1
|
Zeng Y, Ma M, Chen Y, Xie H, Ding P, Zhang K. Enhancing skin delivery of tranexamic acid via esterification: synthesis and evaluation of alkyl ester derivatives. RSC Adv 2024; 14:34996-35004. [PMID: 39502868 PMCID: PMC11537257 DOI: 10.1039/d4ra06266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Tranexamic acid (TA) is widely used clinically as a skin whitening agent for treating melasma and hyperpigmentation. However, oral administration of TA is often associated with adverse effects. Topical application could mitigate these issues, but the hydrophilic nature of TA limits its topical use. To overcome this limitation, we explored the design of TA alkyl ester prodrugs to enhance skin absorption. Our study specifically focused on the butyl and octyl ester derivatives of TA. The results demonstrated that TA4 and TA8 significantly improved skin penetration and deposition, by approximately 2-3 times compared to unmodified TA. Furthermore, these derivatives were rapidly hydrolyzed to release the parent drug within less than 2 h in both skin homogenates and blood. Safety assessments indicated no significant skin irritation in mice and revealed low cytotoxicity in HaCaT cells when exposed to the TA ester derivatives. We also developed a hydrogel formulation incorporating the TA derivatives, using hydroxyethyl cellulose, propylene glycol, Tween 80, and chlorobutanol. This formulation exhibited good skin absorption, stability, and user experience, making it a promising candidate for topical application. To sum up, the alkyl esterification prodrug design provides a promising approach for enhancing the skin delivery of TA.
Collapse
Affiliation(s)
- Yutong Zeng
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Mengrui Ma
- Qilu Pharmaceutical Co., Ltd Jinan 250100 China
- School of Pharmacy, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Huichao Xie
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Pingtian Ding
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
- School of Pharmacy, Shenyang Pharmaceutical University Shenyang 110016 China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| |
Collapse
|
2
|
Shehab WS, Haikal HA, Elsayed DA, El-Farargy AF, El-Gazzar ARBA, El-Bassyouni GT, Mousa SM. Pharmacokinetic and molecular docking studies to pyrimidine drug using Mn 3O 4 nanoparticles to explore potential anti-Alzheimer activity. Sci Rep 2024; 14:15436. [PMID: 38965280 PMCID: PMC11224222 DOI: 10.1038/s41598-024-65166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Alzheimer disease (AD) is the cause of dementia and accounts for 60-80% cases. Tumor Necrosis Factor-alpha (TNF-α) is a multifunctional cytokine that provides resistance to infections, inflammation, and cancer. It developed as a prospective therapeutic target against multiple autoimmune and inflammatory disorders. Cholinergic insufficiency is linked to Alzheimer's disease, and several cholinesterase inhibitors have been created to treat it, including naturally produced inhibitors, synthetic analogs, and hybrids. In the current study, we tried to prepared compounds may also support the discovery and development of novel therapeutic and preventative drugs for Alzheimer's using manganese tetroxide nanoparticles (Mn3O4-NPs) as a catalyst to generate compounds with excellent reaction conditions. The Biginelli synthesis yields 4-(4-cyanophenyl)-6-oxo-2-thioxohexahydropyrimidine-5-carbonitrile when the 4-cyanobenzaldehyde, ethyl cyanoacetate, and thiourea were coupled with Mn3O4-NPs to produce compound 1. This multi-component method is non-toxic, safe, and environmentally friendly. The new approach reduced the amount of chemicals used and preserved time. Compound 1 underwent reactions with methyl iodide, acrylonitrile, chloroacetone, ethyl chloroacetate, and chloroacetic acid/benzaldehyde, each of the synthetized compounds was docked with TNF-α converting enzyme. These compounds may also support the discovery and development of novel therapeutic and preventative drugs for Alzheimer's disease. The majority of the produced compounds demonstrated pharmacokinetic features, making them potentially attractive therapeutic candidates for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Hend A Haikal
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Doaa A Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed F El-Farargy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | | | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Sahar M Mousa
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
3
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
4
|
Vega-López A, Lara-Vega I, Atonal-Brioso G, Nájera-Martínez M. Neurotoxicant effects of bisphenol A, nonylphenol, and tert‑butyl phenol in the Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106868. [PMID: 38387248 DOI: 10.1016/j.aquatox.2024.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Worldwide production of alkyl phenols and ethoxylated alkyl phenols is high due to their broad industrial uses. It has been widely documented that they are endocrine disruptors, and it has been suggested that they could exert neurotoxic effects. However, a lack of information about the neurotoxic effects of APs and APEs prevails. In this study, the bisphenol A (BPA), 4-nonylphenol (NP), and 3‑tert-butylphenol (tertBP) effects on brain and spinal cord of Nile tilapia exposed to environmental concentrations were evaluated by assessing acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and carboxylesterases (CES) activities, and γ-aminobutyric acid (GABA) levels and their effects were evaluated by molecular docking. BPA and NP, tertBP behave as agonists and antagonists of AChE, BuChE, CES, and GABA, with notable differences among organs. However, none of these compounds or their metabolites interact with the enzymes' catalytic triad, suggesting an indirect alteration of enzymatic activities. While inhibiting these enzymes stand out hydrophobic interactions with the peripheral anion site, contacts with the inner face of the active site and blocking the mouth of the gorge of the active site, and steric hindrance in the enzyme pocket of glutamate decarboxylase (GAD). In contrast, inductions probably are by homotropic pseudo-cooperative phenomenon, where APEs behave as anchors favoring the active site to remain open and interactions that confer a conservative stabilization of the regulatory domain. Although the results of this study are complex, with notable differences between organs and toxicants, they are some of the first evidence of the neurotoxicity of alkylphenols and their ethoxylated derivatives.
Collapse
Affiliation(s)
- Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México City CP 07738, Mexico.
| | - Israel Lara-Vega
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México City CP 07738, Mexico
| | - Genaro Atonal-Brioso
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México City CP 07738, Mexico
| | - Minerva Nájera-Martínez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México City CP 07738, Mexico
| |
Collapse
|
5
|
Castellani B, Eleuteri M, Di Bona S, Cruciani G, Desantis J, Goracci L. VHL-Modified PROteolysis TArgeting Chimeras (PROTACs) as a Strategy to Evade Metabolic Degradation in In Vitro Applications. J Med Chem 2023; 66:13148-13171. [PMID: 37699425 DOI: 10.1021/acs.jmedchem.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are tripartite molecules consisting of a linker connecting a ligand for a protein of interest to an E3 ligase recruiter, whose rationale relies on proteasome-based protein degradation. PROTACs have expanded as a therapeutic strategy to open new avenues for unmet medical needs. Leveraging our expertise, we undertook a series of in vitro experiments aimed at elucidating PROTAC metabolism. In particular, we focused on PROTACs recruiting the von Hippel-Lindau (VHL) E3 ligase. After high-resolution mass spectrometry measurements, a characteristic metabolite with mass reduction of 200 units was detected and successively confirmed as a product deriving from the cleavage of the VHL ligand moiety. Subsequently, we identified hepatic and extrahepatic prolyl endopeptidases as the main putative metabolic enzymes involved. Finally, we designed and synthesized analogs of the VHL ligands that we further exploited for the synthesis of novel VHL-directed PROTACs with an improved metabolic stability in in vitro applications.
Collapse
Affiliation(s)
| | - Michela Eleuteri
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | | | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Jenny Desantis
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| |
Collapse
|
6
|
Sundius T, Brandán SA. Structural, harmonic force field and vibrational studies of cholinesterase inhibitor tacrine used for treatment of Alzheimer's disease. Heliyon 2023; 9:e17280. [PMID: 37441405 PMCID: PMC10333470 DOI: 10.1016/j.heliyon.2023.e17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Different structures of free base (FB), two cationic forms (CA) and three hydrochloride forms (HCl) of cholinesterase inhibitor tacrine used for treatment of Alzheimer 's disease was evaluated using hybrid B3LYP calculations in order to perform their complete vibrational assignments using the scaled harmonic force fields. Structures of anhydrous form of tacrine have been optimized in gas phase and in aqueous solution. The structure of form III HCl is in agreement with the experimental determined by X-ray diffraction while the predicted IR, Raman, 1H- 13C NMR and UV spectra show good correlations with the corresponding experimental ones. Energy values show that the three forms of HCl can exist in both media because these energetic values decrease from 35.15 kJ/mol in gas phase to 5.51 kJ/mol in solution. For the most stable species of tacrine, the following stability order using natural bond orbital (NBO) studies was found: form I HCl > form III HCl > form I CA > FB. CA presents the higher solvation energy value, as reported for hydrochloride species of alkaloids and antihypertensive agents. The structural parameters of form III of HCl present better concordance and corresponds to that experimental observed in the solid phase. Higher topological properties of form III together with the strong N2-H26⋯Cl31 interaction could justify the presence of this form in the solid phase and in solution and the higher stabilities in both media. The gap values support the higher reactivity of form III while FB is the less reactive species in both media. Complete vibrational assignments for FB, CA and HCl species together with the corresponding scaled force constants are reported.
Collapse
Affiliation(s)
- Tom Sundius
- Department of Physics, University of Helsinki, Finland
| | - Silvia Antonia Brandán
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
7
|
Eisner H, Riegler-Berket L, Gamez CFR, Sagmeister T, Chalhoub G, Darnhofer B, Jazleena PJ, Birner-Gruenberger R, Pavkov-Keller T, Haemmerle G, Schoiswohl G, Oberer M. The Crystal Structure of Mouse Ces2c, a Potential Ortholog of Human CES2, Shows Structural Similarities in Substrate Regulation and Product Release to Human CES1. Int J Mol Sci 2022; 23:13101. [PMID: 36361897 PMCID: PMC9655854 DOI: 10.3390/ijms232113101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/01/2025] Open
Abstract
Members of the carboxylesterase 2 (Ces2/CES2) family have been studied intensively with respect to their hydrolytic function on (pro)drugs, whereas their physiological role in lipid and energy metabolism has been realized only within the last few years. Humans have one CES2 gene which is highly expressed in liver, intestine, and kidney. Interestingly, eight homologous Ces2 (Ces2a to Ces2h) genes exist in mice and the individual roles of the corresponding proteins are incompletely understood. Mouse Ces2c (mCes2c) is suggested as potential ortholog of human CES2. Therefore, we aimed at its structural and biophysical characterization. Here, we present the first crystal structure of mCes2c to 2.12 Å resolution. The overall structure of mCes2c resembles that of the human CES1 (hCES1). The core domain adopts an α/β hydrolase-fold with S230, E347, and H459 forming a catalytic triad. Access to the active site is restricted by the cap, the flexible lid, and the regulatory domain. The conserved gate (M417) and switch (F418) residues might have a function in product release similar as suggested for hCES1. Biophysical characterization confirms that mCes2c is a monomer in solution. Thus, this study broadens our understanding of the mammalian carboxylesterase family and assists in delineating the similarities and differences of the different family members.
Collapse
Affiliation(s)
- Helgit Eisner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | | | - Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Gabriel Chalhoub
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - P J Jazleena
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, 1060 Vienna, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - Gabriele Schoiswohl
- BioTechMed Graz, 8010 Graz, Austria
- BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| |
Collapse
|
8
|
Chen W, Gong Y, McKie M, Almuhtaram H, Sun J, Barrett H, Yang D, Wu M, Andrews RC, Peng H. Defining the Chemical Additives Driving In Vitro Toxicities of Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14627-14639. [PMID: 36173153 DOI: 10.1021/acs.est.2c03608] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increases in the global use of plastics have caused concerns regarding potential adverse effects on human health. Plastic products contain hundreds of potentially toxic chemical additives, yet the exact chemicals which drive toxicity currently remain unknown. In this study, we employed nontargeted analysis and in vitro bioassays to identify the toxicity drivers in plastics. A total of 56 chemical additives were tentatively identified in five commonly used plastic polymer pellets (i.e., PP, LDPE, HDPE, PET, and PVC) by employing suspect screening and nontargeted analysis. Phthalates and organophosphates were found to be dominant in PVC pellets. Triphenyl phosphate and 2-ethylhexyl diphenyl phosphate accounted for a high amount (53.6%) of the inhibition effect of PVC pellet extract on human carboxylesterase 1 (hCES1) activity. Inspired by the high abundances of chemical additives in PVC pellets, six different end-user PVC-based products including three widely used PVC water pipes were further examined. Among them, extracts of PVC pipe exerted the strongest PPARγ activity and cell viability suppression. Organotins were identified as the primary drivers to these in vitro toxicities induced by the PVC pipe extracts. This study clearly delineates specific chemical additives responsible for hCES1 inhibition, PPARγ activity, and cell viability suppression associated with plastic.
Collapse
Affiliation(s)
- Wanzhen Chen
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael McKie
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Menghong Wu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
9
|
Dammen-Brower K, Epler P, Zhu S, Bernstein ZJ, Stabach PR, Braddock DT, Spangler JB, Yarema KJ. Strategies for Glycoengineering Therapeutic Proteins. Front Chem 2022; 10:863118. [PMID: 35494652 PMCID: PMC9043614 DOI: 10.3389/fchem.2022.863118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva®, Poteligeo®, Fasenra™, and Uplizna®). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paige Epler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Stanley Zhu
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Zachary J. Bernstein
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Jamie B. Spangler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kevin J. Yarema
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
|
11
|
Tan KS, Zhang Y, Liu L, Li S, Zou X, Zeng W, Cheng G, Wang D, Tan W. Molecular cloning and characterization of an atypical butyrylcholinesterase-like protein in zebrafish. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110590. [DOI: 10.1016/j.cbpb.2021.110590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
|
12
|
Singh A, Gao M, Beck MW. Human carboxylesterases and fluorescent probes to image their activity in live cells. RSC Med Chem 2021; 12:1142-1153. [PMID: 34355180 PMCID: PMC8292992 DOI: 10.1039/d1md00073j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human carboxylesterases (CESs) are serine hydrolases that are responsible for the phase I metabolism of an assortment of ester, amide, thioester, carbonate, and carbamate containing drugs. CES activity is known to be influenced by a variety of factors including single nucleotide polymorphisms, alternative splicing, and drug-drug interactions. These different factors contribute to interindividual variability of CES activity which has been demonstrated to influence clinical outcomes among people treated with CES-substrate therapeutics. Detailed exploration of the factors that influence CES activity is emerging as an important area of research. The use of fluorescent probes with live cell imaging techniques can selectively visualize the real-time activity of CESs and have the potential to be useful tools to help reveal the impacts of CES activity variations on human health. This review summarizes the properties of the five known human CESs including factors reported to or that could potentially influence their activity before discussing the design aspects and use considerations of CES fluorescent probes in general in addition to highlighting several well-characterized probes.
Collapse
Affiliation(s)
- Anchal Singh
- Department of Chemistry and Biochemistry, Eastern Illinois University Charleston IL 61920 USA +1 217 581 6227
| | - Mingze Gao
- Department of Biological Sciences, Eastern Illinois University Charleston IL 61920 USA
| | - Michael W Beck
- Department of Chemistry and Biochemistry, Eastern Illinois University Charleston IL 61920 USA +1 217 581 6227
| |
Collapse
|
13
|
Song YQ, Jin Q, Wang DD, Hou J, Zou LW, Ge GB. Carboxylesterase inhibitors from clinically available medicines and their impact on drug metabolism. Chem Biol Interact 2021; 345:109566. [PMID: 34174250 DOI: 10.1016/j.cbi.2021.109566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Mammalian carboxylesterases (CES), the key members of the serine hydrolase superfamily, hydrolyze a wide range of endogenous substances and xenobiotics bearing ester or amide bond(s). In humans, most of identified CES are segregated into the CES1A and CES2A subfamilies. Strong inhibition on human CES (including hCES1A and hCES2A) may modulate pharmacokinetic profiles of CES-substrate drugs, thereby changing the pharmacological and toxicological responses of these drugs. This review covered recent advances in discovery of hCES inhibitors from clinically available medications, as well as their impact on CES-associated drug metabolism. Three comprehensive lists of hCES inhibitors deriving from clinically available medications including therapeutic drugs, pharmaceutical excipients and herbal medicines, alongside with their inhibition potentials and inhibition parameters, are summarized. Furthermore, the potential risks of hCES inhibitors to trigger drug/herb-drug interactions (DDIs/HDIs) and future concerns in this field are highlighted. Potent hCES inhibitors may trigger clinically relevant DDIs/HDIs, especially when these inhibitors are co-administrated with CES substrate-drugs with very narrow therapeutic windows. All data and knowledge presented here provide key information for the clinicians to assess the risks of clinically available hCES inhibitors on drug metabolism. In future, more practical and highly specific substrates for hCES1A/hCES2A should be developed and used for studies on CES-mediated DDIs/HDIs both in vitro and in vivo.
Collapse
Affiliation(s)
- Yun-Qing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan-Dan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Hou
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Lamango NS, Nkembo AT, Ntantie E, Tawfeeq N. Polyisoprenylated Cysteinyl Amide Inhibitors: A Novel Approach to Controlling Cancers with Hyperactive Growth Signaling. Curr Med Chem 2021; 28:3476-3489. [PMID: 33176634 PMCID: PMC9175089 DOI: 10.2174/0929867327666201111140825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
Aberrant activation of monomeric G-protein signaling pathways drives some of the most aggressive cancers. Suppressing these hyperactivities has been the focus of efforts to obtain targeted therapies. Polyisoprenylated methylated protein methyl esterase (PMPMEase) is overexpressed in various cancers. Its inhibition induces the death of cancer cells that harbor the constitutively active K-Ras proteins. Furthermore, the viability of cancer cells driven by factors upstream of K-Ras, such as overexpressed growth factors and their receptors or the mutationally-activated receptors, is also susceptible to PMPMEase inhibition. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) were thus designed to target cancers with hyperactive signaling pathways involving the G-proteins. The PCAIs were, however, poor inhibitors of PMPMEase, with Ki values ranging from 3.7 to 20 μM. On the other hand, they inhibited cell viability, proliferation, colony formation, induced apoptosis in cells with mutant K-Ras and inhibited cell migration and invasion with EC50 values of 1 to 3 μM. HUVEC tube formation was inhibited at submicromolar concentrations through their disruption of actin filament organization. At the molecular level, the PCAIs at 2 to 5 μM depleted monomeric G-proteins such as K-Ras, RhoA, Cdc42 and Rac1. The PCAIs also deplete vinculin and fascin that are involved in actin organization and function while disrupting vinculin punctates in the process. These demonstrate a polyisoprenylation-dependent mechanism that explains the observed PCAIs' inhibition of the proliferative, invasive and angiogenic processes that promote both tumor growth and metastasis.
Collapse
Affiliation(s)
- Nazarius S. Lamango
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Augustine T. Nkembo
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Elizabeth Ntantie
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| | - Nada Tawfeeq
- College of Pharmacy and Pharmaceutical Sciences Institute of Public Health, Florida A&M University, Tallahassee FL32307, USA
| |
Collapse
|
15
|
Scheaffer H, Borazjani A, Szafran BN, Ross MK. Inactivation of CES1 Blocks Prostaglandin D 2 Glyceryl Ester Catabolism in Monocytes/Macrophages and Enhances Its Anti-inflammatory Effects, Whereas the Pro-inflammatory Effects of Prostaglandin E 2 Glyceryl Ester Are Attenuated. ACS OMEGA 2020; 5:29177-29188. [PMID: 33225149 PMCID: PMC7675540 DOI: 10.1021/acsomega.0c03961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 05/04/2023]
Abstract
Human monocytic cells in blood have important roles in host defense and express the enzyme carboxylesterase 1 (CES1). This metabolic serine hydrolase plays a critical role in the metabolism of many molecules, including lipid mediators called prostaglandin glyceryl esters (PG-Gs), which are formed during cyclooxygenase-mediated oxygenation of the endocannabinoid 2-arachidonoylglycerol. Some PG-Gs have been shown to exhibit anti-inflammatory effects; however, they are unstable compounds, and their hydrolytic breakdown generates pro-inflammatory prostaglandins. We hypothesized that by blocking the ability of CES1 to hydrolyze PG-Gs in monocytes/macrophages, the beneficial effects of anti-inflammatory prostaglandin D2-glyceryl ester (PGD2-G) could be augmented. The goals of this study were to determine whether PGD2-G is catabolized by CES1, evaluate the degree to which this metabolism is blocked by small-molecule inhibitors, and assess the immunomodulatory effects of PGD2-G in macrophages. A human monocytic cell line (THP-1 cells) was pretreated with increasing concentrations of known small-molecule inhibitors that block CES1 activity [chlorpyrifos oxon (CPO), WWL229, or WWL113], followed by incubation with PGD2-G (10 μM). Organic solvent extracts of the treated cells were analyzed by liquid chromatography with tandem mass spectrometry to assess levels of the hydrolysis product PGD2. Further, THP-1 monocytes with normal CES1 expression (control cells) and "knocked-down" CES1 expression (CES1KD cells) were employed to confirm CES1's role in PGD2-G catabolism. We found that CES1 has a prominent role in PGD2-G hydrolysis in this cell line, accounting for about 50% of its hydrolytic metabolism, and that PGD2-G could be stabilized by the inclusion of CES1 inhibitors. The inhibitor potency followed the rank order: CPO > WWL113 > WWL229. THP-1 macrophages co-treated with WWL113 and PGD2-G prior to stimulation with lipopolysaccharide exhibited a more pronounced attenuation of pro-inflammatory cytokine levels (interleukin-6 and TNFα) than by PGD2-G treatment alone. In contrast, prostaglandin E2-glyceryl ester (PGE2-G) had opposite effects compared to those of PGD2-G, which appeared to be dependent on the hydrolysis of PGE2-G to PGE2. These results suggest that the anti-inflammatory effects induced by PGD2-G can be further augmented by inactivating CES1 activity with specific small-molecule inhibitors, while pro-inflammatory effects of PGE2-G are attenuated. Furthermore, PGD2-G (and/or its downstream metabolites) was shown to activate the lipid-sensing receptor PPARγ, resulting in altered "alternative macrophage activation" response to the Th2 cytokine interleukin-4. These findings suggest that inhibition of CES1 and other enzymes that regulate the levels of pro-resolving mediators such as PGD2-G in specific cellular niches might be a novel anti-inflammatory approach.
Collapse
Affiliation(s)
- Hannah
L. Scheaffer
- Department
of Biochemistry, Molecular Biology, Entomology, & Plant Pathology,
College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Brittany N. Szafran
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew K. Ross
- Center
for Environmental Health Sciences, Department of Comparative Biomedical
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
16
|
Takahashi M, Lee YJ, Kanayama T, Kondo Y, Nishio K, Mukai K, Haba M, Hosokawa M. Design, synthesis and biological evaluation of water-soluble phenytoin prodrugs considering the substrate recognition ability of human carboxylesterase 1. Eur J Pharm Sci 2020; 152:105455. [DOI: 10.1016/j.ejps.2020.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
|
17
|
Takahashi M, Takani D, Haba M, Hosokawa M. Investigation of the chiral recognition ability of human carboxylesterase 1 using indomethacin esters. Chirality 2019; 32:73-80. [PMID: 31693270 DOI: 10.1002/chir.23141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/09/2023]
Affiliation(s)
| | - Daisuke Takani
- Faculty of PhramacyChiba Institute of Science Chiba Japan
| | - Masami Haba
- Faculty of PhramacyChiba Institute of Science Chiba Japan
| | | |
Collapse
|
18
|
Di L. The Impact of Carboxylesterases in Drug Metabolism and Pharmacokinetics. Curr Drug Metab 2019; 20:91-102. [PMID: 30129408 PMCID: PMC6635651 DOI: 10.2174/1389200219666180821094502] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Carboxylesterases (CES) play a critical role in catalyzing hydrolysis of esters, amides, carbamates and thioesters, as well as bioconverting prodrugs and soft drugs. The unique tissue distribution of CES enzymes provides great opportunities to design prodrugs or soft drugs for tissue targeting. Marked species differences in CES tissue distribution and catalytic activity are particularly challenging in human translation. METHODS Review and summarization of CES fundamentals and applications in drug discovery and development. RESULTS Human CES1 is one of the most highly expressed drug metabolizing enzymes in the liver, while human intestine only expresses CES2. CES enzymes have moderate to high inter-individual variability and exhibit low to no expression in the fetus, but increase substantially during the first few months of life. The CES genes are highly polymorphic and some CES genetic variants show significant influence on metabolism and clinical outcome of certain drugs. Monkeys appear to be more predictive of human pharmacokinetics for CES substrates than other species. Low risk of clinical drug-drug interaction is anticipated for CES, although they should not be overlooked, particularly interaction with alcohols. CES enzymes are moderately inducible through a number of transcription factors and can be repressed by inflammatory cytokines. CONCLUSION Although significant advances have been made in our understanding of CESs, in vitro - in vivo extrapolation of clearance is still in its infancy and further exploration is needed. In vitro and in vivo tools are continuously being developed to characterize CES substrates and inhibitors.
Collapse
Affiliation(s)
- Li Di
- Pfizer Inc., Eastern Point Road, Groton, Connecticut, CT 06354, United States
| |
Collapse
|
19
|
Huang H, Zhang XY, Chen TL, Zhao YL, Xu DS, Bai YP. Biodegradation of Structurally Diverse Phthalate Esters by a Newly Identified Esterase with Catalytic Activity toward Di(2-ethylhexyl) Phthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8548-8558. [PMID: 31266305 DOI: 10.1021/acs.jafc.9b02655] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report a double enzyme system to degrade 12 phthalate esters (PAEs), particularly bulky PAEs, such as the widely used bis(2-ethylhexyl) phthalate (DEHP), in a one-pot cascade process. A PAE-degrading bacterium, Gordonia sp. strain 5F, was isolated from soil polluted with plastic waste. From this strain, a novel esterase (GoEst15) and a mono(2-ethylhexyl) phthalate hydrolase (GoEstM1) were identified by homology-based cloning. GoEst15 showed broad substrate specificity, hydrolyzing DEHP and 10 other PAEs to monoalkyl phthalates, which were further degraded by GoEstM1 to phthalic acid. GoEst15 and GoEstM1 were heterologously coexpressed in Escherichia coli BL21 (DE3), which could then completely degrade 12 PAEs (5 mM), within 1 and 24 h for small and bulky substrates, respectively. To our knowledge, GoEst15 is the first DEHP hydrolase with a known protein sequence, which will enable protein engineering to enhance its catalytic performance in the future.
Collapse
Affiliation(s)
- Han Huang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Xiao-Yan Zhang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Tian-Lei Chen
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Yu-Lian Zhao
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Dian-Sheng Xu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| |
Collapse
|
20
|
Chatonnet A, Brazzolotto X, Hotelier T, Lenfant N, Marchot P, Bourne Y. An evolutionary perspective on the first disulfide bond in members of the cholinesterase-carboxylesterase (COesterase) family: Possible outcomes for cholinesterase expression in prokaryotes. Chem Biol Interact 2019; 308:179-184. [DOI: 10.1016/j.cbi.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
|
21
|
Song YQ, Weng ZM, Dou TY, Finel M, Wang YQ, Ding LL, Jin Q, Wang DD, Fang SQ, Cao YF, Hou J, Ge GB. Inhibition of human carboxylesterases by magnolol: Kinetic analyses and mechanism. Chem Biol Interact 2019; 308:339-349. [DOI: 10.1016/j.cbi.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
|
22
|
Makhaeva GF, Rudakova EV, Kovaleva NV, Lushchekina SV, Boltneva NP, Proshin AN, Shchegolkov EV, Burgart YV, Saloutin VI. Cholinesterase and carboxylesterase inhibitors as pharmacological agents. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2507-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Sánchez-Murcia PA, Mills A, Cortés-Cabrera Á, Gago F. Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule. J Comput Aided Mol Des 2019; 33:627-644. [DOI: 10.1007/s10822-019-00208-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/24/2019] [Indexed: 01/27/2023]
|
24
|
Takahashi M, Uehara T, Nonaka M, Minagawa Y, Yamazaki R, Haba M, Hosokawa M. Synthesis and evaluation of haloperidol ester prodrugs metabolically activated by human carboxylesterase. Eur J Pharm Sci 2019; 132:125-131. [PMID: 30878380 DOI: 10.1016/j.ejps.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 11/27/2022]
Abstract
Two types of haloperidol prodrugs in which a chemical modification was carried out on the hydroxyl group or carbonyl group were synthesized, and their metabolic activation abilities were evaluated in a human liver microsome (HLM) solution, a human small intestine microsome (HIM) solution and solutions of human recombinant carboxylesterases (hCESs). The metabolic activation rates of alcohol ester prodrugs in HLM solution were similar to those in hCES2 solution, and haloperidol pentanoate and haloperidol hexanoate showed high metabolic activation rates in the synthesized alcohol ester prodrugs. In addition, haloperidol acetate and haloperidol 2-methylbutanoate were hydrolyzed as slowly as haloperidol decanoate. The results suggested that haloperidol prodrugs with a small chain or a branched chain are useful as prodrugs for sustained release. The metabolic activation rate of the enol ester prodrug in HLM solution was similar to that in hCES1 solution, and the enol ester prodrug was found to behave differently from alcohol ester prodrugs, which were metabolically activated by hCES2.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 288-0025, Japan.
| | - Tomoki Uehara
- Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | - Minori Nonaka
- Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | - Yuka Minagawa
- Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | - Riona Yamazaki
- Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | - Masami Haba
- Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | - Masakiyo Hosokawa
- Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 288-0025, Japan
| |
Collapse
|
25
|
Zhu Z, Rehman KU, Yu Y, Liu X, Wang H, Tomberlin JK, Sze SH, Cai M, Zhang J, Yu Z, Zheng J, Zheng L. De novo transcriptome sequencing and analysis revealed the molecular basis of rapid fat accumulation by black soldier fly ( Hermetia illucens, L.) for development of insectival biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:194. [PMID: 31413730 PMCID: PMC6688347 DOI: 10.1186/s13068-019-1531-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/20/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Black soldier fly (BSF, Hermetia illucens L.) can efficiently degrade organic wastes and transform into a high fat containing insect biomass that could be used as feedstock for biodiesel production. Meanwhile, the molecular regulatory basis of fat accumulation by BSF is still unclear; it is necessary to identify vital genes and regulators that are involved in fat accumulation. RESULTS This study analyzed the dynamic state of fat content and fatty-acid composition of BSF larvae in eight different stages. The late prepupa stage exhibited the highest crude fat, with lauric acid being the main component. Therefore, to provide insight into this unexplained phenomenon, the molecular regulation of rapid fat accumulation by BSF larvae was investigated. The twelve developmental stages of BSF were selected for transcriptome analysis, including the eight stages used for investigation of fat content and fatty-acid composition. By Illumina sequencing, 218,295,450,000 nt were generated. Through assembly by Trinity, 70,475 unigenes were obtained with an average length of 1064 nt and an N50 of 1749 nt. The differentially expressed unigenes were identified by DESeq, with 9159 of them being up-regulated and 10,101 of them were down-regulated. The several putative genes that are involved in the formation of pyruvate, acetyl-CoA biosynthesis, acetyl-CoA transcription, fatty-acid biosynthesis, and triacylglycerol biosynthesis were identified. The four vital metabolic genes that are associated with fat accumulation were validated by quantitative real-time PCR (qRT-PCR). The molecular mechanism of fat accumulation in BSF was clarified in this investigation through the construction of a detailed fat accumulation model from our results. CONCLUSION The study provides an unprecedented level of insight from transcriptome sequencing to reveal the crude fat accumulation mechanism in developing BSF. The finding holds considerable promise for insectival biodiesel production, and the fat content and fatty-acid composition can be altered by genetic engineering approaches in the future for the insect production industry.
Collapse
Affiliation(s)
- Zhaolu Zhu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Kashif ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Livestock and Dairy Development Department, Poultry Research Institute, Rawalpindi, Pakistan
- Insectplus, Apfelbaumstrasse 22, 8050 Zurich, Switzerland
| | - Yongqiang Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiu Liu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Hui Wang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | | | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX USA
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
26
|
Wang YQ, Weng ZM, Dou TY, Hou J, Wang DD, Ding LL, Zou LW, Yu Y, Chen J, Tang H, Ge GB. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1. Int J Biol Macromol 2018; 120:1944-1954. [DOI: 10.1016/j.ijbiomac.2018.09.178] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
27
|
Human carboxylesterases: a comprehensive review. Acta Pharm Sin B 2018; 8:699-712. [PMID: 30245959 PMCID: PMC6146386 DOI: 10.1016/j.apsb.2018.05.005] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases (CEs) are key enzymes from the serine hydrolase superfamily. In the human body, two predominant carboxylesterases (CES1 and CES2) have been identified and extensively studied over the past decade. These two enzymes play crucial roles in the metabolism of a wide variety of endogenous esters, ester-containing drugs and environmental toxicants. The key roles of CES in both human health and xenobiotic metabolism arouse great interest in the discovery of potent CES modulators to regulate endobiotic metabolism or to improve the efficacy of ester drugs. This review covers the structural and catalytic features of CES, tissue distributions, biological functions, genetic polymorphisms, substrate specificities and inhibitor properties of CES1 and CES2, as well as the significance and recent progress on the discovery of CES modulators. The information presented here will help pharmacologists explore the relevance of CES to human diseases or to assign the contribution of certain CES in xenobiotic metabolism. It will also facilitate medicinal chemistry efforts to design prodrugs activated by a given CES isoform, or to develop potent and selective modulators of CES for potential biomedical applications.
Collapse
|
28
|
Yu Y, Kong R, Cao H, Yin Z, Liu J, Nan X, Phan AT, Ding T, Zhao H, Wong ST. Two birds, one stone: hesperetin alleviates chemotherapy-induced diarrhea and potentiates tumor inhibition. Oncotarget 2018; 9:27958-27973. [PMID: 29963254 PMCID: PMC6021345 DOI: 10.18632/oncotarget.24563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced diarrhea (CID), with clinical high incidence, adversely affects the efficacy of cancer treatment and patients' quality of life. Our study demonstrates that the citrus flavonoid hesperetin (Hst) has a superior potential as a new agent to prevent and alleviate CID. In the animal model for irinotecan (CPT-11) induced CID, Hst could selectively inhibit intestinal carboxylesterase (CES2) and thus reduce the local conversion of CPT-11 to cytotoxic SN-38 which causes intestinal toxicity. Oral administration of Hst manifested an excellent anti-diarrhea efficacy, prohibiting 80% of severe and 100% of mild diarrhea in the CPT-11 administered tumor-bearing mice. In addition, a significant attenuation of intestinal inflammation contributed to the anti-diarrhea effect of Hst. Moreover, Hst was found to work synergistically with CPT-11 in tumor inhibition by suppressing the tumor's STAT3 activity and recruiting tumoricidal macrophages into the tumor microenvironment. The anti-intestinal inflammation and anti-STAT3 properties of Hst would contribute its broad benefits to the management of diarrhea caused by other chemo or targeted agents, and more importantly, enhance and reinforce the anti-tumor effects of these agents, to improve patient outcomes.
Collapse
Affiliation(s)
- Yaping Yu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Ren Kong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, P.R. China
| | - Huojun Cao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, 52246, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Jiyong Liu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
- Department of Pharmacy, Changhai Hospital, Shanghai, 200433, P.R. China
| | - Xiang Nan
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Alexandria T. Phan
- Cancer Treatment Centers of America at South Eastern Regional Center, Atlanta, GA, 30265, USA
| | - Tian Ding
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Stephen T.C. Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, 77030, USA
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
29
|
Huang B, Siqueira WL, Cvitkovitch DG, Finer Y. Esterase from a cariogenic bacterium hydrolyzes dental resins. Acta Biomater 2018; 71:330-338. [PMID: 29496621 PMCID: PMC5899954 DOI: 10.1016/j.actbio.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To identify and characterize specific esterases from S. mutans with degradative activity toward methacrylate-based resin monomers. METHODS Out of several putative esterases, an esterase encoded in an Open Reading Frame as SMU_118c (The National Center for Biotechnology Information, NCBI), was found to have true hydrolase activities. SMU_118c was cloned, expressed, purified and further characterized for its respective hydrolytic activity towards ester-containing nitrophenyl substrates and the universal resin monomers bis-phenyl-glycidyl-dimethacrylate (bisGMA) and triethyleneglycol dimethacrylate (TEGDMA) at neutral (7.0) or cariogenic (5.5) pH. Mass spectrometry (MS) was used to verify the expression of SMU_118c protein in S. mutans UA159. RESULTS Similar to the whole cell activity of S. mutans, SMU_118c showed the highest affinity toward para-nitrophenyl acetate (pNPA) and para-nitrophenyl butyrate (pNPB) vs. ortho-nitrophenyl butyrate (oNPB) and butyrylthiocholine iodide (BTC) (p < 0.05). The esterase retained 60% of its activity after 21 days and hydrolyzed bisGMA at a higher rate than TEGDMA at both neutral and cariogenic pH (p < 0.001), similarly to the predominant human salivary esterase degradative activity. MS confirmed that SMU_118c is an intracellular protein in S. mutans UA159 and expressed under pathogenic (pH 5.5) growth conditions. SIGNIFICANCE The similarity in the activity profile to the whole S. mutans bacterial cell, the stability over time at cariogenic pH, the preference to hydrolyze bisGMA and confirmed expression profile suggest that SMU_118c could be a significant contributor to the whole bacterial degradative activity of S. mutans toward the degradation of resin composites, adhesives and the restoration-tooth interface, potentially accelerating restoration's failure. STATEMENT OF SIGNIFICANCE The current study builds upon our highly-cited previous study by Bourbia et al., (JDR, 2013) that reported on that the cariogenic bacterium, S. mutans has esterase-like activities that enable the bacterium to degrade dental composites and adhesives. The current submission is the first to report on the isolation and characterization of the specific esterase activity (SMU_118c) from S. mutans that is a significant contributor to the whole bacterial degradative activity toward the hydrolysis of dental resins. This activity compromises the restoration-tooth interface, increases interfacial bacterial microleakage (Kermanshahi et al., JDR 2010), potentially contributing to the pathogenesis of recurrent caries around resin composite restorations. This represent a significant contribution to the field of biomaterials and their clinical performance.
Collapse
Affiliation(s)
- Bo Huang
- Faculty of Dentistry, University of Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Walter L Siqueira
- School of Dentistry and Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, Canada
| | - Dennis G Cvitkovitch
- Faculty of Dentistry, University of Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
30
|
Binder RJ, Hatfield MJ, Chi L, Potter PM. Facile synthesis of 1,2-dione-containing abietane analogues for the generation of human carboxylesterase inhibitors. Eur J Med Chem 2018; 149:79-89. [PMID: 29499489 PMCID: PMC5863762 DOI: 10.1016/j.ejmech.2018.02.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
Recently, a series of selective human carboxylesterase inhibitors have been identified based upon the tanshinones, with biologically active molecules containing a 1,2-dione group as part of a naphthoquinone core. Unfortunately, the synthesis of such compounds is complex. Here we describe a novel method for the generation of 1,2-dione containing diterpenoids using a unified approach, by which boronic acids are joined to vinyl bromo-cyclohexene derivatives via Suzuki coupling, followed by electrocyclization and oxidation to the o-phenanthroquinones. This has allowed the construction of a panel of miltirone analogues containing an array of substituents (methyl, isopropyl, fluorine, methoxy) which have been used to develop preliminary SAR with the two human carboxylesterase isoforms. As a consequence, we have synthesized highly potent inhibitors of these enzymes (Ki < 15 nM), that maintain the core tanshinone scaffold. Hence, we have developed a facile and reproducible method for the synthesis of abietane analogues that have resulted in a panel of miltirone derivatives that will be useful tool compounds to assess carboxylesterase biology.
Collapse
Affiliation(s)
- Randall J Binder
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - M Jason Hatfield
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Liying Chi
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
31
|
Reddy EK, Remya C, Mantosh K, Sajith AM, Omkumar R, Sadasivan C, Anwar S. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation. Eur J Med Chem 2017; 139:367-377. [DOI: 10.1016/j.ejmech.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023]
|
32
|
|
33
|
Lian J, Nelson R, Lehner R. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell 2017; 9:178-195. [PMID: 28677105 PMCID: PMC5818367 DOI: 10.1007/s13238-017-0437-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada. .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Randal Nelson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Mathew MP, Tan E, Labonte JW, Shah S, Saeui CT, Liu L, Bhattacharya R, Bovonratwet P, Gray JJ, Yarema KJ. Glycoengineering of Esterase Activity through Metabolic Flux-Based Modulation of Sialic Acid. Chembiochem 2017; 18:1204-1215. [PMID: 28218815 PMCID: PMC5757160 DOI: 10.1002/cbic.201600698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Indexed: 01/09/2023]
Abstract
This report describes the metabolic glycoengineering (MGE) of intracellular esterase activity in human colon cancer (LS174T) and Chinese hamster ovary (CHO) cells. In silico analysis of carboxylesterases CES1 and CES2 suggested that these enzymes are modified with sialylated N-glycans, which are proposed to stabilize the active multimeric forms of these enzymes. This premise was supported by treating cells with butanolylated ManNAc to increase sialylation, which in turn increased esterase activity. By contrast, hexosamine analogues not targeted to sialic acid biosynthesis (e.g., butanoylated GlcNAc or GalNAc) had minimal impact. Measurement of mRNA and protein confirmed that esterase activity was controlled through glycosylation and not through transcription or translation. Azide-modified ManNAc analogues widely used in MGE also enhanced esterase activity and provided a way to enrich targeted glycoengineered proteins (such as CES2), thereby providing unambiguous evidence that the compounds were converted to sialosides and installed into the glycan structures of esterases as intended. Overall, this study provides a pioneering example of the modulation of intracellular enzyme activity through MGE, which expands the value of this technology from its current status as a labeling strategy and modulator of cell surface biological events.
Collapse
Affiliation(s)
- Mohit P. Mathew
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Elaine Tan
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Jason W. Labonte
- Department of Chemical and Biochemical Engineering The Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivam Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Christopher T. Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Lingshu Liu
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Rahul Bhattacharya
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Patawut Bovonratwet
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Jeffrey J. Gray
- Department of Chemical and Biochemical Engineering The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin J. Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
- Department of Chemical and Biochemical Engineering The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Click strategy using disodium salts of amino acids improves the water solubility of plinabulin and KPU-300. Bioorg Med Chem 2017; 25:3623-3630. [DOI: 10.1016/j.bmc.2017.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
|
36
|
Lesniewska-Kowiel MA, Muszalska I. Strategies in the designing of prodrugs, taking into account the antiviral and anticancer compounds. Eur J Med Chem 2017; 129:53-71. [DOI: 10.1016/j.ejmech.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
|
37
|
Wang DD, Zou LW, Jin Q, Hou J, Ge GB, Yang L. Recent progress in the discovery of natural inhibitors against human carboxylesterases. Fitoterapia 2017; 117:84-95. [DOI: 10.1016/j.fitote.2017.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 01/22/2023]
|
38
|
Lei W, Wang DD, Dou TY, Hou J, Feng L, Yin H, Luo Q, Sun J, Ge GB, Yang L. Assessment of the inhibitory effects of pyrethroids against human carboxylesterases. Toxicol Appl Pharmacol 2017; 321:48-56. [PMID: 28242322 DOI: 10.1016/j.taap.2017.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/12/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Abstract
Pyrethroids are broad-spectrum insecticides that widely used in many countries, while humans may be exposed to these toxins by drinking or eating pesticide-contaminated foods. This study aimed to investigate the inhibitory effects of six commonly used pyrethroids against two major human carboxylesterases (CES) including CES1 and CES2. Three optical probe substrates for CES1 (DME, BMBT and DMCB) and a fluorescent probe substrate for CES2 (DDAB) were used to characterize the inhibitory effects of these pyrethroids. The results demonstrated that most of the tested pyrethroids showed moderate to weak inhibitory effects against both CES1 and CES2, but deltamethrin displayed strong inhibition towards CES1. The IC50 values of deltamethrin against CES1-mediated BMBT, DME, and DMCB hydrolysis were determined as 1.58μM, 2.39μM, and 3.3μM, respectively. Moreover, deltamethrin was cell membrane permeable and capable of inhibition endogenous CES1 in living cells. Further investigation revealed that deltamethrin inhibited CES1-mediated BMBT hydrolysis via competitive manner but noncompetitively inhibited DME or DMCB hydrolysis. The inhibition behaviors of deltamethrin against CES1 were also studied by molecular docking simulation. The results demonstrated that CES1 had at least two different ligand-binding sites, one was the DME site and another was the BMBT site which was identical to the binding site of deltamethrin. In summary, deltamethrin was a strong reversible inhibitor against CES1 and it could tightly bind on CES1 at the same ligand-binding site as BMBT. These findings are helpful for the deep understanding of the interactions between xenobiotics and CES1.
Collapse
Affiliation(s)
- Wei Lei
- The Second Affiliated Hospital of Dalian Medical University, Dalian 110623, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dan-Dan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tong-Yi Dou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Hou
- Dalian Medical University, Dalian 116044, China
| | - Liang Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Sun
- The Second Affiliated Hospital of Dalian Medical University, Dalian 110623, China
| | - Guang-Bo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ling Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
39
|
Lee CW, Kwon S, Park SH, Kim BY, Yoo W, Ryu BH, Kim HW, Shin SC, Kim S, Park H, Kim TD, Lee JH. Crystal Structure and Functional Characterization of an Esterase (EaEST) from Exiguobacterium antarcticum. PLoS One 2017; 12:e0169540. [PMID: 28125606 PMCID: PMC5268438 DOI: 10.1371/journal.pone.0169540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
A novel microbial esterase, EaEST, from a psychrophilic bacterium Exiguobacterium antarcticum B7, was identified and characterized. To our knowledge, this is the first report describing structural analysis and biochemical characterization of an esterase isolated from the genus Exiguobacterium. Crystal structure of EaEST, determined at a resolution of 1.9 Å, showed that the enzyme has a canonical α/β hydrolase fold with an α-helical cap domain and a catalytic triad consisting of Ser96, Asp220, and His248. Interestingly, the active site of the structure of EaEST is occupied by a peracetate molecule, which is the product of perhydrolysis of acetate. This result suggests that EaEST may have perhydrolase activity. The activity assay showed that EaEST has significant perhydrolase and esterase activity with respect to short-chain p-nitrophenyl esters (≤C8), naphthyl derivatives, phenyl acetate, and glyceryl tributyrate. However, the S96A single mutant had low esterase and perhydrolase activity. Moreover, the L27A mutant showed low levels of protein expression and solubility as well as preference for different substrates. On conducting an enantioselectivity analysis using R- and S-methyl-3-hydroxy-2-methylpropionate, a preference for R-enantiomers was observed. Surprisingly, immobilized EaEST was found to not only retain 200% of its initial activity after incubation for 1 h at 80°C, but also retained more than 60% of its initial activity after 20 cycles of reutilization. This research will serve as basis for future engineering of this esterase for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Sena Kwon
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Boo-Young Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
| | - Han-Woo Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - Seung Chul Shin
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Sunghwan Kim
- New Drug Development Center, Daegu-Gyeongpuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
| | - T. Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul, Korea
- * E-mail: (JHL); (TDK)
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea
- * E-mail: (JHL); (TDK)
| |
Collapse
|
40
|
Silva DES, Cali MP, Pazin WM, Carlos-Lima E, Salles Trevisan MT, Venâncio T, Arcisio-Miranda M, Ito AS, Carlos RM. Luminescent Ru(II) Phenanthroline Complexes as a Probe for Real-Time Imaging of Aβ Self-Aggregation and Therapeutic Applications in Alzheimer’s Disease. J Med Chem 2016; 59:9215-9227. [DOI: 10.1021/acs.jmedchem.6b01130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debora E. S. Silva
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Mariana P. Cali
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Wallance M. Pazin
- Departamento de
Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Estevão Carlos-Lima
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo 04023-062, Brazil
| | - Maria Teresa Salles Trevisan
- Departamento
de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Ceará Fortaleza, 60451-970, Brazil
| | - Tiago Venâncio
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Manoel Arcisio-Miranda
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo 04023-062, Brazil
| | - Amando S. Ito
- Departamento de
Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Rose M. Carlos
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
41
|
Igawa Y, Fujiwara S, Ohura K, Hirokawa T, Nishizawa Y, Uehara S, Uno Y, Imai T. Differences in Intestinal Hydrolytic Activities between Cynomolgus Monkeys and Humans: Evaluation of Substrate Specificities Using Recombinant Carboxylesterase 2 Isozymes. Mol Pharm 2016; 13:3176-86. [DOI: 10.1021/acs.molpharmaceut.6b00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshiyuki Igawa
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Drug
Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Seiya Fujiwara
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kayoko Ohura
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takatsugu Hirokawa
- Molecular
Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - You Nishizawa
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shotaro Uehara
- Pharmacokinetics
and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., 16-1
Minami Akasaka, Kainan, Wakayama 642-0017, Japan
| | - Yasuhiro Uno
- Pharmacokinetics
and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., 16-1
Minami Akasaka, Kainan, Wakayama 642-0017, Japan
| | - Teruko Imai
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
42
|
Argikar UA, Potter PM, Hutzler JM, Marathe PH. Challenges and Opportunities with Non-CYP Enzymes Aldehyde Oxidase, Carboxylesterase, and UDP-Glucuronosyltransferase: Focus on Reaction Phenotyping and Prediction of Human Clearance. AAPS JOURNAL 2016; 18:1391-1405. [PMID: 27495117 DOI: 10.1208/s12248-016-9962-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 01/28/2023]
Abstract
Over the years, significant progress has been made in reducing metabolic instability due to cytochrome P450-mediated oxidation. High-throughput metabolic stability screening has enabled the advancement of compounds with little to no oxidative metabolism. Furthermore, high lipophilicity and low aqueous solubility of presently pursued chemotypes reduces the probability of renal excretion. As such, these low microsomal turnover compounds are often substrates for non-CYP-mediated metabolism. UGTs, esterases, and aldehyde oxidase are major enzymes involved in catalyzing such metabolism. Hepatocytes provide an excellent tool to identify such pathways including elucidation of major metabolites. To predict human PK parameters for P450-mediated metabolism, in vitro-in vivo extrapolation using hepatic microsomes, hepatocytes, and intestinal microsomes has been actively investigated. However, such methods have not been sufficiently evaluated for non-P450 enzymes. In addition to the involvement of the liver, extrahepatic enzymes (intestine, kidney, lung) are also likely to contribute to these pathways. While there has been considerable progress in predicting metabolic pathways and clearance primarily mediated by the liver, progress in characterizing extrahepatic metabolism and prediction of clearance has been slow. Well-characterized in vitro systems or in vivo animal models to assess drug-drug interaction potential and intersubject variability due to polymorphism are not available. Here we focus on the utility of appropriate in vitro studies to characterize non-CYP-mediated metabolism and to understand the enzymes involved followed by pharmacokinetic studies in the appropriately characterized surrogate species. The review will highlight progress made in establishing in vitro-in vivo correlation, predicting human clearance and avoiding costly clinical failures when non-CYP-mediated metabolic pathways are predominant.
Collapse
Affiliation(s)
- Upendra A Argikar
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts, USA
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J Matthew Hutzler
- Q2 Solutions, Bioanalytical and ADME Labs, Indianapolis, Indiana, USA
| | - Punit H Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey, USA.
| |
Collapse
|
43
|
Dorywalska M, Dushin R, Moine L, Farias SE, Zhou D, Navaratnam T, Lui V, Hasa-Moreno A, Casas MG, Tran TT, Delaria K, Liu SH, Foletti D, O'Donnell CJ, Pons J, Shelton DL, Rajpal A, Strop P. Molecular Basis of Valine-Citrulline-PABC Linker Instability in Site-Specific ADCs and Its Mitigation by Linker Design. Mol Cancer Ther 2016; 15:958-70. [PMID: 26944918 DOI: 10.1158/1535-7163.mct-15-1004] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/12/2016] [Indexed: 11/16/2022]
Abstract
The degree of stability of antibody-drug linkers in systemic circulation, and the rate of their intracellular processing within target cancer cells are among the key factors determining the efficacy of antibody-drug conjugates (ADC) in vivo Previous studies demonstrated the susceptibility of cleavable linkers, as well as auristatin-based payloads, to enzymatic cleavage in rodent plasma. Here, we identify Carboxylesterase 1C as the enzyme responsible for the extracellular hydrolysis of valine-citrulline-p-aminocarbamate (VC-PABC)-based linkers in mouse plasma. We further show that the activity of Carboxylesterase 1C towards VC-PABC-based linkers, and consequently the stability of ADCs in mouse plasma, can be effectively modulated by small chemical modifications to the linker. While the introduced modifications can protect the VC-PABC-based linkers from extracellular cleavage, they do not significantly alter the intracellular linker processing by the lysosomal protease Cathepsin B. The distinct substrate preference of the serum Carboxylesterase 1C offers the opportunity to modulate the extracellular stability of cleavable ADCs without diminishing the intracellular payload release required for ADC efficacy. Mol Cancer Ther; 15(5); 958-70. ©2016 AACR.
Collapse
Affiliation(s)
| | - Russell Dushin
- Worldwide Medicinal Chemistry, Pfizer Inc., Groton, Connecticut
| | - Ludivine Moine
- Worldwide Medicinal Chemistry, Pfizer Inc., Groton, Connecticut
| | | | - Dahui Zhou
- Worldwide Medicinal Chemistry, Pfizer Inc., Groton, Connecticut
| | | | - Victor Lui
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | | | | | - Thomas-Toan Tran
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Kathy Delaria
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Shu-Hui Liu
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Davide Foletti
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | | | - Jaume Pons
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - David L Shelton
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Arvind Rajpal
- Rinat Laboratories, Pfizer Inc., South San Francisco, California
| | - Pavel Strop
- Rinat Laboratories, Pfizer Inc., South San Francisco, California.
| |
Collapse
|
44
|
Umehara KI, Zollinger M, Kigondu E, Witschi M, Juif C, Huth F, Schiller H, Chibale K, Camenisch G. Esterase phenotyping in human liver in vitro: specificity of carboxylesterase inhibitors. Xenobiotica 2016; 46:862-7. [DOI: 10.3109/00498254.2015.1133867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ken-Ichi Umehara
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Markus Zollinger
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Elizabeth Kigondu
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa, and
| | - Marc Witschi
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Claire Juif
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Felix Huth
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Hilmar Schiller
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa, and
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Gian Camenisch
- Department of Drug Metabolism and Pharmacokinetics, Integrated Drug Disposition Section, Novartis Institutes for BioMedical Research, Basel, Switzerland,
| |
Collapse
|
45
|
Carboxylesterases: General detoxifying enzymes. Chem Biol Interact 2016; 259:327-331. [PMID: 26892220 DOI: 10.1016/j.cbi.2016.02.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/15/2016] [Accepted: 02/11/2016] [Indexed: 11/22/2022]
Abstract
Carboxylesterases (CE) are members of the esterase family of enzymes, and as their name suggests, they are responsible for the hydrolysis of carboxylesters into the corresponding alcohol and carboxylic acid. To date, no endogenous CE substrates have been identified and as such, these proteins are thought to act as a mechanism to detoxify ester-containing xenobiotics. As a consequence, they are expressed in tissues that might be exposed to such agents (lung and gut epithelia, liver, kidney, etc.). CEs demonstrate very broad substrate specificities and can hydrolyze compounds as diverse as cocaine, oseltamivir (Tamiflu), permethrin and irinotecan. In addition, these enzymes are irreversibly inhibited by organophosphates such as Sarin and Tabun. In this overview, we will compare and contrast the two human enzymes that have been characterized, and evaluate the biology of the interaction of these proteins with organophosphates (principally nerve agents).
Collapse
|
46
|
Arena de Souza V, Scott DJ, Nettleship JE, Rahman N, Charlton MH, Walsh MA, Owens RJ. Comparison of the Structure and Activity of Glycosylated and Aglycosylated Human Carboxylesterase 1. PLoS One 2015; 10:e0143919. [PMID: 26657071 PMCID: PMC4676782 DOI: 10.1371/journal.pone.0143919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022] Open
Abstract
Human Carboxylesterase 1 (hCES1) is the key liver microsomal enzyme responsible for detoxification and metabolism of a variety of clinical drugs. To analyse the role of the single N-linked glycan on the structure and activity of the enzyme, authentically glycosylated and aglycosylated hCES1, generated by mutating asparagine 79 to glutamine, were produced in human embryonic kidney cells. Purified enzymes were shown to be predominantly trimeric in solution by analytical ultracentrifugation. The purified aglycosylated enzyme was found to be more active than glycosylated hCES1 and analysis of enzyme kinetics revealed that both enzymes exhibit positive cooperativity. Crystal structures of hCES1 a catalytically inactive mutant (S221A) and the aglycosylated enzyme were determined in the absence of any ligand or substrate to high resolutions (1.86 Å, 1.48 Å and 2.01 Å, respectively). Superposition of all three structures showed only minor conformational differences with a root mean square deviations of around 0.5 Å over all Cα positions. Comparison of the active sites of these un-liganded enzymes with the structures of hCES1-ligand complexes showed that side-chains of the catalytic triad were pre-disposed for substrate binding. Overall the results indicate that preventing N-glycosylation of hCES1 does not significantly affect the structure or activity of the enzyme.
Collapse
Affiliation(s)
- Victoria Arena de Souza
- UK OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - David J. Scott
- The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
| | - Joanne E. Nettleship
- UK OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Nahid Rahman
- UK OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Michael H. Charlton
- Chroma Therapeutics Ltd., 93 Innovation Drive Milton Park, Abingdon, United Kingdom
| | - Martin A. Walsh
- The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- * E-mail: (MAW); (RJO)
| | - Raymond J. Owens
- UK OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxford, Oxfordshire, United Kingdom
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
- * E-mail: (MAW); (RJO)
| |
Collapse
|
47
|
Mikhalin AA, Evdokimov NM, Frolova LV, Magedov IV, Kornienko A, Johnston R, Rogelj S, Tartis MS. Lipophilic prodrug conjugates allow facile and rapid synthesis of high-loading capacity liposomes without the need for post-assembly purification. J Liposome Res 2015; 25:232-260. [PMID: 25534989 PMCID: PMC4478286 DOI: 10.3109/08982104.2014.992022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dihydropyridopyrazoles are simplified synthetic analogues of podophyllotoxin that can effectively mimic its molecular scaffold and act as potent mitotic spindle poisons in dividing cancer cells. However, despite nanomolar potencies and ease of synthetic preparation, further clinical development of these promising anticancer agents is hampered due to their poor aqueous solubility. In this article, we developed a prodrug strategy that enables incorporation of dihydropyridopyrazoles into liposome bilayers to overcome the solubility issues. The active drug was covalently connected to either myristic or palmitic acid anchor via carboxylesterase hydrolyzable linkage. The resulting prodrugs were self-assembled into liposome bilayers from hydrated lipid films using ultrasound without the need for post-assembly purification. The average particle size of the prodrug-loaded liposomes was about 90 nm. The prodrug incorporation was verified by differential scanning calorimetry, spectrophotometry and gel filtration reaching maximum at 0.3 and 0.35 prodrug/lipid molar ratios for myristic and palmitic conjugates, respectively. However, the ratio of 0.2 was used in the particle size and biological activity experiments to maintain long-term stability of the prodrug-loaded liposomes against phase separation during storage. Antiproliferative activity was tested against HeLa and Jurkat cancer cell lines in vitro showing that the liposomal prodrug retained antitubulin activity of the parent drug and induced apoptosis-mediated cancer cell death. Overall, the established data provide a powerful platform for further clinical development of dihydropyridopyrazoles using liposomes as the drug delivery system.
Collapse
Affiliation(s)
- Alexander A. Mikhalin
- Department of Biology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Nikolai M. Evdokimov
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Liliya V. Frolova
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Igor V. Magedov
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Alexander Kornienko
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Robert Johnston
- Department of Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Snezna Rogelj
- Department of Biology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Michaelann S. Tartis
- Department of Biology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
- Department of Materials Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| |
Collapse
|
48
|
Hernández-Vázquez E, Chagoya V. Potential utility of adenosine 5′-ester prodrugs to enhance its plasma half-life: synthesis and molecular docking studies. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1299-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Synergistic effects of clopidogrel and fufang danshen dripping pills by modulation of the metabolism target and pharmacokinetics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:789142. [PMID: 25530790 PMCID: PMC4233664 DOI: 10.1155/2014/789142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/27/2014] [Indexed: 01/28/2023]
Abstract
Background and Objective. The aim was to evaluate the synergistic effects of clopidogrel and FDDP by modulating the metabolism target and the pharmacokinetics. Methods. The inhibition effect of FDDP on the CES1 was first investigated by the molecular simulation method, and the synergistic effects on the pharmacokinetics of CPGS were studied as follows: SD rats were treated with oral clopidogrel alone at a dosage of 30 mg/kg or the combination of clopidogrel and FDDP at dosages of 30 mg/kg and 324 mg/kg, respectively, for 21 days. The concentrations of CPGS in the blood plasma samples were determined and the calculated concentrations were used to determine the pharmacokinetic parameters. Results. 20 compounds in FDDP potentially interacted with CES1 target. The CPGS showed a two-compartment model pharmacokinetic profile. The concentration-time course of CPGS was not changed by FDDP, but FDDP decreased the peak plasma concentration and area under the curve of CPGS. Conclusion. The CES1's activity could be partly inhibited by FDDP through the molecular simulation investigation. The concentration-time course of CPGS was altered slightly by FDDP. The results demonstrated the synergistic effects of clopidogrel and FDDP by modulating both the pharmacokinetics and the target metabolism.
Collapse
|
50
|
Azam F, Amer AM, Abulifa AR, Elzwawi MM. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer's drugs: a computational investigation. Drug Des Devel Ther 2014; 8:2045-59. [PMID: 25364231 PMCID: PMC4211852 DOI: 10.2147/dddt.s67778] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ginger (Zingiber officinale), despite being a common dietary adjunct that contributes to the taste and flavor of foods, is well known to contain a number of potentially bioactive phytochemicals having valuable medicinal properties. Although recent studies have emphasized their benefits in Alzheimer's disease, limited information is available on the possible mechanism by which it renders anti-Alzheimer activity. Therefore, the present study seeks to employ molecular docking studies to investigate the binding interactions between active ginger components and various anti-Alzheimer drug targets. Lamarckian genetic algorithm methodology was employed for docking of 12 ligands with 13 different target proteins using AutoDock 4.2 program. Docking protocol was validated by re-docking of all native co-crystallized ligands into their original binding cavities exhibiting a strong correlation coefficient value (r (2)=0.931) between experimentally reported and docking predicted activities. This value suggests that the approach could be a promising computational tool to aid optimization of lead compounds obtained from ginger. Analysis of binding energy, predicted inhibition constant, and hydrophobic/hydrophilic interactions of ligands with target receptors revealed acetylcholinesterase as most promising, while c-Jun N-terminal kinase was recognized as the least favorable anti-Alzheimer's drug target. Common structural requirements include hydrogen bond donor/acceptor area, hydrophobic domain, carbon spacer, and distal hydrophobic domain flanked by hydrogen bond donor/acceptor moieties. In addition, drug-likeness score and molecular properties responsible for a good pharmacokinetic profile were calculated by Osiris property explorer and Molinspiration online toolkit, respectively. None of the compounds violated Lipinski's rule of five, making them potentially promising drug candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Faizul Azam
- Faculty of Pharmacy, Misurata University, Misurata, Libya
- Department of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | | | | | | |
Collapse
|