1
|
Goh C, Bader A, Tran TA, Belotserkovskaya R, D’Alessandro G, Jackson S. TDP1 splice-site mutation causes HAP1 cell hypersensitivity to topoisomerase I inhibition. Nucleic Acids Res 2025; 53:gkae1163. [PMID: 39660638 PMCID: PMC11754736 DOI: 10.1093/nar/gkae1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
HAP1 is a near-haploid human cell line commonly used for mutagenesis and genome editing studies due to its hemizygous nature. We noticed an unusual hypersensitivity of HAP1 to camptothecin, an antineoplastic drug that stabilizes topoisomerase I cleavage complexes (TOP1ccs). We have attributed this hypersensitivity to a deficiency of TDP1, a key phosphodiesterase involved in resolving abortive TOP1ccs. Through whole-exome sequencing and subsequent restoration of TDP1 protein via CRISPR-Cas9 endogenous genome editing, we demonstrate that TDP1 deficiency and camptothecin hypersensitivity in HAP1 cells are a result of a splice-site mutation (TDP1 c.660-1G > A) that causes exon skipping and TDP1 loss of function. The lack of TDP1 in HAP1 cells should be considered when studying topoisomerase-associated DNA lesions and when generalizing mechanisms of DNA damage repair using HAP1 cells. Finally, we also report the generation of HAP1 STAR clones with restored TDP1 expression and function, which may be useful in further studies to probe cellular phenotypes relating to TOP1cc repair.
Collapse
Affiliation(s)
- Chen Gang Goh
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Aldo S Bader
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Tuan-Anh Tran
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | | | | | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| |
Collapse
|
2
|
Zhang M, Wang Z, Su Y, Yan W, Ouyang Y, Fan Y, Huang Y, Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem 2025; 154:108072. [PMID: 39705934 DOI: 10.1016/j.bioorg.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors. This review comprehensively outlines the structural and biological features of TDP1, the substrates involved in its catalytic hydrolysis, and its potential as a therapeutic target in oncology. Additionally, we summarize the various screening methods used to identify TDP1 inhibitors, alongside the latest advancements in TDP1 inhibitor research.
Collapse
Affiliation(s)
- Meimei Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ziqiang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Su
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wenbo Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, School of Medicine, Ningde Normal University, Ningde, Fujian 352100, People's Republic of China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
3
|
Wojtaszek JL, Williams RS. From the TOP: Formation, recognition and resolution of topoisomerase DNA protein crosslinks. DNA Repair (Amst) 2024; 142:103751. [PMID: 39180935 PMCID: PMC11404304 DOI: 10.1016/j.dnarep.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.
Collapse
Affiliation(s)
- Jessica L Wojtaszek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
4
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
5
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Shimizu N, Hamada Y, Morozumi R, Yamamoto J, Iwai S, Sugiyama KI, Ide H, Tsuda M. Repair of topoisomerase 1-induced DNA damage by tyrosyl-DNA phosphodiesterase 2 (TDP2) is dependent on its magnesium binding. J Biol Chem 2023; 299:104988. [PMID: 37392847 PMCID: PMC10407441 DOI: 10.1016/j.jbc.2023.104988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Topoisomerases are enzymes that relax DNA supercoiling during replication and transcription. Camptothecin, a topoisomerase 1 (TOP1) inhibitor, and its analogs trap TOP1 at the 3'-end of DNA as a DNA-bound intermediate, resulting in DNA damage that can kill cells. Drugs with this mechanism of action are widely used to treat cancers. It has previously been shown that tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs TOP1-induced DNA damage generated by camptothecin. In addition, tyrosyl-DNA phosphodiesterase 2 (TDP2) plays critical roles in repairing topoisomerase 2 (TOP2)-induced DNA damage at the 5'-end of DNA and in promoting the repair of TOP1-induced DNA damage in the absence of TDP1. However, the catalytic mechanism by which TDP2 processes TOP1-induced DNA damage has not been elucidated. In this study, we found that a similar catalytic mechanism underlies the repair of TOP1- and TOP2-induced DNA damage by TDP2, with Mg2+-TDP2 binding playing a role in both repair mechanisms. We show chain-terminating nucleoside analogs are incorporated into DNA at the 3'-end and abort DNA replication to kill cells. Furthermore, we found that Mg2+-TDP2 binding also contributes to the repair of incorporated chain-terminating nucleoside analogs. Overall, these findings reveal the role played by Mg2+-TDP2 binding in the repair of both 3'- and 5'-blocking DNA damage.
Collapse
Affiliation(s)
- Naoto Shimizu
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yusaku Hamada
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ryosuke Morozumi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
7
|
Marini V, Nikulenkov F, Samadder P, Juul S, Knudsen BR, Krejci L. MUS81 cleaves TOP1-derived lesions and other DNA-protein cross-links. BMC Biol 2023; 21:110. [PMID: 37194054 DOI: 10.1186/s12915-023-01614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND DNA-protein cross-links (DPCs) are one of the most deleterious DNA lesions, originating from various sources, including enzymatic activity. For instance, topoisomerases, which play a fundamental role in DNA metabolic processes such as replication and transcription, can be trapped and remain covalently bound to DNA in the presence of poisons or nearby DNA damage. Given the complexity of individual DPCs, numerous repair pathways have been described. The protein tyrosyl-DNA phosphodiesterase 1 (Tdp1) has been demonstrated to be responsible for removing topoisomerase 1 (Top1). Nevertheless, studies in budding yeast have indicated that alternative pathways involving Mus81, a structure-specific DNA endonuclease, could also remove Top1 and other DPCs. RESULTS This study shows that MUS81 can efficiently cleave various DNA substrates modified by fluorescein, streptavidin or proteolytically processed topoisomerase. Furthermore, the inability of MUS81 to cleave substrates bearing native TOP1 suggests that TOP1 must be either dislodged or partially degraded prior to MUS81 cleavage. We demonstrated that MUS81 could cleave a model DPC in nuclear extracts and that depletion of TDP1 in MUS81-KO cells induces sensitivity to the TOP1 poison camptothecin (CPT) and affects cell proliferation. This sensitivity is only partially suppressed by TOP1 depletion, indicating that other DPCs might require the MUS81 activity for cell proliferation. CONCLUSIONS Our data indicate that MUS81 and TDP1 play independent roles in the repair of CPT-induced lesions, thus representing new therapeutic targets for cancer cell sensitisation in combination with TOP1 inhibitors.
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekařská 53, Brno, 60200, Czech Republic
| | - Fedor Nikulenkov
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
| | - Pounami Samadder
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
| | - Sissel Juul
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic.
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekařská 53, Brno, 60200, Czech Republic.
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/C04, Brno, 625 00, Czech Republic.
| |
Collapse
|
8
|
Zhao XZ, Wang W, Lountos GT, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR. Identification of multidentate tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors that simultaneously access the DNA, protein and catalytic-binding sites by oxime diversification. RSC Chem Biol 2023; 4:334-343. [PMID: 37181631 PMCID: PMC10170656 DOI: 10.1039/d2cb00230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a member of the phospholipase D family that can downregulate the anticancer effects of the type I topoisomerase (TOP1) inhibitors by hydrolyzing the 3'-phosphodiester bond between DNA and the TOP1 residue Y723 in the critical stalled intermediate that is the foundation of TOP1 inhibitor mechanism of action. Thus, TDP1 antagonists are attractive as potential enhancers of TOP1 inhibitors. However, the open and extended nature of the TOP1-DNA substrate-binding region has made the development of TDP1 inhibitors extremely challenging. In this study, starting from our recently identified small molecule microarray (SMM)-derived TDP1-inhibitory imidazopyridine motif, we employed a click-based oxime protocol to extend the parent platform into the DNA and TOP1 peptide substrate-binding channels. We applied one-pot Groebke-Blackburn-Bienayme multicomponent reactions (GBBRs) to prepare the needed aminooxy-containing substrates. By reacting these precursors with approximately 250 aldehydes in microtiter format, we screened a library of nearly 500 oximes for their TDP1 inhibitory potencies using an in vitro florescence-based catalytic assay. Select hits were structurally explored as their triazole- and ether-based isosteres. We obtained crystal structures of two of the resulting inhibitors bound to the TDP1 catalytic domain. The structures reveal that the inhibitors form hydrogen bonds with the catalytic His-Lys-Asn triads ("HKN" motifs: H263, K265, N283 and H493, K495, N516), while simultaneously extending into both the substrate DNA and TOP1 peptide-binding grooves. This work provides a structural model for developing multivalent TDP1 inhibitors capable of binding in a tridentate fashion with a central component situated within the catalytic pocket and extensions that project into both the DNA and TOP1 peptide substrate-binding regions.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD USA
| | - Wenjie Wang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda MD USA
| | - George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research Frederick MD USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda MD USA
| | - Joseph E Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda MD USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD USA
| |
Collapse
|
9
|
Zakharenko AL, Luzina OA, Chepanova AA, Dyrkheeva NS, Salakhutdinov NF, Lavrik OI. Natural Products and Their Derivatives as Inhibitors of the DNA Repair Enzyme Tyrosyl-DNA Phosphodiesterase 1. Int J Mol Sci 2023; 24:5781. [PMID: 36982848 PMCID: PMC10051138 DOI: 10.3390/ijms24065781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nadezhda S. Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Brettrager EJ, Cuya SM, Tibbs ZE, Zhang J, Falany CN, Aller SG, van Waardenburg RCAM. N-terminal domain of tyrosyl-DNA phosphodiesterase I regulates topoisomerase I-induced toxicity in cells. Sci Rep 2023; 13:1377. [PMID: 36697463 PMCID: PMC9876888 DOI: 10.1038/s41598-023-28564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes phosphodiester-linked adducts from both ends of DNA. This includes the topoisomerase I (TOP1)-DNA covalent reaction intermediate that is the target of the camptothecin class of chemotherapeutics. Tdp1 two-step catalysis is centered on the formation of a Tdp1-DNA covalent complex (Tdp1cc) using two catalytic histidines. Here, we examined the role of the understudied, structurally undefined, and poorly conserved N-terminal domain (NTD) of Tdp1 in context of full-length protein in its ability to remove TOP1cc in cells. Using toxic Tdp1 mutants, we observed that the NTD is critical for Tdp1's ability to remove TOP1-DNA adducts in yeast. Full-length and N-terminal truncated Tdp1 mutants showed similar expression levels and cellular distribution yet an inversed TOP1-dependent toxicity. Single turnover catalysis was significantly different between full-length and truncated catalytic mutants but not wild-type enzyme, suggesting that Tdp1 mutants depend on the NTD for catalysis. These observations suggest that the NTD plays a critical role in the regulation of Tdp1 activity and interaction with protein-DNA adducts such as TOP1cc in cells. We propose that the NTD is a regulatory domain and coordinates stabilization of the DNA-adducted end within the catalytic pocket to access the phosphodiester linkage for hydrolysis.
Collapse
Affiliation(s)
- Evan J Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Zachary E Tibbs
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.,Cardiothoracic Surgery - Ascension Medical Group, 10580 North Meridian St. Ste 105, Carmel, IN, 46290, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave S., Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Zhao XZ, Wang W, Lountos GT, Tropea JE, Needle D, Pommier Y, Burke TR. Phosphonic acid-containing inhibitors of tyrosyl-DNA phosphodiesterase 1. Front Chem 2022; 10:910953. [PMID: 36051621 PMCID: PMC9424690 DOI: 10.3389/fchem.2022.910953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs stalled type I topoisomerase (TOP1)-DNA complexes by hydrolyzing the phosphodiester bond between the TOP1 Y723 residue and the 3′-phosphate of its DNA substrate. Although TDP1 antagonists could potentially reduce the dose of TOP1 inhibitors needed to achieve effective anticancer effects, the development of validated TDP1 inhibitors has proven to be challenging. This may, in part, be due to the open and extended nature of the TOP1 substrate binding region. We have previously reported imidazopyrazines and imidazopyridines that can inhibit TDP1 catalytic function in vitro. We solved the TDP1 crystal structures with bound inhibitors of this class and found that the dicarboxylic acid functionality within the N-(3,4-dicarboxyphenyl)-2-diphenylimidazo [1,2-a]pyridin-3-amine platform overlaps with aspects of phosphoryl substrate recognition. Yet phosphonic acids could potentially better-replicate cognate TOP1-DNA substrate binding interactions than carboxylic acids. As reported herein, we designed phosphonic acid-containing variants of our previously reported carboxylic acid-containing imidazopyrazine and imidazopyridine inhibitors and effected their synthesis using one-pot Groebke–Blackburn–Bienayme multicomponent reactions. We obtained crystal structures of TDP1 complexed with a subset of inhibitors. We discuss binding interactions of these inhibitors within the context of phosphate-containing substrate and carboxylic acid-based inhibitors. These compounds represent a new structural class of small molecule ligands that mimic aspects of the 3′-processed substrate that results from TDP1 catalysis.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
- *Correspondence: Xue Zhi Zhao,
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph E. Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
12
|
Yang H, Wang FT, Wu M, Wang W, Agama K, Pommier Y, An LK. Synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as tyrosyl-DNA phosphodiesterase 1 inhibitors and their anticancer activity. Bioorg Chem 2022; 123:105789. [PMID: 35429714 PMCID: PMC10557912 DOI: 10.1016/j.bioorg.2022.105789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that repairs DNA lesions caused by the trapping of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors have synergistic effect with TOP1 inhibitors in cancer cells and can overcome cancer cell resistance to TOP1 inhibitors. Here, we report the synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as selective TDP1 inhibitors and show that six compounds 14, 16, 18, 20, 25 and 27 exhibit high TDP1 inhibition potency. The most potent TDP1 inhibitor 14 (IC50 = 1.7 ± 0.24 μM) induces cellular TDP1cc formation and shows synergistic effect with topotecan in four human cancer cell lines MCF-7, A549, H460 and HepG2.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China.
| |
Collapse
|
13
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
14
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
15
|
New Hybrid Compounds Combining Fragments of Usnic Acid and Thioether Are Inhibitors of Human Enzymes TDP1, TDP2 and PARP1. Int J Mol Sci 2021; 22:ijms222111336. [PMID: 34768766 PMCID: PMC8583042 DOI: 10.3390/ijms222111336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the cleavage of the phosphodiester bond between the tyrosine residue of topoisomerase 1 (TOP1) and the 3' phosphate of DNA in the single-strand break generated by TOP1. TDP1 promotes the cleavage of the stable DNA-TOP1 complexes with the TOP1 inhibitor topotecan, which is a clinically used anticancer drug. This article reports the synthesis and study of usnic acid thioether and sulfoxide derivatives that efficiently suppress TDP1 activity, with IC50 values in the 1.4-25.2 μM range. The structure of the heterocyclic substituent introduced into the dibenzofuran core affects the TDP1 inhibitory efficiency of the compounds. A five-membered heterocyclic fragment was shown to be most pharmacophoric among the others. Sulfoxide derivatives were less cytotoxic than their thioester analogs. We observed an uncompetitive type of inhibition for the four most effective inhibitors of TDP1. The anticancer effect of TOP1 inhibitors can be enhanced by the simultaneous inhibition of PARP1, TDP1, and TDP2. Some of the compounds inhibited not only TDP1 but also TDP2 and/or PARP1, but at significantly higher concentration ranges than TDP1. Leader compound 10a showed promising synergy on HeLa cells in conjunction with the TOP1 inhibitor topotecan.
Collapse
|
16
|
Design, Synthesis, and Molecular Docking Study of New Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Combining Resin Acids and Adamantane Moieties. Pharmaceuticals (Basel) 2021; 14:ph14050422. [PMID: 34062881 PMCID: PMC8147275 DOI: 10.3390/ph14050422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
In this paper, a series of novel abietyl and dehydroabietyl ureas, thioureas, amides, and thioamides bearing adamantane moieties were designed, synthesized, and evaluated for their inhibitory activities against tyrosil-DNA-phosphodiesterase 1 (TDP1). The synthesized compounds were able to inhibit TDP1 at micromolar concentrations (0.19–2.3 µM) and demonstrated low cytotoxicity in the T98G glioma cell line. The effect of the terpene fragment, the linker structure, and the adamantane residue on the biological properties of the new compounds was investigated. Based on molecular docking results, we suppose that adamantane derivatives of resin acids bind to the TDP1 covalent intermediate, forming a hydrogen bond with Ser463 and hydrophobic contacts with the Phe259 and Trp590 residues and the oligonucleotide fragment of the substrate.
Collapse
|
17
|
Zhao XZ, Kiselev E, Lountos GT, Wang W, Tropea JE, Needle D, Hilimire TA, Schneekloth JS, Waugh DS, Pommier Y, Burke TR. Small molecule microarray identifies inhibitors of tyrosyl-DNA phosphodiesterase 1 that simultaneously access the catalytic pocket and two substrate binding sites. Chem Sci 2021; 12:3876-3884. [PMID: 34163656 PMCID: PMC8179437 DOI: 10.1039/d0sc05411a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a member of the phospholipase D family of enzymes, which catalyzes the removal of both 3′- and 5′-DNA phosphodiester adducts. Importantly, it is capable of reducing the anticancer effects of type I topoisomerase (TOP1) inhibitors by repairing the stalled covalent complexes of TOP1 with DNA. It achieves this by promoting the hydrolysis of the phosphodiester bond between the Y723 residue of human TOP1 and the 3′-phosphate of its DNA substrate. Blocking TDP1 function is an attractive means of enhancing the efficacy of TOP1 inhibitors and overcoming drug resistance. Previously, we reported the use of an X-ray crystallographic screen of more than 600 fragments to identify small molecule variations on phthalic acid and hydroxyquinoline motifs that bind within the TDP1 catalytic pocket. Yet, the majority of these compounds showed limited (millimolar) TDP1 inhibitory potencies. We now report examining a 21 000-member library of drug-like Small Molecules in Microarray (SMM) format for their ability to bind Alexa Fluor 647 (AF647)-labeled TDP1. The screen identified structurally similar N,2-diphenylimidazo[1,2-a]pyrazin-3-amines as TDP1 binders and catalytic inhibitors. We then explored the core heterocycle skeleton using one-pot Groebke–Blackburn–Bienayme multicomponent reactions and arrived at analogs having higher inhibitory potencies. Solving TDP1 co-crystal structures of a subset of compounds showed their binding at the TDP1 catalytic site, while mimicking substrate interactions. Although our original fragment screen differed significantly from the current microarray protocol, both methods identified ligand–protein interactions containing highly similar elements. Importantly inhibitors identified through the SMM approach show competitive inhibition against TDP1 and access the catalytic phosphate-binding pocket, while simultaneously providing extensions into both the substrate DNA and peptide-binding channels. As such, they represent a platform for further elaboration of trivalent ligands, that could serve as a new genre of potent TDP1 inhibitors. Using small molecule microarray TDP1 inhibitors have been identified that bind in a trivalent mode.![]()
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research Frederick MD USA
| | - Wenjie Wang
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Joseph E Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Thomas A Hilimire
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - David S Waugh
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute Frederick MD USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute Frederick MD USA
| |
Collapse
|
18
|
Tsuda M, Kitamasu K, Kumagai C, Sugiyama K, Nakano T, Ide H. Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase 1 DNA-protein crosslinks and 3'-blocking lesions in the absence of tyrosyl-DNA phosphodiesterase 1 (TDP1). DNA Repair (Amst) 2020; 91-92:102849. [PMID: 32460231 DOI: 10.1016/j.dnarep.2020.102849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/29/2023]
Abstract
Topoisomerase I (TOP1) resolves DNA topology during replication and transcription. The enzyme forms an intermediate TOP1 cleavage complex (TOP1cc) through transient TOP1-DNA-protein crosslinks. Camptothecin is a frontline anticancer agent that freezes this reaction intermediate, leading to the generation of irreversible TOP1ccs that act as 3'-blocking lesions. It is widely accepted that TOP1cc is repaired via a two-step pathway involving proteasomal degradation of TOP1cc to the crosslinked peptide, followed by removal of the TOP1cc-derived peptide from DNA by tyrosyl-DNA phosphodiesterase 1 (TDP1). In the present study, we developed an assay system to estimate repair kinetics of TOP1cc separately in the first and second steps, using monoclonal antibodies against the TOP1 protein and the TOP1 catalytic site peptide-DNA complex, respectively. Although TDP1-deficient (TDP1-/-) TK6 cells had normal kinetics of the first step, a delay in the kinetics of the second step was observed relative to that in wild-type cells. Tyrosyl-DNA phosphodiesterase 2 (TDP2) reportedly promotes the repair of TOP1-induced DNA damage in the absence of TDP1. The present assays additionally demonstrated that TDP2 promotes the second, but not the first, step of TOP1cc repair in the absence of TDP1. We also analyzed sensitivities of TK6 cells with deficiencies in TDP1 and/or TDP2 to agents that produce 3' -blocking lesions. These experiments showed that TDP1-/-TDP2-/- cells were more sensitive to the agents Azidothymidine (zidovudine), Cytarabine, Abacavir, Gemcitabine, and Trifluridine than TDP1-/- or TDP2-/- cells. Taken together, our findings confirm the roles of TDP2 in the repair of 3'-blocking lesions.
Collapse
Affiliation(s)
- Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | - Kaito Kitamasu
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Chiho Kumagai
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kazuya Sugiyama
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Toshiaki Nakano
- DNA Damage Chemistry Research Group, Institute for Quantum Life Science, National Institutes of Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
19
|
Sun Y, Saha S, Wang W, Saha LK, Huang SYN, Pommier Y. Excision repair of topoisomerase DNA-protein crosslinks (TOP-DPC). DNA Repair (Amst) 2020; 89:102837. [PMID: 32200233 DOI: 10.1016/j.dnarep.2020.102837] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Topoisomerases are essential enzymes solving DNA topological problems such as supercoils, knots and catenanes that arise from replication, transcription, chromatin remodeling and other nucleic acid metabolic processes. They are also the targets of widely used anticancer drugs (e.g. topotecan, irinotecan, enhertu, etoposide, doxorubicin, mitoxantrone) and fluoroquinolone antibiotics (e.g. ciprofloxacin and levofloxacin). Topoisomerases manipulate DNA topology by cleaving one DNA strand (TOP1 and TOP3 enzymes) or both in concert (TOP2 enzymes) through the formation of transient enzyme-DNA cleavage complexes (TOPcc) with phosphotyrosyl linkages between DNA ends and the catalytic tyrosyl residue of the enzymes. Failure in the self-resealing of TOPcc results in persistent TOPcc (which we refer it to as topoisomerase DNA-protein crosslinks (TOP-DPC)) that threaten genome integrity and lead to cancers and neurodegenerative diseases. The cell prevents the accumulation of topoisomerase-mediated DNA damage by excising TOP-DPC and ligating the associated breaks using multiple pathways conserved in eukaryotes. Tyrosyl-DNA phosphodiesterases (TDP1 and TDP2) cleave the tyrosyl-DNA bonds whereas structure-specific endonucleases such as Mre11 and XPF (Rad1) incise the DNA phosphodiester backbone to remove the TOP-DPC along with the adjacent DNA segment. The proteasome and metalloproteases of the WSS1/Spartan family typify proteolytic repair pathways that debulk TOP-DPC to make the peptide-DNA bonds accessible to the TDPs and endonucleases. The purpose of this review is to summarize our current understanding of how the cell excises TOP-DPC and why, when and where the cell recruits one specific mechanism for repairing topoisomerase-mediated DNA damage, acquiring resistance to therapeutic topoisomerase inhibitors and avoiding genomic instability, cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sourav Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Liton Kumar Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
20
|
Brettrager EJ, van Waardenburg RC. Targeting Tyrosyl-DNA phosphodiesterase I to enhance toxicity of phosphodiester linked DNA-adducts. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1153-1163. [PMID: 31875206 PMCID: PMC6929713 DOI: 10.20517/cdr.2019.91] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Our genomic DNA is under constant assault from endogenous and exogenous sources, which needs to be resolved to maintain cellular homeostasis. The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the hydrolysis of phosphodiester bonds that covalently link adducts to DNA-ends. Tdp1 utilizes two catalytic histidines to resolve a growing list of DNA-adducts. These DNA-adducts can be divided into two groups: small adducts, including oxidized nucleotides, RNA, and non-canonical nucleoside analogs, and large adducts, such as (drug-stabilized) topoisomerase- DNA covalent complexes or failed Schiff base reactions as occur between PARP1 and DNA. Many Tdp1 substrates are generated by chemotherapeutics linking Tdp1 to cancer drug resistance, making a compelling argument to develop small molecules that target Tdp1 as potential novel therapeutic agents. Tdp1's unique catalytic cycle, which is centered on the formation of Tdp1-DNA covalent reaction intermediate, allows for two principally different targeting strategies: (1) catalytic inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of DNA-adducts that enhances the effectivity of chemotherapeutics; and (2) poisoning of Tdp1 by stabilization of the Tdp1- DNA covalent reaction intermediate, which would increase the half-life of a potentially toxic DNA-adduct by preventing its resolution, analogous to topoisomerase targeted poisons such as topotecan or etoposide. The catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy best illustrates this concept; however, no small molecules have been reported for this strategy. Herein, we concisely discuss the development of Tdp1 catalytic inhibitors and their results.
Collapse
Affiliation(s)
- Evan J. Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
21
|
Lountos GT, Zhao XZ, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR, Waugh DS. Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening. Nucleic Acids Res 2019; 47:10134-10150. [PMID: 31199869 DOI: 10.1093/nar/gkz515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 02/02/2023] Open
Abstract
Tyrosyl DNA-phosphodiesterase I (TDP1) repairs type IB topoisomerase (TOP1) cleavage complexes generated by TOP1 inhibitors commonly used as anticancer agents. TDP1 also removes DNA 3' end blocking lesions generated by chain-terminating nucleosides and alkylating agents, and base oxidation both in the nuclear and mitochondrial genomes. Combination therapy with TDP1 inhibitors is proposed to synergize with topoisomerase targeting drugs to enhance selectivity against cancer cells exhibiting deficiencies in parallel DNA repair pathways. A crystallographic fragment screening campaign against the catalytic domain of TDP1 was conducted to identify new lead compounds. Crystal structures revealed two fragments that bind to the TDP1 active site and exhibit inhibitory activity against TDP1. These fragments occupy a similar position in the TDP1 active site as seen in prior crystal structures of TDP1 with bound vanadate, a transition state mimic. Using structural insights into fragment binding, several fragment derivatives have been prepared and evaluated in biochemical assays. These results demonstrate that fragment-based methods can be a highly feasible approach toward the discovery of small-molecule chemical scaffolds to target TDP1, and for the first time, we provide co-crystal structures of small molecule inhibitors bound to TDP1, which could serve for the rational development of medicinal TDP1 inhibitors.
Collapse
Affiliation(s)
- George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joseph E Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle Needle
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Mamontova EM, Zakharenko AL, Zakharova OD, Dyrkheeva NS, Volcho KP, Reynisson J, Arabshahi HJ, Salakhutdinov NF, Lavrik OI. Identification of novel inhibitors for the tyrosyl-DNA-phosphodiesterase 1 (Tdp1) mutant SCAN1 using virtual screening. Bioorg Med Chem 2019; 28:115234. [PMID: 31831297 DOI: 10.1016/j.bmc.2019.115234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
Spinocerebellar ataxia syndrome with axonal neuropathy (SCAN1) is a debilitating neurological disease that is caused by the mutation the Tyrosyl-DNA phosphodiesterase 1 (TDP1) DNA repair enzyme. The crucial His493 in TDP1's binding site is replaced with an arginine amino acid residue rendering the enzyme dysfunctional. A virtual screen was performed against the homology model of SCAN1 and seventeen compounds were identified and tested in a novel SCAN1 specific biochemical assay. Six compounds showed activity with IC50 values between 3.5 and 25.1 µM. The most active ligand 5 (3.5 µM) is a dicoumarin followed by a close structural analogue 6 at 6.0 µM. A less potent series of β-carbolines (14 and 15) was found with potency in the mid-teens. According to molecular modelling an excellent fit for the active ligands into the binding pocket is predicted. To the best of our knowledge, data on inhibitors of the mutant form of TDP1 has not been reported previously. The virtual hits were also tested for wild type TDP1 activity and all six SCAN1 inhibitors are potent for the former, e.g., ligand 5 has a measured IC50 at 99 nM. In the last decade, TDP1 is considered as a promising target for adjuvant therapy against cancer in combination with Topoisomerase 1 poisons. The active ligands are mostly non-toxic to cancer cell lines A-549, T98G and MCF-7 as well as the immortalized WI-38 human fetal lung cells. Furthermore, ligands 5 and 7, show promising synergy in conjunction with topotecan, a clinically used topoisomerase 1 anticancer drug. The active ligands 5, 7, 14 and 15 have a good balance of the physicochemical properties required for oral bioavailability making the excellent candidates for further development.
Collapse
Affiliation(s)
- E M Mamontova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation; Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - A L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - O D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - N S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - K P Volcho
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation; N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - J Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - H J Arabshahi
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - N F Salakhutdinov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation; N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| |
Collapse
|
23
|
Tyrosyl-DNA Phosphodiesterase I N-Terminal Domain Modifications and Interactions Regulate Cellular Function. Genes (Basel) 2019; 10:genes10110897. [PMID: 31698852 PMCID: PMC6895789 DOI: 10.3390/genes10110897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
The conserved eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) removes a diverse array of adducts from the end of DNA strand breaks. Tdp1 specifically catalyzes the hydrolysis of phosphodiester linked DNA-adducts. These DNA lesions range from damaged nucleotides to peptide-DNA adducts to protein-DNA covalent complexes and are products of endogenously or exogenously induced insults or simply failed reaction products. These adducts include DNA inserted ribonucleotides and non-conventional nucleotides, as well as covalent reaction intermediates of DNA topoisomerases with DNA and a Tdp1-DNA adduct in trans. This implies that Tdp1 plays a role in maintaining genome stability and cellular homeostasis. Dysregulation of Tdp1 protein levels or catalysis shifts the equilibrium to genome instability and is associated with driving human pathologies such as cancer and neurodegeneration. In this review, we highlight the function of the N-terminal domain of Tdp1. This domain is understudied, structurally unresolved, and the least conserved in amino acid sequence and length compared to the rest of the enzyme. However, over time it emerged that the N-terminal domain was post-translationally modified by, among others, phosphorylation, SUMOylation, and Ubiquitinoylation, which regulate Tdp1 protein interactions with other DNA repair associated proteins, cellular localization, and Tdp1 protein stability.
Collapse
|
24
|
Kawale AS, Povirk LF. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res 2019; 46:520-537. [PMID: 29216365 PMCID: PMC5778467 DOI: 10.1093/nar/gkx1219] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tyrosyl–DNA Phosphodiesterases 1 (TDP1) and 2 (TDP2) are eukaryotic enzymes that clean-up after aberrant topoisomerase activity. While TDP1 hydrolyzes phosphotyrosyl peptides emanating from trapped topoisomerase I (Top I) from the 3′ DNA ends, topoisomerase 2 (Top II)-induced 5′-phosphotyrosyl residues are processed by TDP2. Even though the canonical functions of TDP1 and TDP2 are complementary, they exhibit little structural or sequence similarity. Homozygous mutations in genes encoding these enzymes lead to the development of severe neurodegenerative conditions due to the accumulation of transcription-dependent topoisomerase cleavage complexes underscoring the biological significance of these enzymes in the repair of topoisomerase–DNA lesions in the nervous system. TDP1 can promiscuously process several blocked 3′ ends generated by DNA damaging agents and nucleoside analogs in addition to hydrolyzing 3′-phosphotyrosyl residues. In addition, deficiency of these enzymes causes hypersensitivity to anti-tumor topoisomerase poisons. Thus, TDP1 and TDP2 are promising therapeutic targets and their inhibitors are expected to significantly synergize the effects of current anti-tumor therapies including topoisomerase poisons and other DNA damaging agents. This review covers the structural aspects, biology and regulation of these enzymes, along with ongoing developments in the process of discovering safe and effective TDP inhibitors.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
25
|
Zakharenko A, Dyrkheeva N, Lavrik O. Dual DNA topoisomerase 1 and tyrosyl-DNA phosphodiesterase 1 inhibition for improved anticancer activity. Med Res Rev 2019; 39:1427-1441. [PMID: 31004352 DOI: 10.1002/med.21587] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that catalyzes the hydrolysis of the phosphodiester bond in the DNA-topoisomerase 1 (Top1) covalent complex and repairs some other 3'-end DNA adducts. Currently, Tdp1 functions as an important target in cancer drug design owing to its ability to break down various DNA adducts induced by chemotherapeutics. Tdp1 inhibitors may sensitize tumor cells to the action of Top1 poisons, thereby potentiating their effects. This mini-review summarizes findings from studies reporting the combined inhibition of Top1 and Tdp1. Two different approaches have been considered for developing such drug precursors.
Collapse
Affiliation(s)
- Alexandra Zakharenko
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nadezhda Dyrkheeva
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga Lavrik
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
26
|
Komarova AO, Drenichev MS, Dyrkheeva NS, Kulikova IV, Oslovsky VE, Zakharova OD, Zakharenko AL, Mikhailov SN, Lavrik OI. Novel group of tyrosyl-DNA-phosphodiesterase 1 inhibitors based on disaccharide nucleosides as drug prototypes for anti-cancer therapy. J Enzyme Inhib Med Chem 2018; 33:1415-1429. [PMID: 30191738 PMCID: PMC6136360 DOI: 10.1080/14756366.2018.1509210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 02/03/2023] Open
Abstract
A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors based on disaccharide nucleosides was identified. TDP1 plays an essential role in the resistance of cancer cells to currently used antitumour drugs based on Top1 inhibitors such as topotecan and irinotecan. The most effective inhibitors investigated in this study have IC50 values (half-maximal inhibitory concentration) in 0.4-18.5 µM range and demonstrate relatively low own cytotoxicity along with significant synergistic effect in combination with anti-cancer drug topotecan. Moreover, kinetic parameters of the enzymatic reaction and fluorescence anisotropy were measured using different types of DNA-biosensors to give a sufficient insight into the mechanism of inhibitor's action.
Collapse
Affiliation(s)
- Anastasia O. Komarova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Irina V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
27
|
Zhang XR, Wang HW, Tang WL, Zhang Y, Yang H, Hu DX, Ravji A, Marchand C, Kiselev E, Ofori-Atta K, Agama K, Pommier Y, An LK. Discovery, Synthesis, and Evaluation of Oxynitidine Derivatives as Dual Inhibitors of DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1), and Potential Antitumor Agents. J Med Chem 2018; 61:9908-9930. [PMID: 30336023 DOI: 10.1021/acs.jmedchem.8b00639] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a recently discovered enzyme repairing DNA lesions resulting from stalled topoisomerase IB (TOP1)-DNA covalent complex. Inhibiting TDP1 in conjunction with TOP1 inhibitors can boost the action of the latter. Herein, we report the discovery of the natural product oxynitidine scaffold as a novel chemotype for the development of TOP1 and TDP1 inhibitors. Three kinds of analogues, benzophenanthridinone, dihydrobenzophenanthridine, and benzophenanthridine derivatives, were synthesized and evaluated for both TOP1 and TDP1 inhibition and cytotoxicity. Analogue 19a showed high TOP1 inhibition (+++) and induced the formation of cellular TOP1cc and DNA damage, resulting in cancer cells apoptosis at nanomolar concentration range. In vivo studies indicated that 19a exhibits antitumor efficiency in HCT116 xenograft model. 41a exhibited additional TDP1 inhibition with IC50 value of 7 μM and synergistic effect with camptothecin in MCF-7 cells. This work will facilitate future efforts for the discovery of natural product-based TOP1 and TDP1 inhibitors.
Collapse
Affiliation(s)
- Xiao-Ru Zhang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Hao-Wen Wang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Wen-Lin Tang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yu Zhang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Hui Yang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - De-Xuan Hu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Azhar Ravji
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Kwabena Ofori-Atta
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| |
Collapse
|
28
|
Rehman I, Basu SM, Das SK, Bhattacharjee S, Ghosh A, Pommier Y, Das BB. PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Res 2018; 46:5601-5617. [PMID: 29718323 PMCID: PMC6009676 DOI: 10.1093/nar/gky291] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/18/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Human tyrosyl-DNA phosphodiesterases (TDP) hydrolyze the phosphodiester bond between DNA and the catalytic tyrosine of Top1 to excise topoisomerase I cleavage complexes (Top1cc) that are trapped by camptothecin (CPT) and by genotoxic DNA alterations. Here we show that the protein arginine methyltransferase PRMT5 enhances the repair of Top1cc by direct binding to TDP1 and arginine dimethylation of TDP1 at residues R361 and R586. Top1-induced replication-mediated DNA damage induces TDP1 arginine methylation, enhancing its 3'- phosphodiesterase activity. TDP1 arginine methylation also increases XRCC1 association with TDP1 in response to CPT, and the recruitment of XRCC1 to Top1cc DNA damage foci. PRMT5 knockdown cells exhibit defective TDP1 activity with marked elevation in replication-coupled CPT-induced DNA damage and lethality. Finally, methylation of R361 and R586 stimulate TDP1 repair function and promote cell survival in response to CPT. Together, our findings provide evidence for the importance of PRMT5 for the post-translational regulation of TDP1 and repair of Top1cc.
Collapse
Affiliation(s)
- Ishita Rehman
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suparna M Basu
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhendu K Das
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arijit Ghosh
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Benu Brata Das
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
29
|
Probing the evolutionary conserved residues Y204, F259, S400 and W590 that shape the catalytic groove of human TDP1 for 3'- and 5'-phosphodiester-DNA bond cleavage. DNA Repair (Amst) 2018; 66-67:64-71. [PMID: 29747024 DOI: 10.1016/j.dnarep.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an ubiquitous DNA repair enzyme present in yeast, plants and animals. It removes a broad range of blocking lesions at the ends of DNA breaks. The catalytic core of TDP1 consists in a pair of conserved histidine-lysine-asparagine (HKN) motifs. Analysis of the human TDP1 (hTDP1) crystal structure reveals potential involvement of additional residues that shape the substrate binding site. In this biochemical study, we analyzed four such conserved residues, tyrosine 204 (Y204), phenylalanine 259 (F259), serine 400 (S400) and tryptophan 590 (W590). We show that the F259 residue of hTDP1 is critical for both 3'- and 5'-phosphodiesterase catalysis. We propose that the double π-π interactions of the F259 residue with the -2 and -3 nucleobases serve to position the nucleopeptide substrate in phase with the active site histidines of hTDP1. Mutating Y204 of hTDP1 to phenylalanine (Y204F), as in fly and yeast TDP1 enzymes, had minor impact on TDP1 activity. In constrast, we find that S400 enhances 3'-processing activity while it suppresses 5'-processing activity, thereby promoting specificity for 3'-substrates. W590 is selectively important for 5'-processing. These results reveal the impact of conserved amino acid residues that participate in defining the DNA binding groove around the dual HKN catalytic core motif of TDP1, and their differential roles in facilitating the 3'- vs 5'-end processing activities of hTDP1.
Collapse
|
30
|
Salomatina OV, Popadyuk II, Zakharenko AL, Zakharova OD, Fadeev DS, Komarova NI, Reynisson J, Arabshahi HJ, Chand R, Volcho KP, Salakhutdinov NF, Lavrik OI. Novel Semisynthetic Derivatives of Bile Acids as Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Molecules 2018; 23:molecules23030679. [PMID: 29562592 PMCID: PMC6017735 DOI: 10.3390/molecules23030679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
An Important task in the treatment of oncological and neurodegenerative diseases is the search for new inhibitors of DNA repair system enzymes. Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is one of the DNA repair system enzymes involved in the removal of DNA damages caused by topoisomerase I inhibitors. Thus, reducing the activity of Tdp1 can increase the effectiveness of currently used anticancer drugs. We describe here a new class of semisynthetic small molecule Tdp1 inhibitors based on the bile acid scaffold that were originally identified by virtual screening. The influence of functional groups of bile acids (hydroxy and acetoxy groups in the steroid framework and amide fragment in the side chain) on inhibitory activity was investigated. In vitro studies demonstrate the ability of the semisynthetic derivatives to effectively inhibit Tdp1 with IC50 up to 0.29 µM. Furthermore, an excellent fit is realized for the ligands when docked into the active site of the Tdp1 enzyme.
Collapse
Affiliation(s)
- Oksana V Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, acad. Lavrentjev ave. 9, Novosibirsk 630090, Russia.
| | - Irina I Popadyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, acad. Lavrentjev ave. 9, Novosibirsk 630090, Russia.
| | - Alexandra L Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, SB RAS, acad. Lavrentjev ave. 8, Novosibirsk 630090, Russia.
| | - Olga D Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, SB RAS, acad. Lavrentjev ave. 8, Novosibirsk 630090, Russia.
| | - Dmitriy S Fadeev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, acad. Lavrentjev ave. 9, Novosibirsk 630090, Russia.
| | - Nina I Komarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, acad. Lavrentjev ave. 9, Novosibirsk 630090, Russia.
| | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - H John Arabshahi
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Raina Chand
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Konstantin P Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, acad. Lavrentjev ave. 9, Novosibirsk 630090, Russia.
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, acad. Lavrentjev ave. 9, Novosibirsk 630090, Russia.
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| | - Olga I Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, SB RAS, acad. Lavrentjev ave. 8, Novosibirsk 630090, Russia.
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
31
|
Cuya SM, Comeaux EQ, Wanzeck K, Yoon KJ, van Waardenburg RCAM. Dysregulated human Tyrosyl-DNA phosphodiesterase I acts as cellular toxin. Oncotarget 2018; 7:86660-86674. [PMID: 27893431 PMCID: PMC5349943 DOI: 10.18632/oncotarget.13528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (TDP1) hydrolyzes the drug-stabilized 3’phospho-tyrosyl bond formed between DNA topoisomerase I (TOPO1) and DNA. TDP1-mediated hydrolysis uses a nucleophilic histidine (Hisnuc) and a general acid/base histidine (Hisgab). A Tdp1Hisgab to Arg mutant identified in patients with the autosomal recessive neurodegenerative disease SCAN1 causes stabilization of the TDP1-DNA intermediate. Based on our previously reported Hisgab-substitutions inducing yeast toxicity (Gajewski et al. J. Mol. Biol. 415, 741-758, 2012), we propose that converting TDP1 into a cellular poison by stabilizing the covalent enzyme-DNA intermediate is a novel therapeutic strategy for cancer treatment. Here, we analyzed the toxic effects of two TDP1 catalytic mutants in HEK293 cells. Expression of human Tdp1HisnucAla and Tdp1HisgabAsn mutants results in stabilization of the covalent TDP1-DNA intermediate and induces cytotoxicity. Moreover, these mutants display reduced in vitro catalytic activity compared to wild type. Co-treatment of Tdp1mutant with topotecan shows more than additive cytotoxicity. Overall, these results support the hypothesis that stabilization of the TDP1-DNA covalent intermediate is a potential anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Evan Q Comeaux
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Keith Wanzeck
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.,Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
32
|
Flett FJ, Ruksenaite E, Armstrong LA, Bharati S, Carloni R, Morris ER, Mackay CL, Interthal H, Richardson JM. Structural basis for DNA 3'-end processing by human tyrosyl-DNA phosphodiesterase 1. Nat Commun 2018; 9:24. [PMID: 29295983 PMCID: PMC5750209 DOI: 10.1038/s41467-017-02530-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/06/2017] [Indexed: 11/15/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA 3'-end processing enzyme that repairs topoisomerase 1B-induced DNA damage. We use a new tool combining site-specific DNA-protein cross-linking with mass spectrometry to identify Tdp1 interactions with DNA. A conserved phenylalanine (F259) of Tdp1, required for efficient DNA processing in biochemical assays, cross-links to defined positions in DNA substrates. Crystal structures of Tdp1-DNA complexes capture the DNA repair machinery after 3'-end cleavage; these reveal how Tdp1 coordinates the 3'-phosphorylated product of nucleosidase activity and accommodates duplex DNA. A hydrophobic wedge splits the DNA ends, directing the scissile strand through a channel towards the active site. The F259 side-chain stacks against the -3 base pair, delimiting the junction of duplexed and melted DNA, and fixes the scissile strand in the channel. Our results explain why Tdp1 cleavage is non-processive and provide a molecular basis for DNA 3'-end processing by Tdp1.
Collapse
Affiliation(s)
- Fiona J Flett
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Emilija Ruksenaite
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Lee A Armstrong
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Shipra Bharati
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Roberta Carloni
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Elizabeth R Morris
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Heidrun Interthal
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
33
|
Barakat A, Islam MS, Ghawas HM, Al-Majid AM, El-Senduny FF, Badria FA, Elshaier YAM, Ghabbour HA. Substituted spirooxindole derivatives as potent anticancer agents through inhibition of phosphodiesterase 1. RSC Adv 2018; 8:14335-14346. [PMID: 35540737 PMCID: PMC9079959 DOI: 10.1039/c8ra02358a] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/02/2018] [Indexed: 12/02/2022] Open
Abstract
Spirooxindole is a promising chemo therapeutic agent. Possible targets include cancers of the liver, prostate, lung, stomach, colon, and breast. Here, we demonstrate a one-pot three-component reaction via a [3 + 2] cycloaddition/ring contraction sequence of a dipolarophile (activated alkene) with in situ-generated azomethine ylide (1,3-dipoles) without the use of any catalyst. The reaction provides efficient access to synthetically useful and biologically important spirooxindoles in high yield (69–94%) with high diastereoselectivity. The synthesized compounds were subjected to cytotoxicity evaluation using colorectal cancer (HCT-116), hepatocellular carcinoma (HepG2), and prostate cancer (PC-3) cells. Compounds 4i, 4j, and 4k showed potent cytotoxic activity and high selectivity against HCT-116 cells when compared to cisplatin. Meanwhile compound 4d retained high cytotoxic activity and selectivity against HepG2 and PC-3 cells in comparison to cisplatin. The mechanism of compound 4d was further studied using phosphodiesterase 1 enzyme and showed 74.2% inhibitory activity. A possible binding mode for compound 4d to PDE-1 was investigated by molecular modeling using OpenEye software. Pose predictions for the active compounds were demonstrated by ROCS alignments. Compound 4d has a special geometry and differs from other active compounds. Spirooxindole is a promising chemo therapeutic agent. Possible targets include cancers of the liver, prostate, lung, stomach, colon, and breast.![]()
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | - Hussien Mansur Ghawas
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | | | - Farid A. Badria
- Department of Pharmacognosy
- Faculty of Pharmacy
- Mansoura University
- Mansoura 35516
- Egypt
| | - Yaseen A. M. M. Elshaier
- Pharmaceutical Organic Chemistry Department
- Faculty of Pharmacy
- Al-Azhar University
- Assuit 71524
- Egypt
| | - Hazem A. Ghabbour
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh 11451
- Saudi Arabia
| |
Collapse
|
34
|
Varela-Ramirez A, Abendroth J, Mejia AA, Phan IQ, Lorimer DD, Edwards TE, Aguilera RJ. Structure of acid deoxyribonuclease. Nucleic Acids Res 2017; 45:6217-6227. [PMID: 28369538 PMCID: PMC5449587 DOI: 10.1093/nar/gkx222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonuclease II (DNase II) is also known as acid deoxyribonuclease because it has optimal activity at the low pH environment of lysosomes where it is typically found in higher eukaryotes. Interestingly, DNase II has also been identified in a few genera of bacteria and is believed to have arisen via horizontal transfer. Here, we demonstrate that recombinant Burkholderia thailandensis DNase II is highly active at low pH in the absence of divalent metal ions, similar to eukaryotic DNase II. The crystal structure of B. thailandensis DNase II shows a dimeric quaternary structure which appears capable of binding double-stranded DNA. Each monomer of B. thailandensis DNase II exhibits a similar overall fold as phospholipase D (PLD), phosphatidylserine synthase (PSS) and tyrosyl-DNA phosphodiesterase (TDP), and conserved catalytic residues imply a similar mechanism. The structural and biochemical data presented here provide insights into the atomic structure and catalytic mechanism of DNase II.
Collapse
Affiliation(s)
- Armando Varela-Ramirez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Adrian A Mejia
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave N, Seattle, WA 98109, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Renato J Aguilera
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
35
|
Elsayed MSA, Su Y, Wang P, Sethi T, Agama K, Ravji A, Redon CE, Kiselev E, Horzmann KA, Freeman JL, Pommier Y, Cushman M. Design and Synthesis of Chlorinated and Fluorinated 7-Azaindenoisoquinolines as Potent Cytotoxic Anticancer Agents That Inhibit Topoisomerase I. J Med Chem 2017; 60:5364-5376. [PMID: 28657311 PMCID: PMC8025945 DOI: 10.1021/acs.jmedchem.6b01870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 7-azaindenoisoquinolines are cytotoxic topoisomerase I (Top1) inhibitors. Previously reported representatives bear a 3-nitro group. The present report documents the replacement of the potentially genotoxic 3-nitro group by 3-chloro and 3-fluoro substituents, resulting in compounds with high Top1 inhibitory activities and potent cytotoxicities in human cancer cell cultures and reduced lethality in an animal model. Some of the new Top1 inhibitors also possess moderate inhibitory activities against tyrosyl-DNA phosphodiesterase 1 (TDP1) and tyrosyl-DNA phosphodiesterase 2 (TDP2), two enzymes that are involved in DNA damage repair resulting from Top1 inhibitors, and they produce significantly more DNA damage in cancer cells than in normal cells. Eighteen of the new compounds had cytotoxicity mean-graph midpoint (MGM) GI50 values in the submicromolar (0.033-0.630 μM) range. Compounds 16b and 17b are the most potent in human cancer cell cultures with MGM GI50 values of 0.063 and 0.033 μM, respectively. Possible binding modes to Top1 and TDP1were investigated by molecular modeling.
Collapse
Affiliation(s)
- Mohamed S. A. Elsayed
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yafan Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ping Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taresh Sethi
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Keli Agama
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Azhar Ravji
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Christophe E. Redon
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Evgeny Kiselev
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Katharine A. Horzmann
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yves Pommier
- Development Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
36
|
Shah R, Maize KM, Zhou X, Finzel BC, Wagner CR. Caught before Released: Structural Mapping of the Reaction Trajectory for the Sofosbuvir Activating Enzyme, Human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Biochemistry 2017; 56:3559-3570. [PMID: 28691797 DOI: 10.1021/acs.biochem.7b00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human histidine triad nucleotide binding protein 1 (hHint1) is classified as an efficient nucleoside phosphoramidase and acyl-adenosine monophosphate hydrolase. Human Hint1 has been shown to be essential for the metabolic activation of nucleotide antiviral pronucleotides (i.e., proTides), such as the FDA approved hepatitis C drug, sofosbuvir. The active site of hHint1 comprises an ensemble of strictly conserved histidines, including nucleophilic His112. To structurally investigate the mechanism of hHint1 catalysis, we have designed and prepared nucleoside thiophosphoramidate substrates that are able to capture the transiently formed nucleotidylated-His112 intermediate (E*) using time-dependent crystallography. Utilizing a catalytically inactive hHint1 His112Asn enzyme variant and wild-type enzyme, the enzyme-substrate (ES1) and product (EP2) complexes were also cocrystallized, respectively, thus providing a structural map of the reaction trajectory. On the basis of these observations and the mechanistic necessity of proton transfers, proton inventory studies were carried out. Although we cannot completely exclude the possibility of more than one proton in flight, the results of these studies were consistent with the transfer of a single proton during the formation of the intermediate. Interestingly, structural analysis revealed that the critical proton transfers required for intermediate formation and hydrolysis may be mediated by a conserved active site water channel. Taken together, our results provide mechanistic insights underpinning histidine nucleophilic catalysis in general and hHint1 catalysis, in particular, thus aiding the design of future proTides and the elucidation of the natural function of the Hint family of enzymes.
Collapse
Affiliation(s)
- Rachit Shah
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kimberly M Maize
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Xin Zhou
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Barry C Finzel
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Wang P, Elsayed MSA, Plescia CB, Ravji A, Redon CE, Kiselev E, Marchand C, Zeleznik O, Agama K, Pommier Y, Cushman M. Synthesis and Biological Evaluation of the First Triple Inhibitors of Human Topoisomerase 1, Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), and Tyrosyl-DNA Phosphodiesterase 2 (Tdp2). J Med Chem 2017; 60:3275-3288. [PMID: 28418653 DOI: 10.1021/acs.jmedchem.6b01565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tdp1 and Tdp2 are two tyrosyl-DNA phosphodiesterases that can repair damaged DNA resulting from topoisomerase inhibitors and a variety of other DNA-damaging agents. Both Tdp1 and Tdp2 inhibition could hypothetically potentiate the cytotoxicities of topoisomerase inhibitors. This study reports the successful structure-based design and synthesis of new 7-azaindenoisoquinolines that act as triple inhibitors of Top1, Tdp1, and Tdp2. Enzyme inhibitory data and cytotoxicity data from human cancer cell cultures establish that modification of the lactam side chain of the 7-azaindenoisoquinolines can modulate their inhibitory potencies and selectivities vs Top1, Tdp1, and Tdp2. Molecular modeling of selected target compounds bound to Top1, Tdp1, and Tdp2 was used to design the inhibitors and facilitate the structure-activity relationship analysis. The monitoring of DNA damage by γ-H2AX foci formation in human PBMCs (lymphocytes) and acute lymphoblastic leukemia CCRF-CEM cells documented significantly more DNA damage in the cancer cells vs normal cells.
Collapse
Affiliation(s)
- Ping Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Mohamed S A Elsayed
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Caroline B Plescia
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Azhar Ravji
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Christophe E Redon
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Olga Zeleznik
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda , Frederick, Maryland 20892, United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
38
|
Zakharenko A, Luzina O, Koval O, Nilov D, Gushchina I, Dyrkheeva N, Švedas V, Salakhutdinov N, Lavrik O. Tyrosyl-DNA Phosphodiesterase 1 Inhibitors: Usnic Acid Enamines Enhance the Cytotoxic Effect of Camptothecin. JOURNAL OF NATURAL PRODUCTS 2016; 79:2961-2967. [PMID: 27933897 DOI: 10.1021/acs.jnatprod.6b00979] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a repair enzyme for stalled DNA-topoisomerase 1 (Top1) cleavage complexes and other 3'-end DNA lesions. TDP1 is a perspective target for anticancer therapy based on Top1-poison-mediated DNA damage. Several novel usnic acid derivatives with an enamine moiety have been synthesized and tested as inhibitors of TDP1. The enamines of usnic acid showed IC50 values in the range of 0.16 to 2.0 μM. These compounds revealed moderate cytotoxicity against human tumor MCF-7 cells. These new compounds enhanced the cytotoxicity of the established Top1 poison camptothecin by an order of magnitude.
Collapse
Affiliation(s)
- Alexandra Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
| | - Olga Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
| | - Olga Koval
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
- Novosibirsk State University , Novosibirsk, 630090, Russian Federation
| | | | | | - Nadezhda Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
| | | | - Nariman Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
- Novosibirsk State University , Novosibirsk, 630090, Russian Federation
| | - Olga Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, 630090, Russian Federation
- Novosibirsk State University , Novosibirsk, 630090, Russian Federation
| |
Collapse
|
39
|
Laev SS, Salakhutdinov NF, Lavrik OI. Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential. Bioorg Med Chem 2016; 24:5017-5027. [PMID: 27687971 DOI: 10.1016/j.bmc.2016.09.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Accepted: 09/18/2016] [Indexed: 10/21/2022]
Abstract
DNA topoisomerases are essential during transcription and replication. The therapeutic mechanism of action of topoisomerase inhibitors is enzyme poisoning rather than catalytic inhibition. Tyrosyl-DNA phosphodiesterases 1 or 2 were found as DNA repair enzymes hydrolyzing the covalent bond between the tyrosyl residue of topoisomerases I or II and the 3'- or 5'-phosphate groups in DNA, respectively. Tyrosyl-DNA phosphodiesterase 1 is a key enzyme in DNA repair machinery and a promising target for antitumor and neurodegenerative therapy. Inhibitors of tyrosyl-DNA phosphodiesterase 1 could act synergistically with topoisomerase I inhibitors and thereby potentiate the effects of topoisomerase I poisons. Tyrosyl-DNA phosphodiesterase 2 is an enzyme that specifically repairs DNA damages induced by topoisomerase II poisons and causes resistance to these drugs. Selective inhibition of tyrosyl-DNA phosphodiesterase 2 may be a novel approach to overcome intrinsic or acquired resistance to topoisomerase II-targeted drug therapy. Thus, agents that inhibit tyrosyl-DNA phosphodiesterases 1 and 2 have many applications in biochemical and physiological research and they have the potential to become anticancer and antiviral drugs. The structures, mechanism of action and therapeutic rationale of tyrosyl-DNA phosphodiesterase inhibitors and their development for combinations with topoisomerase inhibitors and DNA damaging agents are discussed.
Collapse
Affiliation(s)
- Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| | - Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation; Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 8, Novosibirsk 630090, Russian Federation
| |
Collapse
|
40
|
Kuznetsov NA, Lebedeva NA, Kuznetsova AA, Rechkunova NI, Dyrkheeva NS, Kupryushkin MS, Stetsenko DA, Pyshnyi DV, Fedorova OS, Lavrik OI. Pre-steady state kinetics of DNA binding and abasic site hydrolysis by tyrosyl-DNA phosphodiesterase 1. J Biomol Struct Dyn 2016; 35:2314-2327. [PMID: 27687298 DOI: 10.1080/07391102.2016.1220331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) processes DNA 3'-end-blocking modifications, possesses DNA and RNA 3'-nucleosidase activity and is also able to hydrolyze an internal apurinic/apyrimidinic (AP) site and its synthetic analogs. The mechanism of Tdp1 interaction with DNA was analyzed using pre-steady state stopped-flow kinetics with tryptophan, 2-aminopurine and Förster resonance energy transfer fluorescence detection. Phosphorothioate or tetramethyl phosphoryl guanidine groups at the 3'-end of DNA have been used to prevent 3'-nucleosidase digestion by Tdp1. DNA binding and catalytic properties of Tdp1 and its mutants H493R (Tdp1 mutant SCAN1) and H263A have been compared. The data indicate that the initial step of Tdp1 interaction with DNA includes binding of Tdp1 to the DNA ends followed by the 3'-nucleosidase reaction. In the case of DNA containing AP site, three steps of fluorescence variation were detected that characterize (i) initial binding the enzyme to the termini of DNA, (ii) the conformational transitions of Tdp1 and (iii) search for and recognition of the AP-site in DNA, which leads to the formation of the catalytically active complex and to the AP-site cleavage reaction. Analysis of Tdp1 interaction with single- and double-stranded DNA substrates shows that the rates of the 3'-nucleosidase and AP-site cleavage reactions have similar values in the case of single-stranded DNA, whereas in double-stranded DNA, the cleavage of the AP-site proceeds two times faster than 3'-nucleosidase digestion. Therefore, the data show that the AP-site cleavage reaction is an essential function of Tdp1 which may comprise an independent of AP endonuclease 1 AP-site repair pathway.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Natalia A Lebedeva
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Alexandra A Kuznetsova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Nadejda I Rechkunova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Nadezhda S Dyrkheeva
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Maxim S Kupryushkin
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Dmitry A Stetsenko
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Dmitrii V Pyshnyi
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Olga S Fedorova
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Olga I Lavrik
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,b Department of Natural Sciences , Novosibirsk State University , Novosibirsk 630090 , Russia
| |
Collapse
|
41
|
Jiang B, Glover JNM, Weinfeld M. Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev 2016; 161:130-140. [PMID: 27470939 DOI: 10.1016/j.mad.2016.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
The termini of DNA strand breaks induced by reactive oxygen species or by abortive DNA metabolic intermediates require processing to enable subsequent gap filling and ligation to proceed. The three proteins, tyrosyl DNA-phosphodiesterase 1 (TDP1), aprataxin (APTX) and polynucleotide kinase/phosphatase (PNKP) each act on a discrete set of modified strand-break termini. Recently, a series of neurodegenerative and neurodevelopmental disorders have been associated with mutations in the genes coding for these proteins. Mutations in TDP1 and APTX have been linked to Spinocerebellar ataxia with axonal neuropathy (SCAN1) and Ataxia-ocular motor apraxia 1 (AOA1), respectively, while mutations in PNKP are considered to be responsible for Microcephaly with seizures (MCSZ) and Ataxia-ocular motor apraxia 4 (AOA4). Here we present an overview of the mechanisms of these proteins and how their impairment may give rise to their respective disorders.
Collapse
Affiliation(s)
- Bingcheng Jiang
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| | - J N Mark Glover
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
42
|
Rechkunova NI, Lebedeva NA, Lavrik OI. [Tyrosyl-DNA Phosphodiesterase 1 Is a New Player in Repair of Apurinic/Apyrimidinic Sites]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:531-8. [PMID: 26762090 DOI: 10.1134/s106816201505012x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genomic DNA is constantly damaged by the action of exogenous factors and endogenous reactive metabolites. Apurinic/apyrimidinic sites (AP sites), which occur as a result of DNA glycosylase induced or spontaneous hydrolysis of the N-glycosidic bonds, are the most common damages of DNA. The chemical reactivity of AP sites is the cause of DNA breaks, and DNA-protein and DNA-DNA crosslinks. Repair of AP sites is one of the most important mechanisms for maintaining genome stability. Despite the fact that the main participants of the AP site repair are very well studied, the new proteins that could be involved potentially in this process as "back up" players or perform certain specialized functions are being found. This review is dedicated to one of these proteins, tyrosyl-DNA phosphodiesterase 1 (Tdp1), for which we have recently shown that in addition to its main activity of specific cleavage of the tyrosyl-DNA bond formed via a covalent attachment of topoisomerase 1 (Top1) to DNA, Tdp1 is able to initiate the cleavage of the internal AP sites in DNA and their following repair. Tdp1 was discovered in Saccharomyces cerevisiae yeast as an enzyme hydrolyzing the covalent bond between tyrosyl residue of topoisomerase 1 and 3'-phosphate group in DNA. Tdp1 is the major enzyme which carries out the repair of the irreversible complexes of DNA and topoisomerase 1, which appear. in the presence of Top 1 inhibitors, such as camptothecin, therefore Tdp1 is a very important target for the development of inhibitors--anticancer drugs. Besides, Tdp1 hydrolyzes a wide range of 3'-terminal DNA modifications and the 3'-end nucleosides and its derivatives to form a 3'-phosphate. Tdp1 ability to cleave AP sites suggests its involvement in the base excision repair as an alternative enzyme to cleave AP sites instead of AP endonuclease 1--the major enzyme hydrolyzing AP sites in DNA repair process.
Collapse
|
43
|
van Waardenburg RC. Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis. JOURNAL OF NEUROLOGY & NEUROMEDICINE 2016; 1:25-29. [PMID: 27747316 PMCID: PMC5064944 DOI: 10.29245/2572.942x/2016/5.1048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H493R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1-/- and Atm-/- mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3'- and 5'-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways.
Collapse
|
44
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
DeYonker NJ, Webster CE. A Theoretical Study of Phosphoryl Transfers of Tyrosyl-DNA Phosphodiesterase I (Tdp1) and the Possibility of a "Dead-End" Phosphohistidine Intermediate. Biochemistry 2015; 54:4236-47. [PMID: 26121557 DOI: 10.1021/acs.biochem.5b00396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) is a DNA repair enzyme conserved across eukaryotes that catalyzes the hydrolysis of the phosphodiester bond between the tyrosine residue of topoisomerase I and the 3'-phosphate of DNA. Atomic level details of the mechanism of Tdp1 are proposed and analyzed using a fully quantum mechanical, geometrically constrained model. The structural basis for the computational model is the vanadate-inhibited crystal structure of human Tdp1 (hTdp1, Protein Data Bank entry 1RFF ). Density functional theory computations are used to acquire thermodynamic and kinetic data along the catalytic pathway, including the phosphoryl transfer and subsequent hydrolysis. Located transition states and intermediates along the reaction coordinate suggest an associative phosphoryl transfer mechanism with five-coordinate phosphorane intermediates. Similar to both theoretical and experimental results for phospholipase D, the proposed mechanism for hTdp1 also includes the thermodynamically favorable possibility of a four-coordinate phosphohistidine "dead-end" product.
Collapse
Affiliation(s)
- Nathan J DeYonker
- ‡Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152, United States
| | - Charles Edwin Webster
- †Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States.,‡Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152, United States
| |
Collapse
|
46
|
Comeaux EQ, Cuya SM, Kojima K, Jafari N, Wanzeck KC, Mobley JA, Bjornsti MA, van Waardenburg RCAM. Tyrosyl-DNA phosphodiesterase I catalytic mutants reveal an alternative nucleophile that can catalyze substrate cleavage. J Biol Chem 2015; 290:6203-14. [PMID: 25609251 DOI: 10.1074/jbc.m114.635284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.
Collapse
Affiliation(s)
- Evan Q Comeaux
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Selma M Cuya
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kyoko Kojima
- the University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Nauzanene Jafari
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | - Keith C Wanzeck
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James A Mobley
- the Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary-Ann Bjornsti
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Robert C A M van Waardenburg
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
47
|
Andres SN, Schellenberg MJ, Wallace BD, Tumbale P, Williams RS. Recognition and repair of chemically heterogeneous structures at DNA ends. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:1-21. [PMID: 25111769 PMCID: PMC4303525 DOI: 10.1002/em.21892] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/28/2014] [Indexed: 05/13/2023]
Abstract
Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase β (POLβ). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini.
Collapse
Affiliation(s)
- Sara N Andres
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, North Carolina
| | | | | | | | | |
Collapse
|
48
|
Comeaux EQ, van Waardenburg RCAM. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metab Rev 2014; 46:494-507. [PMID: 25327705 DOI: 10.3109/03602532.2014.971957] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA is subject to a wide range of insults, resulting from endogenous and exogenous sources that need to be metabolized/resolved to maintain genome integrity. Tyrosyl-DNA phosphodiesterase I (Tdp1) is a eukaryotic DNA repair enzyme that catalyzes the removal of covalent 3'-DNA adducts. As a phospholipase D superfamily member Tdp1 utilizes two catalytic histidines each within a His-Lys-Asn motif. Tdp1 was discovered for its ability to hydrolyze the 3'-phospho-tyrosyl that in the cell covalently links DNA Topoisomerase I (Topo1) and DNA. Tdp1's list of substrates has since grown and can be divided into two groups: protein-DNA adducts, such as camptothecin stabilized Topo1-DNA adducts, and modified nucleotides, including oxidized nucleotides and chain terminating nucleoside analogs. Since many of Tdp1's substrates are generated by clinically relevant chemotherapeutics, Tdp1 became a therapeutic target for molecularly targeted small molecules. Tdp1's unique catalytic cycle allows for two different targeting strategies: (1) the intuitive inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of chemotherapeutically induced DNA adducts, thereby enhancing their toxicity and (2) stabilization of the Tdp1-DNA covalent reaction intermediate, prevents resolution of Tdp1-DNA adduct and increases the half-life of this potentially toxic DNA adduct. This concept is best illustrated by a catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy, and results in an increased stability of its Tdp1-DNA reaction intermediate. Here, we will discuss Tdp1 catalysis from a structure-function perspective, Tdp1 substrates and Tdp1 potential as a therapeutic target.
Collapse
Affiliation(s)
- Evan Q Comeaux
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham , Birmingham, AL , USA
| | | |
Collapse
|
49
|
Marchand C, Huang SYN, Dexheimer TS, Lea WA, Mott BT, Chergui A, Naumova A, Stephen AG, Rosenthal AS, Rai G, Murai J, Gao R, Maloney DJ, Jadhav A, Jorgensen WL, Simeonov A, Pommier Y. Biochemical assays for the discovery of TDP1 inhibitors. Mol Cancer Ther 2014; 13:2116-26. [PMID: 25024006 DOI: 10.1158/1535-7163.mct-13-0952] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug screening against novel targets is warranted to generate biochemical probes and new therapeutic drug leads. TDP1 and TDP2 are two DNA repair enzymes that have yet to be successfully targeted. TDP1 repairs topoisomerase I-, alkylation-, and chain terminator-induced DNA damage, whereas TDP2 repairs topoisomerase II-induced DNA damage. Here, we report the quantitative high-throughput screening (qHTS) of the NIH Molecular Libraries Small Molecule Repository using recombinant human TDP1. We also developed a secondary screening method using a multiple loading gel-based assay where recombinant TDP1 is replaced by whole cell extract (WCE) from genetically engineered DT40 cells. While developing this assay, we determined the importance of buffer conditions for testing TDP1, and most notably the possible interference of phosphate-based buffers. The high specificity of endogenous TDP1 in WCE allowed the evaluation of a large number of hits with up to 600 samples analyzed per gel via multiple loadings. The increased stringency of the WCE assay eliminated a large fraction of the initial hits collected from the qHTS. Finally, inclusion of a TDP2 counter-screening assay allowed the identification of two novel series of selective TDP1 inhibitors.
Collapse
Affiliation(s)
- Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute;
| | - Shar-yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute
| | - Thomas S Dexheimer
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda
| | - Wendy A Lea
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda
| | - Bryan T Mott
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda
| | - Adel Chergui
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute
| | - Alena Naumova
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute
| | - Andrew G Stephen
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland; and
| | - Andrew S Rosenthal
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda
| | - Ganesha Rai
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda
| | - Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute
| | - Rui Gao
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute
| | - David J Maloney
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda
| | | | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute;
| |
Collapse
|
50
|
Abstract
TDP1 and TDP2 were discovered and named based on the fact they process 3'- and 5'-DNA ends by excising irreversible protein tyrosyl-DNA complexes involving topoisomerases I and II, respectively. Yet, both enzymes have an extended spectrum of activities. TDP1 not only excises trapped topoisomerases I (Top1 in the nucleus and Top1mt in mitochondria), but also repairs oxidative damage-induced 3'-phosphoglycolates and alkylation damage-induced DNA breaks, and excises chain terminating anticancer and antiviral nucleosides in the nucleus and mitochondria. The repair function of TDP2 is devoted to the excision of topoisomerase II- and potentially topoisomerases III-DNA adducts. TDP2 is also essential for the life cycle of picornaviruses (important human and bovine pathogens) as it unlinks VPg proteins from the 5'-end of the viral RNA genome. Moreover, TDP2 has been involved in signal transduction (under the former names of TTRAP or EAPII). The DNA repair partners of TDP1 include PARP1, XRCC1, ligase III and PNKP from the base excision repair (BER) pathway. By contrast, TDP2 repair functions are coordinated with Ku and ligase IV in the non-homologous end joining pathway (NHEJ). This article summarizes and compares the biochemistry, functions, and post-translational regulation of TDP1 and TDP2, as well as the relevance of TDP1 and TDP2 as determinants of response to anticancer agents. We discuss the rationale for developing TDP inhibitors for combinations with topoisomerase inhibitors (topotecan, irinotecan, doxorubicin, etoposide, mitoxantrone) and DNA damaging agents (temozolomide, bleomycin, cytarabine, and ionizing radiation), and as novel antiviral agents.
Collapse
Affiliation(s)
- Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA.
| | - Shar-yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| | - Rui Gao
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| | - Benu Brata Das
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA; Laboratory of Molecular Biology, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA; Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku 606-8501, Japan
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| |
Collapse
|