1
|
Scheffler L, Feicht S, Babushku T, Kuhn LB, Ehrenberg S, Frankenberger S, Lehmann FM, Hobeika E, Jungnickel B, Baccarini M, Bornkamm GW, Strobl LJ, Zimber-Strobl U. ERK phosphorylation is RAF independent in naïve and activated B cells but RAF dependent in plasma cell differentiation. Sci Signal 2021; 14:eabc1648. [PMID: 33975980 DOI: 10.1126/scisignal.abc1648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Members of the RAF family of serine-threonine kinases are intermediates in the mitogen-activated protein kinase and extracellular signal-regulated kinase (MAPK-ERK) signaling pathway, which controls key differentiation processes in B cells. By analyzing mice with B cell-specific deletion of Raf1, Braf, or both, we showed that Raf-1 and B-Raf acted together in mediating the positive selection of pre-B and transitional B cells as well as in initiating plasma cell differentiation. However, genetic or chemical inactivation of RAFs led to increased ERK phosphorylation in mature B cells. ERK activation in the absence of Raf-1 and B-Raf was mediated by multiple RAF-independent pathways, with phosphoinositide 3-kinase (PI3K) playing an important role. Furthermore, we found that ERK phosphorylation strongly increased during the transition from activated B cells to pre-plasmablasts. This increase in ERK phosphorylation did not occur in B cells lacking both Raf-1 and B-Raf, which most likely explains the partial block of plasma cell differentiation in mice lacking both RAFs. Collectively, our data indicate that B-Raf and Raf-1 are not necessary to mediate ERK phosphorylation in naïve or activated B cells but are essential for mediating the marked increase in ERK phosphorylation during the transition from activated B cells to pre-plasmablasts.
Collapse
Affiliation(s)
- Laura Scheffler
- Research Unit of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Samantha Feicht
- Research Unit of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
- Institute for Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Tea Babushku
- Research Unit of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Laura B Kuhn
- Research Unit of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Stefanie Ehrenberg
- Research Unit of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Samantha Frankenberger
- Research Unit of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Frank M Lehmann
- Institute for Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Elias Hobeika
- Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
- Institute of Immunology, Ulm University Medical Center, Albert-Einstein-Allee 11, D-89070 Ulm, Germany
| | - Berit Jungnickel
- Institute for Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, D-07745 Jena, Germany
| | - Manuela Baccarini
- Department of Microbiology, Immunobiology, and Genetics, Center for Molecular Biology of the University of Vienna, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Georg W Bornkamm
- Institute for Clinical Molecular Biology and Tumor Genetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Lothar J Strobl
- Research Unit of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany
| | - Ursula Zimber-Strobl
- Research Unit of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Marchioninistrasse 25, D-81377 Munich, Germany.
| |
Collapse
|
2
|
Wei X, Zhao T, Ai K, Zhang Y, Li H, Yang J. c-Raf participates in adaptive immune response of Nile tilapia via regulating lymphocyte activation. FISH & SHELLFISH IMMUNOLOGY 2019; 86:507-515. [PMID: 30513386 DOI: 10.1016/j.fsi.2018.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
RAF proto-oncogene serine/threonine-protein kinase (c-Raf) is a MAP kinase kinase kinase (MAPKKK) that participates in the Erk1/2 pathway and plays an important role in lymphocyte activation. However, the study on how c-Raf regulates adaptive immunity in non-mammal is still limited. In present study, based on analysis of sequence characteristics of c-Raf from Oreochromis niloticus (On-c-Raf), we investigated its regulation roles on teleost lymphocyte activation. The On-c-Raf was highly conserved during evolution, which was composed of a Raf-like Ras-binding domain (RBD), a protein kinase C conserved region 1 (C1) domain and a serine/threonine protein kinase catalytic (S_TKc) domain. Its mRNA showed a wide distribution in tissues of O. niloticus and with the highest expression in gill. After Aeromonas hydrophila infection, during the adaptive immune stage transcription level of On-c-Raf was significantly upregulated on day 8, but came back to original level on day 16 and 30, suggesting the potential involvement of On-c-Raf in primary response but not memory formation. Furthermore, On-c-Raf mRNA in leukocytes of Nile tilapias was obviously induced by in vitro stimulation of T cell mitogen PHA. More importantly, in vitro stimulation of lymphocytes agonist PMA augmented phosphorylation level of On-c-Raf in leukocytes detected by western-blot and immunofluorescent. Thus, c-Raf regulated lymphocyte activation of Nile tilapia on both mRNA and phosphorylation level. Together, our results revealed that the c-Raf from teleost Nile tilapia engaged in adaptive immune response by regulating lymphocytes activation. Since the regulatory mechanism of lymphocyte-mediated adaptive immunity is largely unknown in teleost, our study provided important evidences to understand teleost adaptive immunity, and also shed a novel perspective for the evolution of adaptive immune system.
Collapse
Affiliation(s)
- Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyu Zhao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huiying Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
3
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
4
|
A transgenic mouse model demonstrating the oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis. Blood 2014; 123:3914-24. [PMID: 24802772 DOI: 10.1182/blood-2012-12-473439] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The histone methyltransferase EZH2 is frequently mutated in germinal center-derived diffuse large B-cell lymphoma and follicular lymphoma. To further characterize these EZH2 mutations in lymphomagenesis, we generated a mouse line where EZH2(Y641F) is expressed from a lymphocyte-specific promoter. Spleen cells isolated from the transgenic mice displayed a global increase in trimethylated H3K27, but the mice did not show an increased tendency to develop lymphoma. As EZH2 mutations often coincide with other mutations in lymphoma, we combined the expression of EZH2(Y641F) by crossing these transgenic mice with Eµ-Myc transgenic mice. We observed a dramatic acceleration of lymphoma development in this combination model of Myc and EZH2(Y641F). The lymphomas show histologic features of high-grade disease with a shift toward a more mature B-cell phenotype, increased cycling and gene expression, and epigenetic changes involving important pathways in B-cell regulation and function. Furthermore, they initiate disease in secondary recipients. In summary, EZH2(Y641F) can collaborate with Myc to accelerate lymphomagenesis demonstrating a cooperative role of EZH2 mutations in oncogenesis. This murine lymphoma model provides a new tool to study global changes in the epigenome caused by this frequent mutation and a promising model system for testing novel treatments.
Collapse
|
5
|
Fuller DM, Zhu M, Koonpaew S, Nelson MI, Zhang W. The importance of the Erk pathway in the development of linker for activation of T cells-mediated autoimmunity. THE JOURNAL OF IMMUNOLOGY 2012; 189:4005-13. [PMID: 22984075 DOI: 10.4049/jimmunol.1201380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability of the transmembrane adaptor protein linker for activation of T cells (LAT) to regulate T cell development, activation, survival, and homeostasis depends upon phosphorylation of its multiple tyrosine residues. The mutation of tyrosine 136 on LAT abrogates its interaction with phospholipase C-γ1, causing severe ramifications on TCR-mediated signaling. Mice harboring this mutation, LATY136F mice, have significantly impaired thymocyte development; however, they rapidly develop a fatal lymphoproliferative disease marked by the uncontrolled expansion of Th2-skewed CD4(+) T cells, high levels of IgE and IgG1, and autoantibody production. In this study, we assessed the contribution of multiple signaling pathways in LATY136F disease development. The deletion of the critical signaling proteins Gads and RasGRP1 caused a further block in thymocyte development, but, over time, could not prevent CD4(+) T cell hyperproliferation. Also, restoring signaling through the NF-κB and NFAT pathways was unable to halt the development of disease. However, expression of a constitutively active Raf transgene enhanced lymphoproliferation, indicating a role for the Ras-MAPK pathway in LAT-mediated disease.
Collapse
Affiliation(s)
- Deirdre M Fuller
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
6
|
Kannan Y, Wilson MS. TEC and MAPK Kinase Signalling Pathways in T helper (T H) cell Development, T H2 Differentiation and Allergic Asthma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; Suppl 12:11. [PMID: 24116341 PMCID: PMC3792371 DOI: 10.4172/2155-9899.s12-011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Significant advances in our understanding of the signalling events during T cell development and differentiation have been made in the past few decades. It is clear that ligation of the T cell receptor (TCR) triggers a series of proximal signalling cascades regulated by an array of protein kinases. These orchestrated and highly regulated series of events, with differential requirements of particular kinases, highlight the disparities between αβ+CD4+ T cells. Throughout this review we summarise both new and old studies, highlighting the role of Tec and MAPK in T cell development and differentiation with particular focus on T helper 2 (TH2) cells. Finally, as the allergy epidemic continues, we feature the role played by TH2 cells in the development of allergy and provide a brief update on promising kinase inhibitors that have been tested in vitro, in pre-clinical disease models in vivo and into clinical studies.
Collapse
Affiliation(s)
- Yashaswini Kannan
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| | - Mark S. Wilson
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| |
Collapse
|
7
|
Janas ML, Turner M. Interaction of Ras with p110γ is required for thymic β-selection in the mouse. THE JOURNAL OF IMMUNOLOGY 2011; 187:4667-75. [PMID: 21930962 DOI: 10.4049/jimmunol.1101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocytes are tested for productive rearrangement of the tcrb locus by expression of a pre-TCR in a process termed β-selection, which requires both Notch1 and CXCR4 signaling. It has been shown that activation of the GTPase Ras allows thymocytes to proliferate and differentiate in the absence of a Pre-TCR; the direct targets of Ras at this checkpoint have not been identified, however. Mice with a mutant allele of p110γ unable to bind active Ras revealed that CXCR4-mediated PI3K activation is Ras dependent. The Ras-p110γ interaction was necessary for efficient β-selection-promoted proliferation but was dispensable for the survival or differentiation of thymocytes. Uncoupling Ras from p110γ provides unambiguous identification of a Ras interaction required for thymic β-selection.
Collapse
Affiliation(s)
- Michelle L Janas
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | |
Collapse
|
8
|
Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D, Hebb L, Wolf A, Bukowski TR, Rixon MW, Kuijper JL, Ostrander CD, West JW, Bilsborough J, Fox B, Gao Z, Xu W, Ramsdell F, Blazar BR, Lewis KE. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 2011; 41:902-15. [PMID: 21416464 DOI: 10.1002/eji.201041136] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/16/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022]
Abstract
Members of the CD28 family play important roles in regulating T-cell functions and share a common gene structure profile. We have identified VSTM3 as a protein whose gene structure matches that of the other CD28 family members. This protein (also known as TIGIT and WUCAM) has been previously shown to affect immune responses and is expressed on NK cells, activated and memory T cells, and Tregs. The nectin-family proteins CD155 and CD112 serve as counter-structures for VSTM3, and CD155 and CD112 also bind to the activating receptor CD226 on T cells and NK cells. Hence, this group of interacting proteins forms a network of molecules similar to the well-characterized CD28-CTLA-4-CD80-CD86 network. In the same way that soluble CTLA-4 can be used to block T-cell responses, we show that soluble Vstm3 attenuates T-cell responses in vitro and in vivo. Moreover, animals deficient in Vstm3 are more sensitive to autoimmune challenges indicating that this new member of the CD28 family is an important regulator of T-cell responses.
Collapse
Affiliation(s)
- Steven D Levin
- Department of Immunology, ZymoGenetics, Inc., Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang-Iott KS, Carpenter AC, Rowh MAW, Steinel N, Brady BL, Hochedlinger K, Jaenisch R, Bassing CH. TCR beta feedback signals inhibit the coupling of recombinationally accessible V beta 14 segments with DJ beta complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1369-78. [PMID: 20042591 PMCID: PMC2873682 DOI: 10.4049/jimmunol.0900723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ag receptor allelic exclusion is thought to occur through monoallelic initiation and subsequent feedback inhibition of recombinational accessibility. However, our previous analysis of mice containing a V(D)J recombination reporter inserted into Vbeta14 (Vbeta14(Rep)) indicated that Vbeta14 chromatin accessibility is biallelic. To determine whether Vbeta14 recombinational accessibility is subject to feedback inhibition, we analyzed TCRbeta rearrangements in Vbeta14(Rep) mice containing a preassembled in-frame transgenic Vbeta8.2Dbeta1Jbeta1.1 or an endogenous Vbeta14Dbeta1Jbeta1.4 rearrangement on the homologous chromosome. Expression of either preassembled VbetaDJbetaC beta-chain accelerated thymocyte development because of enhanced cellular selection, demonstrating that the rate-limiting step in early alphabeta T cell development is the assembly of an in-frame VbetaDJbeta rearrangement. Expression of these preassembled VbetaDJbeta rearrangements inhibited endogenous Vbeta14-to-DJbeta rearrangements as expected. However, in contrast to results predicted by the accepted model of TCRbeta feedback inhibition, we found that expression of these preassembled TCR beta-chains did not downregulate recombinational accessibility of Vbeta14 chromatin. Our findings suggest that TCRbeta-mediated feedback inhibition of Vbeta14 rearrangements depends on inherent properties of Vbeta14, Dbeta, and Jbeta recombination signal sequences.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Chromatin/physiology
- Feedback, Physiological/physiology
- Gene Expression Regulation, Developmental/immunology
- Gene Rearrangement, T-Lymphocyte/immunology
- Genes, Reporter/immunology
- Germ-Line Mutation/immunology
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Loss of Heterozygosity/immunology
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Katherine S. Yang-Iott
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Andrea C. Carpenter
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Marta A. W. Rowh
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Natalie Steinel
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Brenna L. Brady
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| | - Konrad Hochedlinger
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Cancer Center and Center for Regenerative Medicine, Boston, MA 02114
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Craig H. Bassing
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Family Cancer Research Institute, Philadelphia, PA 19104
| |
Collapse
|
10
|
Molecular Genetics at the T-Cell Receptor β Locus: Insights into the Regulation of V(D)J Recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:116-32. [DOI: 10.1007/978-1-4419-0296-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Tsukamoto H, Irie A, Senju S, Hatzopoulos AK, Wojnowski L, Nishimura Y. B-Raf-mediated signaling pathway regulates T cell development. Eur J Immunol 2008; 38:518-27. [PMID: 18228248 DOI: 10.1002/eji.200737430] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The activities of the Raf kinase family proteins control extracellular signal-regulated kinase (ERK) activation in many aspects of cellular responses. However, the relative contributions of individual isozymes to cellular functions including T cell responses are still unclear. In addition to Raf-1, another Raf family kinase, B-Raf, is expressed in murine thymocytes and peripheral T cells, and its activation was induced by TCR stimulation. Here, we investigated the function of B-Raf in development of T cells by generating chimeric mice in which a T cell-compromised host was reconstituted with fetal liver-derived cells from embryonic lethal B-Raf-deficient mice. Although B-Raf was dispensable for normal T cell lineage differentiation at the CD4(-)CD8(-) double-negative stage, thymocytes in the chimeric mice derived from B-Raf(-/-) cells exhibited a drastic arrest of differentiation at the CD4(+)CD8(+) double-positive stage, suggesting that B-Raf is crucial for T cell development, especially for the transition to CD4(+) and CD8(+) single-positive thymocytes. Regarding intracellular signaling, we found that activation of ERK following TCR stimulation was impaired in the thymocytes from the chimeric mice. In conclusion, we present first evidence for the important role of B-Raf-mediated signaling in T cell development.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Juntilla MM, Koretzky GA. Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett 2008; 116:104-10. [PMID: 18243340 PMCID: PMC2322870 DOI: 10.1016/j.imlet.2007.12.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 11/26/2022]
Abstract
Thymocyte development requires an integration of extracellular cues to enforce lineage commitment at multiple defined checkpoints in a stage-specific manner. Critical signals from the pre-TCR, Notch, and the receptor for interleukin-7 (IL-7) dictate cellular differentiation from the CD4(-)CD8(-) (double negative) stage to the CD4+CD8+ (double positive) stage. The PI3K/Akt signaling pathway is required to translate these extracellular signaling events into multiple functional outcomes including cellular survival, proliferation, differentiation, and allelic exclusion at the beta-selection checkpoint. However, a complete understanding of the contributions made by the PI3K/Akt pathway in thymocyte development has not been straightforward. This review highlights studies that support the model that the PI3K/Akt pathway is essential for thymocyte survival. We provide new evidence that Akt-mediated survival is not solely due to the increased expression of Bcl-xL but also is a consequence of the role played by Akt to support metabolism in proliferating thymocytes.
Collapse
Affiliation(s)
- Marisa M Juntilla
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
13
|
Gallo EM, Winslow MM, Canté-Barrett K, Radermacher AN, Ho L, McGinnis L, Iritani B, Neilson JR, Crabtree GR. Calcineurin sets the bandwidth for discrimination of signals during thymocyte development. Nature 2008; 450:731-5. [PMID: 18046413 DOI: 10.1038/nature06305] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 09/26/2007] [Indexed: 01/15/2023]
Abstract
At critical times in development, cells are able to convert graded signals into discrete developmental outcomes; however, the mechanisms involved are poorly understood. During thymocyte development, cell fate is determined by signals originating from the alphabeta T-cell receptor. Low-affinity/avidity interactions between the T-cell receptor and peptide-MHC complexes direct differentiation to the single-positive stage (positive selection), whereas high-affinity/avidity interactions induce death by apoptosis (negative selection). Here we show that mice deficient in both calcineurin and nuclear factor of activated T cells (NFAT)c2/c3 lack a population of preselection thymocytes with enhanced ability to activate the mitogen-activated protein kinase (Raf-MEK-ERK) pathway, and fail to undergo positive selection. This defect can be partially rescued with constitutively active Raf, indicating that calcineurin controls MAPK signalling. Analysis of mice deficient in both Bim (which is required for negative selection) and calcineurin revealed that calcineurin-induced ERK (extracellular signal-regulated kinase) sensitization is required for differentiation in response to 'weak' positive selecting signals but not in response to 'strong' negative selecting signals (which normally induce apoptosis). These results indicate that early calcineurin/NFAT signalling produces a developmental period of ERK hypersensitivity, allowing very weak signals to induce positive selection. This mechanism might be generally useful in the discrimination of graded signals that induce different cell fates.
Collapse
Affiliation(s)
- Elena M Gallo
- Howard Hughes Medical Institute and the Department of Pathology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Habib T, Park H, Tsang M, de Alborán IM, Nicks A, Wilson L, Knoepfler PS, Andrews S, Rawlings DJ, Eisenman RN, Iritani BM. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. ACTA ACUST UNITED AC 2007; 179:717-31. [PMID: 17998397 PMCID: PMC2080907 DOI: 10.1083/jcb.200704173] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deregulated expression of the Myc family of transcription factors (c-, N-, and L-myc) contributes to the development of many cancers by a mechanism believed to involve the stimulation of cell proliferation and inhibition of differentiation. However, using B cell-specific c-/N-myc double-knockout mice and E(mu)-myc transgenic mice bred onto genetic backgrounds (recombinase-activating gene 2-/- and Btk-/- Tec-/-) whereby B cell development is arrested, we show that Myc is necessary to stimulate both proliferation and differentiation in primary B cells. Moreover, Myc expression results in sustained increases in intracellular Ca2+ ([Ca2+]i), which is required for Myc to stimulate B cell proliferation and differentiation. The increase in [Ca2+]i correlates with constitutive nuclear factor of activated T cells (NFAT) nuclear translocation, reduced Ca2+ efflux, and decreased expression of the plasma membrane Ca2+-adenosine triphosphatase (PMCA) efflux pump. Our findings demonstrate a revised model whereby Myc promotes both proliferation and differentiation, in part by a remarkable mechanism whereby Myc amplifies Ca2+ signals, thereby enabling the concurrent expression of Myc- and Ca2+-regulated target genes.
Collapse
Affiliation(s)
- Tania Habib
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The Ras superfamily consists of over 50 low-molecular-weight proteins that cycle between an inactive guanosine diphosphate-bound state and an active guanosine triphosphate (GTP)-bound state. They are involved in a variety of signal transduction pathways that regulate cell growth, intracellular trafficking, cell migration, and apoptosis. Several methods have been devised to measure the activation state of Ras proteins, defined as the percent of Ras molecules in the active GTP-bound state. We have previously developed a quantitative biochemical method that can be applied to animal and human tissues and have used it to measure the activation state of Ras, Rap1, Rheb, and Rho proteins in cultured cells and in animal and human tumors. Ras, Rac, and Rho all play roles in regulating the functions of T and B lymphocytes and dendritic cells, and these proteins are clearly important in maintaining normal immune system function.
Collapse
Affiliation(s)
- Juergen S Scheele
- Co-ordinating Center for Clinical Trials, Martin Luther University, Halle, Germany
| | | | | |
Collapse
|
16
|
Wang H, Clarke SH. Association of the pre-B cell receptor (BCR) expression level with the quality of pre-BII cell differentiation reveals hierarchical pre-BCR function. Mol Immunol 2006; 44:1765-74. [PMID: 17007932 DOI: 10.1016/j.molimm.2006.07.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/14/2006] [Accepted: 07/19/2006] [Indexed: 11/26/2022]
Abstract
The expression of a pre-B cell receptor (pre-BCR) is required for allelic exclusion and pre-BII cell differentiation. V(H)12 microH chains are unusual in that they form pre-BCRs and mediate allelic exclusion, but most cannot drive pre-BII cell differentiation. To explain this paradox, we examined pre-BCR functions and pre-BII cell differentiation in mice expressing microH chain transgenes encoding a B cell-permissible V(H)12 microH chain (designated 10/G4(6-1)), and a non-permissible V(H)12 microH chain (designated 8/G0). Compared with 10/G4 pre-BCRs, 8/G0 pre-BCRs are expressed at low levels on the cell surface. 8/G0 pre-BCRs mediate allelic exclusion, but 8/G0 pre-BII cells are defective in proliferation and expression of survival factors Bcl-2, Bcl-X(L) and hemokinin 1 (HK1). Increasing 8/G0 microH chain production restores HK1 transcription and improves proliferation of pre-BII cells as well as later stage B cell development. These data reveal a hierarchy of pre-BCR function that determines the development and plasticity of early B cells.
Collapse
Affiliation(s)
- Hongsheng Wang
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, USA
| | | |
Collapse
|
17
|
Trampont P, Zhang L, Ravichandran KS. ShcA mediates the dominant pathway to extracellular signal-regulated kinase activation during early thymic development. Mol Cell Biol 2006; 26:9035-44. [PMID: 16982683 PMCID: PMC1636838 DOI: 10.1128/mcb.00988-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During thymic development, the beta selection checkpoint is regulated by pre-T-cell receptor-initiated signals. Progression through this checkpoint is influenced by phosphorylation and activation of the serine/threonine kinases extracellular signal-regulated kinase 1 (ERK1) and ERK2, but the in vivo relevance of specific upstream players leading to ERK activation is not known. Here, using mice with a conditional loss of the shc1 gene or expressing mutants of ShcA, we demonstrate that the adapter protein ShcA is responsible for up to 70% of ERK activation in double-negative (DN) thymocytes in vivo and ex vivo. We also identify two specific tyrosines on ShcA that promote ERK phosphorylation in vivo, and mice expressing ShcA with mutations of these tyrosines show impaired DN thymocyte development. This work provides the first in vivo demonstration of the relative requirement of upstream adapters in controlling ERK activation during beta selection and suggests a dominant role for ShcA.
Collapse
Affiliation(s)
- Paul Trampont
- Carter Immunology Center, MR4-4072D, Box 801386, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
18
|
David-Fung ES, Yui MA, Morales M, Wang H, Taghon T, Diamond RA, Rothenberg EV. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol Rev 2006; 209:212-36. [PMID: 16448545 PMCID: PMC4157939 DOI: 10.1111/j.0105-2896.2006.00355.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Precursors entering the T-cell developmental pathway traverse a progression of states characterized by distinctive patterns of gene expression. Of particular interest are regulatory genes, which ultimately control the dwell time of cells in each state and establish the mechanisms that propel them forward to subsequent states. Under particular genetic and developmental circumstances, the transitions between these states occur with different timing, and environmental feedbacks may shift the steady-state accumulations of cells in each state. The fetal transit through pro-T-cell stages is faster than in the adult and subject to somewhat different genetic requirements. To explore causes of such variation, this review presents previously unpublished data on differentiation gene activation in pro-T cells of pre-T-cell receptor-deficient mutant mice and a quantitative comparison of the profiles of transcription factor gene expression in pro-T-cell subsets of fetal and adult wildtype mice. Against a background of consistent gene expression, several regulatory genes show marked differences between fetal and adult expression profiles, including those encoding two basic helix-loop-helix antagonist Id factors, the Ets family factor SpiB and the Notch target gene Deltex1. The results also reveal global differences in regulatory alterations triggered by the first T-cell receptor-dependent selection events in fetal and adult thymopoiesis.
Collapse
|
19
|
Jackson AM, Krangel MS. A role for MAPK in feedback inhibition of Tcrb recombination. THE JOURNAL OF IMMUNOLOGY 2006; 176:6824-30. [PMID: 16709842 DOI: 10.4049/jimmunol.176.11.6824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Tcrb locus is subject to a host of regulatory mechanisms that impart a strict cell and developmental stage-specific order to variable (V), diversity (D), and joining (J) gene segment recombination. The Tcrb locus is also regulated by allelic exclusion mechanisms, which restrict functional rearrangements to a single allele. The production of a functional rearrangement in CD4-CD8- double-negative (DN) thymocytes leads to the assembly of a pre-TCR and initiates signaling cascades that allow for DN to CD4+CD8+ double-positive (DP) differentiation, proliferation, and feedback inhibition of further Vbeta to DJbeta rearrangement. Feedback inhibition is believed to be controlled, in part, by the loss of Vbeta gene segment accessibility during the DN to DP transition. However, the pre-TCR signaling pathways that lead to the inactivation of Vbeta chromatin have not been determined. Because activation of the MAPK pathway is documented to promote DP differentiation in the absence of allelic exclusion, we characterized the properties of Vbeta chromatin within DP thymocytes generated by a constitutively active Raf1 (Raf-CAAX) transgene. Consistent with previous reports, we show that the Raf-CAAX transgene does not inhibit Tcrb recombination in DN thymocytes. Nevertheless, DP thymocytes generated by Raf-CAAX signals display normal down-regulation of Vbeta segment accessibility and normal feedback inhibition of the Vbeta to DJbeta rearrangement. Therefore, our results emphasize the distinct requirements for feedback inhibition in the DN and DP compartments. Although MAPK activation cannot impose feedback in DN thymocytes, it contributes to feedback inhibition through developmental changes that are tightly linked to DN to DP differentiation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Alleles
- Animals
- Chromatin/chemistry
- Chromatin/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Feedback, Physiological/genetics
- Feedback, Physiological/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Protein Prenylation
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/physiology
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Annette M Jackson
- Department of Immunology, Duke University Medical Center, Durham NC 27710, USA
| | | |
Collapse
|
20
|
Yamamoto M, Hayashi K, Nojima T, Matsuzaki Y, Kawano Y, Karasuyama H, Goitsuka R, Kitamura D. BASH-novel PKC-Raf-1 pathway of pre-BCR signaling induces kappa gene rearrangement. Blood 2006; 108:2703-11. [PMID: 16794253 DOI: 10.1182/blood-2006-05-024968] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pre-B-cell receptor (pre-BCR) is thought to signal transcriptional activation of the immunoglobulin light (L) chain gene locus, proceeding to its V-J rearrangement. The pre-BCR signaling pathway for this process is largely unknown but may involve the adaptor protein BASH (BLNK/SLP-65). Here we report that the pre-B leukemia cell lines established from affected BASH-deficient mice rearrange kappaL-chain gene locus and down-regulate pre-BCR upon PMA treatment or BASH reconstitution. Analyses with specific inhibitors revealed that activation of novel PKC (nPKC) and MEK, but not Ras, is necessary for the rearrangement. Accordingly, retroviral transduction of active PKCeta, PKCepsilon, or Raf-1, but not Ras, induced the kappa gene rearrangement and expression in the pre-B-cell line. Tamoxifen-mediated BASH reconstitution resulted in the translocation of PKCeta to the plasma membrane and kappa chain expression. These data make evident that the Ras-independent BASH-nPKC-Raf-1 pathway of pre-BCR signaling induces the L-chain gene rearrangement and expression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Base Sequence
- Cell Differentiation
- Cell Line, Tumor
- DNA, Neoplasm/genetics
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/metabolism
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Preleukemia/genetics
- Preleukemia/immunology
- Preleukemia/metabolism
- Protein Kinase C/metabolism
- Proto-Oncogene Proteins c-raf/metabolism
- Signal Transduction
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Mutsumi Yamamoto
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Aifantis I, Mandal M, Sawai K, Ferrando A, Vilimas T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol Rev 2006; 209:159-69. [PMID: 16448541 DOI: 10.1111/j.0105-2896.2006.00343.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pre-T-cell receptor (pre-TCR) functions and the study of early thymocyte development continue to fascinate immunologists more than 10 years after the first description and cloning of the receptor. Although multiple reports have addressed several aspects of pre-TCR signaling and function, its ability to regulate diverse functions, including proliferation, survival, and allelic exclusion of the TCR-beta locus, remains an open question. What fascinates us is its central role in the fine balance between physiological differentiation and thymocyte transformation that leads to T-cell leukemia and lymphomas. In this review, we integrate pre-TCR signaling pathways and study their effects on the regulation of T-cell progenitor cell-cycle entry and cell survival. We also connect aberrant pre-TCR signaling to deregulated proliferation and apoptotic balances and thymocyte transformation.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction
- T-Lymphocytes/cytology
- Thymus Gland/cytology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Iannis Aifantis
- University of Chicago, Department of Medicine, Section of Rheumatology, Committees of Immunology, Cancer and Developmental Biology, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Progenitor B lymphocytes that successfully assemble a heavy chain gene encoding an immunoglobulin capable of pairing with surrogate light chain proteins trigger their own further differentiation by signaling via the pre-BCR complex. The pre-BCR signals several rounds of proliferation and, in this expanded population, directs a complex, B cell-specific set of epigenetic changes resulting in allelic exclusion of the heavy chain locus and activation of the light chain loci for V(D)J recombination.
Collapse
Affiliation(s)
- Jamie K Geier
- UC-Berkeley, Department of Molecular & Cell Biology, Division of Immunology, 439 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
23
|
Williams JA, Hathcock KS, Klug D, Harada Y, Choudhury B, Allison JP, Abe R, Hodes RJ. Regulated costimulation in the thymus is critical for T cell development: dysregulated CD28 costimulation can bypass the pre-TCR checkpoint. THE JOURNAL OF IMMUNOLOGY 2005; 175:4199-207. [PMID: 16177059 PMCID: PMC1343453 DOI: 10.4049/jimmunol.175.7.4199] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of CD28 is highly regulated during thymic development, with CD28 levels extremely low on immature thymocytes but increasing dramatically as CD4- CD8- cells initiate expression of TCRbeta. B7-1 and B7-2, the ligands for CD28, have a restricted distribution in the thymic cortex where immature thymocytes reside and are more highly expressed in the medulla where the most mature thymocytes are located. To determine the importance of this regulated CD28/B7 expression for T cell development, we examined the effect of induced CD28 signaling of immature thymocytes in CD28/B7-2 double-transgenic mice. Strikingly, we found that differentiation to the CD4+ CD8+ stage in CD28/B7-2 transgenics proceeds independent of the requirement for TCRbeta expression manifest in wild-type thymocytes, occurring even in Rag- or CD3epsilon- knockouts. These findings indicate that signaling of immature thymocytes through CD28 in the absence of TCR- or pre-TCR-derived signals can promote an aberrant pathway of T cell differentiation and highlight the importance of finely regulated physiologic expression of CD28 and B7 in maintaining integrity of the "beta" checkpoint for pre-TCR/TCR-dependent thymic differentiation.
Collapse
Affiliation(s)
- Joy A Williams
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Clark MR, Cooper AB, Wang LD, Aifantis I. The pre-B cell receptor in B cell development: recent advances, persistent questions and conserved mechanisms. Curr Top Microbiol Immunol 2005; 290:87-103. [PMID: 16480040 DOI: 10.1007/3-540-26363-2_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
B cell development is a process tightly regulated by the orchestrated signaling of cytokine receptors, the pre-B cell receptor (BCR) and the B cell receptor (BCR). It commences with common lymphoid progenitors (CLP) up-regulating the expression of B cell-related genes and committing to the B cell lineage. Cytokine signaling (IL-7, stem cell factor, FLT3-L) is essential at this stage of development as it suppresses cell death, sustains proliferation and facilitates heavy chain rearrangements. As a result of heavy chain recombination, the pre-BCR is expressed, which then becomes the primary determiner of survival, cell cycle entry and allelic exclusion. In this review, we discuss the mechanisms of B cell lineage commitment and describe the signaling pathways that are initiated by the pre-BCR. Finally, we compare pre-BCR and pre-TCR structure, signal transduction and function, drawing parallels between early pre-B and pre-T cell development.
Collapse
Affiliation(s)
- M R Clark
- Section of Rheumatology, University of Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
25
|
Klinger MB, Guilbault B, Goulding RE, Kay RJ. Deregulated expression of RasGRP1 initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene 2004; 24:2695-704. [PMID: 15829980 DOI: 10.1038/sj.onc.1208334] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RasGRP1 is a Ras-specific exchange factor, which is activated by T-cell receptor (TCR) and promotes TCR-dependent positive selection of thymocytes. RasGRP1 is highly expressed on most T lymphocytic leukemias and is a common site of proviral insertion in retrovirus-induced murine T-cell lymphomas. We used RasGRP1 transgenic mice to determine if deregulated expression of RasGRP1 has a causative role in the development of T-cell malignancies. Thymic lymphomas occurred in three different RasGRP1 transgenic mouse lines. Thymocyte transformation correlated with high transgene expression in early stage lymphomas, indicating that deregulated RasGRP1 expression contributed to the initiation of lymphomagenesis. Expression of the positively selectable H-Y TCR accelerated lymphomagenesis in RasGRP1 transgenic mice. However, the transformed thymocytes lacked markers of positive selection and lymphomas occurred when positive selection was precluded by negative selection of the H-Y TCR. Therefore, initiation of lymphomagenesis via RasGRP1 was not associated with TCR-dependent positive selection of thymocytes. Thymic lymphomas occurred in RasGRP1 transgenic/Rag2-/- mice, demonstrating that neither TCR nor pre-TCR were required for RasGRP1-driven lymphomagenesis. The RasGRP1 transgene conferred pre-TCR-independent survival and proliferation of immature thymocytes, suggesting that deregulated expression of RasGRP1 promotes lymphomagenesis by expanding the pool of thymocytes which are susceptible to transformation.
Collapse
Affiliation(s)
- Mark B Klinger
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
26
|
Grady GC, Mason SM, Stephen J, Zúñiga-Pflücker JC, Michie AM. Cyclic adenosine 5'-monophosphate response element binding protein plays a central role in mediating proliferation and differentiation downstream of the pre-TCR complex in developing thymocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:1802-10. [PMID: 15265911 DOI: 10.4049/jimmunol.173.3.1802] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The roles played by specific transcription factors during the regulation of early T cell development remain largely undefined. Several key genes induced during the primary checkpoint of T cell development, beta-selection, contain cAMP response element sites within their enhancer-promoter region that are regulated by CREB activation. In this study, we show that CREB is constitutively phosphorylated in the thymus, but not the spleen. We also show that CREB is activated downstream of the pre-TCR complex, and that the induction of CREB activity is regulated by protein kinase C alpha- and ERK-MAPK-mediated signals. We addressed the importance of this activation by expressing a naturally occurring inhibitor of CREB, inducible cAMP early repressor in wild-type fetal liver-derived lymphoid progenitor cells, and assessed their developmental potential. Fetal thymic organ cultures reconstituted with cells constitutively expressing inducible cAMP early repressor displayed a delay in generating CD4(+)CD8(+) thymocytes and a decrease in cellularity compared with control fetal thymic organ cultures. Taken together, our studies establish that CREB plays a central role in relaying proliferation and differentiation signals from the pre-TCR complex into the nucleus in developing thymocytes.
Collapse
Affiliation(s)
- Gillian C Grady
- Division of Immunology, Infection, and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Ciofani M, Schmitt TM, Ciofani A, Michie AM, Cuburu N, Aublin A, Maryanski JL, Zúñiga-Pflücker JC. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 172:5230-9. [PMID: 15100261 DOI: 10.4049/jimmunol.172.9.5230] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first checkpoint during T cell development, known as beta selection, requires the successful rearrangement of the TCR-beta gene locus. Notch signaling has been implicated in various stages during T lymphopoiesis. However, it is unclear whether Notch receptor-ligand interactions are necessary during beta selection. Here, we show that pre-TCR signaling concurrent with Notch receptor and Delta-like-1 ligand interactions are required for the survival, proliferation, and differentiation of mouse CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. Furthermore, we address the minimal signaling requirements underlying beta selection and show a hierarchical positioning of key proximal signaling molecules. Collectively, our results demonstrate an essential role for Notch receptor-ligand interactions in enabling the autonomous signaling capacity of the pre-TCR complex.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Goetz CA, Harmon IR, O'Neil JJ, Burchill MA, Farrar MA. STAT5 activation underlies IL7 receptor-dependent B cell development. THE JOURNAL OF IMMUNOLOGY 2004; 172:4770-8. [PMID: 15067053 DOI: 10.4049/jimmunol.172.8.4770] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signals initiated by the IL7R are required for B cell development. However, the roles that distinct IL7R-induced signaling pathways play in this process remains unclear. To identify the function of the Raf and STAT5 pathways in IL7R-dependent B cell development, we used transgenic mice that express constitutively active forms of Raf (Raf-CAAX) or STAT5 (STAT5b-CA) throughout lymphocyte development. Both Raf-CAAX and STAT5b-CA mice exhibit large increases in pro-B cells. However, crossing the Raf-CAAX transgene onto the IL7R(-/-) background fails to rescue B cell development. In contrast, STAT5 activation selectively restores B cell expansion in IL7R(-/-) mice. Notably, the expansion of pro-B cells in STAT5b-CA mice correlated with an increase in cyclin D2, pim-1, and bcl-x(L) expression, suggesting that STAT5 directly affects pro-B cell proliferation and survival. In addition, STAT5 activation also restored B cell differentiation in IL7R(-/-) mice as determined by 1) the restoration of V(H) Ig gene rearrangement and 2) the appearance of immature and mature B cell subsets. These findings establish STAT5 as the key player entraining B cell development downstream of the IL7R.
Collapse
Affiliation(s)
- Christine A Goetz
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
29
|
Perez de Castro I, Bivona TG, Philips MR, Pellicer A. Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus. Mol Cell Biol 2004; 24:3485-96. [PMID: 15060167 PMCID: PMC381594 DOI: 10.1128/mcb.24.8.3485-3496.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ras activation is critical for T-cell development and function, but the specific roles of the different Ras isoforms in T-lymphocyte function are poorly understood. We recently reported T-cell receptor (TCR) activation of ectopically expressed H-Ras on the the Golgi apparatus of T cells. Here we studied the isoform and subcellular compartment specificity of Ras signaling in Jurkat T cells. H-Ras was expressed at much lower levels than the other Ras isoforms in Jurkat and several other T-cell lines. Glutathione S-transferase-Ras-binding domain (RBD) pulldown assays revealed that, although high-grade TCR stimulation and phorbol ester activated both N-Ras and K-Ras, low-grade stimulation of the TCR resulted in specific activation of N-Ras. Surprisingly, whereas ectopically expressed H-Ras cocapped with the TCRs in lipid microdomains of the Jurkat plasma membrane, N-Ras did not. Live-cell imaging of Jurkat cells expressing green fluorescent protein-RBD, a fluorescent reporter of GTP-bound Ras, revealed that N-Ras activation occurs exclusively on the Golgi apparatus in a phospholipase Cgamma- and RasGRP1-dependent fashion. The specificity of N-Ras signaling downstream of low-grade TCR stimulation was dependent on the monoacylation of the hypervariable membrane targeting sequence. Our data show that, in contrast to fibroblasts stimulated with growth factors in which all three Ras isoforms become activated and signaling occurs at both the plasma membrane and Golgi apparatus, Golgi-associated N-Ras is the critical Ras isoform and intracellular pool for low-grade TCR signaling in Jurkat T cells.
Collapse
Affiliation(s)
- Ignacio Perez de Castro
- Department of Pathology and New York University Cancer Institute, New York, New York 10016, USA
| | | | | | | |
Collapse
|
30
|
Hendriks RW, Middendorp S. The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol 2004; 25:249-56. [PMID: 15099565 DOI: 10.1016/j.it.2004.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Agammaglobulinaemia Tyrosine Kinase
- Amino Acid Motifs
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Carrier Proteins/physiology
- Cell Division/physiology
- Genes, Immunoglobulin
- Humans
- Immunoglobulin Switch Region
- Lymphocyte Activation
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Knockout
- Models, Immunological
- Multienzyme Complexes/physiology
- Phosphoproteins/deficiency
- Phosphoproteins/physiology
- Phosphorylation
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Interleukin-7/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Immunology, Erasmus MC Rotterdam, PO Box 1738, NL-3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
31
|
Imamura Y, Katahira T, Kitamura D. Identification and characterization of a novel BASH N terminus-associated protein, BNAS2. J Biol Chem 2004; 279:26425-32. [PMID: 15087455 DOI: 10.1074/jbc.m403685200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A B cell-specific adaptor protein, BASH (also known as BLNK or SLP-65), is crucial for B cell receptor (BCR) signaling. BASH binds to various signaling intermediates, such as Btk, PLCgamma2, Vav, and Grb2, through its well defined motifs. Although functional significance of such interactions has been documented, BASH-mediated signal transduction mechanism is not fully understood. Using the yeast two-hybrid system, we have identified a novel protein that binds to a conserved N-terminal domain of BASH, which we named BNAS2 (BASH N terminus associated protein 2). From its deduced amino acid sequence, BNAS2 is presumed to contain four transmembrane domains, which are included in a central MARVEL domain, and to localize to endoplasmic reticulum. BNAS2 was co-precipitated with BASH as well as Btk and ERK2 from a lysate of mouse B cell line. In the transfected cells, the exogenous BNAS2 was localized in a mesh-like structure in the cytoplasm resembling that of endoplasmic reticulum (ER) and nuclear membrane. BASH was co-localized with BNAS2 in a manner dependent on its N-terminal domain. RT-PCR analysis indicated that BNAS2 mRNA is expressed ubiquitously except for plasma cells. In chicken B cell line DT40, overexpression of BNAS2 resulted in an enhancement of BCR ligation-mediated transcriptional activation of Elk1, but not of NF-kappaB, in a manner dependent on the dose of BNAS2. Thus BNAS2 may serve as a scaffold for signaling proteins such as BASH, Btk, and ERK at the ER and nuclear membrane and may facilitate ERK activation by signaling from cell-surface receptors.
Collapse
Affiliation(s)
- Yasuhiro Imamura
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda-city, Chiba 278-0022, Japan
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Michael Reth
- Department of Molecular Immunology, Institute for Biology III, Albert-Ludwigs-University of Freiburg and Max-Planck-Institut for Immunobiology, 79108 Freiburg, Germany.
| | | |
Collapse
|
33
|
Guilbault B, Kay RJ. RasGRP1 sensitizes an immature B cell line to antigen receptor-induced apoptosis. J Biol Chem 2004; 279:19523-30. [PMID: 14970203 DOI: 10.1074/jbc.m314273200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RasGRP1 is a guanine nucleotide exchange factor that activates Ras GTPases and is activated downstream of antigen receptors on both T and B lymphocytes. Ras-GRP1 provides signals to immature T cells that confer survival and proliferation, but RasGRP1 also promotes T cell receptor-mediated deletion of mature T cells. We used the WEHI-231 cell line as an experimental system to determine whether RasGRP1 can serve as a quantitative modifier of B cell receptor-induced deletion of immature B cells. A 2-fold elevation in RasGRP1 expression markedly increased apoptosis of WEHI-231 cells following B cell receptor ligation, whereas a dominant negative mutant of RasGRP1 suppressed B cell receptor-induced apoptosis. Activation of ERK1 or ERK2 kinases was not required for RasGRP1-mediated apoptosis. Instead, elevated RasGRP1 expression caused down-regulation of NF-kappaB and Bcl-x(L), which provide survival signals counter-acting apoptosis induction by B cell receptor. Inhibition of NF-kappaB was sufficient to enhance B cell receptor-induced apoptosis of WEHI-231 cells, and ligation of co-stimulatory receptors that activate NF-kappaB suppressed the ability of RasGRP1 to promote B cell receptor-induced apoptosis. These experiments define a novel apoptosis-promoting pathway leading from B cell receptor to the inhibition of NF-kappaB and demonstrate that differential expression of RasGRP1 has the potential to modulate the sensitivities of B cells to negative selection following antigen encounter.
Collapse
Affiliation(s)
- Benoit Guilbault
- Terry Fox Laboratory, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | | |
Collapse
|
34
|
Wang H, Clarke SH. Positive selection focuses the VH12 B-cell repertoire towards a single B1 specificity with survival function. Immunol Rev 2004; 197:51-9. [PMID: 14962186 DOI: 10.1111/j.0105-2896.2004.0098.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
B cells of varying antigen specificities are consistently present in the unmanipulated repertoire. These B cells appear to belong to the marginal zone (MZ) and B1 B-cell subsets and provide protection to the blood and lymph, respectively. Some are specific for self-antigens, suggesting that they are selected based on specificity for self but have a protective role against foreign pathogens. One of these specificities is for phosphatidylcholine (PtC). Anti-PtC B cells comprise 5-8% of the B1 repertoire and are protective against bacterial pathogens. In general, they are restricted to the expression of two VH/Vkappa combinations, VH11/Vkappa9 and VH12/Vkappa4/5H. This review focuses on the differentiation of VH12 anti-PtC B cells. They undergo a series of positive selection events beginning at the pre-B-cell stage that enriches for those with a VHCDR3 and L chain required for PtC binding and eliminating the majority of VH12 B cells that lack the ability to bind PtC. Thus, positive selection focuses the VH12 repertoire toward PtC, ensuring that anti-PtC VH12 B cells are a significant component of the B1-cell repertoire in all individuals.
Collapse
Affiliation(s)
- Hongsheng Wang
- Deptartment of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
35
|
Fujikawa K, Miletic AV, Alt FW, Faccio R, Brown T, Hoog J, Fredericks J, Nishi S, Mildiner S, Moores SL, Brugge J, Rosen FS, Swat W. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. ACTA ACUST UNITED AC 2004; 198:1595-608. [PMID: 14623913 PMCID: PMC2194126 DOI: 10.1084/jem.20030874] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Vav family of Rho guanine nucleotide exchange factors is thought to orchestrate signaling events downstream of lymphocyte antigen receptors. Elucidation of Vav function has been obscured thus far by the expression of three highly related family members. We generated mice lacking all Vav family proteins and show that Vav-null mice produce no functional T or B cells and completely fail to mount both T-dependent and T-independent humoral responses. Whereas T cell development is blocked at an early stage in the thymus, immature B lineage cells accumulate in the periphery but arrest at a late “transitional” stage. Mechanistically, we show that the Vav family is crucial for both TCR and B cell receptor (BCR)–induced Ca2+ signaling and, surprisingly, is only required for mitogen-activated protein kinase (MAPK) activation in developing and mature T cells but not in B cells. Thus, the abundance of immature B cells generated in Vav-null mice may be due to intact Ras/MAPK signaling in this lineage. Although the expression of Vav1 alone is sufficient for normal lymphocyte development, our data also reveal lineage-specific roles for Vav2 and Vav3, with the first demonstration that Vav3 plays a critical compensatory function in T cells. Together, we define an essential role for the entire Vav protein family in lymphocyte development and activation and establish the limits of functional redundancy both within this family and between Vav and other Rho–guanine nucleotide exchange factors.
Collapse
Affiliation(s)
- Keiko Fujikawa
- 660 S. Euclid Ave., Dept. of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang LD, Clark MR. B-cell antigen-receptor signalling in lymphocyte development. Immunology 2003; 110:411-20. [PMID: 14632637 PMCID: PMC1783068 DOI: 10.1111/j.1365-2567.2003.01756.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 09/15/2003] [Accepted: 09/15/2003] [Indexed: 12/11/2022] Open
Abstract
Signalling through the B-cell antigen receptor (BCR) is required throughout B-cell development and peripheral maturation. Targeted disruption of BCR components or downstream effectors indicates that specific signalling mechanisms are preferentially required for central B-cell development, peripheral maturation and repertoire selection. Additionally, the avidity and the context in which antigen is encountered determine both cell fate and differentiation in the periphery. Although the signalling and receptor components required at each stage have been largely elucidated, the molecular mechanisms through which specific signalling are evoked at each stage are still obscure. In particular, it is not known how the pre-BCR initiates the signals required for normal development or how immature B cells regulate the signalling pathways that determine cell fate. In this review, we will summarize the recent studies that have defined the molecules required for B-cell development and maturation as well as the theories on how signals may be regulated at each stage.
Collapse
Affiliation(s)
- Leo D Wang
- Section of Rheumatology and Committee on Immunology, Biological Sciences Division and Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
37
|
Marklund U, Lightfoot K, Cantrell D. Intracellular Location and Cell Context-Dependent Function of Protein Kinase D. Immunity 2003; 19:491-501. [PMID: 14563314 DOI: 10.1016/s1074-7613(03)00260-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein kinase D (PKD) is an antigen receptor-activated serine kinase localized at either the plasma membrane or the cytosol of lymphocytes. To probe PKD function at these different locations, transgenesis was used to target active PKD either to the membrane or cytosol of pre-T cells. In recombinase gene null pre-T cells, membrane and cytosolic active PKD both induced differentiation reminiscent of beta selection: downregulation of CD25 and upregulation of CD2 and CD5. Active PKDs also induced pre-T cell proliferation, although this response was not universal to all thymocyte subsets. There were two striking differences between the actions of the differentially localized PKDs. Membrane but not cytosolic PKD could induce expression of CD8 and CD4 in recombinase null mice; cytosolic but not membrane PKD suppressed Vbeta to DJbeta rearrangements of the TCRbeta chain locus in wild-type T cells. PKD function is thus determined by its intracellular location and cell context.
Collapse
Affiliation(s)
- Ulrica Marklund
- Lymphocyte Activation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
38
|
Hayashi K, Yamamoto M, Nojima T, Goitsuka R, Kitamura D. Distinct signaling requirements for Dmu selection, IgH allelic exclusion, pre-B cell transition, and tumor suppression in B cell progenitors. Immunity 2003; 18:825-36. [PMID: 12818163 DOI: 10.1016/s1074-7613(03)00142-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pre-B cell receptor triggers expansion and differentiation of pre-B cells (the pre-B cell transition), as well as inhibition of V(H) to DJ(H) recombination (allelic exclusion). The latter also accounts for counter-selection of pro-B cells expressing Dmu protein (Dmu selection). However, the signaling pathways responsible for these events remain poorly defined. Here we show complete arrest of B cell development at the pre-B cell transition in BASH/CD19 double mutant mice, indicating partial redundancy of the two B cell-specific adaptors. Allelic exclusion remained intact in the double mutant mice, whereas Dmu selection was abolished in BASH mutant mice. Thus, distinct signals are required for these events. In addition, both mutant mice succumbed to pre-B cell leukemia, indicating that BASH and CD19 contribute to tumor suppression.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Yamazaki 2669, Noda, 278-0022, Chiba, Japan
| | | | | | | | | |
Collapse
|
39
|
Schweighoffer E, Vanes L, Mathiot A, Nakamura T, Tybulewicz VLJ. Unexpected requirement for ZAP-70 in pre-B cell development and allelic exclusion. Immunity 2003; 18:523-33. [PMID: 12705855 DOI: 10.1016/s1074-7613(03)00082-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ZAP-70, a member of the Syk family of tyrosine kinases, has been reported to be expressed exclusively in T and NK cells. We show here that it is expressed throughout B cell development and that it plays a role in the transition of pro-B to pre-B cells in the bone marrow, a checkpoint controlled by signals from the pre-B cell receptor (pre-BCR), which monitors for successful rearrangement of immunoglobulin heavy chain genes. Whereas mice deficient in Syk show a partial block at this step, mice mutant in both Syk and ZAP-70 show a complete block at the pro-B cell stage and a failure of heavy chain allelic exclusion, hallmarks of defective pre-BCR signaling.
Collapse
Affiliation(s)
- Edina Schweighoffer
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Abstract
T cell antigen receptor-induced signals are required for normal T cell development and function. Recent studies have investigated the mechanism(s) by which signals of different strengths are converted into distinct cellular fates during thymocyte development. These studies indicate the importance of the strength and duration of signals activated through PLC and PKC pathways in shaping the mature TCR repertoire.
Collapse
Affiliation(s)
- Paul E Love
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
41
|
Haks MC, Belkowski SM, Ciofani M, Rhodes M, Lefebvre JM, Trop S, Hugo P, Zúñiga-Pflücker JC, Wiest DL. Low activation threshold as a mechanism for ligand-independent signaling in pre-T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2853-61. [PMID: 12626535 DOI: 10.4049/jimmunol.170.6.2853] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pre-TCR complexes are thought to signal in a ligand-independent manner because they are constitutively targeted to lipid rafts. We report that ligand-independent signaling is not a unique capability of the pre-TCR complex. Indeed, the TCR alpha subunit restores development of pT alpha-deficient thymocytes to the CD4(+)CD8(+) stage even in the absence of conventional MHC class I and class II ligands. Moreover, we found that pre-TCR and alpha beta TCR complexes exhibit no appreciable difference in their association with lipid rafts, suggesting that ligand-independence is a function of the CD4(-)CD8(-) (DN) thymocytes in which pre-TCR signaling occurs. In agreement, we found that only CD44(-)CD25(+) DN thymocytes (DN3) enabled activation of extracellular signal-regulated kinases by the pre-TCR complex. DN thymocytes also exhibited a lower signaling threshold relative to CD4(+)CD8(+) thymocytes, which was associated with both the markedly elevated lipid raft content of their plasma membranes and more robust capacitative Ca(2+) entry. Taken together these data suggest that cell-autonomous, ligand-independent signaling is primarily a property of the thymocytes in which pre-TCR signaling occurs.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Enzyme Activation/immunology
- Ligands
- Lymphocyte Activation/genetics
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Stem Cells/enzymology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/enzymology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Mariëlle C Haks
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Immature double positive (DP) thymocytes bearing a T cell receptor (TCR) that interacts with self-major histocompatibility complex (MHC) molecules receive signals that induce either their differentiation (positive selection) or apoptosis (negative selection). Furthermore, those cells that are positively selected develop into two different lineages, CD4 or CD8, depending on whether their TCRs bind to MHC class II or I, respectively. Positive selection therefore involves rescue from the default fate (death), lineage commitment, and progression to the single positive (SP) stage. These are probably temporally distinct events that may require both unique and overlapping signals. Work in the past several years has started to unravel the signaling networks that control these processes. One of the first pathways identified as important for positive selection was Ras and its downstream effector, the Erk mitogen-activated protein kinase (MAPK) cascade. In this review we examine the factors that connect the TCR to the Ras/Erk cascade in DP thymocytes, as well as what we know about the downstream effectors of the Ras/Erk cascade important for positive selection. We also consider the possible role of this cascade in CD4/CD8 lineage development, and the possible interactions of the Ras/Erk cascade with Notch during these cell fate determination processes.
Collapse
Affiliation(s)
- José Alberola-Ila
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
43
|
von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I, Jaeckel E, Grassi F, Klein L. Thymic selection revisited: how essential is it? Immunol Rev 2003; 191:62-78. [PMID: 12614352 DOI: 10.1034/j.1600-065x.2003.00010.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrathymic T cell development represents one of the best studied paradigms of mammalian development. Lymphoid committed precursors enter the thymus and the Notch1 receptor plays an essential role in committing them to the T cell lineages. The pre-T cell receptor (TCR), as an autonomous cell signaling receptor, commits cells to the alphabeta lineage while its rival, the gammadeltaTCR, is involved in generating the gammadelta lineage of T cells. Positive and negative selection of immature alphabetaTCR-expressing cells are essential mechanisms for generating mature T cells, committing them to the CD4 and CD8 lineages and avoiding autoimmunity. Additional lineages of alphabetaT cells, such as the natural killer T cell lineage and the CD25+ regulatory T cell lineage, are formed when the alphabetaTCR encounters specific ligands in suitable microenvironments. Thus, positive selection and receptor-instructed lineage commitment represent a hallmark of the thymus. Ectopically expressed organ-specific antigens contribute to thymic self-nonself discrimination, which represents an essential feature for the evolutionary fitness of mammalian species.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Norment AM, Bogatzki LY, Klinger M, Ojala EW, Bevan MJ, Kay RJ. Transgenic expression of RasGRP1 induces the maturation of double-negative thymocytes and enhances the production of CD8 single-positive thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1141-9. [PMID: 12538669 DOI: 10.4049/jimmunol.170.3.1141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RasGRP1 is a guanine nucleotide exchange factor for Ras that is required for the efficient production of both CD4 and CD8 single-positive thymocytes. We found that RasGRP1 expression is rapidly up-regulated in double-negative thymocytes following pre-TCR ligation. Transgenic overexpression of RasGRP1 compensated for deficient pre-TCR signaling in vivo, enabling recombinase-activating gene 2(-/-) double-negative thymocytes to mature to the double-positive stage. RasGRP1 transgenic mice had a 4-fold increase in CD8 single-positive thymocytes, most of which had atypically low levels of CD3. The RasGRP1 transgene lowered the threshold of TCR signaling needed to initiate proliferation of single-positive thymocytes, with this effect being particularly evident among CD8 single-positive cells. In 3-day cultures, TCR stimulation via anti-CD3 caused a 10-fold increase in the ratio of CD8 to CD4 thymocytes among RasGRP1 transgenic vs nontransgenic thymocytes. These results demonstrate that in addition to driving the double-negative to double-positive transition, increased expression of RasGRP1 selectively increases CD8 single-positive thymocyte numbers and enhances their responsiveness to TCR signaling.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Amino Acid Sequence
- Animals
- CD8 Antigens/biosynthesis
- CD8 Antigens/genetics
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Crosses, Genetic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Guanine Nucleotide Exchange Factors
- Humans
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Nuclear Proteins
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transgenes/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
- ras Proteins/physiology
Collapse
Affiliation(s)
- Anne M Norment
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ingram DA, Zhang L, McCarthy J, Wenning MJ, Fisher L, Yang FC, Clapp DW, Kapur R. Lymphoproliferative defects in mice lacking the expression of neurofibromin: functional and biochemical consequences of Nf1 deficiency in T-cell development and function. Blood 2002; 100:3656-62. [PMID: 12393709 DOI: 10.1182/blood-2002-03-0734] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras plays an essential role in lymphocyte development and function. However, in vivo consequence(s) of regulation of Ras activity by guanosine triphosphatase (GTPase)-activating proteins (GAPs) on lymphocyte development and function are not known. In this study we demonstrate that neurofibromin, the protein encoded by the NF1 tumor suppressor gene functions as a GAP for Ras in T cells. Loss of Nf1 in T cells results in enhanced Ras activation, which is associated with thymic and splenic hyperplasia, and an increase in the absolute number of immature and mature T-cell subsets compared with control mice. Interestingly, in spite of a profound T-cell expansion and higher thymidine incorporation in unstimulated Nf1-deficient T cells, T-cell receptor and interleukin-2 receptor-mediated proliferation of thymocytes and mature T cells was substantially reduced compared with control mice. Collectively, these results identify neurofibromin as a GAP for Ras in T cells for maintaining immune homeostasis in vivo.
Collapse
Affiliation(s)
- David A Ingram
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The specificity of the adaptive immune response is, in part, dependent on the clonal expression of the mature T cell receptor (TCR) on T lymphocytes. One mechanism regulating the clonality of the TCR occurs at the level of TCR-beta gene rearrangements during lymphocyte development. Expression of a nascent TCR-beta chain together with pre-Talpha (pTalpha) and CD3 molecules to form the pre-TCR complex, represents a critical checkpoint in T cell differentiation known as beta-selection. Indeed, failure to generate a functionally rearranged TCR-beta chain at this stage of development results in apoptosis. Signals derived from the pre-TCR complex trigger a maturation program within developing thymocytes that includes: rescue from apoptosis; inhibition of further DNA recombination at the TCR-beta gene locus (allowing for the clonality of antigen receptor expression; allelic exclusion); and induction of proliferation and differentiation. The signaling mechanisms that control this developmental program remain largely undefined. Here, we discuss recent evidence investigating the molecular mechanisms that regulate thymocyte differentiation downstream of pre-TCR formation.
Collapse
Affiliation(s)
- Alison M Michie
- Department of Immunology and Bacteriology, Western Infirmary, University of Glasgow, Glasgow, Scotland, G11 6NT, UK
| | | |
Collapse
|
47
|
Iritani BM, Delrow J, Grandori C, Gomez I, Klacking M, Carlos LS, Eisenman RN. Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1. EMBO J 2002; 21:4820-30. [PMID: 12234922 PMCID: PMC126288 DOI: 10.1093/emboj/cdf492] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Activated lymphocytes must increase in size and duplicate their contents (cell growth) before they can divide. The molecular events that control cell growth in proliferating lymphocytes and other metazoan cells are still unclear. Here, we utilized transgenesis to provide evidence suggesting that the basic helix-loop- helix-zipper (bHLHZ) transcriptional repressor Mad1, considered to be an antagonist of Myc function, inhibits lymphocyte expansion, maturation and growth following pre-T-cell receptor (pre-TCR) and TCR stimulation. Furthermore, we utilized cDNA microarray technology to determine that, of the genes repressed by Mad1, the majority (77%) are involved in cell growth, which correlates with a decrease in size of Mad1 transgenic thymocytes. Over 80% of the genes repressed by Mad1 have previously been found to be induced by Myc. These results suggest that a balance between Myc and Mad levels may normally modulate lymphocyte proliferation and development in part by controlling expression of growth-regulating genes.
Collapse
Affiliation(s)
- Brian M. Iritani
- Division of Basic Sciences and DNA Array Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., PO Box 19024, Seattle, WA 98109-1024 and Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA Corresponding author e-mail:
| | - Jeffrey Delrow
- Division of Basic Sciences and DNA Array Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., PO Box 19024, Seattle, WA 98109-1024 and Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA Corresponding author e-mail:
| | - Carla Grandori
- Division of Basic Sciences and DNA Array Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., PO Box 19024, Seattle, WA 98109-1024 and Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA Corresponding author e-mail:
| | - Ivan Gomez
- Division of Basic Sciences and DNA Array Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., PO Box 19024, Seattle, WA 98109-1024 and Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA Corresponding author e-mail:
| | - Meredith Klacking
- Division of Basic Sciences and DNA Array Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., PO Box 19024, Seattle, WA 98109-1024 and Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA Corresponding author e-mail:
| | - Leni Sue Carlos
- Division of Basic Sciences and DNA Array Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., PO Box 19024, Seattle, WA 98109-1024 and Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA Corresponding author e-mail:
| | - Robert N. Eisenman
- Division of Basic Sciences and DNA Array Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., PO Box 19024, Seattle, WA 98109-1024 and Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA Corresponding author e-mail:
| |
Collapse
|
48
|
Abstract
Recent results obtained in mice harboring cytoplasmic mutations of Igalpha and/or Igbeta have reinforced the concept that the strength of BCR signaling is important for ensuring appropriate developmental outcomes as well as antigen-specific responses. To establish the optimal signaling intensity and duration, the BCR utilizes positive and negative regulatory molecules. Studies are beginning to reveal how these molecules maintain immunological homeostasis and tolerance.
Collapse
Affiliation(s)
- Tomohiro Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, and Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, 570-8506, Moriguchi, Japan.
| |
Collapse
|
49
|
Borowski C, Martin C, Gounari F, Haughn L, Aifantis I, Grassi F, von Boehmer H. On the brink of becoming a T cell. Curr Opin Immunol 2002; 14:200-6. [PMID: 11869893 DOI: 10.1016/s0952-7915(02)00322-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies provide fresh insight into the mechanisms by which precursor cells are committed to and develop within the T-lymphocyte lineage. Precursor/product studies have identified developmental stages between that of the pluripotent hematopoietic stem cell and thymocytes committed to the T lineage. Specific ligands and signaling pathways interacting with the Notch-1 receptor and its ability to influence commitment within the lymphoid lineage have been described. Although the structural features or putative ligands endowing the pre-TCR with constitutive signaling capacity remain elusive, numerous distal mediators of pre-TCR signaling have been identified. It remains for the future to determine what roles they may have in survival, proliferation, lineage commitment and allelic exclusion of TCR genes. Receptor editing and lineage commitment of alphabeta T cells still represent controversial topics that need further study.
Collapse
Affiliation(s)
- Christine Borowski
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Assembly of TCRbeta chain variable-region genes is regulated in the context of allelic exclusion. Differential epigenetic modifications of the two TCRbeta alleles established early in embryonic development may be important for permitting allelic exclusion by ordering rearrangement of the two alleles in double-negative thymocytes. Expression of a TCRbeta chain, as part of the pre-TCR complex, activates signaling pathways that enforce allelic exclusion in double-positive thymocytes. These signaling pathways, which utilize p56(lck) and SLP-76, may be distinct from those used to promote other processes initiated by pre-TCR expression. In double-positive thymocytes allelic exclusion is enforced, in part, by changes in Vbeta gene segment accessibility promoted by cis-acting elements that may be distinct from those regulating accessibility of D/Jbeta gene segments.
Collapse
Affiliation(s)
- Bernard Khor
- Washington University School of Medicine, Department of Pathology and Immunology, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110-1093, USA.
| | | |
Collapse
|