1
|
Wu N, Ma S, Ding H, Cao H, Liu T, Tian M, Liu Q, Bian H, Yu Z, Liu C, Wang L, Feng Y, Wu H, Qi J. SH-Alb inhibits phenotype remodeling of pro-fibrotic macrophage to attenuate liver fibrosis through SIRT3-SOD2 axis. Biomed Pharmacother 2024; 176:116919. [PMID: 38876053 DOI: 10.1016/j.biopha.2024.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Albumin has a variety of biological functions, such as immunomodulatory and antioxidant activity, which depends largely on its thiol activity. However, in clinical trials, the treatment of albumin by injection of commercial human serum albumin (HSA) did not achieve the desired results. Here, we constructed reduced modified albumin (SH-Alb) for in vivo and in vitro experiments to investigate the reasons why HSA did not achieve the expected effects. SH-Alb was found to delay the progression of liver fibrosis in mice by alleviating liver inflammation and oxidative stress. Although R-Alb also has some of the above roles, the effect of SH-Alb is more remarkable. Mechanism studies have shown that SH-Alb reduces the release of pro-inflammatory and pro-fibrotic cytokine through the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, SH-Alb deacetylates SOD2, a key enzyme of mitochondrial reactive oxygen species (ROS) production, by promoting the expression of SIRT3, thereby reducing the accumulation of ROS. Finally, macrophages altered by R-Alb or SH-Alb can inhibit the activation of hepatic stellate cells and endothelial cells, further delaying the progression of liver fibrosis. These results indicate that SH-Alb can remodel the phenotype of macrophages, thereby affecting the intrahepatic microenvironment and delaying the process of liver fibrosis. It provides a good foundation for the application of albumin in clinical treatment.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Han Ding
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Huiling Cao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Tiantian Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China
| | - Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Qiqi Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Zhen Yu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Chenxi Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Le Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yuemin Feng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Hao Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, PR China.
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, PR China.
| |
Collapse
|
2
|
Chang PFM, Acevedo D, Mandarino LJ, Reyna SM. Triterpenoid CDDO-EA inhibits lipopolysaccharide-induced inflammatory responses in skeletal muscle cells through suppression of NF-κB. Exp Biol Med (Maywood) 2023; 248:175-185. [PMID: 36661241 PMCID: PMC10041051 DOI: 10.1177/15353702221139188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023] Open
Abstract
Chronic inflammation is a major contributor to the development of obesity-induced insulin resistance, which then can lead to the development of type 2 diabetes (T2D). Skeletal muscle plays a pivotal role in insulin-stimulated whole-body glucose disposal. Therefore, dysregulation of glucose metabolism by inflammation in skeletal muscle can adversely affect skeletal muscle insulin sensitivity and contribute to the pathogenesis of T2D. The mechanism underlying insulin resistance is not well known; however, macrophages are important initiators in the development of the chronic inflammatory state leading to insulin resistance. Skeletal muscle consists of resident macrophages which can be activated by lipopolysaccharide (LPS). These activated macrophages affect myocytes via a paracrine action of pro-inflammatory mediators resulting in secretion of myokines that contribute to inflammation and ultimately skeletal muscle insulin resistance. Therefore, knowing that synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acids (CDDOs) can attenuate macrophage pro-inflammatory responses in chronic disorders, such as cancer and obesity, and that macrophage pro-inflammatory responses can modulate skeletal muscle inflammation, we first examined whether CDDO-ethyl amide (CDDO-EA) inhibited chemokine and cytokine production in macrophages since this had not been reported for CDDO-EA. CDDO-EA blocked LPS-induced tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukine-1beta (IL-1β), and interleukine-6 (IL-6) production in RAW 264.7 mouse and THP-1 human macrophages. Although many studies show that CDDOs have anti-inflammatory properties in several tissues and cells, little is known about the anti-inflammatory effects of CDDOs on skeletal muscle. We hypothesized that CDDO-EA protects skeletal muscle from LPS-induced inflammation by blocking nuclear factor kappa B (NF-κB) signaling. Our studies demonstrate that CDDO-EA prevented LPS-induced TNF-α and MCP-1 gene expression by inhibiting the NF-κB signaling pathway in L6-GLUT4myc rat myotubes. Our findings suggest that CDDO-EA suppresses LPS-induced inflammation in macrophages and myocytes and that CDDO-EA is a promising compound as a therapeutic agent for protecting skeletal muscle from inflammation.
Collapse
Affiliation(s)
- Phoebe Fang-Mei Chang
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Daniel Acevedo
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Lawrence J Mandarino
- Center for Disparities in Diabetes, Obesity and Metabolism, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Sara M Reyna
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
3
|
Bhattacharyya S, Feferman L, Han X, Xia K, Zhang F, Linhardt RJ, Tobacman JK. Increased CHST15 follows decline in arylsulfatase B (ARSB) and disinhibition of non-canonical WNT signaling: potential impact on epithelial and mesenchymal identity. Oncotarget 2020; 11:2327-2344. [PMID: 32595831 PMCID: PMC7299535 DOI: 10.18632/oncotarget.27634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Expression of CHST15 (carbohydrate sulfotransferase 15; chondroitin 4-sulfate-6-sulfotransferase; BRAG), the sulfotransferase enzyme that adds 6-sulfate to chondroitin 4-sulfate (C4S) to make chondroitin 4,6-disulfate (chondroitin sulfate E, CSE), was increased in malignant prostate epithelium obtained by laser capture microdissection and following arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) silencing in human prostate epithelial cells. Experiments in normal and malignant human prostate epithelial and stromal cells and tissues, in HepG2 cells, and in the ARSB-null mouse were performed to determine the pathway by which CHST15 expression is up-regulated when ARSB expression is reduced. Effects of Wnt-containing prostate stromal cell spent media and selective inhibitors of WNT, JNK, p38, SHP2, β-catenin, Rho, and Rac-1 signaling pathways were determined. Activation of WNT signaling followed declines in ARSB and Dickkopf WNT Signaling Pathway Inhibitor (DKK)3 and was required for increased CHST15 expression. The increase in expression of CHST15 followed activation of non-canonical WNT signaling and involved Wnt3A, Rac-1 GTPase, phospho-p38 MAPK, and nuclear DNA-bound GATA-3. Inhibition of JNK, Sp1, β-catenin nuclear translocation, or Rho kinase had no effect. Consistent with higher expression of CHST15 in prostate epithelium, disaccharide analysis showed higher levels of CSE and chondroitin 6-sulfate (C6S) disaccharides in prostate epithelial cells. In contrast, chondroitin 4-sulfate (C4S) disaccharides were greater in prostate stromal cells. CSE may contribute to increased C4S in malignant epithelium when GALNS (N-aceytylgalactosamine-6-sulfate sulfatase) is increased and ARSB is reduced. These effects increase chondroitin 4-sulfates and reduce chondroitin 6-sulfates, consistent with enhanced stromal characteristics and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Leo Feferman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology Rensselaer Polytechnic Insitute, Troy, NY, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VAMC, Chicago, IL, USA
| |
Collapse
|
4
|
Zeng B, Chen C, Yi Q, Zhang X, Wu X, Zheng S, Li N, She F. N-terminal region of Helicobacter pylori CagA induces IL-8 production in gastric epithelial cells via the β1 integrin receptor. J Med Microbiol 2020; 69:457-464. [DOI: 10.1099/jmm.0.001088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction.
Helicobacter pylori
is associated with gastrointestinal disease, most notably gastric cancer. Cytotoxin-associated antigen A (CagA), an important virulence factor for
H. pylori
pathogenicity, induces host cells to release inflammatory factors, especially interleukin-8 (IL-8). The mechanism by which C-terminal CagA induces IL-8 production has been studied extensively, but little is known about the role of the N-terminus.
Aim. To investigate the effect of CagA303–456aa (a peptide in the N-terminal CagA) on IL-8 production by gastric epithelial cells.
Methodology. CagA303-456aa was produced by a prokaryotic expression system and purified by Strep-tag affinity chromatography. An integrin β1 (ITGB1)-deficient AGS cell line was constructed using the CRISPR/Cas9 technique, and NCTC 11637 cagA and/or cagL knockout mutants were constructed via homologous recombination. The levels of IL-8 production were determined by enzyme-linked immunosorbent assay (ELISA), and p38 and ERK1/2 phosphorylation were examined by Western blot.
Results. CagA303-456aa induced IL-8 expression by AGS cells. IL-8 induction by CagA303-456aawas specifically inhibited by ITGB1 deficiency. Notably, CagA303-456aa activated the phosphorylation of both p38 and ERK1/2, and blocking p38 and ERK1/2 activity significantly reduced IL-8 induction by CagA303-456aa. ITGB1 deficiency also inhibited the activation of p38 phosphorylation by CagA303-456aa. Finally, experiments in CagA and/or CagL knockout bacterial lines demonstrated that extracellular CagA might induce IL-8 production by AGS cells.
Conclusion. Residues 303–456 of the N-terminal region of CagA induce IL-8 production via a CagA303-456–ITGB1–p38–IL-8 pathway, and ERK1/2 is also involved in the release of IL-8. Extracellular CagA might induce IL-8 production before translocation into AGS cells.
Collapse
Affiliation(s)
- Bangwei Zeng
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian Province 350001, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Chu Chen
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Qingfeng Yi
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Xiaoyan Zhang
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Xiangyan Wu
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Shurong Zheng
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Neng Li
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| |
Collapse
|
5
|
PDK1 promotes ovarian cancer metastasis by modulating tumor-mesothelial adhesion, invasion, and angiogenesis via α5β1 integrin and JNK/IL-8 signaling. Oncogenesis 2020; 9:24. [PMID: 32071289 PMCID: PMC7028730 DOI: 10.1038/s41389-020-0209-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancies owing to the lack of definitive symptoms until development of widespread metastases. Identification of novel prognostic and therapeutic targets is therefore an urgent need to improve survival. Here, we demonstrated high expression of the mitochondrial gatekeeping enzyme, pyruvate dehydrogenase kinase 1 (PDK1), in both clinical samples and cell lines of ovarian cancer. PDK1 expression was significantly associated with metastasis, reduced chemosensitivity, and poor overall and disease-free survival, and further highlighted as an independent prognostic factor. Silencing of PDK1 retarded lactate production, ovarian cancer cell adhesion, migration, invasion, and angiogenesis, and consequently metastasis, concomitant with decreased α5β1 integrin expression. Phospho-kinase array profiling and RNA sequencing analyses further revealed reduction of JNK activation and IL-8 expression in PDK1-depleted cells. Conversely, PDK1 overexpression promoted cell adhesion via modulation of α5β1 integrins, along with cell migration, invasion, and angiogenesis through activation of JNK/IL-8 signaling. PDK1 depletion additionally hindered tumor growth and dissemination in nude mice in vivo. Importantly, PDK1 levels were upregulated upon treatment with conditioned medium from omental tissues, which in turn promoted metastasis. Our findings suggest that PDK1, which is regulated by the tumor microenvironment, controls lactate production and promotes ovarian cancer cell metastasis via modulation of α5β1 integrin and JNK/IL-8 signaling. To our knowledge, this is the first report to demonstrate an association between PDK1 and survival in patients with ovarian cancer, supporting its efficacy as a valuable prognostic marker and therapeutic molecular target for the disease.
Collapse
|
6
|
Simon T, Li L, Wagner C, Zhang T, Saxena V, Brinkman CC, Tostanoski LH, Ostrand-Rosenberg S, Jewell C, Shea-Donohue T, Hippen K, Blazar B, Abdi R, Bromberg JS. Differential Regulation of T-cell Immunity and Tolerance by Stromal Laminin Expressed in the Lymph Node. Transplantation 2019; 103:2075-2089. [PMID: 31343575 PMCID: PMC6768765 DOI: 10.1097/tp.0000000000002774] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Stromal laminins α4 and α5 are differentially regulated in transplant tolerance and immunity, respectively, resulting in altered T-cell trafficking. We hypothesized that laminins directly regulated T-cell activation and polarization. METHODS Human and mouse CD4 T cells were activated in Th1, Th2, Th17, or regulatory T cell (Treg) environments with/without laminin α4 and/or α5. Laminin α5 receptors were blocked with anti-α6 integrin or anti-α-dystroglycan (αDG) monoclonal antibodies, and T-cell polarization was determined. T-cell receptor transgenic TEa CD4 cells that recognized donor alloantigen were transferred into C57BL/6 mice that received alloantigen or cardiac allografts. Laminin receptors were blocked, and TEa T-cell migration and differentiation were assessed. Laminin expression was measured in several models of immunity and tolerance. RESULTS In diverse models, laminins α4 and α5 were differentially regulated. Immunity was associated with decreased laminin α4:α5 ratio, while tolerance was associated with an increased ratio. Laminin α4 inhibited CD4+ T-cell proliferation and Th1, Th2, and Th17 polarization but favored Treg induction. Laminin α5 favored T-cell activation and Th1, Th2, and Th17 polarization and inhibited Treg. Laminin α5 was recognized by T cell integrin α6 and is important for activation and inhibition of Treg. Laminin α5 was also recognized by T cell α-DG and required for Th17 differentiation. Anti-α6 integrin or anti-DG prolonged allograft survival. CONCLUSIONS Laminins α4 and α5 are coinhibitory and costimulatory ligands for human and mouse CD4 T cells, respectively. Laminins and their receptors modulate immune responses by acting as one of the molecular switches for immunity or suppression.
Collapse
Affiliation(s)
- Thomas Simon
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chelsea Wagner
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tianshu Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - C. Colin Brinkman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa H. Tostanoski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Chris Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Terez Shea-Donohue
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Keli Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Bruce Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Reza Abdi
- Transplantation Research Center and Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Growth Hormone Aggregates Activation of Human Dendritic Cells Is Controlled by Rac1 and PI3 Kinase Signaling Pathways. J Pharm Sci 2019; 109:927-932. [PMID: 31520643 DOI: 10.1016/j.xphs.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The presence of protein aggregates in biological products is suggested to promote immunogenicity, leading to the production of anti-drug antibodies with neutralizing capacities. This suggests a CD4+ T-cell dependent adaptive immune response, thus a pivotal role for antigen-presenting cells, such as dendritic cells (DCs). We previously showed that human growth hormone aggregates induced DC maturation, with notably an increase in CXCL10 production. DC phenotypic modifications were sufficient to promote allogeneic CD4+ T-cell proliferation with Th1 polarization. In this work, we identified the main intracellular signaling pathways involved in DC activation by human growth hormone aggregates, showing that aggregates induced p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase phosphorylation, as well as nuclear factor κB subunit p65 nuclear translocation. Next, investigating the implication of Rho GTPases and phosphoinositide 3-kinase (PI3K) in activated DC showed that Rac1 and Cdc42 regulated the phosphorylation of MAP kinases, whereas PI3K was only implicated in c-Jun N-terminal kinase phosphorylation. Furthermore, we showed that Rac1 and PI3K pathways, but not Cdc42, regulated the production of CXCL10 via the MAP kinases and nuclear factor κB. Taken together, our results bring new insight on how protein aggregates could induce DC activation, leading to a better understanding of aggregates role in therapeutic proteins immunogenicity.
Collapse
|
8
|
CRISPR/Cas9 engineering of ERK5 identifies its FAK/PYK2 dependent role in adhesion-mediated cell survival. Biochem Biophys Res Commun 2019; 513:179-185. [PMID: 30952431 DOI: 10.1016/j.bbrc.2019.03.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is now considered a key regulator of breast cancer cell proliferation, migration and invasion. It is also implicated in growth factor induced anti-apoptotic signaling. But its contribution to adhesion-induced survival signaling is not clear. In the present study, using CRISPR/Cas9 editing, we knocked-out ERK5 expression in several cancer cell lines. Then MDA-MB 231 breast cancer cells lacking ERK5 were used to understand its role in adhesion-mediated cell viability. We demonstrated that ERK5 deficient cells exhibited reduced cell attachment to matrix proteins fibronectin and vitronectin. The adhesion ability of these cells was further reduced upon chemical inhibition of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2) by PF 431396. FAK/PYK2 inhibited ERK5 knock-out cells also showed markedly reduced cell-viability and increased apoptotic signaling. This was evident from the detection of cleaved PARP and caspase 9 in these cells. Thus, our data suggests a FAK/PYK2 regulated pro-survival role of ERK5 in response to cell adhesion.
Collapse
|
9
|
High expression of GALNT7 promotes invasion and proliferation of glioma cells. Oncol Lett 2018; 16:6307-6314. [PMID: 30405766 PMCID: PMC6202485 DOI: 10.3892/ol.2018.9498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/20/2018] [Indexed: 01/06/2023] Open
Abstract
Polypeptide-N-acetyl-galactosaminlytransferase 7 (GALNT7), a member of the GalNAc-transferase family, has not been previously evaluated as a prognostic factor of glioblastoma (GBM) or low-grade glioma (LGG). Based on The Cancer Genome Atlas database and bioinformatics analyses, the expression of GALNT7 was demosntrated to be higher in GBM and LGG tissues than in normal brain tissue. The expression levels of GANLT7 were associated with age, tumor grade, survival rate, disease-free survival time and overall survival time. Gene correlation and gene-set enrichment analyses suggested that GALNT7 may affect the proliferative and invasive abilities of glioma cells through multiple signaling pathways, including regulation of the actin cytoskeleton, natural killer cell-mediated cytotoxicity, the janus kinase-signal transducer and activator of transcription (STAT) signaling pathway, cell adhesion molecules and extracellular matrix receptor interaction pathways. Furthermore, 5 target genes of GALNT7 involved in these signaling pathways were identified, including Crk, Rac family small GTPase 1, STAT3, poliovirus receptor and Tenascin C. In summary, high expression of GALNT7 was associated with poor prognosis of glioma, and may be used as an effective biomarker of glioma.
Collapse
|
10
|
Xiang RF, Li S, Ogbomo H, Stack D, Mody CH. β1 Integrins Are Required To Mediate NK Cell Killing of Cryptococcus neoformans. THE JOURNAL OF IMMUNOLOGY 2018; 201:2369-2376. [PMID: 30201811 DOI: 10.4049/jimmunol.1701805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes fatal meningitis and pneumonia. During host defense to Cryptococcus, NK cells directly recognize and kill C. neoformans using cytolytic degranulation analogous to killing of tumor cells. This fungal killing requires independent activation of Src family kinase (SFK) and Rac1-mediated pathways. Recognition of C. neoformans requires the natural cytotoxicity receptor, NKp30; however, it is not known whether NKp30 activates both signal transduction pathways or whether a second receptor is involved in activation of one of the pathways. We used primary human NK cells and a human NK cell line and found that NKp30 activates SFK → PI3K but not Rac1 cytotoxic signaling, which led to a search for the receptor leading to Rac1 activation. We found that NK cells require integrin-linked kinase (ILK) to activate Rac1 for effective fungal killing. This observation led to our identification of β1 integrin as an essential anticryptococcal receptor. These findings demonstrate that multiple receptors, including β1 integrins and NKp30 and their proximal signaling pathways, are required for recognition of Cryptococcus, which activates a central cytolytic antimicrobial pathway leading to fungal killing.
Collapse
Affiliation(s)
- Richard F Xiang
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - ShuShun Li
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - Henry Ogbomo
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - Danuta Stack
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; .,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and.,Department of Internal Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
11
|
Lohmeyer J, Nerreter T, Dotterweich J, Einsele H, Seggewiss-Bernhardt R. Sorafenib paradoxically activates the RAS/RAF/ERK pathway in polyclonal human NK cells during expansion and thereby enhances effector functions in a dose- and time-dependent manner. Clin Exp Immunol 2018; 193:64-72. [PMID: 29573266 DOI: 10.1111/cei.13128] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 01/07/2023] Open
Abstract
Natural killer (NK) cells play a major role in host immunity against leukaemia and lymphoma. However, clinical trials applying NK cells have not been as efficient as hoped for. Patients treated with rapidly accelerated fibrosarcoma (RAF) inhibitors exhibit increased tumour infiltration by immune cells, suggesting that a combination of RAF inhibitors with immunotherapy might be beneficial. As mitogen-activated protein kinases (MAPKs) such as raf-1 proto-oncogene, serine/threonine kinase (CRAF) regulate NK cell functions, we performed an in-vitro investigation on the potential of clinically relevant short-acting tyrosine kinase inhibitors (TKIs) as potential adjuvants for NK cell therapy: NK cells from healthy human blood donors were thus treated with sorafenib, sunitinib or the pan-RAF inhibitor ZM336372 during ex-vivo expansion. Functional outcomes assessed after washout of the drugs included cytokine production, degranulation, cytotoxicity, apoptosis induction and signal transduction with/without target cell contact. Paradoxically, sorafenib enhanced NK cell effector functions in a time- and dose-dependent manner by raising the steady-state activation level. Of note, this did not lead to NK cell exhaustion, but enhanced activity against target cells such as K562 or Daudis mediated via the RAS/RAF/extracellular-regulated kinase (ERK) pathway, but not via protein kinase B (AKT). Our data will pave the path to develop a rationale for the considered use of RAF inhibitors such as sorafenib for pre-activation in NK cell-based adoptive immune therapy.
Collapse
Affiliation(s)
- J Lohmeyer
- Immune Recovery Section, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - T Nerreter
- Immune Recovery Section, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - J Dotterweich
- Immune Recovery Section, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - H Einsele
- Immune Recovery Section, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - R Seggewiss-Bernhardt
- Immune Recovery Section, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Bao S, Jia L, Zhou X, Zhang ZG, Wu HWL, Yu Z, Ng G, Fan Y, Wong DSM, Huang S, Wang To KK, Yuen KY, Yeung ML, Song YQ. Integrated analysis of mRNA-seq and miRNA-seq for host susceptibilities to influenza A (H7N9) infection in inbred mouse lines. Funct Integr Genomics 2018; 18:411-424. [PMID: 29564647 DOI: 10.1007/s10142-018-0602-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/12/2018] [Indexed: 02/05/2023]
Abstract
Host genetic factors play an important role in diverse host outcomes after influenza A (H7N9) infection. Studying differential responses of inbred mouse lines with distinct genetic backgrounds to influenza virus infection could substantially increase our understanding of the contributory roles of host genetic factors to disease severity. Here, we utilized an integrated approach of mRNA-seq and miRNA-seq to investigate the transcriptome expression and regulation of host genes in C57BL/6J and DBA/2J mouse strains during influenza virus infection. The differential pathogenicity of influenza virus in C57BL/6J and DBA/2J has been fully demonstrated through immunohistochemical staining, histopathological analyses, and viral replication assessment. A transcriptional molecular signature correlates to differential host response to infection has been uncovered. With the introduction of temporal expression pattern analysis, we demonstrated that host factors responsible for influenza virus replication and host-virus interaction were significantly enriched in genes exhibiting distinct temporal dynamics between different inbred mouse lines. A combination of time-series expression analysis and temporal expression pattern analysis has provided a list of promising candidate genes for future studies. An integrated miRNA regulatory network from both mRNA-seq and miRNA-seq revealed several regulatory modules responsible for regulating host susceptibilities and disease severity. Overall, a comprehensive framework for analyzing host susceptibilities to influenza infection was established by integrating mRNA-seq and miRNA-seq data of inbred mouse lines. This work suggests novel putative molecular targets for therapeutic interventions in seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Suying Bao
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Lilong Jia
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Xueya Zhou
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Zhi-Gang Zhang
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hazel Wai Lan Wu
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Zhe Yu
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Gordon Ng
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yanhui Fan
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dana S M Wong
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kelvin Kai Wang To
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Man Lung Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| | - You-Qiang Song
- Schoolof Biomedical Sciences, The University of Hong Kong, Hong Kong, China. .,Department of Psychiatry, The University of Hong Kong, Hong Kong, China. .,HKU-SIRI/ZIRI, The University of Hong Kong, Hong Kong, China. .,HKU-SUSTech Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Poznanski SM, Lee AJ, Nham T, Lusty E, Larché MJ, Lee DA, Ashkar AA. Combined Stimulation with Interleukin-18 and Interleukin-12 Potently Induces Interleukin-8 Production by Natural Killer Cells. J Innate Immun 2017. [PMID: 28633138 DOI: 10.1159/000477172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The combination of interleukin (IL)-18 and IL-12 (IL-18+IL-12) potently stimulates natural killer (NK) cells, triggering an innate immune response to infections and cancers. Strategies exploiting the effects of IL-18+IL-12 have shown promise for cancer immunotherapy. However, studies have primarily characterized the NK cell response to IL-18+IL-12 in terms of interferon (IFN)-γ production, with little focus on other cytokines produced. IL-8 plays a critical role in activating and recruiting immune cells, but it also has tumor-promoting functions. IL-8 is classically produced by regulatory NK cells; however, cytotoxic NK cells do not typically produce IL-8. In this study, we uncover that stimulation with IL-18+IL-12 induces high levels of IL-8 production by ex vivo expanded and freshly isolated NK cells and NK cells in peripheral blood mononuclear cells. We further report that tumor necrosis factor (TNF)-α, produced by NK cells following IL-18+IL-12 stimulation, regulates IL-8 production. The IL-8 produced is in turn required for maximal IFN-γ and TNF-α production. These findings may have important implications for the immune response to infections and cancer immunotherapies. This study broadens our understanding of NK cell function and IL-18+IL-12 synergy by uncovering an unprecedented ability of IL-18+IL-12-activated peripheral blood NK cells to produce elevated levels of IL-8 and identifying the requirement for intermediates induced by IL-18+IL-12 for maximal cytokine production following stimulation.
Collapse
Affiliation(s)
- Sophie M Poznanski
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
IL-18/IL-15/IL-12 synergy induces elevated and prolonged IFN-γ production by ex vivo expanded NK cells which is not due to enhanced STAT4 activation. Mol Immunol 2017. [PMID: 28644973 DOI: 10.1016/j.molimm.2017.06.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synergistic effect of IL-18/IL-15/IL-12 stimulation potently activates NK cells, inducing high levels of IFN-γ production. As a result of this potent stimulatory effect, NK cell pre-activation with IL-18/IL-15/IL-12 is being developed as a cancer immunotherapy. Ex vivo expansion of NK cells enables the efficient generation of large numbers of NK cells for wide-scale and repeated therapeutic use, and is thus an important source of NK cells for clinical application. However, the effects of IL-18/IL-15/IL-12 stimulation on ex vivo expanded NK cells have not yet been assessed. Thus, the present study assessed the effects of IL-18/IL-15/IL-12 stimulation on NK cells expanded ex vivo using K562-based artificial antigen presenting cells expressing membrane-bound IL-21. We report that ex vivo expanded NK cells stimulated with IL-18/IL-15/IL-12 produce high levels of IFN-γ and TNFα, have potent cytotoxicity, and maintain prolonged IFN-γ production following removal of stimulation. IL-18/IL-15/IL-12 stimulation induces a phenotypically unique IFN-γ-producing population with reduced CD16 expression and greater CD25 expression as compared to stimulated IFN-γ- NK cells and unstimulated NK cells. We elucidate that the mechanism of synergy for induction and maintenance of IFN-γ production is not due to a further enhancement of STAT4 activation compared to stimulation with IL-12 alone. Furthermore, we demonstrate that the synergistic increase in IFN-γ is not solely under translational regulation, as elevated levels of IFN-γ mRNA contribute to the synergistic increase in IFN-γ. Overall, this study characterizes the response of ex vivo expanded NK cells to IL-18/IL-15/IL-12 stimulation and supports the use of ex vivo expanded NK cells as a feasible and efficient source of IL-18/IL-15/IL-12 pre-activated NK cells for adoptive transfer in cancer immunotherapies.
Collapse
|
15
|
Robins R, Baldwin C, Aoudjit L, Côté JF, Gupta IR, Takano T. Rac1 activation in podocytes induces the spectrum of nephrotic syndrome. Kidney Int 2017; 92:349-364. [PMID: 28483380 DOI: 10.1016/j.kint.2017.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
Abstract
Hyper-activation of Rac1, a small GTPase, in glomerular podocytes has been implicated in the pathogenesis of familial proteinuric kidney diseases. However, the role of Rac1 in acquired nephrotic syndrome is unknown. To gain direct insights into this, we generated a transgenic mouse model expressing a doxycycline-inducible constitutively active form of Rac1 (CA-Rac1) in podocytes. Regardless of the copy number, proteinuria occurred rapidly within five days, and the histology resembled minimal change disease. The degree and severity of proteinuria were dependent on the transgene copy number. Upon doxycycline withdrawal, proteinuria resolved completely (one copy) or nearly completely (two copy). After one month of doxycycline treatment, two-copy mice developed glomerulosclerosis that resembled focal segmental glomerulosclerosis (FSGS) with urinary shedding of transgene-expressing podocytes. p38 MAPK was activated in podocytes upon CA-Rac1 induction while a p38 inhibitor attenuated proteinuria, podocyte loss, and glomerulosclerosis. Mechanistically, activation of Rac1 in cultured mouse podocytes reduced adhesiveness to laminin and induced redistribution of β1 integrin, and both were partially reversed by the p38 inhibitor. Activation of Rac1 in podocytes was also seen in kidney biopsies from patients with minimal change disease and idiopathic FSGS by immunofluorescence while sera from the same patients activated Rac1 in cultured human podocytes. Thus, activation of Rac1 in podocytes causes a spectrum of disease ranging from minimal change disease to FSGS, due to podocyte detachment from the glomerular basement membrane that is partially dependent on p38 MAPK.
Collapse
Affiliation(s)
- Richard Robins
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Cindy Baldwin
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Lamine Aoudjit
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Department of Medicine (Program of Molecular Biology), Université de Montréal, Montreal, Quebec, Canada; Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Indra R Gupta
- Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
17
|
Group I Paks Promote Skeletal Myoblast Differentiation In Vivo and In Vitro. Mol Cell Biol 2017; 37:MCB.00222-16. [PMID: 27920252 DOI: 10.1128/mcb.00222-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022] Open
Abstract
Skeletal myogenesis is regulated by signal transduction, but the factors and mechanisms involved are not well understood. The group I Paks Pak1 and Pak2 are related protein kinases and direct effectors of Cdc42 and Rac1. Group I Paks are ubiquitously expressed and specifically required for myoblast fusion in Drosophila We report that both Pak1 and Pak2 are activated during mammalian myoblast differentiation. One pathway of activation is initiated by N-cadherin ligation and involves the cadherin coreceptor Cdo with its downstream effector, Cdc42. Individual genetic deletion of Pak1 and Pak2 in mice has no overt effect on skeletal muscle development or regeneration. However, combined muscle-specific deletion of Pak1 and Pak2 results in reduced muscle mass and a higher proportion of myofibers with a smaller cross-sectional area. This phenotype is exacerbated after repair to acute injury. Furthermore, primary myoblasts lacking Pak1 and Pak2 display delayed expression of myogenic differentiation markers and myotube formation. These results identify Pak1 and Pak2 as redundant regulators of myoblast differentiation in vitro and in vivo and as components of the promyogenic Ncad/Cdo/Cdc42 signaling pathway.
Collapse
|
18
|
Gandoglia I, Ivaldi F, Carrega P, Armentani E, Ferlazzo G, Mancardi G, Kerlero de Rosbo N, Uccelli A, Laroni A. In vitro VLA-4 blockade results in an impaired NK cell-mediated immune surveillance against melanoma. Immunol Lett 2016; 181:109-115. [PMID: 27919749 DOI: 10.1016/j.imlet.2016.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
Natalizumab (NTZ) is a monoclonal antibody targeting the α4β1 integrin (CD49d/CD29), very late antigen-4 (VLA-4), which is approved for treatment of relapsing-remitting multiple sclerosis (RR-MS). A possible association between NTZ treatment and a higher risk of melanoma is under debate. Natural Killer (NK) cells, which express VLA-4, represent an innate barrier limiting spreading of melanoma under steady state conditions. Indeed, because of their expression of activating receptors, they are very efficient in recognizing and killing melanoma cells without the need of a previous priming. For this reason, we aimed at assessing whether NK-cell functions might be impaired by sustained exposure to NTZ. To investigate this possibility we isolated NK cells from healthy donors and tested their cytotoxic and migratory functions against primary melanoma cells derived from subcutaneous and lymph node metastases. Flow cytometry analysis demonstrated expression of CD49d on both freshly isolated NK cells and activated NK cells. Moreover, VLA-4 and its receptor, vascular cell adhesion protein-1 (VCAM-1) were similarly expressed on freshly isolated NK cells. However, upon a short exposure to NTZ, expression of VLA-4 on NK cells decreased. Analysis of NK receptor expression upon exposure of NK cells from three healthy donors to NTZ indicated that DNAM-1 and NKp46 are apparently decreased, while NKG2A is increased. The degranulation of NK cells towards melanoma cells, which express both VLA-4 and VCAM-1, was not affected when NTZ was added to the co-culture or when both NK cells and melanoma cells were each pre-exposed to NTZ for over 12h. In contrast, degranulation was significantly inhibited after 48h of pre-incubation indicating that NTZ can influence NK-cell degranulation towards melanoma cells only after a prolonged exposure. Using a migration chamber assay, we observed that the migration of NK cells towards melanoma cells was dependent upon the concentration of melanoma cells in the lower chamber, and that it was significantly reduced in presence of NTZ. Our results show that upon exposure to NTZ both cytolytic activity and migration toward melanoma cells were affected, suggesting that binding of NTZ to NK cells affects pathways involved in these NK-cell functions. We analyzed the expression of CD49d on NK cells from MS patients treated with NTZ and observed that it decreases with time of treatment. These data suggest that blockade of VLA-4 on NK-cell surface alters some key functions involved in the immune surveillance toward melanoma by NK cells and may provide a mechanistic explanation for the reported occurrence of melanoma in MS patients treated with NTZ.
Collapse
Affiliation(s)
- Ilaria Gandoglia
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy
| | - Federico Ivaldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy
| | - Paolo Carrega
- Laboratory of Clinical and Experimental Immunology, Giannina Gaslini Institute, Genoa, Italy
| | - Eric Armentani
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gianluigi Mancardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy.
| | - Alice Laroni
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit, University of Genoa, Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| |
Collapse
|
19
|
Abstract
AIM Caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester (CAPE), the major constituent of propolis, is able to increase the survival of the nematode Caenorhabditis elegans after infection with the fungal pathogen Candida albicans. RESULTS CAPE increases the expression of several antimicrobial proteins involved in the immune response to C. albicans. Structural derivatives of CAPE were synthesized to identify structure-activity relationships and decrease metabolic liability, ultimately leading to a compound that has similar efficacy, but increased in vivo stability. The CED-10(Rac-1)/PAK1 pathway was essential for immunomodulation by CAPE and was a critical component involved in the immune response to fungal pathogens. CONCLUSION Caenorhabditis elegans is an efficient heterologous host to evaluate immunomodulatory compounds and identify components of the pathway(s) involved in the mode of action of compounds.
Collapse
|
20
|
Hendricks L, Aziz M, Yang WL, Nicastro J, Coppa GF, Symons M, Wang P. Milk fat globule-epidermal growth factor-factor VIII-derived peptide MSP68 is a cytoskeletal immunomodulator of neutrophils that inhibits Rac1. J Surg Res 2016; 208:10-19. [PMID: 27993196 DOI: 10.1016/j.jss.2016.08.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prolonged neutrophil infiltration leads to exaggerated inflammation and tissue damage during sepsis. Neutrophil migration requires rearrangement of their cytoskeleton. Milk fat globule-epidermal growth factor-factor VIII-derived short peptide 68 (MSP68) has recently been shown to be beneficial in sepsis-induced tissue injury and mortality. We hypothesize that MSP68 inhibits neutrophil migration by modulating small GTPase Rac1-dependent cytoskeletal rearrangements. METHODS Bone marrow-derived neutrophils (BMDNs) or whole lung digest isolated neutrophils were isolated from 8 to 10 wk old C57BL/6 mice by Percoll density gradient centrifugation. The purity of BMDN was verified by flow cytometry with CD11b/Gr-1 staining. Neutrophils were stimulated with N-formylmethionine-leucine-phenylalanine (f-MLP) (10 nM) in the presence or absence of MSP68 at 10 nM or cecal ligation and puncture (CLP) was used to induce sepsis, and MSP68 was administered at 1 mg/kg intravenously. Cytoskeletal organization was assessed by phalloidin staining, followed by analysis using fluorescence microscopy. Activity of the Rac1 GTPase in f-MLP or CLP-activated BMDN in the presence or absence of MSP68 was assessed by GTPase enzyme-linked immunosorbent assay. Mitogen-activated protein (MAP) kinase activity was determined by western blot densitometry. RESULTS BMDN treatment with f-MLP increased cytoskeletal remodeling as revealed by the localization of filamentous actin to the periphery of the neutrophil. By contrast, cells pretreated with MSP68 had considerably reduced filamentous actin polymerization. Cytoskeletal spreading is associated with the activation of the small GTPase Rac1. We found BMDN-treated with f-MLP or that were exposed to sepsis by CLP had increased Rac1 signaling, whereas the cells pretreated with MSP68 had significantly reduced Rac1 activation (P < 0.05). MAP kinases related to cell migration including pp38 and pERK were upregulated by treatment with f-MLP. Upregulation of these MAP kinases was also significantly reduced after pretreatment with MSP68 (P < 0.05). CONCLUSIONS MSP68 downregulates actin cytoskeleton-dependent, Rac1-MAP kinase-mediated neutrophil motility. Thus, MSP68 is a novel therapeutic candidate for regulating inflammation and tissue damage caused by excessive neutrophil migration in sepsis.
Collapse
Affiliation(s)
- Louie Hendricks
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Weng-Lang Yang
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Jeffrey Nicastro
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York
| | - Gene F Coppa
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York
| | - Marc Symons
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Ping Wang
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York.
| |
Collapse
|
21
|
The human antibody fragment DIATHIS1 specific for CEACAM1 enhances natural killer cell cytotoxicity against melanoma cell lines in vitro. J Immunother 2016; 38:357-70. [PMID: 26448580 PMCID: PMC4605278 DOI: 10.1097/cji.0000000000000100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplemental Digital Content is available in the text. Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients. Moreover, this inhibitory mechanism in many cases might hinder the efficacy of immunotherapeutic treatments of CEACAM1+ malignancies because of tumor evasion by activated effector cells. In the present study, we designed an in vitro experimental model showing that the human single-chain variable fragment (scFv) DIATHIS1 specific for CEACAM1 is able to enhance the lytic machinery of NK cells against CEACAM1+ melanoma cells. The coincubation of the scFv DIATHIS1 with CEACAM1+ melanoma cells and NK-92 cell line significantly increases the cell-mediated cytotoxicity. Moreover, pretreatment of melanoma cells with scFv DIATHIS1 promotes the activation and the degranulation capacity of in vitro–expanded NK cells from healthy donors. It is interesting to note that the melanoma cell line MelC and the primary melanoma cells STA that respond better to DIATHIS1 treatment, express higher relative levels of CEACAM1-3L and CEACAM1-3S splice variants isoforms compared with Mel501 cells that are less responsive to DIATHIS1-induced NK cell–mediated cytotoxicity. Taken together, our results suggest that the fully human antibody fragment DIATHIS1 originated by biopanning approach from a phage antibody library may represent a relevant biotechnological platform to design and develop completely human antimelanoma therapeutics of biological origin.
Collapse
|
22
|
Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci Rep 2016; 6:26887. [PMID: 27230828 PMCID: PMC4882535 DOI: 10.1038/srep26887] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 12/27/2022] Open
Abstract
Many cell types form three-dimensional aggregates (MCS; multicellular spheroids), when they are cultured under microgravity. MCS often resemble the organ, from which the cells have been derived. In this study we investigated human MCF-7 breast cancer cells after a 2 h-, 4 h-, 16 h-, 24 h- and 5d-exposure to a Random Positioning Machine (RPM) simulating microgravity. At 24 h few small compact MCS were detectable, whereas after 5d many MCS were floating in the supernatant above the cells, remaining adherently (AD). The MCS resembled the ducts formed in vivo by human epithelial breast cells. In order to clarify the underlying mechanisms, we harvested MCS and AD cells separately from each RPM-culture and measured the expression of 29 selected genes with a known involvement in MCS formation. qPCR analyses indicated that cytoskeletal genes were unaltered in short-term samples. IL8, VEGFA, and FLT1 were upregulated in 2 h/4 h AD-cultures. The ACTB, TUBB, EZR, RDX, FN1, VEGFA, FLK1 Casp9, Casp3, PRKCA mRNAs were downregulated in 5d-MCS-samples. ESR1 was upregulated in AD, and PGR1 in both phenotypes after 5d. A pathway analysis revealed that the corresponding gene products are involved in organization and regulation of the cell shape, in cell tip formation and membrane to membrane docking.
Collapse
|
23
|
Fionda C, Abruzzese MP, Zingoni A, Soriani A, Ricci B, Molfetta R, Paolini R, Santoni A, Cippitelli M. Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation. BMC Cancer 2015; 15:17. [PMID: 25609078 PMCID: PMC4311457 DOI: 10.1186/s12885-015-1023-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022] Open
Abstract
Background DNAX accessory molecule-1 (DNAM-1) is an activating receptor constitutively expressed by macrophages/dendritic cells and by T lymphocytes and Natural Killer (NK) cells, having an important role in anticancer responses; in this regard, combination therapies able to enhance the expression of DNAM-1 ligands on tumor cells are of therapeutic interest. In this study, we investigated the effect of different nitric oxide (NO) donors on the expression of the DNAM-1 ligand Poliovirus Receptor/CD155 (PVR/CD155) in multiple myeloma (MM) cells. Methods Six MM cell lines, SKO-007(J3), U266, OPM-2, RPMI-8226, ARK and LP1 were used to investigate the activity of different nitric oxide donors [DETA-NO and the NO-releasing prodrugs NCX4040 (NO-aspirin) and JS-K] on the expression of PVR/CD155, using Flow Cytometry and Real-Time PCR. Western-blot and specific inhibitors were employed to investigate the role of soluble guanylyl cyclase/cGMP and activation of the DNA damage response (DDR). Results Our results indicate that increased levels of nitric oxide can upregulate PVR/CD155 cell surface and mRNA expression in MM cells; in addition, exposure to nitric oxide donors renders myeloma cells more efficient to activate NK cell degranulation and enhances their ability to trigger NK cell-mediated cytotoxicity. We found that activation of the soluble guanylyl cyclase and increased cGMP concentrations by nitric oxide is not involved in the up-regulation of ligand expression. On the contrary, treatment of MM cells with nitric oxide donors correlated with the activation of a DNA damage response pathway and inhibition of the ATM /ATR/Chk1/2 kinase activities by specific inhibitors significantly abrogates up-regulation. Conclusions The present study provides evidence that regulation of the PVR/CD155 DNAM-1 ligand expression by nitric oxide may represent an additional immune-mediated mechanism and supports the anti-myeloma activity of nitric oxide donors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1023-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Maria Pia Abruzzese
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Alessandra Zingoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Alessandra Soriani
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Biancamaria Ricci
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Rosa Molfetta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy. .,Istituto Mediterraneo di Neuroscienze Neuromed, Pozzilli, IS, Italy.
| | - Marco Cippitelli
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
24
|
Jungkunz-Stier I, Zekl M, Stühmer T, Einsele H, Seggewiss-Bernhardt R. Modulation of natural killer cell effector functions through lenalidomide/dasatinib and their combined effects against multiple myeloma cells. Leuk Lymphoma 2013; 55:168-76. [PMID: 23573828 DOI: 10.3109/10428194.2013.794270] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The multikinase inhibitor dasatinib blocks the constitutive activation of oncogenic Src kinases in multiple myeloma (MM) cells and potentially enhances natural killer (NK) cell activity. Therefore, we tested combination effects of dasatinib and lenalidomide regarding MM cell viability and NK cell effector functions. The drug combination mostly had little influence on the viability of MM cell lines, and produced mixed results on primary MM cells. Prolonged lenalidomide treatment enhanced NK cell effector functions, and dasatinib addition at late stages of NK cell expansion increased levels of CD107a/b and interferon-γ (IFNγ), but not of tumor necrosis factor-α (TNFα). Additive effects were observed for the enhancement of cytokine production and degranulation, but only lenalidomide increased NK cell cytotoxicity against MM cells. This effect correlated with increased TNF-related apoptosis-inducing ligand (TRAIL) expression and was attenuated by dasatinib, or suppressors of TRAIL or TNFα. Our data thus indicate a functional role for the TRAIL/TRAIL-R system in lenalidomide-mediated NK-cell activity against MM cells, but also show that dasatinib is unsuitable to support or boost this effect.
Collapse
|
25
|
Fionda C, Malgarini G, Soriani A, Zingoni A, Cecere F, Iannitto ML, Ricciardi MR, Federico V, Petrucci MT, Santoni A, Cippitelli M. Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of STAT3. THE JOURNAL OF IMMUNOLOGY 2013; 190:6662-72. [PMID: 23686482 DOI: 10.4049/jimmunol.1201426] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Engagement of NKG2D and DNAX accessory molecule-1 (DNAM-1) receptors on lymphocytes plays an important role for anticancer response and represents an interesting therapeutic target for pharmacological modulation. In this study, we investigated the effect of inhibitors targeting the glycogen synthase kinase-3 (GSK3) on the expression of NKG2D and DNAM-1 ligands in multiple myeloma (MM) cells. GSK3 is a pleiotropic serine-threonine kinase point of convergence of numerous cell-signaling pathways, able to regulate the proliferation and survival of cancer cells, including MM. We found that inhibition of GSK3 upregulates both MICA protein surface and mRNA expression in MM cells, with little or no effects on the basal expression of the MICB and DNAM-1 ligand poliovirus receptor/CD155. Moreover, exposure to GSK3 inhibitors renders myeloma cells more efficient to activate NK cell degranulation and to enhance the ability of myeloma cells to trigger NK cell-mediated cytotoxicity. We could exclude that increased expression of β-catenin or activation of the heat shock factor-1 (transcription factors inhibited by active GSK3) is involved in the upregulation of MICA expression, by using RNA interference or viral transduction of constitutive active forms. On the contrary, inhibition of GSK3 correlated with a downregulation of STAT3 activation, a negative regulator of MICA transcription. Both Tyr(705) phosphorylation and binding of STAT3 on MICA promoter are reduced by GSK3 inhibitors; in addition, overexpression of a constitutively active form of STAT3 significantly inhibits MICA upregulation. Thus, we provide evidence that regulation of the NKG2D-ligand MICA expression may represent an additional immune-mediated mechanism supporting the antimyeloma activity of GSK3 inhibitors.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Cenci Bolognetti Foundation-Pasteur Institute, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Effect of the disintegrin eristostatin on melanoma-natural killer cell interactions. Toxicon 2012; 61:83-93. [PMID: 23147645 DOI: 10.1016/j.toxicon.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 10/17/2012] [Accepted: 10/23/2012] [Indexed: 01/04/2023]
Abstract
Malignant melanoma is difficult to treat due to its resistance to chemotherapeutic regimens. Discovery of new pharmaceuticals with inhibitory potential can be helpful in the development of novel treatments. The snake venom disintegrin eristostatin, from the viper Eristicophis macmahoni, caused immunodeficient mice to be significantly protected from development of lung colonization when melanoma cells and the disintegrin were co-injected in vivo into the lateral tail vein compared to vehicle controls. Cytotoxicity assays suggested that eristostatin makes the melanoma cells a better target for lysis by human natural killer cells. Direct binding assays using atomic force microscopy showed eristostatin does specifically bind the surface of the six melanoma cell lines tested. Eristostatin binding was partially inhibited by the addition of soluble RGDS peptide, suggesting an integrin as one likely, but not the sole, binding partner. Studies done with melanoma cells on a culture dish and natural killer cells attached to a cantilever tip in atomic force microscopy showed four major populations of interactions which exhibited altered frequency and unbinding strength in the presence of eristostatin.
Collapse
|
27
|
Hassold N, Seystahl K, Kempf K, Urlaub D, Zekl M, Einsele H, Watzl C, Wischhusen J, Seggewiss-Bernhardt R. Enhancement of natural killer cell effector functions against selected lymphoma and leukemia cell lines by dasatinib. Int J Cancer 2012; 131:E916-27. [PMID: 22419518 DOI: 10.1002/ijc.27537] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/28/2012] [Indexed: 11/06/2022]
Abstract
As NK cell immunotherapy is still poorly successful, combinations with drugs enhancing NK cell activity are of major interest. NK large granular lymphocyte expansions associated with improved survival have been described under monotherapy with the Bcr-Abl/Src inhibitor dasatinib, which inhibits NK cell functions in vitro. As Src kinases play a major role in inhibitory and activating signaling pathways of NK cells, both outcomes appear plausible. To clarify these contradictory observations and potentially enable the use of dasatinib as adjuvant, we analyzed how clinically relevant doses promote NK cell effector functions. Polyclonal human NK cells were studied ex vivo. Functional outcomes assessed included conjugate formation, calcium flux, receptor regulation, cytokine production, degranulation, cytotoxicity, apoptosis induction and signal transduction. While dasatinib inhibits NK cell effector functions during functional assays, 24 hr pretreatment of NK cells followed by washout of dasatinib, led to dose-dependent enhancement of cytokine production, degranulation marker expression and cytotoxicity against selected lymphoma and leukemia cell lines. Mechanistically, this was neither due to an altered viability of NK cells nor increased NKG2D, LFA-1 or conjugate formation with target cells. Receptor proximal signaling events were inhibited. However, a slight time dependent enhancement of Vav phosphorylation was observed under certain circumstances. The shift in Vav phosphorylation level may be one major mechanism for NK cell activity enhancement induced by dasatinib. Our findings argue for a careful timing and dosing of dasatinib application during leukemia/lymphoma treatment to enhance NK cell immunotherapeutic efforts.
Collapse
Affiliation(s)
- Nicole Hassold
- Immune Recovery Section, Comprehensive Cancer Center, Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shipman M, Lubick K, Fouchard D, Guram R, Grieco P, Jutila M, Dratz EA. Proteomic and systems biology analysis of monocytes exposed to securinine, a GABA(A) receptor antagonist and immune adjuvant. PLoS One 2012; 7:e41278. [PMID: 23028424 PMCID: PMC3441550 DOI: 10.1371/journal.pone.0041278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
Securinine, a GABA(A) receptor antagonist, has been reported to enhance monocyte cell killing of Coxiella burnetii without obvious adverse effects in vivo. We employed multiplex 2D gel electrophoresis using Zdyes, a new generation of covalently linked fluorescent differential protein detection dyes to analyze changes in the monocyte proteome in response to Securinine. Securinine antagonism of GABA(A) receptors triggers the activation of p38. We used the differential protein expression results to guide a search of the literature and network analysis software to construct a systems biology model of the effect of Securinine on monocytes. The model suggests that various metabolic modulators (fatty acid binding protein 5, inosine 5'-monophosphate dehydrogenase, and thioredoxin) are at least partially reshaping the metabolic landscape within the monocytes. The actin bundling protein L-plastin, and the Ca(2+) binding protein S100A4 also appear to have important roles in the immune response stimulated by Securinine. Fatty acid binding protein 5 (FABP5) may be involved in effecting lipid raft composition, inflammation, and hormonal regulation of monocytes, and the model suggests that FABP5 may be a central regulator of metabolism in activated monocytes. The model also suggests that the heat shock proteins have a significant impact on the monocyte immune response. The model provides a framework to guide future investigations into the mechanisms of Securinine action and with elaboration may help guide development of new types of immune adjuvants.
Collapse
Affiliation(s)
- Matt Shipman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hamamoto K, Yamada S, Hara A, Kodera T, Seno M, Kojima I. Extracellular matrix modulates insulin production during differentiation of AR42J cells: functional role of Pax6 transcription factor. J Cell Biochem 2011; 112:318-29. [PMID: 21069736 DOI: 10.1002/jcb.22930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Extracellular matrix (ECM) modulates differentiation of pancreatic β-cells during development. However, the mechanism by which ECM proteins modulate differentiation is not totally clear. We investigated the effect of ECM proteins on differentiation β-cells in vitro. We investigated the effect of basement membrane ECM on differentiation of AR42J cells and rat ductal cells. First, we examined the effect of reconstituted basement membrane, Matrigel on differentiation of AR42J cells induced by activin and betacellulin. Matrigel augmented insulin production and increased the expression of GLUT2, SUR1, and glucokinase. Among various transcription factors investigated, Matrigel markedly upregulated the expression of Pax6. When Pax6 was overexpressed in cells treated with activin and betacellulin, the expression of insulin was upregulated. Conversely, knockdown of Pax6 significantly reduced the insulin expression in cells cultured on Matrigel. The effects of Matrigel on insulin-production and induction of Pax6 were reproduced partially by laminin-1, a major component of Matrigel, and inhibited by anti-integrin-β1 antibody. Matrigel also enhanced the activation of p38 mitogen-activated kinase induced by activin and betacellulin, which was inhibited by anti-β1 antibody. Finally, the effect of Matrigel on differentiation was reproduced in rat cultured ductal cells, and Matrigel also increased the expression of Pax6. These results indicate that basement membrane ECM augments differentiation of pancreatic progenitor cells to insulin-secreting cells by upregulating the expression of Pax6. .
Collapse
Affiliation(s)
- Kohei Hamamoto
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Hamill KJ, Hopkinson SB, Jonkman MF, Jones JCR. Type XVII collagen regulates lamellipod stability, cell motility, and signaling to Rac1 by targeting bullous pemphigoid antigen 1e to alpha6beta4 integrin. J Biol Chem 2011; 286:26768-80. [PMID: 21642434 DOI: 10.1074/jbc.m110.203646] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rac1 activity, polarity, lamellipodial dynamics, and directed motility are defective in keratinocytes exhibiting deficiency in β4 integrin or knockdown of the plakin protein Bullous Pemphigoid Antigen 1e (BPAG1e). The activity of Rac, formation of stable lamellipodia, and directed migration are restored in β4 integrin-deficient cells by inducing expression of a truncated form of β4 integrin, which lacks binding sites for BPAG1e and plectin. In these same cells, BPAG1e, the truncated β4 integrin, and type XVII collagen (Col XVII), a transmembrane BPAG1e-binding protein, but not plectin, colocalize along the substratum-attached surface. This finding suggested to us that Col XVII mediates the association of BPAG1e and α6β4 integrin containing the truncated β4 subunit and supports directed migration. To test these possibilities, we knocked down Col XVII expression in keratinocytes expressing both full-length and truncated β4 integrin proteins. Col XVII-knockdown keratinocytes exhibit a loss in BPAG1e-α6β4 integrin interaction, a reduction in lamellipodial stability, an impairment in directional motility, and a decrease in Rac1 activity. These defects are rescued by a mutant Col XVII protein truncated at its carboxyl terminus. In summary, our results suggest that in motile cells Col XVII recruits BPAG1e to α6β4 integrin and is necessary for activation of signaling pathways, motile behavior, and lamellipodial stability.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, The Feinberg School of Medicine at Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
31
|
Bhat R, Dempe S, Dinsart C, Rommelaere J. Enhancement of NK cell antitumor responses using an oncolytic parvovirus. Int J Cancer 2011; 128:908-19. [PMID: 20473905 DOI: 10.1002/ijc.25415] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells play a vital role in the rejection of tumors. Pancreatic ductal adenocarcinoma (PDAC), however, remains a poor prognosis malignancy, due to its resistance to radio- and chemotherapy, and low immunogenicity. We demonstrate here that IL-2-activated human NK cells are able to kill PDAC cells. Currently, novel strategies are being pursued to combat PDAC. In this regard, oncolytic viruses, in addition to killing tumor cells, may also have the potential to augment antitumor immune responses. We found that, besides having an intrinsic oncolytic activity, parvovirus H-1PV is able to enhance NK cell-mediated killing of PDAC cells. Our results show that H-1PV infection of Panc-1 cells increases NK cell capacity to release IFN-γ, TNF-α and MIP-1α/β. Multiple activating receptors are involved in the NK cell-mediated killing of Panc-1 cells. Indeed, blocking of the natural cytotoxicity receptors-NKp30, 44 and 46 in combination, and NKG2D and DNAM1 alone inhibit the killing of Panc-1 cells. Interestingly, H-1PV infection of Panc-1 cells overcomes the part of inhibitory effects suggesting that parvovirus may induce additional NK cell ligands on Panc-1 cells. The enhanced sensitivity of H-1PV-infected PDAC cells to NK cell-dependent killing could be traced back to the upregulation of the DNAM-1 ligand, CD155 and to the downregulation of MHC class I expression. Our data suggests that NK cells display antitumor potential against PDAC and that H-1PV-based oncolytic immunotherapy could further boost NK cell-mediated immune responses and help to develop a combinatorial therapeutic approach against PDAC.
Collapse
Affiliation(s)
- Rauf Bhat
- Division of Tumor Virology, F010, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
32
|
Lin CH, Cheng HW, Ma HP, Wu CH, Hong CY, Chen BC. Thrombin induces NF-kappaB activation and IL-8/CXCL8 expression in lung epithelial cells by a Rac1-dependent PI3K/Akt pathway. J Biol Chem 2011; 286:10483-94. [PMID: 21266580 DOI: 10.1074/jbc.m110.112433] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Steel AW, Mela CM, Lindsay JO, Gazzard BG, Goodier MR. Increased proportion of CD16(+) NK cells in the colonic lamina propria of inflammatory bowel disease patients, but not after azathioprine treatment. Aliment Pharmacol Ther 2011; 33:115-26. [PMID: 21083588 DOI: 10.1111/j.1365-2036.2010.04499.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Distinct functional subsets of natural killer cells potentially contribute to the pathology of inflammatory bowel disease (IBD). AIM To report the phenotypic and functional characteristics of natural killer cells in blood and lamina propria of IBD patients, and the effect of azathioprine. METHODS Natural killer cells from blood and lamina propria of healthy controls or patients with Crohn's disease, or ulcerative colitis were studied by flow cytometry. Activation, cytokine production, proliferation and apoptosis of natural killer cell subsets were studied in vitro. RESULTS CD16(+) natural killer cells are increased in frequency in the lamina propria comparing Crohn's disease or ulcerative colitis with healthy controls. Azathioprine therapy was associated with a reduction in total natural killer cells in blood and lamina propria, preferentially of the CD16(+) subset. Azathioprine therapy did not impair natural killer degranulation, but reduced natural and cytokine-activated cytotoxicity and interferon-gamma (IFN-γ) production. Culture of resting peripheral blood mononuclear cells with azathioprine resulted in loss of natural killer cells and inhibition of activation and IFN-γ production. Azathioprine preferentially inhibited proliferation of CD16(+) natural killer cells and induced apoptosis in resting but not in pre-activated natural killer cells. CONCLUSIONS Natural killer cells with cytolytic potential are enriched in the colonic lamina propria of individuals with IBD. Azathioprine is associated with a reduction in these cells and a normalization of natural killer cell populations.
Collapse
Affiliation(s)
- A W Steel
- Department of Gastroenterology, Chelsea and Westminster Hospital, London, UK
| | | | | | | | | |
Collapse
|
34
|
Mu Y, Ding F, Cui P, Ao J, Hu S, Chen X. Transcriptome and expression profiling analysis revealed changes of multiple signaling pathways involved in immunity in the large yellow croaker during Aeromonas hydrophila infection. BMC Genomics 2010; 11:506. [PMID: 20858287 PMCID: PMC2997002 DOI: 10.1186/1471-2164-11-506] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 09/22/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China suffering from severe outbreaks of infectious disease caused by marine bacteria such as Aeromonas hydrophila (A. hydrophila), resulting in great economic losses. However, the mechanisms involved in the immune response of this fish to bacterial infection are not fully understood. To understand the molecular mechanisms underlying the immune response to such pathogenic bacteria, we used high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the large yellow croaker infected with A. hydrophila. RESULTS A total of 13,611,340 reads were obtained and assembled into 26,313 scaffolds in transcriptional responses of the A. hydrophila-infected large yellow croaker. Via annotation to the NCBI database, we obtained 8216 identified unigenes. In total, 5590 (68%) unigenes were classified into Gene Ontology, and 3094 unigenes were found in 20 KEGG categories. These genes included representatives from almost all functional categories. By using Solexa/Illumina's DeepSAGE, 1996 differentially expressed genes (P value < 0.05) were detected in comparative analysis of the expression profiles between A. hydrophila-infected fish and control fish, including 727 remarkably upregulated genes and 489 remarkably downregulated genes. Dramatic differences were observed in genes involved in the inflammatory response. Bacterial infection affected the gene expression of many components of signaling cascades, including the Toll-like receptor, JAK-STAT, and MAPK pathways. Genes encoding factors involved in T cell receptor (TCR) signaling were also revealed to be regulated by infection in these fish. CONCLUSION Based on our results, we conclude that the inflammatory response may play an important role in the early stages of infection. The signaling cascades such as the Toll-like receptor, JAK-STAT, and MAPK pathways are regulated by A. hydrophila infection. Interestingly, genes encoding factors involved in TCR signaling were revealed to be downregulated by infection, indicating that TCR signaling was suppressed at this early period. These results revealed changes of multiple signaling pathways involved in immunity during A. hydrophila infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the large yellow croaker.
Collapse
Affiliation(s)
- Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | | | | | | | | | | |
Collapse
|
35
|
Watzl C, Long EO. Signal transduction during activation and inhibition of natural killer cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2010; Chapter 11:Unit 11.9B. [PMID: 20814939 PMCID: PMC3857016 DOI: 10.1002/0471142735.im1109bs90] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cells are important for early immune responses to viral infections and cancer. Upon activation, NK cells secrete cytokines and chemokines, and kill sensitive target cells by releasing the content of cytolytic granules. This unit is focused on the signal transduction pathways that regulate NK cell activities in response to contact with other cells. We will highlight signals regulating NK cell adhesion to target cells and describe the induction of cellular cytotoxicity by the engagement of different NK cell activation receptors. Negative signaling induced by inhibitory receptors opposes NK cell activation and provides an important safeguard from NK cell reactivity toward normal, healthy cells. We will discuss the complex integration of the different signals that occur during interaction of NK cells with target cells.
Collapse
Affiliation(s)
- Carsten Watzl
- Institute for Immunology, University Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
36
|
Hernández I, Moreno JL, Zandueta C, Montuenga L, Lecanda F. Novel alternatively spliced ADAM8 isoforms contribute to the aggressive bone metastatic phenotype of lung cancer. Oncogene 2010; 29:3758-69. [PMID: 20453887 DOI: 10.1038/onc.2010.130] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ADAMs (a disintegrin and metalloprotease) are transmembrane proteins involved in a variety of physiological processes and tumorigenesis. Recently, ADAM8 has been associated with poor prognosis of lung cancer. However, its contribution to tumorigenesis in the context of lung cancer metastasis remains unknown. Native ADAM8 expression levels were lower in lung cancer cell lines. In contrast, we identified and characterized two novel spliced isoforms encoding truncated proteins, Delta18a and Delta14', which were present in several tumor cell lines and not in normal cells. Overexpression of Delta18a protein resulted in enhanced invasive activity in vitro. ADAM8 and its Delta14' isoform expression levels were markedly increased in lung cancer cells, in conditions mimicking tumor microenvironment. Moreover, addition of supernatants from Delta14'-overexpressing cells resulted in a significant increase in tartrate-resistant acid phosphatase+ cells in osteoclast cultures in vitro. These findings were associated with increased pro-osteoclastogenic cytokines interleukin (IL)-8 and IL-6 protein levels. Furthermore, lung cancer cells overexpressing Delta14' increased prometastatic activity with a high tumor burden and increased osteolysis in a murine model of bone metastasis. Thus, the expression of truncated forms of ADAM8 by the lung cancer cells may result in the specific upregulation of their invasive and osteoclastogenic activities in the bone microenvironment. These findings suggest a novel mechanism of tumor-induced osteolysis in metastatic bone colonization.
Collapse
Affiliation(s)
- I Hernández
- Adhesion and Metastasis Laboratory, Division of Oncology, Center for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
37
|
Yun S, Lee SH, Kang YH, Jeong M, Kim MJ, Kim MS, Piao ZH, Suh HW, Kim TD, Myung PK, Yoon SR, Choi I. YC-1 enhances natural killer cell differentiation from hematopoietic stem cells. Int Immunopharmacol 2010; 10:481-6. [PMID: 20116458 DOI: 10.1016/j.intimp.2010.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
NK cells play crucial roles in innate immunity and adaptive immunity. The detailed mechanisms, however, governing NK cell development remains unclear. In this study, we report that YC-1 significantly enhances NK cell populations differentiated from human umbilical cord blood hematopoietic stem cells (HSCs). NK cells increased by YC-1 display both phenotypic and functional features of fully mature NK (mNK) cells, but YC-1 does not affect the activation of mNK cells. YC-1 did not affect cGMP production and phosphorylation of STAT-5 which is essential for IL-15R signaling. On the other hand, YC-1 increased p38 MAPK phosphorylation during NK cell differentiation. Furthermore, p38 inhibitor SB203580 inhibited the differentiation of NK cells enhanced by YC-1. Taken together, these data suggest that YC-1 enhances NK cell differentiation through the activation of p38 MAPK which is involved in NK cell differentiation.
Collapse
Affiliation(s)
- Sohyun Yun
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fionda C, Soriani A, Malgarini G, Iannitto ML, Santoni A, Cippitelli M. Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. THE JOURNAL OF IMMUNOLOGY 2009; 183:4385-94. [PMID: 19748980 DOI: 10.4049/jimmunol.0901797] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Modulation of the host immune system represents a promising therapeutic approach against cancer, including multiple myeloma. Recent findings indicate that the NK group 2D (NKG2D)- and DNAX accessory molecule-1 (DNAM-1)-activating receptors play a prominent role in tumor recognition and elimination by cytotoxic lymphocytes, suggesting that the levels of NKG2D and DNAM-1 ligand expression on tumor cells may be a critical factor to improve the immune response against cancer. In this study, we tested the effect of 17-allylaminogeldanamycin and radicicol, drugs targeting the heat shock protein-90 (HSP-90) chaperone protein and displaying antimyeloma activity, on the expression of NKG2D and DNAM-1 ligands in human myeloma cell lines. We demonstrate that HSP-90 inhibitors are able to up-regulate both MHC class I chain-related (MIC) A and MICB protein surface and mRNA expression in human myeloma cell lines, without any significant effect on the basal expression of the DNAM-1 ligand poliovirus receptor CD155, or induction of nectin-2 and UL16-binding proteins. Activation of the transcription factor heat shock factor-1 by HSP-90 inhibitors is essential for the up-regulation of MICA/MICB expression and knockdown of heat shock factor-1 using small hairpin RNA interference blocks this effect. Moreover, in vitro and in vivo binding of heat shock factor-1 to MICA and MICB promoters indicates that it may enhance NKG2D ligand expression at the transcriptional level. Finally, exposure to HSP-90 inhibitors renders myeloma cells more efficient to activate NK cell degranulation and a blocking Ab specific for NKG2D significantly reduces this effect. Thus, these results provide evidence that targeting NKG2D ligands expression may be an additional mechanism supporting the antimyeloma activity of HSP-90 inhibitors and suggest their possible immunotherapeutic value.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Experimental Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Spurrell DR, Luckashenak NA, Minney DC, Chaplin A, Penninger JM, Liwski RS, Clements JL, West KA. Vav1 regulates the migration and adhesion of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:310-8. [PMID: 19542442 DOI: 10.4049/jimmunol.0802096] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dendritic cells (DCs) are the most potent APCs for activating naive T cells, a process facilitated by the ability of immature DCs to mature and home to lymph nodes after encountering an inflammatory stimulus. Proteins involved in cytoskeletal rearrangement play an important role in regulating the adherence and motility of DCs. Vav1, a guanine nucleotide exchange factor for Rho family GTPases, mediates cytoskeletal rearrangement in hematopoietic cells following integrin ligation. We show that Vav1 is not required for the normal maturation of DCs in vitro; however, it is critical for DC binding to fibronectin and regulates the distribution but not the formation of podosomes. We also found that DC Vav1 was an important component of a signaling pathway involving focal adhesion kinase, phospholipase C-gamma2, and ERK1/2 following integrin ligation. Surprisingly, Vav1(-/-) DCs had increased rates of migration in vivo compared with wild-type control DCs. In vitro findings show that the presence of adhesive substrates such as fibronectin resulted in inhibition of migration. However, there was less inhibition in the absence of Vav1. These findings suggest that DC migration is negatively regulated by adhesion and integrin-mediated signaling and that Vav1 has a central role in this process.
Collapse
Affiliation(s)
- David R Spurrell
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 2008; 113:3503-11. [PMID: 19098271 DOI: 10.1182/blood-2008-08-173914] [Citation(s) in RCA: 338] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is much evidence to support a role for natural killer (NK) cells in controlling the progression of multiple myeloma (MM), a malignancy characterized by an abnormal plasma cell proliferation in the bone marrow (BM). Induction of DNA damage response has been recently shown capable of enhancing NKG2D ligand (NKG2DL) expression, but nothing is known about DNAM-1 ligand (DNAM-1L) regulation. In this study, we show that myeloma cells treated with low doses of therapeutic agents commonly used in the management of patients with MM, such as doxorubicin, melphalan, and bortezomib, up-regulate DNAM-1 and NKG2D ligands. Accordingly, therapeutic drug treatment of MM cells increases NK-cell degranulation, the NKG2D and DNAM-1 receptors being the major triggering molecules. Similar data were also obtained using ex vivo primary plasma cells derived from MM patients. Drug-induced DNAM-1 and NKG2D ligand expression was abolished after treatment with the ATM (ataxia telangiectasia mutated) and ATR (ATM- and RAD3-related) pharmacologic inhibitors caffeine and KU-55933, and was preferentially associated with senescent cells arrested in the G2 phase of the cell cycle. Altogether, our findings have identified a common pathway that can trigger the up-regulation of different NK cell-activating ligands and suggest that NK cells represent an immunosurveillance mechanism toward cells undergoing stress-induced senescent programs.
Collapse
|
41
|
Estrada Y, Dong J, Ossowski L. Positive crosstalk between ERK and p38 in melanoma stimulates migration and in vivo proliferation. Pigment Cell Melanoma Res 2008; 22:66-76. [PMID: 18983537 DOI: 10.1111/j.1755-148x.2008.00520.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Melanoma is one of the most therapy-resistant cancers. Activating mutations in BRAF and NRAS are the source of extracellular signal regulated protein kinase (ERK) pathway activation. We show that melanoma cell lines, originating in different metastatic sites, with BRAF or NRAS mutations, in addition to active mitogen activated protein kinase (MAPK)-ERK, also have highly activated stress activated protein kinase (SAPK)-p38. This is in direct contrast to carcinoma cells in which the activity of the two kinases appears to be mutually exclusive; high level of p38 activity inhibits, through a negative feedback, ERK activity and prevents tumorigenesis. Melanomas are insensitive to ERK inhibition by p38 and utilize p38-signaling pathway for migration and growth in vivo. We found a positive functional loop linking the high ERK activity to surface expression of alphaVbeta3-integrin. This integrin, by interacting with vitronectin, induces p38 activity and increases IL-8 production, enhancing cell migration. Because the negative loop from p38 to ERK is lost, the two kinases can remain simultaneously activated. Inhibition of ERK and p38 activities is more effective in blocking in vivo growth than inhibition of each kinase individually. Future therapies might have to consider targeting of both pathways.
Collapse
Affiliation(s)
- Yeriel Estrada
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine , New York, NY, USA
| | | | | |
Collapse
|
42
|
Miah SMS, Hughes TL, Campbell KS. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules. THE JOURNAL OF IMMUNOLOGY 2008; 180:2922-32. [PMID: 18292514 DOI: 10.4049/jimmunol.180.5.2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.
Collapse
Affiliation(s)
- S M Shahjahan Miah
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
43
|
Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 2006; 214:73-91. [PMID: 17100877 PMCID: PMC3845883 DOI: 10.1111/j.1600-065x.2006.00457.x] [Citation(s) in RCA: 453] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Natural killer (NK) cells possess potent perforin- and interferon-gamma-dependent effector functions that are tightly regulated. Inhibitory receptors for major histocompatibility complex class I display variegated expression among NK cells, which confers specificity to individual NK cells. Specificity is also provided by engagement of an array of NK cell activation receptors. Target cells may express ligands for a multitude of activation receptors, many of which signal through different pathways. How inhibitory receptors intersect different signaling cascades is not fully understood. This review focuses on advances in understanding how activation receptors cooperate to induce cytotoxicity in resting NK cells. The role of activating receptors in determining specificity and providing redundancy of target cell recognition is discussed. Using Drosophila insect cells as targets, we have examined the contribution of individual receptors. Interestingly, the strength of activation is not determined simply by additive effects of parallel activation pathways. Combinations of signals from different receptors can have different outcomes: synergy, no enhancement over individual signals, or additive effects. Cytotoxicity requires combined signals for granule polarization and degranulation. The integrin leukocyte function-associated antigen-1 contributes a signal for polarization but not for degranulation. Conversely, CD16 alone or in synergistic combinations, such as NKG2D and 2B4, signals for phospholipase-C-gamma- and phosphatidylinositol-3-kinase-dependent degranulation.
Collapse
Affiliation(s)
- Yenan T Bryceson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
44
|
Stewart CA, Vivier E, Colonna M. Strategies of natural killer cell recognition and signaling. Curr Top Microbiol Immunol 2006; 298:1-21. [PMID: 16329183 DOI: 10.1007/3-540-27743-9_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The participation of natural killer (NK) cells in multiple aspects of innate and adaptive immune responses is supported by the wide array of stimulatory and inhibitory receptors they bear. Here we review the receptor-ligand interactions and subsequent signaling events that culminate in NK effector responses. Whereas some receptor-ligand interactions result in activation of both NK cytotoxicity and cytokine production, others have more subtle effects, selectively activating only one pathway or having distinct context-dependent effects. Recent approaches offer ways to unravel how the integration of complex signaling networks directs the NK response.
Collapse
Affiliation(s)
- C A Stewart
- Lab of NK Cells and Innate Immunity, Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Univ. Méditerranée, Campus de Luminy, 13288 Marseille, France.
| | | | | |
Collapse
|
45
|
Makishima H, Ito T, Asano N, Nakazawa H, Shimodaira S, Kamijo Y, Nakazawa Y, Suzuki T, Kobayashi H, Kiyosawa K, Ishida F. Significance of chemokine receptor expression in aggressive NK cell leukemia. Leukemia 2005; 19:1169-74. [PMID: 15902300 DOI: 10.1038/sj.leu.2403732] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural killer (NK) cell-type lymphoproliferative diseases of granular lymphocytes can be subdivided into aggressive NK cell leukemia (ANKL) and chronic NK cell lymphocytosis (CNKL). One reason for the poor outcome in ANKL is leukemic infiltration into multiple organs. The mechanisms of cell trafficking associated with the chemokine system have been investigated in NK cells. To clarify the mechanism of systemic migration of leukemic NK cells, we enrolled nine ANKL and six CNKL cases, and analyzed the expression profiles and functions of chemokine receptors by flowcytometry and chemotaxis assay. CXCR1 was detected on NK cells in all groups, and CCR5 was positive in all ANKL cells. Proliferating NK cells were simultaneously positive for CXCR1 and CCR5 in all ANKL patients examined, and NK cells with this phenotype did not expand in CNKL patients or healthy donors. ANKL cells showed enhanced chemotaxis toward the ligands of these receptors. These results indicated that the chemokine system might play an important role in the pathophysiology of ANKL and that chemokine receptor profiling might be a novel tool for discriminating ANKL cells from benign NK cells.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- Chemokines/pharmacology
- Child
- Female
- Gene Expression Profiling
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Leukemia, Lymphoid/diagnosis
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/physiopathology
- Lymphocytosis/diagnosis
- Lymphocytosis/genetics
- Male
- Middle Aged
- Phenotype
- Receptors, CCR5/genetics
- Receptors, CCR5/physiology
- Receptors, Chemokine/analysis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/physiology
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8A/physiology
Collapse
Affiliation(s)
- H Makishima
- The Second Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Arbel-Goren R, Levy Y, Ronen D, Zick Y. Cyclin-dependent kinase inhibitors and JNK act as molecular switches, regulating the choice between growth arrest and apoptosis induced by galectin-8. J Biol Chem 2005; 280:19105-14. [PMID: 15753078 DOI: 10.1074/jbc.m502060200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectin-8, a mammalian beta-galactoside binding lectin, functions as an extracellular matrix protein that forms high affinity interactions with integrins. Here we demonstrated that soluble galectin-8 inhibits cell cycle progression and induces growth arrest. These effects cannot be attributed to interference with cell adhesion but can be attributed to a 4-5-fold increase in the cellular content of the cyclin-dependent kinase inhibitor p21, which was already evident following a 4-h incubation of H1299 cells with galectin-8. The increase in p21 levels was preceded by a 3-5-fold increase in JNK and protein kinase B (PKB) activities. Accordingly, SP600125, the inhibitor of JNK, and wortmannin, the inhibitor of phosphatidylinositol 3-kinase, which is the upstream activator of PKB, inhibited the increase in the cellular content of p21. Furthermore, overexpression of a dominant inhibitory form of SEK1, the upstream kinase regulator of JNK, inhibited both JNK activation and p21 accumulation. When p21 expression was inhibited by cycloheximide, galectin-8 directed the cells toward apoptosis, which involves induction of poly(ADP-ribose) polymerase cleavage. Indeed, galectin-8-induced apoptosis was 2-fold higher in HTC (p21-null) cells when compared with parental HTC cells. Because overexpression of galectin-8 attenuates the rate of DNA synthesis, stable colonies that overexpress and secrete galectin-8 can be generated only in cells overexpressing a growth factor receptor, such as the insulin receptor. These results implicate galectin-8 as a modulator of cellular growth through up-regulation of p21. This process involves activation of JNK, which enhances the synthesis of p21, combined with the activation of PKB, which inhibits p21 degradation. These effects of the lectin depended upon protein-sugar interactions and were induced when galectin-8 was present as a soluble ligand or when it was overexpressed in cells.
Collapse
Affiliation(s)
- Rinat Arbel-Goren
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
47
|
Jeong HW, Kim IS. TGF-beta1 enhances betaig-h3-mediated keratinocyte cell migration through the alpha3beta1 integrin and PI3K. J Cell Biochem 2005; 92:770-80. [PMID: 15211574 DOI: 10.1002/jcb.20110] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
betaig-h3 is an extracellular matrix (ECM) protein whose expression is highly induced by transforming growth factor beta1 (TGF-beta1). We previously demonstrated that betaig-h3 has two alpha3beta1 integrin-interacting motifs, which promote adhesion, migration, and proliferation of human keratinocytes. Both betaig-h3 and TGF-beta1 have been suggested to play important roles in the healing of skin wounds. In this study, we demonstrate that TGF-beta1 enhances keratinocyte adhesion and migration toward betaig-h3 through the alpha3beta1 integrin. TGF-beta1 did not increase the amount of the alpha3beta1 integrin on the cell surface, but rather increased its affinity for betaig-h3. LY294002, an inhibitor of PI3K, blocked the basal and TGF-beta1-enhanced cell migration but not adhesion to betaig-h3. A constitutively active mutant of PI3K stimulated cell migration but not adhesion to betaig-h3. The PI3K pathway is also not associated with the affinity of the alpha3beta1 integrin to betaig-h3. TGF-beta1 induced phosphorylation of AKT and FAK. Taken together, these data suggest that TGF-beta1 increases affinity of the alpha3beta1 integrin to betaig-h3, resulting in enhanced adhesion and migration of keratinocytes toward betaig-h3. TGF-beta1 also enhances migration through PI3K, but PI3K is not associated with either the binding affinity of the alpha3beta1 integrin or its adhesion to betaig-h3.
Collapse
Affiliation(s)
- Ha-Won Jeong
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | |
Collapse
|
48
|
Schmid Y, Grassl GA, Bühler OT, Skurnik M, Autenrieth IB, Bohn E. Yersinia enterocolitica adhesin A induces production of interleukin-8 in epithelial cells. Infect Immun 2004; 72:6780-9. [PMID: 15557598 PMCID: PMC529134 DOI: 10.1128/iai.72.12.6780-6789.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The major invasive factor of Yersinia enterocolitica, the invasin (Inv) protein, induces proinflammatory host cell responses, including interleukin-8 (IL-8) secretion from human epithelial cells, by engagement of beta1 integrins. The Inv-triggered beta1 integrin signaling involves the small GTPase Rac; the activation of MAP kinases, such as p38, MEK1, and JNK; and the activation of the transcription factor NF-kappaB. In the present study, we demonstrate that Y. enterocolitica YadA, which is a major adhesin of Y. enterocolitica with pleiotropic virulence effects, induces IL-8 secretion in epithelial cells. The abilities of YadA and Inv to promote adhesion to and invasion of HeLa cells and to induce IL-8 production by the cells were investigated by expression of YadA and Inv in Escherichia coli. While YadA mediates efficacious adhesion to HeLa cells, it mediates marginal invasion compared with Inv. Both YadA and Inv trigger comparable levels of IL-8 production. Conformational changes of the YadA head domain by mutation of NSVAIG-S motifs, which abolish collagen binding, also abolish adhesion of Yersinia to HeLa cells and YadA-mediated IL-8 secretion. Furthermore, experiments in which blocking antibodies against beta1 integrins were used demonstrate that beta1 integrins are crucial for YadA-mediated IL-8 secretion. Inhibitor studies demonstrate the involvement of small GTPases and MAP kinases, such as p38, MEK1, and JNK, indicating that beta1 integrin-dependent signaling mediated by Inv or YadA involves similar signaling pathways. These data present YadA, in addition to Inv, YopB, and Yersinia lipopolysaccharide, as a further inducer of proinflammatory molecules by which Y. enterocolitica might promote inflammatory tissue reactions.
Collapse
Affiliation(s)
- Yvonne Schmid
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Tübingen Elfriede-Aulhorn-Strasse 6, D-72060 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Cella M, Fujikawa K, Tassi I, Kim S, Latinis K, Nishi S, Yokoyama W, Colonna M, Swat W. Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity. ACTA ACUST UNITED AC 2004; 200:817-23. [PMID: 15365099 PMCID: PMC2211968 DOI: 10.1084/jem.20031847] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells express multiple activating receptors that initiate signaling cascades through DAP10- or immunoreceptor tyrosine-based activation motif–containing adapters, including DAP12 and FcRγ. Among downstream signaling mediators, the guanine nucleotide exchange factor Vav1 carries out a key role in activation. However, whether Vav1 regulates only some or all NK cell–activating pathways is matter of debate. It is also possible that two other Vav family molecules, Vav2 and Vav3, are involved in NK cell activation. Here, we examine the relative contribution of each of these exchange factors to NK cell–mediated cytotoxicity using mice lacking one, two, or all three Vav proteins. We found that Vav1 deficiency is sufficient to disrupt DAP10-mediated cytotoxicity, whereas lack of Vav2 and Vav3 profoundly impairs FcRγ- and DAP12-mediated cytotoxicity. Our results provide evidence that these three Vav proteins function specifically in distinct pathways that trigger NK cell cytotoxicity.
Collapse
Affiliation(s)
- Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pisegna S, Pirozzi G, Piccoli M, Frati L, Santoni A, Palmieri G. p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells. Blood 2004; 104:4157-64. [PMID: 15315972 DOI: 10.1182/blood-2004-05-1860] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Natural killer (NK) cells are a component of the innate immunity against viral infections through their rapid cytotoxic activity and cytokine production. Although the synthetic double-stranded (ds) RNA polyinosinic-polycytidylic acid (poly I:C), a mimic of a common product of viral infections, is known to rapidly up-regulate their in vivo functions, NK cell ability to directly respond to dsRNA is still mostly unknown. Our results show that treatment with poly I:C significantly up-regulates both natural and CD16-mediated cytotoxicity of highly purified human NK cells. Poly I:C also induces the novel capability of producing CXCL10 chemokine in human NK cells and synergistically enhances interferon-gamma (IFN-gamma) production induced by either adaptive or innate cytokines. In accordance with the expression of Toll-like receptor-3 (TLR3) and of TRIF/TICAM-1 adaptor, poly I:C stimulation induces the activation of interferon regulatory factor-3 (IRF-3) transcription factor and of p38 mitogen-activated protein kinase (MAPK) in human NK cells. Finally, we demonstrate that p38 MAPK activity is required for the dsRNA-dependent enhancement of cytotoxicity and CXCL10 production. The occurrence of dsRNA-induced signaling and functional events closely correlates with the TLR3 mRNAprofile in different NK cell populations. Taken together, these data identify p38 as a central component of NK cell ability to directly respond to dsRNA pathogen-associated molecular pattern (PAMP).
Collapse
Affiliation(s)
- Simona Pisegna
- Department of Experimental Medicine and Pathology, University La Sapienza, Viale Regina Elena, 324, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|