan A, Chui G, Hutchings TJ, Jiao P, Johnson L, Leung WY, Li PK, Steel GR, Thompson AS, Threadgill MD, Woodman TJ, Lloyd MD. Hydrolysis of ibuprofenoyl-CoA and other 2-APA-CoA esters by human acyl-CoA thioesterases-1 and -2 and their possible role in the chiral inversion of profens. Biochem Pharmacol 2013; 86:1621-5. [PMID: 24041740 DOI: 10.1016/j.bcp.2013.08.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Ibuprofen and related 2-arylpropanoic acid (2-APA) drugs are often given as a racemic mixture and the R-enantiomers undergo activation in vivo by metabolic chiral inversion. The chiral inversion pathway consists of conversion of the drug to the coenzyme A ester (by an acyl-CoA synthetase) followed by chiral inversion by α-methylacyl-CoA racemase (AMACR; P504S). The enzymes responsible for hydrolysis of the product S-2-APA-CoA ester to the active S-2-APA drug have not been identified. In this study, conversion of a variety of 2-APA-CoA esters by human acyl-CoA thioesterase-1 and -2 (ACOT-1 and -2) was investigated. Human recombinant ACOT-1 and -2 (ACOT-1 and -2) were both able to efficiently hydrolyse a variety of 2-APA-CoA substrates. Studies with the model substrates R- and S-2-methylmyristoyl-CoA showed that both enzymes were able to efficiently hydrolyse both of the epimeric substrates with (2R)- and (2S)- methyl groups. ACOT-1 is located in the cytosol and is able to hydrolyse 2-APA-CoA esters exported from the mitochondria and peroxisomes for inhibition of cyclo-oxygenase-1 and -2 in the endoplasmic reticulum. It is a prime candidate to be the enzyme responsible for the pharmacological action of chiral inverted drugs. ACOT-2 activity may be important in 2-APA toxicity effects and for the regulation of mitochondrial free coenzyme A levels. These results support the idea that 2-APA drugs undergo chiral inversion via a common pathway.
Collapse
Affiliation(s)
- Xiao Qu
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ceramide synthesis in the epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:422-34. [PMID: 23988654 DOI: 10.1016/j.bbalip.2013.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022]
Abstract
The epidermis and in particular its outermost layer the stratum corneum provides terrestrial vertebrates with a pivotal defensive barrier against water loss, xenobiotics and harmful pathogens. A vital demand for this epidermal permeability barrier is the lipid-enriched lamellar matrix that embeds the enucleated corneocytes. Ceramides are the major components of these highly ordered intercellular lamellar structures, in which linoleic acid- and protein-esterified ceramides are crucial for structuring and maintaining skin barrier integrity. In this review, we describe the fascinating diversity of epidermal ceramides including 1-O-acylceramides. We focus on epidermal ceramide biosynthesis emphasizing its metabolic and topological requirements and discuss enzymes that may be involved in α- and ω-hydroxylation. Finally, we turn to epidermal ceramide regulation, highlighting transcription factors and liposensors recently described to play crucial roles in modulating skin lipid metabolism and epidermal barrier homeostasis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier.
Collapse
|
18
|
Baes M, Van Veldhoven PP. Mouse models for peroxisome biogenesis defects and β-oxidation enzyme deficiencies. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1489-500. [DOI: 10.1016/j.bbadis.2012.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/22/2012] [Accepted: 03/06/2012] [Indexed: 12/26/2022]
|
19
|
Wanders RJA, Komen J, Ferdinandusse S. Phytanic acid metabolism in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:498-507. [PMID: 21683154 DOI: 10.1016/j.bbalip.2011.06.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
20
|
Maier H, Meixner M, Hartmann D, Sandhoff R, Wang-Eckhardt L, Zöller I, Gieselmann V, Eckhardt M. Normal fur development and sebum production depends on fatty acid 2-hydroxylase expression in sebaceous glands. J Biol Chem 2011; 286:25922-34. [PMID: 21628453 DOI: 10.1074/jbc.m111.231977] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Hydroxylated fatty acid (HFA)-containing sphingolipids are abundant in mammalian skin and are believed to play a role in the formation of the epidermal barrier. Fatty acid 2-hydroxylase (FA2H), required for the synthesis of 2-hydroxylated sphingolipids in various organs, is highly expressed in skin, and previous in vitro studies demonstrated its role in the synthesis of HFA sphingolipids in human keratinocytes. Unexpectedly, however, mice deficient in FA2H did not show significant changes in their epidermal HFA sphingolipids. Expression of FA2H in murine skin was restricted to the sebaceous glands, where it was required for synthesis of 2-hydroxylated glucosylceramide and a fraction of type II wax diesters. Absence of FA2H resulted in hyperproliferation of sebocytes and enlarged sebaceous glands during hair follicle morphogenesis and anagen (active growth phase) in adult mice. This was accompanied by a significant up-regulation of the epidermal growth factor receptor ligand epigen in sebocytes. Loss of FA2H significantly altered the composition and physicochemical properties of sebum, which often blocked the hair canal, apparently causing a delay in the hair fiber exit. Furthermore, mice lacking FA2H displayed a cycling alopecia with hair loss in telogen. These results underline the importance of the sebaceous glands and suggest a role of specific sebaceous gland or sebum lipids, synthesized by FA2H, in the hair follicle homeostasis.
Collapse
Affiliation(s)
- Helena Maier
- Institute of Biochemistry and Molecular Biology, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cui Y, Li Z, Zhao E, Jia Y, Li D, Zhang J, Cui N. Overexpression of Sterol Carrier Protein 2 in patients with hereditary cholesterol gallstones. BMC Gastroenterol 2011; 11:10. [PMID: 21310066 PMCID: PMC3042972 DOI: 10.1186/1471-230x-11-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 02/10/2011] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Lithogenic bile is the major cause of cholesterol gallstone, but its pathogenesis is not well understood. The hypersecretion of biliary cholesterol is believed to be an important cause of lithogenic bile. Sterol Carrier Protein 2 (SCP2) participates in cholesterol trafficking and lipid metabolism in hepatocytes and may play a key role in cholesterol gallstone formation. METHODS 21 cholesterol gallstone genealogies were studied to investigate the expression of SCP2 gene in liver tissue of hereditary and non-hereditary cholesterol gallstone patients as well as non-gallstone patients. The mRNA expression of liver SCP2 in 28 hereditary patients, 30 non-hereditary cholesterol gallstone patients and 32 non-gallstone patients was measured by Reverse Transcription Polymerase Chain Reaction (RT-PCR). The protein expression of liver SCP2 was also detected in all the patients by Western blotting. At the same time, the bile was also analyzed with biochemical techniques and the Cholesterol Saturation Index (CSI) was calculated. RESULTS The mRNA and protein expression of SCP2 was significantly increased in cholesterol gallstone patients compared to those of non-gallstone patients. Moreover, SCP2 was expressed at higher levels in hereditary cholesterol gallstone patients than that of non-hereditary cholesterol gallstone patients. There was significant difference observed in CSI between cholesterol gallstone patients and non-gallstone patients, but not in CSI between hereditary and non-hereditary cholesterol gallstone patients. CONCLUSIONS SCP2 was overexpressed in hereditary cholesterol gallstone patients compared to non-hereditary cholesterol gallstone patients. This finding indicated that SCP2 might be one of the genetic factors contributing to cholesterol gallstone formation, which was always accompanied by the increase of bile lithogenicity.
Collapse
Affiliation(s)
- YunFeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, 122 Sanwei Road Nankai District, Tianjin 300100, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Studies on substrate specificity of Jmjd2a-c histone demethylases. Biochem Biophys Res Commun 2011; 405:588-92. [DOI: 10.1016/j.bbrc.2011.01.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 11/20/2022]
|
23
|
Guo L, Zhou D, Pryse KM, Okunade AL, Su X. Fatty acid 2-hydroxylase mediates diffusional mobility of Raft-associated lipids, GLUT4 level, and lipogenesis in 3T3-L1 adipocytes. J Biol Chem 2010; 285:25438-47. [PMID: 20519515 PMCID: PMC2919107 DOI: 10.1074/jbc.m110.119933] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/26/2010] [Indexed: 01/27/2023] Open
Abstract
Straight chain fatty acid alpha-oxidation increases during differentiation of 3T3-L1 adipocytes, leading to a marked accumulation of odd chain length fatty acyl moieties. Potential roles of this pathway in adipocyte differentiation and lipogenesis are unknown. Mammalian fatty acid 2-hydroxylase (FA2H) was recently identified and suggested to catalyze the initial step of straight chain fatty acid alpha-oxidation. Accordingly, we examined whether FA2H modulates adipocyte differentiation and lipogenesis in mature adipocytes. FA2H level markedly increases during differentiation of 3T3-L1 adipocytes, and small interfering RNAs against FA2H inhibit the differentiation process. In mature adipocytes, depletion of FA2H inhibits basal and insulin-stimulated glucose uptake and lipogenesis, which are partially rescued by the enzymatic product of FA2H, 2-hydroxy palmitic acid. Expression of fatty-acid synthase and SCD1 was decreased in FA2H-depleted cells, and levels of GLUT4 and insulin receptor proteins were reduced. 2-Hydroxy fatty acids are enriched in cellular sphingolipids, which are components of membrane rafts. Accelerated diffusional mobility of raft-associated lipids was shown to enhance degradation of GLUT4 and insulin receptor in adipocytes. Consistent with this, depletion of FA2H appeared to increase raft lipid mobility as it significantly accelerated the rates of fluorescence recovery after photobleaching measurements of lipid rafts labeled with Alexa 488-conjugated cholera toxin subunit B. Moreover, the enhanced recovery rates were partially reversed by treatment with 2-hydroxy palmitic acid. In conclusion, our findings document the novel role of FA2H in adipocyte lipogenesis possibly by modulation of raft fluidity and level of GLUT4.
Collapse
Affiliation(s)
- Lin Guo
- From the Department of Internal Medicine, Center for Human Nutrition, and
| | - Dequan Zhou
- From the Department of Internal Medicine, Center for Human Nutrition, and
| | | | - Adewole L. Okunade
- From the Department of Internal Medicine, Center for Human Nutrition, and
| | - Xiong Su
- From the Department of Internal Medicine, Center for Human Nutrition, and
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
24
|
Hama H. Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:405-14. [PMID: 20026285 DOI: 10.1016/j.bbalip.2009.12.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 02/02/2023]
Abstract
2-Hydroxy fatty acids (hFA) are important components of a subset of mammalian sphingolipids. The presence of hFA in sphingolipids is best described in the nervous system, epidermis, and kidney. However, the literature also indicates that various hFA-sphingolipids are present in additional tissues and cell types, as well as in tumors. Biosynthesis of hFA-sphingolipids requires fatty acid 2-hydroyxlase, and degradation of hFA-sphingolipids depends, at least in part, on lysosomal acid ceramidase and the peroxisomal fatty acid alpha-oxidation pathway. Mutations in the fatty acid 2-hydroxylase gene, FA2H, have been associated with leukodystrophy and spastic paraparesis in humans, underscoring the importance of hFA-sphingolipids in the nervous system. In the epidermis, hFA-ceramides are essential for the permeability barrier function. Physiological function of hFA-sphingolipids in other organs remains largely unknown. Recent evidence indicates that hFA-sphingolipids have specific roles in cell signaling.
Collapse
Affiliation(s)
- Hiroko Hama
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
25
|
Ponnaluri VKC, Vavilala DT, Putty S, Gutheil WG, Mukherji M. Identification of non-histone substrates for JMJD2A-C histone demethylases. Biochem Biophys Res Commun 2009; 390:280-4. [PMID: 19799855 DOI: 10.1016/j.bbrc.2009.09.107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Recent studies have shown that some Jumonji domain containing proteins demethylate tri- and dimethylated histone lysines by catalyzing a dioxygenase reaction. Here we report the substrate specificity of Jumonji domain-2 family histone demethylases (JMJD2A-C). A candidate substrate-based approach demonstrated that in addition to its known substrate, trimethylated histone H3-lysine-9, JMJD2A-C demethylate trimethylated lysine containing peptides from WIZ, CDYL1, CSB and G9a proteins, all constituents of transcription repression complexes. Our results are consistent with lax substrate specificities observed for the iron (II), 2-oxoglutarate-dependent dioxygenases, and shed new light on signaling pathways regulated by Jumonji domain-2 family histone demethylases during epigenetic transcriptional regulation.
Collapse
Affiliation(s)
- V K Chaithanya Ponnaluri
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA
| | | | | | | | | |
Collapse
|
26
|
Intracellular sterol dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:636-45. [PMID: 19286471 DOI: 10.1016/j.bbalip.2009.03.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 01/17/2023]
Abstract
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.
Collapse
|
27
|
Lige B, Jayabalasingham B, Zhang H, Pypaert M, Coppens I. Role of an ancestral d-bifunctional protein containing two sterol-carrier protein-2 domains in lipid uptake and trafficking in Toxoplasma. Mol Biol Cell 2008; 20:658-72. [PMID: 19005217 DOI: 10.1091/mbc.e08-05-0482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The inability to synthesize cholesterol is universal among protozoa. The intracellular pathogen Toxoplasma depends on host lipoprotein-derived cholesterol to replicate in mammalian cells. Mechanisms of cholesterol trafficking in this parasite must be important for delivery to proper organelles. We characterized a unique d-bifunctional protein variant expressed by Toxoplasma consisting of one N-terminal d-3-hydroxyacyl-CoA dehydrogenase domain fused to two tandem sterol carrier protein-2 (SCP-2) domains. This multidomain protein undergoes multiple cleavage steps to release free SCP-2. The most C-terminal SCP-2 carries a PTS1 that directs the protein to vesicles before processing. Abrogation of this signal results in SCP-2 accumulation in the cytoplasm. Cholesterol specifically binds to parasite SCP-2 but with 10-fold lower affinity than phosphatidylcholine. In mammalian cells and Toxoplasma, the two parasite SCP-2 domains promote the circulation of various lipids between organelles and to the surface. Compared with wild-type parasites, TgHAD-2SCP-2-transfected parasites replicate faster and show enhanced uptake of cholesterol and oleate, which are incorporated into neutral lipids that accumulate at the basal end of Toxoplasma. This work provides the first evidence that the lipid transfer capability of an ancestral eukaryotic SCP-2 domain can influence the lipid metabolism of an intracellular pathogen to promote its multiplication in mammalian cells.
Collapse
Affiliation(s)
- Bao Lige
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
28
|
Lloyd MD, Darley DJ, Wierzbicki AS, Threadgill MD. Alpha-methylacyl-CoA racemase--an 'obscure' metabolic enzyme takes centre stage. FEBS J 2008; 275:1089-102. [PMID: 18279392 DOI: 10.1111/j.1742-4658.2008.06290.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Branched-chain lipids are important components of the human diet and are used as drug molecules, e.g. ibuprofen. Owing to the presence of methyl groups on their carbon chains, they cannot be metabolized in mitochondria, and instead are processed and degraded in peroxisomes. Several different oxidative degradation pathways for these lipids are known, including alpha-oxidation, beta-oxidation, and omega-oxidation. Dietary branched-chain lipids (especially phytanic acid) have attracted much attention in recent years, due to their link with prostate, breast, colon and other cancers as well as their role in neurological disease. A central role in all the metabolic pathways is played by alpha-methylacyl-CoA racemase (AMACR), which regulates metabolism of these lipids and drugs. AMACR catalyses the chiral inversion of a diverse number of 2-methyl acids (as their CoA esters), and regulates the entry of branched-chain lipids into the peroxisomal and mitochondrial beta-oxidation pathways. This review brings together advances in the different disciplines, and considers new research in both the metabolism of branched-chain lipids and their role in cancer, with particular emphasis on the crucial role played by AMACR. These recent advances enable new preventative and treatment strategies for cancer.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Pharmacy & Pharmacology, Medicinal Chemistry, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
29
|
Dr Brian Gibberd (1931-2006): a pioneering clinician in Refsum's disease. Biochem Soc Trans 2007; 35:862-4. [PMID: 17956233 DOI: 10.1042/bst0350862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Branched-chain fatty acids are common components of the human diet (phytanic acid) or are produced endogenously (bile acids), and are also used as medicines (ibuprofen). Owing to their branched-chain structure, they are metabolized in peroxisomes. In the case of phytanic acid, the presence of a 3-methyl group prevents beta-oxidation, and instead it undergoes one round of alpha-oxidation to allow further metabolism. Defects in this process give rise to neurological diseases and cancer. Dr Brian F. Gibberd was one of the first U.K. physicians to recognize the importance of these peroxisomal metabolic pathways in clinical medicine, and pioneered their study. This obituary recognizes his many achievements in neurology and especially in the treatment of peroxisomal disorders. The following four papers from this mini-symposium entitled 'Advances in peroxisomal alpha-, beta- and omega-oxidation' describe work done in this area as part of a collaborative study in which Dr Gibberd played a key role. This work was presented as part of the Cardiovascular Bioscience focused topic at the Life Sciences 2007 conference, and this mini-symposium was dedicated to Dr Gibberd and his important contributions to this field.
Collapse
|
30
|
Structural and mechanistic studies on the peroxisomal oxygenase phytanoyl-CoA 2-hydroxylase (PhyH). Biochem Soc Trans 2007; 35:870-5. [DOI: 10.1042/bst0350870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytanic acid (PA) is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric β-methyl group, PA cannot be metabolized by β-oxidation. Instead, it is metabolized in peroxisomes via α-oxidation to give pristanic acid, which is then oxidized by β-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase, also known as PAHX), an Fe(II) and 2OG (2-oxoglutarate) oxygenase, catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH ablate its role in α-oxidation, resulting in PA accumulation and ARD (adult Refsum's disease). The structure and function of PhyH is discussed in terms of its clinical importance and unusual selectivity. Most point mutations of PhyH causing ARD cluster in two distinct groups around the Fe(II)- and 2OG-binding sites. Therapaeutic possibilities for the treatment of Refsum's disease involving PhyH are discussed.
Collapse
|
31
|
Kurochkin IV, Mizuno Y, Konagaya A, Sakaki Y, Schönbach C, Okazaki Y. Novel peroxisomal protease Tysnd1 processes PTS1- and PTS2-containing enzymes involved in beta-oxidation of fatty acids. EMBO J 2007; 26:835-45. [PMID: 17255948 PMCID: PMC1794383 DOI: 10.1038/sj.emboj.7601525] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 12/05/2006] [Indexed: 12/21/2022] Open
Abstract
Peroxisomes play an important role in beta-oxidation of fatty acids. All peroxisomal matrix proteins are synthesized in the cytosol and post-translationally sorted to the organelle. Two distinct peroxisomal signal targeting sequences (PTSs), the C-terminal PTS1 and the N-terminal PTS2, have been defined. Import of precursor PTS2 proteins into the peroxisomes is accompanied by a proteolytic removal of the N-terminal targeting sequence. Although the PTS1 signal is preserved upon translocation, many PTS1 proteins undergo a highly selective and limited cleavage. Here, we demonstrate that Tysnd1, a previously uncharacterized protein, is responsible both for the removal of the leader peptide from PTS2 proteins and for the specific processing of PTS1 proteins. All of the identified Tysnd1 substrates catalyze peroxisomal beta-oxidation. Tysnd1 itself undergoes processing through the removal of the presumably inhibitory N-terminal fragment. Tysnd1 expression is induced by the proliferator-activated receptor alpha agonist bezafibrate, along with the increase in its substrates. A model is proposed where the Tysnd1-mediated processing of the peroxisomal enzymes promotes their assembly into a supramolecular complex to enhance the rate of beta-oxidation.
Collapse
Affiliation(s)
- Igor V Kurochkin
- Immunoinformatics Team, Advanced Genome Information Group, RIKEN Genomic Sciences Center, Yokohama, Japan
- Present address: Genome Annotation and Comparative Analysis Team, Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
- IV Kurochkin, Genome Annotation and Comparative Analysis Team, Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Tel.: +81 45 503 9111 (ext 8106); Fax: +81 45 503 9176; E-mail:
| | - Yumi Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | | | - Yoshiyuki Sakaki
- Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Yokohama, Japan
| | - Christian Schönbach
- Immunoinformatics Team, Advanced Genome Information Group, RIKEN Genomic Sciences Center, Yokohama, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-city, Saitama 350-1241, Japan. Tel.: +81 42 985 7319; Fax: +81 42 985 7329; E-mail:
| |
Collapse
|
32
|
Jansen GA, Wanders RJA. Alpha-Oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1403-12. [PMID: 16934890 DOI: 10.1016/j.bbamcr.2006.07.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/24/2006] [Indexed: 11/15/2022]
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched chain fatty acid, which is a constituent of the human diet. The presence of the 3-methyl group of phytanic acid prevents degradation by beta-oxidation. Instead, the terminal carboxyl group is first removed by alpha-oxidation. The mechanism of the alpha-oxidation pathway and the enzymes involved are described in this review.
Collapse
Affiliation(s)
- Gerbert A Jansen
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
33
|
McDonough MA, Kavanagh KL, Butler D, Searls T, Oppermann U, Schofield CJ. Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease. J Biol Chem 2005; 280:41101-10. [PMID: 16186124 DOI: 10.1074/jbc.m507528200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Refsum disease (RD), a neurological syndrome characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia, is caused by elevated levels of phytanic acid. Many cases of RD are associated with mutations in phytanoyl-CoA 2-hydroxylase (PAHX), an Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the initial alpha-oxidation step in the degradation of phytenic acid in peroxisomes. We describe the x-ray crystallographic structure of PAHX to 2.5 A resolution complexed with Fe(II) and 2OG and predict the molecular consequences of mutations causing RD. Like other 2OG oxygenases, PAHX possesses a double-stranded beta-helix core, which supports three iron binding ligands (His(175), Asp(177), and His(264)); the 2-oxoacid group of 2OG binds to the Fe(II) in a bidentate manner. The manner in which PAHX binds to Fe(II) and 2OG together with the presence of a cysteine residue (Cys(191)) 6.7 A from the Fe(II) and two further histidine residues (His(155) and His(281)) at its active site distinguishes it from that of the other human 2OG oxygenase for which structures are available, factor inhibiting hypoxia-inducible factor. Of the 15 PAHX residues observed to be mutated in RD patients, 11 cluster in two distinct groups around the Fe(II) (Pro(173), His(175), Gln(176), Asp(177), and His(220)) and 2OG binding sites (Trp(193), Glu(197), Ile(199), Gly(204), Asn(269), and Arg(275)). PAHX may be the first of a new subfamily of coenzyme A-binding 2OG oxygenases.
Collapse
Affiliation(s)
- Michael A McDonough
- Oxford Centre for Molecular Sciences and Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Komen JC, Duran M, Wanders RJA. Characterization of phytanic acid omega-hydroxylation in human liver microsomes. Mol Genet Metab 2005; 85:190-5. [PMID: 15979030 DOI: 10.1016/j.ymgme.2005.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 02/07/2005] [Indexed: 11/28/2022]
Abstract
Phytanic acid is a 3-methyl branched-chain fatty acid which originates from dietary sources. Since the 3-methyl group blocks regular beta-oxidation, it is broken down by peroxisomal alpha-oxidation. Adult Refsum disease patients accumulate phytanic acid as a result of an impairment in peroxisomal alpha-oxidation, caused by the deficient activity of the enzyme phytanoyl-CoA hydroxylase in the majority of patients. In this paper, we studied an alternative degradation route for phytanic acid, namely omega-oxidation. During omega-oxidation a fatty acid is hydroxylated at its omega-end by a member of the cytochrome P450 multi-enzyme family. Subsequently, an alcohol dehydrogenase converts the formed hydroxyl group into an aldehyde, which is then converted into a carboxyl-group by an aldehyde dehydrogenase. In case of phytanic acid omega-hydroxylation would lead to the formation of phytanedioic acid, which can be degraded by beta-oxidation from the omega-end. Here, we show that phytanic acid indeed undergoes omega- and (omega-1)-hydroxylation in pooled human liver microsomes in an NADPH-dependent manner with a ratio of 15:1. Studies with imidazole antimycotics indicate that these reactions are catalyzed by one or more cytochrome P450 enzymes. Induction of the cytochrome P450 involved in phytanic acid omega-hydroxylation may increase the flux through the omega-oxidation pathway, causing increased clearance of phytanic acid in ARD patients. Hence, this alternative catabolic pathway is of potential therapeutic relevance.
Collapse
Affiliation(s)
- J C Komen
- Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Childrens Hospital, University of Amsterdam, Academic Medical Center, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
Searls T, Butler D, Chien W, Mukherji M, Lloyd MD, Schofield CJ. Studies on the specificity of unprocessed and mature forms of phytanoyl-CoA 2-hydroxylase and mutation of the iron binding ligands. J Lipid Res 2005; 46:1660-7. [PMID: 15930519 DOI: 10.1194/jlr.m500034-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mature form of phytanoyl-coenzyme A 2-hydroxylase (PAHX), a nonheme Fe(II)- and 2-oxoglutarate-dependent oxygenase, catalyzes the alpha-hydroxylation of phytanoyl-CoA within peroxisomes. Mutations in PAHX result in some forms of adult Refsum's disease. Unprocessed PAHX (pro-PAHX) contains an N-terminal peroxisomal targeting sequence that is cleaved to give mature PAHX (mat-PAHX). Previous studies have implied a difference in the substrate specificity of the unprocessed and mature forms of PAHX. We demonstrate that both forms are able to hydroxylate a range of CoA derivatives, but under the same assay conditions, the N-terminal hexa-His-tagged unprocessed form is less active than the nontagged mature form. Analyses of the assay conditions suggest a rationale for the lack of activity previously reported for some substrates (e.g. isovaleryl-CoA) for the (His)6pro-PAHX. Site-directed mutagenesis was used to support proposals for the identity of the iron binding ligands (His-175, Asp-177, His-264) of the 2-His-1-carboxylate motif of PAHX. Mutation of other histidine residues (His-213, His-220, His-259) suggested that these residues were not involved in Fe(II) binding.
Collapse
Affiliation(s)
- Timothy Searls
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | | | | | | | | | | |
Collapse
|
36
|
Foulon V, Sniekers M, Huysmans E, Asselberghs S, Mahieu V, Mannaerts GP, Van Veldhoven PP, Casteels M. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: a revised pathway for the alpha-oxidation of straight chain fatty acids. J Biol Chem 2005; 280:9802-12. [PMID: 15644336 DOI: 10.1074/jbc.m413362200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Hydroxyfatty acids, constituents of brain cerebrosides and sulfatides, were previously reported to be degraded by an alpha-oxidation system, generating fatty acids shortened by one carbon atom. In the current study we used labeled and unlabeled 2-hydroxyoctadecanoic acid to reinvestigate the degradation of this class of lipids. Both in intact and broken cell systems formate was identified as a main reaction product. Furthermore, the generation of an n-1 aldehyde was demonstrated. In permeabilized rat hepatocytes and liver homogenates, studies on cofactor requirements revealed a dependence on ATP, CoA, Mg(2+), thiamine pyrophosphate, and NAD(+). Together with subcellular fractionation data and studies on recombinant enzymes, this led to the following picture. In a first step, the 2-hydroxyfatty acid is activated to an acyl-CoA; subsequently, the 2-hydroxy fatty acyl-CoA is cleaved by 2-hydroxyphytanoyl-CoA lyase, to formyl-CoA and an n-1 aldehyde. The severe inhibition of formate generation by oxythiamin treatment of intact fibroblasts indicates that cleavage through the thiamine pyrophosphate-dependent 2-hydroxyphytanoyl-CoA lyase is the main pathway for the degradation of 2-hydroxyfatty acids. The latter protein was initially characterized as an essential enzyme in the peroxisomal alpha-oxidation of 3-methyl-branched fatty acids such as phytanic acid. Our findings point to a new role for peroxisomes in mammals, i.e. the breakdown of 2-hydroxyfatty acids, at least the long chain 2-hydroxyfatty acids. Most likely, the more abundant very long chain 2-hydroxyfatty acids are degraded in a similar manner.
Collapse
Affiliation(s)
- Veerle Foulon
- Afdeling Farmacologie, Departement Celbiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lloyd MD, Mukherji M, Kershaw NJ, Chien W, Wierzbicki AS, Schofield CJ. Role of phytanoyl-CoA 2-hydroxylase in phytanic acid metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 544:303-4. [PMID: 14713244 DOI: 10.1007/978-1-4419-9072-3_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Matthew D Lloyd
- Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Foulon V, Asselberghs S, Geens W, Mannaerts GP, Casteels M, Van Veldhoven PP. Further studies on the substrate spectrum of phytanoyl-CoA hydroxylase: implications for Refsum disease? J Lipid Res 2003; 44:2349-55. [PMID: 12923223 DOI: 10.1194/jlr.m300230-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Refsum disease is a peroxisomal disorder characterized by adult-onset retinitis pigmentosa, anosmia, sensory neuropathy, ataxia, and an accumulation of phytanic acid in plasma and tissues. Approximately 45% of cases are caused by mutations in phytanoyl-CoA hydroxylase (PAHX), the enzyme catalyzing the second step in the peroxisomal alpha-oxidation of 3-methyl-branched fatty acids. To study the substrate specificity of human PAHX, different 3-alkyl-branched substrates were synthesized and incubated with a recombinant polyhistidine-tagged protein. The enzyme showed activity not only toward racemic phytanoyl-CoA and the isomers of 3-methylhexadecanoyl-CoA, but also toward a variety of other mono-branched 3-methylacyl-CoA esters with a chain length down to seven carbon atoms. Furthermore, PAHX hydroxylated a 3-ethylacyl-CoA quite well, whereas a 3-propylacyl-CoA was a poor substrate. Hydroxylation of neither 2- or 4-methyl-branched acyl-CoA esters, nor long or very long straight-chain acyl-CoA esters could be detected. The results presented in this paper show that the substrate specificity of PAHX, with regard to the length of both the acyl-chain and the branch at position 3, is broader than expected. Hence, Refsum disease might be characterized by an accumulation of not only phytanic acid but also other 3-alkyl-branched fatty acids.
Collapse
Affiliation(s)
- Veerle Foulon
- Departement Moleculaire Celbiologie, Afdeling Farmacologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
39
|
Sleeman MC, Schofield CJ. Carboxymethylproline synthase (CarB), an unusual carbon-carbon bond-forming enzyme of the crotonase superfamily involved in carbapenem biosynthesis. J Biol Chem 2003; 279:6730-6. [PMID: 14625287 DOI: 10.1074/jbc.m311824200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carboxymethylproline synthase (CarB) catalyzes the committed step in the biosynthesis of (R)-1-carbapen-2-em-3-carboxylate, the simplest member of the carbapenem family of beta-lactam antibiotics, some of which are used clinically. CarB displays sequence homology with members of the crotonase family including enoyl-CoA hydratase (crotonase) and methylmalonyl-CoA decarboxylase. The CarB reaction has been proposed to comprise condensation of acetyl coenzyme A (AcCoA) and glutamate semi-aldehyde to give (2S,5S)-carboxymethylproline ((2S,5S)-CMP). (2S,5S)-CMP is then cyclized in an ATP-driven reaction catalyzed by CarA to give a carbapenam, which is subsequently epimerized and desaturated to give a carbapenem in a CarC-mediated reaction. Here we report the purification of recombinant CarB and that it exists predominantly in a trimeric form as do other members of the crotonase family. AcCoA was not found to be a substrate for CarB. Instead malonyl-CoA was found to be a substrate, efficiently producing (2S,5S)-CMP in the presence of glutamate semi-aldehyde. In the absence of glutamate semi-aldehyde, mass spectrometric analysis indicated that CarB catalyzed the decarboxylation of malonyl-CoA to AcCoA. The reactions of CarB, CarA, and CarC were coupled in vitro demonstrating the viability of malonyl-CoA as a carbapenem precursor. CarB was also shown to accept methylmalonyl CoA as a substrate to form 6-methyl-(2S,5S)CMP, which in turn is a substrate for CarA. The implications of the results for the biosynthesis of both carbapenem-3-carboxylate and C-2/C-6-substituted carbapenems, such as thienamycin, are discussed.
Collapse
Affiliation(s)
- Mark C Sleeman
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
40
|
Mukherji M, Schofield CJ, Wierzbicki AS, Jansen GA, Wanders RJA, Lloyd MD. The chemical biology of branched-chain lipid metabolism. Prog Lipid Res 2003; 42:359-76. [PMID: 12814641 DOI: 10.1016/s0163-7827(03)00016-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian metabolism of some lipids including 3-methyl and 2-methyl branched-chain fatty acids occurs within peroxisomes. Such lipids, including phytanic and pristanic acids, are commonly found within the human diet and may be derived from chlorophyll in plant extracts. Due to the presence of a methyl group at its beta-carbon, the well-characterised beta-oxidation pathway cannot degrade phytanic acid. Instead its alpha-methylene group is oxidatively excised to give pristanic acid, which can be metabolised by the beta-oxidation pathway. Many defects in the alpha-oxidation pathway result in an accumulation of phytanic acid, leading to neurological distress, deterioration of vision, deafness, loss of coordination and eventual death. Details of the alpha-oxidation pathway have only recently been elucidated, and considerable progress has been made in understanding the detailed enzymology of one of the oxidative steps within this pathway. This review summarises these recent advances and considers the roles and likely mechanisms of the enzymes within the alpha-oxidation pathway.
Collapse
Affiliation(s)
- Mridul Mukherji
- The Oxford Centre for Molecular Sciences & The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, UK
| | | | | | | | | | | |
Collapse
|
41
|
Casteels M, Foulon V, Mannaerts GP, Van Veldhoven PP. Alpha-oxidation of 3-methyl-substituted fatty acids and its thiamine dependence. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1619-27. [PMID: 12694175 DOI: 10.1046/j.1432-1033.2003.03534.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
3-Methyl-branched fatty acids, as phytanic acid, undergo peroxisomal alpha-oxidation in which they are shortened by 1 carbon atom. This process includes four steps: activation, 2-hydroxylation, thiamine pyrophosphate dependent cleavage and aldehyde dehydrogenation. The thiamine pyrophosphate dependence of the third step is unique in peroxisomal mammalian enzymology. Human pathology due to a deficient alpha-oxidation is mostly linked to mutations in the gene coding for the second enzyme of the sequence, phytanoyl-CoA hydroxylase.
Collapse
Affiliation(s)
- Minne Casteels
- Afdeling Farmacologie, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Belgium.
| | | | | | | |
Collapse
|
42
|
Wanders RJA, Jansen GA, Lloyd MD. Phytanic acid alpha-oxidation, new insights into an old problem: a review. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:119-35. [PMID: 12633678 DOI: 10.1016/s1388-1981(03)00003-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phytanic acid (3,7,10,14-tetramethylhexadecanoic acid) is a branched-chain fatty acid which is known to accumulate in a number of different genetic diseases including Refsum disease. Due to the presence of a methyl-group at the 3-position, phytanic acid and other 3-methyl fatty acids can not undergo beta-oxidation but are first subjected to fatty acid alpha-oxidation in which the terminal carboxyl-group is released as CO(2). The mechanism of alpha-oxidation has long remained obscure but has been resolved in recent years. Furthermore, peroxisomes have been found to play an indispensable role in fatty acid alpha-oxidation, and the complete alpha-oxidation machinery is probably localized in peroxisomes. This Review describes the current state of knowledge about fatty acid alpha-oxidation in mammals with particular emphasis on the mechanism involved and the enzymology of the pathway.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital and Clinical Chemistry, Academic Medical Centre, University Hospital Amsterdam, Room F0-224, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| | | | | |
Collapse
|
43
|
Muth A, Mosandl A, Wanders RJA, Nowaczyk MJM, Baric I, Böhles H, Sewell AC. Stereoselective analysis of 2-hydroxysebacic acid in urine of patients with Zellweger syndrome and of premature infants fed with medium-chain triglycerides. J Inherit Metab Dis 2003; 26:583-92. [PMID: 14605504 DOI: 10.1023/a:1025908216639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The chiral metabolite 2-hydroxysebacic acid (2-HS) is considered to be an important diagnostic marker for peroxisomal disorders. The pathway of formation of 2-HS, excreted in increased amounts in patients with peroxisomal diseases, is not absolutely clear. Moreover, there is no information about the enantiomeric distribution of 2-HS in human urine. Here, we describe the stereodifferentiation of 2-HS in urine samples of nine patients with Zellweger syndrome (ZS), and for the first time in urine samples of premature infants fed a medium-chain triglyceride (MCT)-containing diet. Using enantioselective multidimensional gas chromatography-mass spectrometry, an increased excretion of 2R-HS was observed in all investigated ZS patients. 2-HS was also present in urine samples of premature infants fed MCT. Analogously to the ZS patients, a dominant 2R-HS excretion in the urine samples of the premature infants was identified. The formation of 2-HS is expected to result from the same or similar pathways as described for ZS patients. Additionally, we determined the absolute configuration of urinary 3-hydroxysebacic acid (3-HS) in the cases investigated. The enantioselective analysis provides further information for the diagnosis and treatment of patients with impaired peroxisomal fatty acid oxidation. Further insight into the metabolic origin and the biochemical pathway leading to these urinary metabolites is provided.
Collapse
Affiliation(s)
- A Muth
- Institute of Food Chemistry, University of Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|