1
|
Avimova K, Sandakov D. The influence of urinary chemosignals on mice behavior in the tube test. Physiol Behav 2025; 295:114903. [PMID: 40180169 DOI: 10.1016/j.physbeh.2025.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Many animal species form dominance hierarchies, and one of the ways of maintaining them is individual recognition. Mice recognize each other and individual social status via olfactory urinary signaling. We tested if familiarity with urine scent alters mice behavior when competing in the Tube test. Subordinate mice, who were familiar with the scent of a dominant individual applied on their opponents, lose more than subordinates not familiar with the scent of the same dominant applied on their opponents. Moreover, these familiar with dominant's odor mice withdrew more often than the unfamiliar with dominant's odor mice. The results obtained show that 1) mice use individual recognition during the competition in the Tube test, 2) like in other species, social hierarchy in mice can be maintained with the withdrawal of subordinates.
Collapse
Affiliation(s)
- Kseniya Avimova
- Department of Human and Animal Physiology, Belarusian State University, Minsk, Belarus.
| | - Dmitry Sandakov
- Department of Human and Animal Physiology, Belarusian State University, Minsk, Belarus
| |
Collapse
|
2
|
Lerch BA, Zipple MN, Gesquiere LR, Sloan ET, Beehner JC, Alberts SC. Male-mediated early maturation unlikely to evolve via adaptive evolution. Anim Behav 2024; 214:219-240. [PMID: 39035706 PMCID: PMC11259042 DOI: 10.1016/j.anbehav.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The Vandenbergh effect, or male-mediated maturation, occurs when females reach sexual maturation upon exposure to a novel male. Male-mediated maturation is found across mammals, including in geladas, Theropithecus gelada, where it may be an adaptive counterstrategy to infanticide that follows the immigration of a new male; maturing after male immigration maximizes a female's chances of weaning her first offspring before the next infanticidal male immigrates (the 'optimal timing hypothesis'). Alternatively, the nonadaptive 'Bruce effect by-product hypothesis' posits that male-mediated maturation in geladas (and possibly other mammals) is triggered by the same physiological changes that, in pregnant females, produce spontaneous abortion (the Bruce effect). We test both hypotheses using theory and observational data. We show that neither male-mediated maturation nor its associated hormonal changes occur in baboons (Papio cynocephalus × P. anubis), a primate without the Bruce effect. An individual-based model suggests that male-mediated maturation should not evolve via adaptive evolution in either geladas or baboons. Finally, we derive the selection coefficient for male-mediated maturation and show it is likely to be very small because male-mediated maturation yields only marginal potential benefits unless the system is extremely fine-tuned. We conclude that male-mediated maturation in geladas is a by-product of the Bruce effect and more broadly that the Vandenbergh effect may be nonadaptive.
Collapse
Affiliation(s)
- Brian A. Lerch
- Department of Biology, University of North Carolina Chapel Hill, NC, U.S.A
| | - Matthew N. Zipple
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, U.S.A
| | | | - Evan T. Sloan
- Plant Conservation and Population Biology Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jacinta C. Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI, U.S.A
- Department of Anthropology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham, NC, U.S.A
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
| |
Collapse
|
3
|
Khotskina AS, Zavjalov EL, Shnayder EP, Gerlinskaya LA, Maslennikova SO, Petrovskii DV, Baldin MN, Makas AL, Gruznov VM, Troshkov ML, Moshkin MP. CD-1 mice females recognize male reproductive success via volatile organic compounds in urine. Vavilovskii Zhurnal Genet Selektsii 2023; 27:480-487. [PMID: 37808218 PMCID: PMC10551948 DOI: 10.18699/vjgb-23-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 10/10/2023] Open
Abstract
Sexual selection is considered as one of the leading factors of evolutionary development. In the conditions of incessant competition, specialized methods of attracting individuals of the opposite sex as well as criteria for assessing the quality of a sexual partner have been formed. In order for animals to rely on signaling from sexual partners, the signal must reflect the morpho-physiological status of animals. A high reproductive efficiency of male mice is a good advantage for mate selection and thus must be somehow demonstrated to potential mates. The aim of our study was to find out if male mice could demonstrate their reproductive efficiency through urine volatile organic compounds. The experiment implies cohabiting one male with two mature females for 6 days. The reproductive success of the male was assessed by the presence or absence of pregnant females. At the same time, naive females, who did not participate in reproduction, assessed the urine of the successful males as more attractive, which was expressed in shorter Latency time of sniffs in the Olfactory test. Using a rapid headspace GC/MS analysis, we have found volatile organic compounds (VOCs) in male urine that correlated with female behavior. It turned out that these substances are derivatives of mouse pheromone 6-hydroxy-6-methyl-3-heptanone. The amplitude of peaks corresponding to this pheromone correlated with the testosterone level in blood and the weight of preputial glands. The amplitude of peaks increased in males after mating with whom the females turned out to be pregnant. It is important to note that body weight, weight of testes, weight of seminal vesicles, weight of preputial glands, and plasma testosterone level alone are not reliable indicators of male reproductive success. Thus, the content of the pheromone 6-hydroxy-6-methyl-3-heptanone in the urine of males can serve as a good predictor of the quality of the male as a sexual partner for female CD-1 mice.
Collapse
Affiliation(s)
- A S Khotskina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E L Zavjalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E P Shnayder
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Gerlinskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S O Maslennikova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Petrovskii
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M N Baldin
- Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A L Makas
- Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V M Gruznov
- Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M L Troshkov
- Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M P Moshkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Stopková R, Matějková T, Dodoková A, Talacko P, Zacek P, Sedlacek R, Piálek J, Stopka P. Variation in mouse chemical signals is genetically controlled and environmentally modulated. Sci Rep 2023; 13:8573. [PMID: 37237091 DOI: 10.1038/s41598-023-35450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
In most mammals and particularly in mice, chemical communication relies on the detection of ethologically relevant fitness-related cues from other individuals. In mice, urine is the primary source of these signals, so we employed proteomics and metabolomics to identify key components of chemical signalling. We show that there is a correspondence between urinary volatiles and proteins in the representation of genetic background, sex and environment in two house mouse subspecies Mus musculus musculus and M. m. domesticus. We found that environment has a strong influence upon proteomic and metabolomic variation and that volatile mixtures better represent males while females have surprisingly more sex-biased proteins. Using machine learning and combined-omics techniques, we identified mixtures of metabolites and proteins that are associated with biological features.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Alica Dodoková
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Pavel Talacko
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Petr Zacek
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Prague, Czech Republic.
| |
Collapse
|
5
|
Infection of Trichinella spiralis Affects the Reproductive Capacity of ICR/CD-1 Male Mice by Reducing the Urine Pheromone Contents and Sperm Quality. Int J Mol Sci 2023; 24:ijms24065731. [PMID: 36982803 PMCID: PMC10058773 DOI: 10.3390/ijms24065731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Female mice can discriminate the urinary odors of male mice due to their olfactory acuity. Parasitic infection or subclinical infection can decrease the odor attractiveness of male mice and finally lead to aversion or avoidance responses in odor selection for female mice. Trichinella spiralis is a kind of tissue-parasitizing nematode that causes trichinellosis, a zoonotic parasitic disease that spreads throughout the world. However, the reproductive injury caused by Trichinella spiralis infection was not fully revealed. In this study, we explored the effect of Trichinella spiralis infection on the reproductive capacity in ICR/CD-1 male mice. We identified eight volatile compounds in urine by GC-MS analysis, and the results indicated that the contents of dimethyl sulfone, Z-7-tetradecen-1-ol, 6-Hydroxy-6-methyl-3-heptanone and (S)-2-sec-butyl-4,5-dihydrothiazole were significantly downregulated after parasitic infection, which might lead to the reduction of attractiveness of male mice urine to females. On the other hand, parasitic infection decreased sperm quality and downregulated the expression levels of Herc4, Ipo11, and Mrto4, and these genes were strongly related to spermatogenesis. In summary, this study revealed that the reproductive injury caused by Trichinella spiralis infection in ICR/CD-1 male mice could be associated with a decrease in urine pheromone content and sperm quality.
Collapse
|
6
|
Barabas AJ, Soini HA, Novotny MV, Lucas JR, Erasmus MA, Cheng HW, Palme R, Gaskill BN. Assessing the effect of compounds from plantar foot sweat, nesting material, and urine on social behavior in male mice, Mus musculus. PLoS One 2022; 17:e0276844. [PMID: 36322597 PMCID: PMC9629637 DOI: 10.1371/journal.pone.0276844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Home cage aggression causes poor welfare in male laboratory mice and reduces data quality. One of the few proven strategies to reduce aggression involves preserving used nesting material at cage change. Volatile organic compounds from the nesting material and several body fluids not only correlate with less home cage aggression, but with more affiliative allo-grooming behavior. To date, these compounds have not been tested for a direct influence on male mouse social behavior. This study aimed to determine if 4 previously identified volatile compounds impact home cage interactions. A factorial design was used with cages equally split between C57BL/6N and SJL male mice (N = 40). Treatments were randomly assigned across cages and administered by spraying one compound solution on each cage's nesting material. Treatments were refreshed after day 3 and during cage change on day 7. Home cage social behavior was observed throughout the study week and immediately after cage change. Several hours after cage change, feces were collected from individual mice to measure corticosterone metabolites as an index of social stress. Wound severity was also assessed after euthanasia. Measures were analyzed with mixed models. Compound treatments did not impact most study measures. For behavior, SJL mice performed more aggression and submission, and C57BL/6N mice performed more allo-grooming. Wound severity was highest in the posterior region of both strains, and the middle back region of C57BL/6N mice. Posterior wounding also increased with more observed aggression. Corticosterone metabolites were higher in C57BL/6N mice and in mice treated with 3,4-dimethyl-1,2-cyclopentanedione with more wounding. These data confirm previous strain patterns in social behavior and further validates wound assessment as a measure of escalated aggression. The lack of observed treatment effects could be due to limitations in the compound administration procedure and/or the previous correlation study, which is further discussed.
Collapse
Affiliation(s)
- Amanda J. Barabas
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Helena A. Soini
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Jeffrey R. Lucas
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Marisa A. Erasmus
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Heng-Wei Cheng
- USDA-ARS, Livestock Behavior Research Unit, Purdue University, West Lafayette, Indiana, United States of America
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Brianna N. Gaskill
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
7
|
McCarthy S, Marson CM. A stepwise lactol carbocyclisation to bridged ethers via a keto–acetal cascade. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221079498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lactol carbocyclisations provide a succinct method of constructing the oxabicyclo[3.2.1]octane scaffold, a motif present in various natural products of medicinal interest. Lactols containing an unsaturated ketone or ester were prepared by olefin cross-metathesis; an electrophilic alkene derived from methyl vinyl ketone underwent concomitant terminal α-methylenation and oxa-Michael addition to give a bridged lactol which then underwent oxygen-to-carbon transposition in the presence of titanium (IV) chloride giving the desired unsaturated carbocyclic seven-membered bridged ether via a novel dehydrative cascade considered to involve titanium enolates.
Collapse
Affiliation(s)
- Sean McCarthy
- Department of Chemistry, Christopher Ingold Laboratories, University College London, London, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Charles M Marson
- Department of Chemistry, Christopher Ingold Laboratories, University College London, London, UK
| |
Collapse
|
8
|
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota. Front Physiol 2021; 12:740006. [PMID: 34594242 PMCID: PMC8476925 DOI: 10.3389/fphys.2021.740006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Major evolutionary transitions were always accompanied by genetic remodelling of phenotypic traits. For example, the vertebrate transition from water to land was accompanied by rapid evolution of olfactory receptors and by the expansion of genes encoding lipocalins, which - due to their transporting functions - represent an important interface between the external and internal organic world of an individual and also within an individual. Similarly, some lipocalin genes were lost along other genes when this transition went in the opposite direction leading, for example, to cetaceans. In terrestrial vertebrates, lipocalins are involved in the transport of lipophilic substances, chemical signalling, odour reception, antimicrobial defence and background odour clearance during ventilation. Many ancestral lipocalins have clear physiological functions across the vertebrate taxa while many other have - due to pleiotropic effects of their genes - multiple or complementary functions within the body homeostasis and development. The aim of this review is to deconstruct the physiological functions of lipocalins in light of current OMICs techniques. We concentrated on major findings in the house mouse in comparison to other model taxa (e.g., voles, humans, and birds) in which all or most coding genes within their genomes were repeatedly sequenced and their annotations are sufficiently informative.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Barbora Kuntová
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| |
Collapse
|
9
|
Barabas AJ, Soini HA, Novotny MV, Williams DR, Desmond JA, Lucas JR, Erasmus MA, Cheng HW, Gaskill BN. Compounds from plantar foot sweat, nesting material, and urine show strain patterns associated with agonistic and affiliative behaviors in group housed male mice, Mus musculus. PLoS One 2021; 16:e0251416. [PMID: 33989318 PMCID: PMC8121354 DOI: 10.1371/journal.pone.0251416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/27/2021] [Indexed: 01/30/2023] Open
Abstract
Excessive home cage aggression often results in severe injury and subsequent premature euthanasia of male laboratory mice. Aggression can be reduced by transferring used nesting material during cage cleaning, which is thought to contain aggression appeasing odors from the plantar sweat glands. However, neither the composition of plantar sweat nor the deposits on used nesting material have been evaluated. The aims of this study were to (1) identify and quantify volatile compounds deposited in the nest site and (2) determine if nest and sweat compounds correlate with social behavior. Home cage aggression and affiliative behavior were evaluated in 3 strains: SJL, C57BL/6N, and A/J. Individual social rank was assessed via the tube test, because ranking may influence compound levels. Sweat and urine from the dominant and subordinate mouse in each cage, plus cage level nest samples were analyzed for volatile compound content using gas chromatography-mass spectrometry. Behavior data and odors from the nest, sweat, and urine were statistically analyzed with separate principal component analyses (PCA). Significant components, from each sample analysis, and strain were run in mixed models to test if odors were associated with behavior. Aggressive and affiliative behaviors were primarily impacted by strain. However, compound PCs were also impacted by strain, showing that strain accounts for any relationship between odors and behavior. C57BL/6N cages displayed the most allo-grooming behavior and had high scores on sweat PC1. SJL cages displayed the most aggression, with high scores on urine PC2 and low scores on nest PC1. These data show that certain compounds in nesting material, urine, and sweat display strain specific patterns which match strain specific behavior patterns. These results provide preliminary information about the connection between home cage compounds and behavior. Salient compounds will be candidates for future controlled studies to determine their direct effect on mouse social behavior.
Collapse
Affiliation(s)
- Amanda J. Barabas
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| | - Helena A. Soini
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, Indiana, United States of America
| | - Milos V. Novotny
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, Indiana, United States of America
| | - David R. Williams
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, Indiana, United States of America
| | - Jacob A. Desmond
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, Indiana, United States of America
| | - Jeffrey R. Lucas
- Department of Biological Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Marisa A. Erasmus
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Heng-Wei Cheng
- USDA-ARS, Livestock Behavior Research Unit, Purdue University, West Lafayette, Indiana, United States of America
| | - Brianna N. Gaskill
- Department of Animal Science, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
10
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
11
|
Fujita A, Okuno T, Oda M, Kato K. Urinary volatilome analysis in a mouse model of anxiety and depression. PLoS One 2020; 15:e0229269. [PMID: 32084196 PMCID: PMC7034835 DOI: 10.1371/journal.pone.0229269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/03/2020] [Indexed: 11/27/2022] Open
Abstract
Psychiatric disorders including depression and anxiety comprise a broad range of conditions with different symptoms. We have developed a mouse model of depression/anxiety in mice deficient in the St3gal4 gene. In this study, we performed a comparative analysis of urinary volatile organic compounds (VOCs) in St3gal4-deficient (St3gal4-KO) and wild-type mice using gas chromatography-mass spectrometry, and we screened 18 putative VOCs. Principal component analysis (PCA) based on these VOCs identified a major group of 11 VOCs, from which two groups were clarified by hierarchical clustering analysis. One group including six VOCs (pentanoic acid, 4-methyl-, ethyl ester; 3-heptanone, 6-methyl; benzaldehyde; 5,9-undecadien-2-ol, 6,10-dimethyl; and unknown compounds RI1291 and RI1237) was correlated with the startle response (r = 0.620), which is related to an unconscious defensive response. The other group including two VOCs (beta-farnesene and alpha-farnesene) comprised pheromones which increased in KO mice. Next, male mice underwent a social behavior test with female mice in the estrus stage, showing reduced access of KO male mice to female mice. Comparative analysis of urinary VOCs before and after encounters revealed that the six VOCs were not changed by these encounters. However, in WT mice, the two farnesenes increased after the encounters, reaching the level observed in KO mice, which was not altered following the encounter. Taken together, these results indicated that St3gal4 was involved in modulating urinary VOCs. Moreover, VOC clusters discovered by comparison of St3gal4-KO mice with WT mice were correlated with differential emotional behaviors.
Collapse
Affiliation(s)
- Akiko Fujita
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Takaya Okuno
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Mika Oda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Keiko Kato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
12
|
Liu Q, Zhang Y, Wang P, Guo X, Wu Y, Zhang JX, Huang L. Two Preputial Gland-Secreted Pheromones Evoke Sexually Dimorphic Neural Pathways in the Mouse Vomeronasal System. Front Cell Neurosci 2019; 13:455. [PMID: 31632243 PMCID: PMC6783556 DOI: 10.3389/fncel.2019.00455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 01/22/2023] Open
Abstract
Hexadecanol (16OH) and hexadecyl acetate (16Ac) are two pheromones secreted in a large quantity by mouse preputial glands and act on male and female mice differentially. Yet the underlying molecular and cellular mechanisms remain to be elucidated. In this study, we examined the activation of vomeronasal sensory neurons (VSNs) by these two pheromones and mapped the downstream neural circuits that process and relay their chemosignals. Using the calcium imaging method and immunohistochemistry, we found that a small number of VSNs were activated by 16OH, 16AC, or both in the male and female mice, most of which were located apically in the vomeronasal epithelium, and their numbers did not increase when the concentrations of 16OH and 16Ac were raised by 10,000-fold except that of female VSNs in response to 16OH. In the accessory olfactory bulb (AOB), the two pheromones evoked more c-Fos+ neurons in the anterior AOB (aAOB) than in the posterior AOB (pAOB); and the increases in the number of c-Fos+ neurons in both aAOB and pAOB were dose-dependent; and between sexes, the female AOB responded more strongly to 16OH than to 16Ac whereas the male AOB had the opposite response pattern. This sexual dimorphism was largely retained in the downstream brain regions, including the bed nucleus of the stria terminalis (BNST), the medial amygdaloid nucleus (MeA), the posteromedial cortical amygdaloid nucleus (PMCo), the medial preoptic area (MPA), and the ventromedial hypothalamic nucleus (VmH). Taken together, out data indicate that there is one V1r receptor each for 16OH, 16Ac, or both, and that activation of these receptors evokes sexually dimorphic neural circuits, directing different behavioral outputs and possibly modulating other pheromone-induced responses.
Collapse
Affiliation(s)
- Qun Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yijun Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China.,Monell Chemical Senses Center, Philadelphia, PA, United States
| |
Collapse
|
13
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Thoß M, Luzynski KC, Enk VM, Razzazi-Fazeli E, Kwak J, Ortner I, Penn DJ. Regulation of volatile and non-volatile pheromone attractants depends upon male social status. Sci Rep 2019; 9:489. [PMID: 30679546 PMCID: PMC6346026 DOI: 10.1038/s41598-018-36887-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
We investigated the regulation of chemical signals of house mice living in seminatural social conditions. We found that male mice more than doubled the excretion of major urinary proteins (MUPs) after they acquired a territory and become socially dominant. MUPs bind and stabilize the release of volatile pheromone ligands, and some MUPs exhibit pheromonal properties themselves. We conducted olfactory assays and found that female mice were more attracted to the scent of dominant than subordinate males when they were in estrus. Yet, when male status was controlled, females were not attracted to urine with high MUP concentration, despite being comparable to levels of dominant males. To determine which compounds influence female attraction, we conducted additional analyses and found that dominant males differentially upregulated the excretion of particular MUPs, including the pheromone MUP20 (darcin), and a volatile pheromone that influences female reproductive physiology and behavior. Our findings show that once male house mice become territorial and socially dominant, they upregulate the amount and types of excreted MUPs, which increases the intensities of volatiles and the attractiveness of their urinary scent to sexually receptive females.
Collapse
Affiliation(s)
- M Thoß
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - K C Luzynski
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - V M Enk
- Proteomics Unit, VetCORE Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - E Razzazi-Fazeli
- Proteomics Unit, VetCORE Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - J Kwak
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- International Flavors & Fragrances Inc., Union Beach, New Jersey, USA
| | - I Ortner
- Institute of Statistics and Mathematical Methods in Economics, TU Wien, Vienna, Austria
- Department of Mathematics, Statistics Section, KU Leuven, Leuven, Belgium
| | - D J Penn
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
15
|
Ishii KK, Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neurosci Res 2018; 140:59-76. [PMID: 30389572 DOI: 10.1016/j.neures.2018.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023]
Abstract
Reproduction is essential for any animal species. Reproductive behaviors, or sexual behaviors, are largely shaped by external sensory cues exchanged during sexual interaction. In many animals, including rodents, olfactory cues play a critical role in regulating sexual behavior. What exactly these olfactory cues are and how they impact animal behavior have been a central question in the field. Over the past few decades, many studies have dedicated to identifying an active compound that elicits sexual behavior from crude olfactory components. The identified substance has served as a tool to dissect the sensory processing mechanisms in the olfactory systems. In addition, recent advances in genetic engineering, and optics and microscopic techniques have greatly expanded our knowledge of the neural mechanisms underlying the control of sexual behavior in mice. This review summarizes our current knowledge about how sexual behaviors are controlled by olfactory cues.
Collapse
Affiliation(s)
- Kentaro K Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Varshavi D, Scott FH, Varshavi D, Veeravalli S, Phillips IR, Veselkov K, Strittmatter N, Takats Z, Shephard EA, Everett JR. Metabolic Biomarkers of Ageing in C57BL/6J Wild-Type and Flavin-Containing Monooxygenase 5 (FMO5)-Knockout Mice. Front Mol Biosci 2018; 5:28. [PMID: 29686991 PMCID: PMC5900034 DOI: 10.3389/fmolb.2018.00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/19/2018] [Indexed: 12/16/2022] Open
Abstract
It was recently demonstrated in mice that knockout of the flavin-containing monooxygenase 5 gene, Fmo5, slows metabolic ageing via pleiotropic effects. We have now used an NMR-based metabonomics approach to study the effects of ageing directly on the metabolic profiles of urine and plasma from male, wild-type C57BL/6J and Fmo5-/- (FMO5 KO) mice back-crossed onto the C57BL/6J background. The aim of this study was to identify metabolic signatures that are associated with ageing in both these mouse lines and to characterize the age-related differences in the metabolite profiles between the FMO5 KO mice and their wild-type counterparts at equivalent time points. We identified a range of age-related biomarkers in both urine and plasma. Some metabolites, including urinary 6-hydroxy-6-methylheptan-3-one (6H6MH3O), a mouse sex pheromone, showed similar patterns of changes with age, regardless of genetic background. Others, however, were altered only in the FMO5 KO, or only in the wild-type mice, indicating the impact of genetic modifications on mouse ageing. Elevated concentrations of urinary taurine represent a distinctive, ageing-related change observed only in wild-type mice.
Collapse
Affiliation(s)
- Dorsa Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham, United Kingdom
| | - Flora H Scott
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Dorna Varshavi
- Medway Metabonomics Research Group, University of Greenwich, Chatham, United Kingdom
| | - Sunil Veeravalli
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Ian R Phillips
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom.,School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Kirill Veselkov
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Nicole Strittmatter
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Zoltan Takats
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Elizabeth A Shephard
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jeremy R Everett
- Medway Metabonomics Research Group, University of Greenwich, Chatham, United Kingdom
| |
Collapse
|
17
|
Kuntová B, Stopková R, Stopka P. Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse. Front Genet 2018; 9:26. [PMID: 29459883 PMCID: PMC5807349 DOI: 10.3389/fgene.2018.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE), and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO). Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs) are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14) and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the ‘eyes-nose-oral cavity’ axis.
Collapse
Affiliation(s)
- Barbora Kuntová
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Stopková
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Pavel Stopka
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
18
|
Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci Rep 2017; 7:11674. [PMID: 28916783 PMCID: PMC5601457 DOI: 10.1038/s41598-017-12021-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Female house mice produce pheromone-carrying major urinary proteins (MUPs) in a cycling manner, thus reaching the maximum urinary production just before ovulation. This is thought to occur to advertise the time of ovulation via deposited urine marks. This study aimed to characterize the protein content from the house mouse vaginal flushes to detect putative vaginal-advertising molecules for a direct identification of reproductive states. Here we show that the mouse vaginal discharge contains lipocalins including those from the odorant binding (OBP) and major urinary (MUP) protein families. OBPs were highly expressed but only slightly varied throughout the cycle, whilst several MUPs were differentially abundant. MUP20 or 'darcin', was thought to be expressed only by males. However, in females it was significantly up-regulated during estrus similarly as the recently duplicated central/group-B MUPs (sMUP17 and highly expressed sMUP9), which in the mouse urine are male biased. MUPs rise between proestrus and estrus, remain steady throughout metestrus, and are co-expressed with antimicrobial proteins. Thus, we suggest that MUPs and potentially also OBPs are important components of female vaginal advertising of the house mouse.
Collapse
Affiliation(s)
- Martina Černá
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Barbora Kuntová
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Talacko
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Romana Stopková
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic.
| |
Collapse
|
19
|
Oboti L, Trova S, Schellino R, Marraudino M, Harris NR, Abiona OM, Stampar M, Lin W, Peretto P. Activity Dependent Modulation of Granule Cell Survival in the Accessory Olfactory Bulb at Puberty. Front Neuroanat 2017; 11:44. [PMID: 28588456 PMCID: PMC5440572 DOI: 10.3389/fnana.2017.00044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
The vomeronasal system (VNS) is specialized in the detection of salient chemical cues triggering social and neuroendocrine responses. Such responses are not always stereotyped, instead, they vary depending on age, sex, and reproductive state, yet the mechanisms underlying this variability are unclear. Here, by analyzing neuronal survival in the first processing nucleus of the VNS, namely the accessory olfactory bulb (AOB), through multiple bromodeoxyuridine birthdating protocols, we show that exposure of female mice to male soiled bedding material affects the integration of newborn granule interneurons mainly after puberty. This effect is induced by urine compounds produced by mature males, as bedding soiled by younger males was ineffective. The granule cell increase induced by mature male odor exposure is not prevented by pre-pubertal ovariectomy, indicating a lesser role of circulating estrogens in this plasticity. Interestingly, the intake of adult male urine-derived cues by the female vomeronasal organ increases during puberty, suggesting a direct correlation between sensory activity and AOB neuronal plasticity. Thus, as odor exposure increases the responses of newly born cells to the experienced stimuli, the addition of new GABAergic inhibitory cells to the AOB might contribute to the shaping of vomeronasal processing of male cues after puberty. Consistently, only after puberty, female mice are capable to discriminate individual male odors through the VNS.
Collapse
Affiliation(s)
- Livio Oboti
- Center for Neuroscience Research, Children's National Health System, WashingtonDC, United States
| | - Sara Trova
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of TorinoOrbassano, Italy
| | - Roberta Schellino
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of TorinoOrbassano, Italy.,Department of Neurosciences "Rita Levi Montalcini", University of TurinTurin, Italy
| | - Marilena Marraudino
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of TorinoOrbassano, Italy.,Department of Neurosciences "Rita Levi Montalcini", University of TurinTurin, Italy
| | - Natalie R Harris
- Department of Biological Sciences, University of Maryland, Baltimore County, BaltimoreMD, United States
| | - Olubukola M Abiona
- Department of Biological Sciences, University of Maryland, Baltimore County, BaltimoreMD, United States
| | - Mojca Stampar
- Research Center for Genetic Medicine, Children's National Health System, WashingtonDC, United States
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County, BaltimoreMD, United States
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of TorinoOrbassano, Italy
| |
Collapse
|
20
|
Wanlong Z, Fangyan Y, Zhengkun W. Study of chemical communication based on urine in tree shrews Tupaia belangeri (Mammalia: Scandentia: Tupaiidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1391340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Z. Wanlong
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University , Kunming, People’s Republic of China
| | - Y. Fangyan
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University , Kunming, People’s Republic of China
| | - W. Zhengkun
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University , Kunming, People’s Republic of China
| |
Collapse
|
21
|
Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study. Sci Rep 2016; 6:35900. [PMID: 27782155 PMCID: PMC5080580 DOI: 10.1038/srep35900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/07/2016] [Indexed: 11/08/2022] Open
Abstract
Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management.
Collapse
|
22
|
Apfelbach R, Soini HA, Vasilieva NY, Novotny MV. Behavioral responses of predator-naïve dwarf hamsters (Phodopus campbelli) to odor cues of the European ferret fed with different prey species. Physiol Behav 2015; 146:57-66. [DOI: 10.1016/j.physbeh.2015.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
|
23
|
Female puberty acceleration by male odour in mice: neural pathway and behavioural consequences. Biochem Soc Trans 2015; 42:878-81. [PMID: 25109972 DOI: 10.1042/bst20140048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In female mice, exposure to male chemosignals results in early puberty onset characterized by advanced vaginal opening and higher uterine weight. Evidence suggests that the male chemosignals responsible for acceleration of female puberty are androgen-dependent, but not all of the compounds that contribute to puberty acceleration have been identified. The male chemosignals are primarily detected and processed by the vomeronasal system including the vomeronasal organ, the accessory olfactory bulb and the medial amygdala. By contrast, the mechanism by which this olfactory information is integrated in the hypothalamus is poorly understood. In this context, the recent identification of the neuropeptide kisspeptin as a gatekeeper of puberty onset may provide a good candidate neuropeptide system for the transmission of chemosensory information to the gonadotrope axis.
Collapse
|
24
|
Jouhanneau MÃ, Goudet C, Moussu C, Tashiro T, Buatois B, Mori K, Ganem G, Keller M. Peripubertal exposure to male chemosignals accelerates vaginal opening and induces male-directed odor preference in female mice. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Apps PJ, Weldon PJ, Kramer M. Chemical signals in terrestrial vertebrates: search for design features. Nat Prod Rep 2015; 32:1131-53. [DOI: 10.1039/c5np00029g] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review current information on intraspecific chemical signals and search for patterns in signal chemistry among modern terrestrial vertebrates (Amniota), including tortoises, squamate reptiles (amphisbaenians, lizards, and snakes), birds, and mammals.
Collapse
Affiliation(s)
- Peter J. Apps
- Paul G. Allen Family Foundation Laboratory for Wildlife Chemistry
- Botswana Predator Conservation Trust
- Maun
- Botswana
| | - Paul J. Weldon
- Smithsonian Conservation Biology Institute
- National Zoological Park
- Front Royal
- USA
| | | |
Collapse
|
26
|
Message in a bottle: major urinary proteins and their multiple roles in mouse intraspecific chemical communication. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Phelan MM, McLean L, Armstrong SD, Hurst JL, Beynon RJ, Lian LY. The structure, stability and pheromone binding of the male mouse protein sex pheromone darcin. PLoS One 2014; 9:e108415. [PMID: 25279835 PMCID: PMC4184797 DOI: 10.1371/journal.pone.0108415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Mouse urine contains highly polymorphic major urinary proteins that have multiple functions in scent communication through their abilities to bind, transport and release hydrophobic volatile pheromones. The mouse genome encodes for about 20 of these proteins and are classified, based on amino acid sequence similarity and tissue expression patterns, as either central or peripheral major urinary proteins. Darcin is a male specific peripheral major urinary protein and is distinctive in its role in inherent female attraction. A comparison of the structure and biophysical properties of darcin with MUP11, which belongs to the central class, highlights similarity in the overall structure between the two proteins. The thermodynamic stability, however, differs between the two proteins, with darcin being much more stable. Furthermore, the affinity of a small pheromone mimetic is higher for darcin, although darcin is more discriminatory, being unable to bind bulkier ligands. These attributes are due to the hydrophobic ligand binding cavity of darcin being smaller, caused by the presence of larger amino acid side chains. Thus, the physical and chemical characteristics of the binding cavity, together with its extreme stability, are consistent with darcin being able to exert its function after release into the environment.
Collapse
Affiliation(s)
- Marie M. Phelan
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lynn McLean
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Stuart D. Armstrong
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jane L. Hurst
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Robert J. Beynon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Comparative study of the molecular variation between ‘central’ and ‘peripheral’ MUPs and significance for behavioural signalling. Biochem Soc Trans 2014; 42:866-72. [DOI: 10.1042/bst20140082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MUPs (major urinary proteins) play an important role in chemical signalling in rodents and possibly other animals. In the house mouse (Mus musculus domesticus) MUPs in urine and other bodily fluids trigger a range of behavioural responses that are only partially understood. There are at least 21 Mup genes in the C57BL/6 mouse genome, all located on chromosome 4, encoding sequences of high similarity. Further analysis separates the MUPs into two groups, the ‘central’ near-identical MUPs with over 97% sequence identity and the ‘peripheral’ MUPs with a greater degree of heterogeneity and approximately 20–30% non-conserved amino acids. This review focuses on differences between the two MUP sub-groups and categorizes these changes in terms of molecular structure and pheromone binding. As small differences in amino acid sequence can result in marked changes in behavioural response to the signal, we explore the potential of single amino acid changes to affect chemical signalling and protein stabilization. Using analysis of existing molecular structures available in the PDB we compare the chemical and physical properties of the ligand cavities between the MUPs. Furthermore, we identify differences on the solvent exposed surfaces of the proteins, which are characteristic of protein–protein interaction sites. Correlations can be seen between molecular heterogeneity and the specialized roles attributed to some MUPs.
Collapse
|
29
|
Asaba A, Hattori T, Mogi K, Kikusui T. Sexual attractiveness of male chemicals and vocalizations in mice. Front Neurosci 2014; 8:231. [PMID: 25140125 PMCID: PMC4122165 DOI: 10.3389/fnins.2014.00231] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/14/2014] [Indexed: 12/04/2022] Open
Abstract
Male-female interaction is important for finding a suitable mating partner and for ensuring reproductive success. Male sexual signals such as pheromones transmit information and social and sexual status to females, and exert powerful effects on the mate preference and reproductive biology of females. Likewise, male vocalizations are attractive to females and enhance reproductive function in many animals. Interestingly, females' preference for male pheromones and vocalizations is associated with their genetic background, to avoid inbreeding. Moreover, based on acoustic cues, olfactory signals have significant effects on mate choice in mice, suggesting mate choice involves multisensory integration. In this review, we synopsize the effects of both olfactory and auditory cues on female behavior and neuroendocrine functions. We also discuss how these male signals are integrated and processed in the brain to regulate behavior and reproductive function.
Collapse
Affiliation(s)
- Akari Asaba
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Tatsuya Hattori
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| |
Collapse
|
30
|
Ilayaraja R, Rajkumar R, Rajesh D, Muralidharan AR, Padmanabhan P, Archunan G. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis. Sci Rep 2014; 4:5201. [PMID: 24903953 PMCID: PMC4047529 DOI: 10.1038/srep05201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/16/2014] [Indexed: 11/09/2022] Open
Abstract
Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.
Collapse
Affiliation(s)
- Renganathan Ilayaraja
- 1] Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India [2]
| | | | - Durairaj Rajesh
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Arumugam Ramachandran Muralidharan
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | | | - Govindaraju Archunan
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| |
Collapse
|
31
|
Activation of the olfactory system in response to male odors in female prepubertal mice. Behav Brain Res 2014; 271:30-8. [PMID: 24886778 DOI: 10.1016/j.bbr.2014.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/19/2014] [Accepted: 05/24/2014] [Indexed: 01/11/2023]
Abstract
Exposure to male odors during the prepubertal period accelerates puberty, a phenomenon known as the Vandenbergh effect. This experiment identifies the parts of the olfactory pathway that respond to male odors in prepubertal female mice. Female mice were kept in a room free of adult male odors from birth until odor exposure. At post-natal day 21, 24 or 28, (ages representing time points early, intermediate, and late in the prepubertal period) mice were exposed to clean bedding, soiled bedding from castrated males, or soiled bedding from intact males. Each group was exposed to odor in separate rooms to prevent cross contamination. Ninety minutes after odor exposure, mice were sacrificed, the brains removed and prepared for c-Fos immunohistochemistry. The numbers of neurons expressing c-Fos were counted in a defined area of the following nuclei: AOB mitral layer, AOB granular layer, MOB, MEPV, MEPD, Aco, BNST, MPOA, and VMH. There was a significant effect of age on c-Fos-expression in the MEPV, MEPD, Aco, MPOA, BNST and piriform cortex. There was a significant effect of odor on c-Fos-expression in the MEPV, MEPD, Aco, MPOA, and VMH, showing that these areas are differentially sensitive to intact male odors vs. clean bedding and that these brain areas may be responsible for communicating odor information that drives puberty acceleration.
Collapse
|
32
|
Oboti L, Pérez-Gómez A, Keller M, Jacobi E, Birnbaumer L, Leinders-Zufall T, Zufall F, Chamero P. A wide range of pheromone-stimulated sexual and reproductive behaviors in female mice depend on G protein Gαo. BMC Biol 2014. [PMID: 24886577 DOI: 10.1186/1741‐7007‐12‐31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear. RESULTS To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones. CONCLUSIONS These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Zufall
- Department of Physiology, University of Saarland School of Medicine, 66421 Homburg, Germany.
| | | |
Collapse
|
33
|
Oboti L, Pérez-Gómez A, Keller M, Jacobi E, Birnbaumer L, Leinders-Zufall T, Zufall F, Chamero P. A wide range of pheromone-stimulated sexual and reproductive behaviors in female mice depend on G protein Gαo. BMC Biol 2014; 12:31. [PMID: 24886577 PMCID: PMC4038847 DOI: 10.1186/1741-7007-12-31] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/25/2014] [Indexed: 01/03/2023] Open
Abstract
Background Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear. Results To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones. Conclusions These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Zufall
- Department of Physiology, University of Saarland School of Medicine, 66421 Homburg, Germany.
| | | |
Collapse
|
34
|
Kwak J, Grigsby CC, Preti G, Rizki MM, Yamazaki K, Beauchamp GK. Changes in volatile compounds of mouse urine as it ages: their interactions with water and urinary proteins. Physiol Behav 2013; 120:211-9. [PMID: 23958471 DOI: 10.1016/j.physbeh.2013.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 04/06/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
Abstract
Mice release a variety of chemical signals, particularly through urine, which mediate social interactions and endocrine function. Studies have been conducted to investigate the stability of urinary chemosignals in mice. Neuroendocrine and behavioral responses of mice to urine samples of male and female conspecifics which have aged for different amounts of time have been examined, demonstrating that the quality and intensity of signaling molecules in urine change over time. In this study, we monitored changes in volatile organic compounds (VOCs) released from male and female mouse urine following aging the urine samples. Substantial amounts of some VOCs were lost during the aging process of urine, whereas other VOCs increased. Considerable portions of the VOCs which exhibited the increased release were shown to have previously been dissolved in water and subsequently released as the urine dried. We also demonstrated that some VOCs decreased slightly due to their binding with the major urinary proteins (MUPs) and identified MUP ligands whose headspace concentrations increased as the urine aged. Our results underscore the important role of MUPs and the hydration status in the release of VOCs in urine, which may largely account for the changes in the quality and intensity of urinary signals over time.
Collapse
Affiliation(s)
- Jae Kwak
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Human Signatures Branch, Forecasting Division, Human Effectiveness Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Gale T, Gibson AB, Brooks RC, Garratt M. Exposure to a novel male during late pregnancy influences subsequent growth of offspring during lactation. J Evol Biol 2013; 26:2057-62. [DOI: 10.1111/jeb.12192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 12/01/2022]
Affiliation(s)
- T. Gale
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| | - A. B. Gibson
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| | - R. C. Brooks
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| | - M. Garratt
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| |
Collapse
|
36
|
Jouhanneau M, Szymanski L, Martini M, Ella A, Keller M. Kisspeptin: a new neuronal target of primer pheromones in the control of reproductive function in mammals. Gen Comp Endocrinol 2013; 188:3-8. [PMID: 23523710 DOI: 10.1016/j.ygcen.2013.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/08/2013] [Indexed: 11/17/2022]
Abstract
Pheromones are known to trigger either short-term behavioral responses, usually referred to as "releaser effects", or more long-term physiological changes, known as "primer effects", which especially affect reproductive function at the level of the gonadotrope axis. The precise mechanisms through which pheromones interact with the gonadotrope axis in the hypothalamus is not fully known. We propose that the neuropeptide Kisspeptin, could be a specific target of primer pheromones, allowing these pheromones to modulate the gonadotrope axis and GnRH activity. This emerging hypothesis is discussed in the context of puberty acceleration in female mice and the male effect in female ungulates (sheep or goat). These examples have been chosen to illustrate the diversity of the reproductive contexts in mammals and potential mechanisms affected by primer effects at the level of the gonadotrope axis.
Collapse
Affiliation(s)
- Mélanie Jouhanneau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
37
|
Apps PJ. Are mammal olfactory signals hiding right under our noses? Naturwissenschaften 2013; 100:487-506. [DOI: 10.1007/s00114-013-1054-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 01/23/2023]
|
38
|
Petrulis A. Chemosignals, hormones and mammalian reproduction. Horm Behav 2013; 63:723-41. [PMID: 23545474 PMCID: PMC3667964 DOI: 10.1016/j.yhbeh.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, Atlanta, GA 30303, USA.
| |
Collapse
|
39
|
Archunan G, Rajagopal T. Detection of estrus in Indian blackbuck: behavioural, hormonal and urinary volatiles evaluation. Gen Comp Endocrinol 2013; 181:156-66. [PMID: 23229002 DOI: 10.1016/j.ygcen.2012.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 11/21/2022]
Abstract
The determination of the reproductive status is one of the most important factors for effective wild life conservation and management, and effective use of assisted reproductive techniques like artificial insemination, in vitro fertilization/embryo transfer depends on the knowledge of the basic reproductive physiology. In this context the reproductive status of female blackbucks (Antelope cervicapra L.) was assessed by behaviour and determination, sex steroid hormones in faeces and urinary volatile compounds. The male and female blackbucks exhibited as many as 31 different reproductive/courtship behaviour patterns. Particularly, the males showed a more extensive repertoire: i.e. 23 behavioural patterns by territorial males, 11 by bachelor males and 4 by females. The behaviours such as, mounting, Flehmen, clockwise and anticlockwise movements were significantly higher in male blackbuck when exposed to estrus. By contrast, such courtship behaviours were completely absent in male when exposed to diestrus. It clearly indicates that, the estrus female produces specific chemical cues (pheromone) through urine, which would involve in attracting the conspecifics. In addition, the average faecal oestrogen concentration was significantly higher (p<0.05) during the estrus faecal than the proestrus and diestrus periods. In contrast, the faecal progesterone concentration was significantly higher (p<0.05) during the diestrus faecal sample than that of proestrus and estrus faecal sample. Twenty-eight volatiles are identified, across the three reproductive phases (i.e. proestrus, estrus and diestrus) of sexually mature and prepubertal females. Amongst, the compounds 2-methyl-3-butyn-2-ol, 3,7-dimethylnonane, 3-phenyl-2-propen-1-ol and 2-hydroxybenzoic acid occurred only during estrus which may be considered as marker for detection of estrus which would ultimately help for artificial insemination in captive condition. The findings of the present study suggest that the non-invasive approaches like reproductive behaviours, faecal steroids and estrus-specific urinary volatiles could serve as good indicators for detection of estrus for blackbuck.
Collapse
Affiliation(s)
- Govindaraju Archunan
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| | | |
Collapse
|
40
|
Niimi K, Horie S, Yokosuka M, Kawakami-Mori F, Tanaka K, Fukayama H, Sahara Y. Heterogeneous electrophysiological and morphological properties of neurons in the mouse medial amygdala in vitro. Brain Res 2012; 1480:41-52. [PMID: 22960119 DOI: 10.1016/j.brainres.2012.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Neurons in the medial nucleus of the amygdala (MeA) play a key role in the innate maternal, reproductive, defensive, and social behaviors. However, it is unclear how activation of the vomeronasal system leads to the behavioral outputs that are associated with pheromones. Here, we characterized the electrophysiological and morphological properties of MeA neurons using whole-cell recordings in mice slice preparations. Biocytin labeling revealed that MeA neurons possessed bipolar to multipolar cell bodies and dendritic fields covering projection areas from the accessory olfactory bulb. In 70% of recorded MeA neurons, monosynaptic excitatory postsynaptic currents (EPSCs) were evoked from the accessory olfactory bulb afferent in which the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate component was dominant and was rarely followed by the N-methyl-d-aspartic acid component. Norepinephrine increased the frequency of spontaneous inhibitory postsynaptic currents in some neurons, whereas α-methyl-5-hydroxytryptamine increased spontaneous EPSCs in other neurons. Morphologically and physiologically, heterogeneous MeA neurons appear likely to produce multiplex outputs of instinctive behaviors.
Collapse
Affiliation(s)
- Keita Niimi
- Departments of Physiology, Tsurumi University School of Dental Medicine, Yokohama 230-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Searching for Major Urinary Proteins (MUPs) as Chemosignals in Urine of Subterranean Rodents. J Chem Ecol 2011; 37:687-94. [DOI: 10.1007/s10886-011-9971-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/01/2011] [Accepted: 05/19/2011] [Indexed: 11/26/2022]
|
42
|
Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones. PLoS One 2011. [PMID: 21533136 DOI: 10.1371/journal.pone.0017720.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.
Collapse
|
43
|
Zhang D, Terschak JA, Harley MA, Lin J, Hardege JD. Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones. PLoS One 2011; 6:e17720. [PMID: 21533136 PMCID: PMC3080367 DOI: 10.1371/journal.pone.0017720] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/10/2011] [Indexed: 11/21/2022] Open
Abstract
Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.
Collapse
Affiliation(s)
- Dong Zhang
- East China Sea Fisheries Research Institute, China Academy of Fisheries, Shanghai, People's Republic of China
- Vero Beach Marine Laboratory, Florida Institute of Technology, Vero Beach, Florida, United States of America
| | - John A. Terschak
- Department of Biological Sciences, The University of Hull, Hull, United Kingdom
| | - Maggy A. Harley
- Department of Biological Sciences, The University of Hull, Hull, United Kingdom
| | - Junda Lin
- Vero Beach Marine Laboratory, Florida Institute of Technology, Vero Beach, Florida, United States of America
| | - Jörg D. Hardege
- Department of Biological Sciences, The University of Hull, Hull, United Kingdom
| |
Collapse
|
44
|
Rajagopal T, Archunan G, Geraldine P, Balasundaram C. Assessment of dominance hierarchy through urine scent marking and its chemical constituents in male blackbuck Antelope cervicapra, a critically endangered species. Behav Processes 2010; 85:58-67. [PMID: 20547215 DOI: 10.1016/j.beproc.2010.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/07/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
In ungulates the process of chemical communication by urinary scent marking has been directly related to reproductive dominance, territorial defense and proximity to resources. The differences in the frequency of urine marking and chemical composition of urine of males Antelope cervicapra before, during and after the dominance hierarchy period were assessed. The variations in the urine marking and its chemical profiles of dominant males (n=9), bachelors (n=5) and sub-adult males (n=5) were compared to find out how the dominance hierarchy influences the confined blackbuck herd under semi-natural captive conditions. The frequency of urine marking is significantly higher (p<0.001) in dominant males. Twenty-eight major constituents were identified in the urine of dominant males (before, during and after the dominance hierarchy period), bachelor and sub-adult males. Among these, three specific compounds namely, 3-hexanone (I), 6-methyl-5-hepten-2-one (II) and 4-methyl-3-heptanone (III) were seen only in dominant males urine during the dominance hierarchy period. Based on the behavioural observation and the unique chemical constituents in the urine, it is concluded that the dominant male scent odor suppresses aggression, scent marking, scent production and territorial patrolling activities of subordinate males, through which the dominant male establish their hierarchy and attains success in reproduction.
Collapse
Affiliation(s)
- Thangavel Rajagopal
- Center for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | | | | | | |
Collapse
|
45
|
Schaefer ML, Wongravee K, Holmboe ME, Heinrich NM, Dixon SJ, Zeskind JE, Kulaga HM, Brereton RG, Reed RR, Trevejo JM. Mouse urinary biomarkers provide signatures of maturation, diet, stress level, and diurnal rhythm. Chem Senses 2010; 35:459-71. [PMID: 20418335 DOI: 10.1093/chemse/bjq032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Body fluids such as urine potentially contain a wealth of information pertaining to age, sex, social and reproductive status, physiologic state, and genotype of the donor. To explore whether urine could encode information regarding environment, physiology, and development, we compared the volatile compositions of mouse urine using solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC/MS). Specifically, we identified volatile organic compounds (VOCs) in individual urine samples taken from inbred C57BL/6J-H-2(b) mice under several experimental conditions-maturation state, diet, stress, and diurnal rhythms, designed to mimic natural variations. Approximately 1000 peaks (i.e., variables) were identified per comparison and of these many were identified as potential differential biomarkers. Consistent with previous findings, we found groups of compounds that vary significantly and consistently rather than a single unique compound to provide a robust signature. We identified over 49 new predictive compounds, in addition to identifying several published compounds, for maturation state, diet, stress, and time-of-day. We found a considerable degree of overlap in the chemicals identified as (potential) biomarkers for each comparison. Chemometric methods indicate that the strong group-related patterns in VOCs provide sufficient information to identify several parameters of natural variations in this strain of mice including their maturation state, stress level, and diet.
Collapse
Affiliation(s)
- Michele L Schaefer
- Department of Neuroscience, Center for Sensory Biology, Department of Molecular Biology &Genetics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferrero DM, Liberles SD. The secret codes of mammalian scents. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:23-33. [DOI: 10.1002/wsbm.39] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David M. Ferrero
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Zhang JX, Sun L, Zhang YH. Foxn1 Gene Knockout Suppresses Sexual Attractiveness and Pheromonal Components of Male Urine in Inbred Mice. Chem Senses 2009; 35:47-56. [DOI: 10.1093/chemse/bjp081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
48
|
Abstract
Olfaction is a critical sensory modality that allows living things to acquire chemical information from the external world. The olfactory system processes two major classes of stimuli: (a) general odorants, small molecules derived from food or the environment that signal the presence of food, fire, or predators, and (b) pheromones, molecules released from individuals of the same species that convey social or sexual cues. Chemosensory receptors are broadly classified, by the ligands that activate them, into odorant or pheromone receptors. Peripheral sensory neurons expressing either odorant or pheromone receptors send signals to separate odor- and pheromone-processing centers in the brain to elicit distinct behavioral and neuroendocrinological outputs. General odorants activate receptors in a combinatorial fashion, whereas pheromones activate narrowly tuned receptors that activate sexually dimorphic neural circuits in the brain. We review recent progress on chemosensory receptor structure, function, and circuitry in vertebrates and invertebrates from the point of view of the molecular biology and physiology of these sensory systems.
Collapse
Affiliation(s)
- Kazushige Touhara
- Department of Integrated Biosciences, The University of Tokyo, Chiba, 277-8562 Japan.
| | | |
Collapse
|
49
|
Abstract
In recent years, considerable progress has been achieved in the comprehension of the profound effects of pheromones on reproductive physiology and behavior. Pheromones have been classified as molecules released by individuals and responsible for the elicitation of specific behavioral expressions in members of the same species. These signaling molecules, often chemically unrelated, are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. The standard view of pheromone sensing was based on the assumption that most mammals have two separated olfactory systems with different functional roles: the main olfactory system for recognizing conventional odorant molecules and the vomeronasal system specifically dedicated to the detection of pheromones. However, recent studies have reexamined this traditional interpretation showing that both the main olfactory and the vomeronasal systems are actively involved in pheromonal communication. The current knowledge on the behavioral, physiological, and molecular aspects of pheromone detection in mammals is discussed in this review.
Collapse
|
50
|
Ramachary D, Sakthidevi R. Direct Catalytic Asymmetric Synthesis of Highly Functionalized 2-Methylchroman-2,4-diols via Barbas-List Aldol Reaction. Chemistry 2009; 15:4516-22. [DOI: 10.1002/chem.200900066] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|