1
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2025; 27:259-278. [PMID: 39755978 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Waters MF, Delghingaro-Augusto V, Shamoon M, Javed K, Burgio G, Dahlstrom JE, Bröer S, Nolan CJ. Interaction of B0AT1 Deficiency and Diet on Metabolic Function and Diabetes Incidence in Male Nonobese Diabetic Mice. Endocrinology 2025; 166:bqaf016. [PMID: 39844660 PMCID: PMC11815506 DOI: 10.1210/endocr/bqaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/24/2025]
Abstract
CONTEXT The obesity epidemic parallels an increasing type 1 diabetes incidence, such that westernized diets, containing high fat, sugar, and/or protein, through inducing nutrient-induced islet β-cell stress, have been proposed as contributing factors. The broad-spectrum neutral amino acid transporter (B0AT1), encoded by Slc6a19, is the major neutral amino acids transporter in intestine and kidney. B0AT1 deficiency in C567Bl/6J mice causes aminoaciduria, lowers insulinemia, and improves glucose tolerance. OBJECTIVE We investigated the effects of standard rodent chow (chow), high-fat high-sucrose (HFHS), and high-fat high-protein (HFHP) diets, in addition to B0AT1 deficiency, on the diabetes incidence of male nonobese diabetic (NOD/ShiLtJArc (NOD)) mice. METHODS Male NOD.Slc6a19+/+ and NOD.Slc6a19-/- mice were fed chow, HFHS and HFHP diets from 6 to 24 weeks of age. A separate cohort of male NOD mice were fed the three diets from 6-30 weeks of age. Body weight and fed-state blood glucose and plasma insulin were monitored, and urinary amino-acid profiles, intraperitoneal glucose tolerance, diabetes incidence, pancreatic islet number, insulitis scores and beta-cell mass were measured. RESULTS The incidence of diabetes and severe glucose intolerance was 3.8% in HFHS-fed, 25.0% in HFHP-fed, and 14.7% in chow-fed mice, with higher pancreatic islet number and lower insulitis scores in HFHS-fed mice. B0AT1 deficiency had no effect on diabetes incidence, but curtailed HFHS-induced excessive weight gain, adipose tissue expansion, and hyperinsulinemia. In HFHP-fed mice, B0AT1 deficiency significantly increased pancreatic β-cell clusters and small islets. Male NOD mice that did not develop autoimmune diabetes were resistant to diet-induced hyperglycemia. CONCLUSION Dietary composition does, but B0AT1 deficiency does not, affect autoimmune diabetes incidence in male NOD mice. B0AT1 deficiency, however, reduces diet-induced metabolic dysfunction and in HFHP-fed mice increases pancreatic β-cell clusters and small islets.
Collapse
Affiliation(s)
- Matthew F Waters
- School of Medicine and Psychology, Australian National University, Acton, ACT 0200, Australia
- John Curtin School of Medical Research, Australian National University, Acton, ACT 0200, Australia
| | - Viviane Delghingaro-Augusto
- School of Medicine and Psychology, Australian National University, Acton, ACT 0200, Australia
- John Curtin School of Medical Research, Australian National University, Acton, ACT 0200, Australia
| | - Muhammad Shamoon
- School of Medicine and Psychology, Australian National University, Acton, ACT 0200, Australia
- John Curtin School of Medical Research, Australian National University, Acton, ACT 0200, Australia
| | - Kiran Javed
- Research School of Biology, Australian National University, Acton, ACT 0200, Australia
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Acton, ACT 0200, Australia
| | - Jane E Dahlstrom
- School of Medicine and Psychology, Australian National University, Acton, ACT 0200, Australia
- John Curtin School of Medical Research, Australian National University, Acton, ACT 0200, Australia
- ACT Pathology, The Canberra Hospital, Canberra Health Services, Garran, ACT 2605, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Acton, ACT 0200, Australia
| | - Christopher J Nolan
- School of Medicine and Psychology, Australian National University, Acton, ACT 0200, Australia
- John Curtin School of Medical Research, Australian National University, Acton, ACT 0200, Australia
- Department of Diabetes and Endocrinology, The Canberra Hospital, Canberra Health Services, Garran, ACT 2605, Australia
| |
Collapse
|
3
|
Zabolotneva AA, Popruga KE, Makarov VV, Yudin SM, Gaponov AM, Roumiantsev SA, Shestopalov AV. Olivetol's Effects on Metabolic State and Gut Microbiota Functionality in Mouse Models of Alimentary Obesity, Diabetes Mellitus Type 1 and 2, and Hypercholesterolemia. Biomedicines 2025; 13:183. [PMID: 39857767 PMCID: PMC11761620 DOI: 10.3390/biomedicines13010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Disorders of glucose and lipid metabolism, such as obesity, diabetes mellitus, or hypercholesterolemia, can cause serious complications, reduce quality of life, and lead to increased premature mortality. Olivetol, a natural compound, could be proposed as a promising therapeutic agent for preventing, treating, or alleviating metabolic complications of such pathological conditions. METHODS In this study, the researchers conducted a broad parallel investigation of olivetol's effects on metabolic state and gut microbiota functionality in mouse models of alimentary obesity, diabetes mellitus type 1 and 2, and hypercholesterolemia. RESULTS According to the results of the study, olivetol caused a lowering of body weight in C57Bl6 mice fed a high-fat diet and in ldlr(-/-) mice, decreased serum glucose levels in db/db mice, improved lipid metabolism in ldlr(-/-) mice, and prevented inflammatory infiltration of the pancreas and loss of insulin secretion in NOD mice. In addition, olivetol affected the composition and functional activity of gut microbiota communities, inducing an expansion of probiotic species such as Akkermansia muciniphila and Bacteroides acidifaciens and depleting the representation of pathobionts such as Prevotella, although olivetol supplementation did not influence the diversity or richness of the communities. CONCLUSIONS These results suggest that olivetol is a promising therapeutic agent for preventing, treating, or alleviating the metabolic complications of obesity, diabetes mellitus type 1 and 2, and hypercholesterolemia; however, more investigations are required in order to attain a full understanding of its physiological effects.
Collapse
Affiliation(s)
- Anastasia A. Zabolotneva
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, FSAEI HE N. I. Pirogov Russian National Research Medical University of MOH of Russia, 1 Ostrovitianov Str., 117997 Moscow, Russia; (S.A.R.); (A.V.S.)
| | - Katerina E. Popruga
- Center for Strategic Planning and Management of Medical and Biological Health Risks of FMBA of Russia; Pogodinskya Str., h.10, b.1, 119121 Moscow, Russia; (K.E.P.); (V.V.M.); (S.M.Y.)
| | - Valentin V. Makarov
- Center for Strategic Planning and Management of Medical and Biological Health Risks of FMBA of Russia; Pogodinskya Str., h.10, b.1, 119121 Moscow, Russia; (K.E.P.); (V.V.M.); (S.M.Y.)
| | - Sergei M. Yudin
- Center for Strategic Planning and Management of Medical and Biological Health Risks of FMBA of Russia; Pogodinskya Str., h.10, b.1, 119121 Moscow, Russia; (K.E.P.); (V.V.M.); (S.M.Y.)
| | - Andrei M. Gaponov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 141534 Moscow, Russia;
| | - Sergei A. Roumiantsev
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, FSAEI HE N. I. Pirogov Russian National Research Medical University of MOH of Russia, 1 Ostrovitianov Str., 117997 Moscow, Russia; (S.A.R.); (A.V.S.)
| | - Aleksandr V. Shestopalov
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, FSAEI HE N. I. Pirogov Russian National Research Medical University of MOH of Russia, 1 Ostrovitianov Str., 117997 Moscow, Russia; (S.A.R.); (A.V.S.)
| |
Collapse
|
4
|
Brozzi F, Jacovetti C, Cosentino C, Menoud V, Wu K, Bayazit MB, Abdulkarim B, Iseli C, Guex N, Guay C, Regazzi R. tRNA-derived fragments in T lymphocyte-beta cell crosstalk and in type 1 diabetes pathogenesis in NOD mice. Diabetologia 2024; 67:2260-2274. [PMID: 38967669 PMCID: PMC11446995 DOI: 10.1007/s00125-024-06207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 07/06/2024]
Abstract
AIMS/HYPOTHESIS tRNAs play a central role in protein synthesis. Besides this canonical function, they were recently found to generate non-coding RNA fragments (tRFs) regulating different cellular activities. The aim of this study was to assess the involvement of tRFs in the crosstalk between immune cells and beta cells and to investigate their contribution to the development of type 1 diabetes. METHODS Global profiling of the tRFs present in pancreatic islets of 4- and 8-week-old NOD mice and in extracellular vesicles released by activated CD4+ T lymphocytes was performed by small RNA-seq. Changes in the level of specific fragments were confirmed by quantitative PCR. The transfer of tRFs from immune cells to beta cells occurring during insulitis was assessed using an RNA-tagging approach. The functional role of tRFs increasing in beta cells during the initial phases of type 1 diabetes was determined by overexpressing them in dissociated islet cells and by determining the impact on gene expression and beta cell apoptosis. RESULTS We found that the tRF pool was altered in the islets of NOD mice during the initial phases of type 1 diabetes. Part of these changes were triggered by prolonged exposure of beta cells to proinflammatory cytokines (IL-1β, TNF-α and IFN-γ) while others resulted from the delivery of tRFs produced by CD4+ T lymphocytes infiltrating the islets. Indeed, we identified several tRFs that were enriched in extracellular vesicles from CD4+/CD25- T cells and were transferred to beta cells upon adoptive transfer of these immune cells in NOD.SCID mice. The tRFs delivered to beta cells during the autoimmune reaction triggered gene expression changes that affected the immune regulatory capacity of insulin-secreting cells and rendered the cells more prone to apoptosis. CONCLUSIONS/INTERPRETATION Our data point to tRFs as novel players in the crosstalk between the immune system and insulin-secreting cells and suggest a potential involvement of this novel class of non-coding RNAs in type 1 diabetes pathogenesis. DATA AVAILABILITY Sequences are available from the Gene Expression Omnibus (GEO) with accession numbers GSE242568 and GSE256343.
Collapse
Affiliation(s)
- Flora Brozzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Véronique Menoud
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Kejing Wu
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Mustafa Bilal Bayazit
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Christian Iseli
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, EPFL, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Centre, EPFL, Lausanne, Switzerland
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Fernandez Trigo N, Kalbermatter C, Yilmaz B, Ganal-Vonarburg SC. The protective effect of the intestinal microbiota in type-1 diabetes in NOD mice is limited to a time window in early life. Front Endocrinol (Lausanne) 2024; 15:1425235. [PMID: 39391872 PMCID: PMC11464356 DOI: 10.3389/fendo.2024.1425235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The incidence of type-1 diabetes is on the rise, particularly in developed nations, and predominantly affects the youth. While genetic predisposition plays a substantial role, environmental factors, including alterations in the gut microbiota, are increasingly recognized as significant contributors to the disease. Methods In this study, we utilized germ-free non-obese diabetic mice to explore the effects of microbiota colonization during early life on type-1 diabetes susceptibility. Results Our findings reveal that microbiota introduction at birth, rather than at weaning, significantly reduces the risk of type-1 diabetes, indicating a crucial window for microbiota-mediated modulation of immune responses. This protective effect was independent of alterations in intestinal barrier function but correlated with testosterone levels in male mice. Additionally, early life colonization modulated T cell subset frequencies, particularly T helper cells and regulatory T cells, in the intestine, potentially shaping type-1 diabetes predisposition. Discussion Our findings underscore the pivotal role of early-life microbial interactions in immune regulation and the development of autoimmune diseases.
Collapse
Affiliation(s)
- Nerea Fernandez Trigo
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Cristina Kalbermatter
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stephanie C. Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Cobb J, Rawson J, Gonzalez N, Orr C, Kandeel F, Husseiny MI. Reversal of diabetes by an oral Salmonella-based vaccine in acute and progressive diabetes in NOD mice. PLoS One 2024; 19:e0303863. [PMID: 38781241 PMCID: PMC11115281 DOI: 10.1371/journal.pone.0303863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Type 1 diabetes (T1D)-associated hyperglycemia develops, in part, from loss of insulin-secreting beta cells. The degree of glycemic dysregulation and the age at onset of disease can serve as indicators of the aggressiveness of the disease. Tracking blood glucose levels in prediabetic mice may demonstrate the onset of diabetes and, along with animal age, also presage disease severity. In this study, an analysis of blood glucose levels obtained from female NOD mice starting at 4 weeks until diabetes onset was undertaken. New onset diabetic mice were orally vaccinated with a Salmonella-based vaccine towards T1D-associated preproinsulin combined with TGFβ and IL10 along with anti-CD3 antibody. Blood glucose levels were obtained before and after development of disease and vaccination. Animals were classified as acute disease if hyperglycemia was confirmed at a young age, while other animals were classified as progressive disease. The effectiveness of the oral T1D vaccine was greater in mice with progressive disease that had less glucose excursion compared to acute disease mice. Overall, the Salmonella-based vaccine reversed disease in 60% of the diabetic mice due, in part, to lessening of islet inflammation, improving residual beta cell health, and promoting tolerance. In summary, the age of disease onset and severity of glucose dysregulation in NOD mice predicted response to vaccine therapy. This suggests a similar disease categorization in the clinic may predict therapeutic response.
Collapse
Affiliation(s)
- Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Chris Orr
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| |
Collapse
|
7
|
Zhao JM, Su ZH, Han QY, Wang M, Liu X, Li J, Huang SY, Chen J, Li XW, Chen XY, Guo ZL, Jiang S, Pan J, Li T, Xue W, Zhou T. Deficiency of Trex1 leads to spontaneous development of type 1 diabetes. Nutr Metab (Lond) 2024; 21:2. [PMID: 38166933 PMCID: PMC10763031 DOI: 10.1186/s12986-023-00777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Type 1 diabetes is believed to be an autoimmune condition, characterized by destruction of insulin-producing cells, due to the detrimental inflammation in pancreas. Growing evidences have indicated the important role of type I interferon in the development of type 1 diabetes. METHODS Trex1-deficient rats were generated by using CRISPR-Cas9. The fasting blood glucose level of rat was measured by a Roche Accuchek blood glucose monitor. The levels of insulin, islet autoantibodies, and interferon-β were measured using enzyme-linked immunosorbent assay. The inflammatory genes were detected by quantitative PCR and RNA-seq. Hematein-eosin staining was used to detect the pathological changes in pancreas, eye and kidney. The pathological features of kidney were also detected by Masson trichrome and periodic acid-Schiff staining. The distribution of islet cells, immune cells or ssDNA in pancreas was analyzed by immunofluorescent staining. RESULTS In this study, we established a Trex1-deletion Sprague Dawley rat model, and unexpectedly, we found that the Trex1-/- rats spontaneously develop type 1 diabetes. Similar to human diabetes, the hyperglycemia in rats is accompanied by diabetic complications such as diabetic nephropathy and cataract. Mechanistical investigation revealed the accumulation of ssDNA and the excessive production of proinflammatory cytokines, including IFN-β, in Trex1 null pancreas. These are likely contributing to the inflammation in pancreas and eventually leading to the decline of pancreatic β cells. CONCLUSIONS Our study links the DNA-induced chronic inflammation to the pathogenesis of type 1 diabetes, and also provides an animal model for type 1 diabetes studies.
Collapse
Affiliation(s)
- Jiang-Man Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zhi-Hui Su
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Miao Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xin Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jing Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100730, China
| | - Shao-Yi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jing Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xiao-Wei Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xia-Ying Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang Province, China
| | - Zeng-Lin Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang Province, China
| | - Wen Xue
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang Province, China.
| |
Collapse
|
8
|
Newman JRB, Long SA, Speake C, Greenbaum CJ, Cerosaletti K, Rich SS, Onengut-Gumuscu S, McIntyre LM, Buckner JH, Concannon P. Shifts in isoform usage underlie transcriptional differences in regulatory T cells in type 1 diabetes. Commun Biol 2023; 6:988. [PMID: 37758901 PMCID: PMC10533491 DOI: 10.1038/s42003-023-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Genome-wide association studies have identified numerous loci with allelic associations to Type 1 Diabetes (T1D) risk. Most disease-associated variants are enriched in regulatory sequences active in lymphoid cell types, suggesting that lymphocyte gene expression is altered in T1D. Here we assay gene expression between T1D cases and healthy controls in two autoimmunity-relevant lymphocyte cell types, memory CD4+/CD25+ regulatory T cells (Treg) and memory CD4+/CD25- T cells, using a splicing event-based approach to characterize tissue-specific transcriptomes. Limited differences in isoform usage between T1D cases and controls are observed in memory CD4+/CD25- T-cells. In Tregs, 402 genes demonstrate differences in isoform usage between cases and controls, particularly RNA recognition and splicing factor genes. Many of these genes are regulated by the variable inclusion of exons that can trigger nonsense mediated decay. Our results suggest that dysregulation of gene expression, through shifts in alternative splicing in Tregs, contributes to T1D pathophysiology.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lauren M McIntyre
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA.
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
9
|
Devi MB, Sarma HK, Mukherjee AK, Khan MR. Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10087-1. [PMID: 37171690 DOI: 10.1007/s12602-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Ashis K Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
10
|
Sun Y, Yan L, Sun J, Xiao M, Lai W, Song G, Li L, Fan C, Pei H. Nanoscale organization of two-dimensional multimeric pMHC reagents with DNA origami for CD8 + T cell detection. Nat Commun 2022; 13:3916. [PMID: 35798752 PMCID: PMC9263106 DOI: 10.1038/s41467-022-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
Peptide-MHC (pMHC) multimers have excelled in the detection of antigen-specific T cells and have allowed phenotypic analysis using other reagents, but their use for detection of low-affinity T cells remains a challenge. Here we develop a multimeric T cell identifying reagent platform using two-dimensional DNA origami scaffolds to spatially organize pMHCs (termed as dorimers) with nanoscale control. We show that these dorimers enhance the binding avidity for low-affinity antigen-specific T cell receptors (TCRs). The dorimers are able to detect more antigen-specific T cells in mouse CD8+ T cells and early-stage CD4+CD8+ double-positive thymocytes that express less dense TCRs, compared with the equivalent tetramers and dextramers. Moreover, we demonstrate dorimer function in the analysis of autoimmune CD8+ T cells that express low-affinity TCRs, which are difficult to detect using tetramers. We anticipate that dorimers could contribute to the investigation of antigen-specific T cells in immune T cell function or immunotherapy applications.
Collapse
Affiliation(s)
- Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Lu Yan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jiajia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
- Institute of Eco-Chongming, 202162, Shanghai, China.
| |
Collapse
|
11
|
Hayashi T, Ichikawa M, Konishi I. Spontaneous Myocarditis in Mice Predisposed to Autoimmune Disease: Including Vaccination-Induced Onset. Biomedicines 2022; 10:1443. [PMID: 35740465 PMCID: PMC9220133 DOI: 10.3390/biomedicines10061443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Nonobese diabetic (NOD)/ShiLtJ mice, such as biobreeding rats, are used as an animal model for type 1 diabetes. Diabetes develops in NOD mice as a result of insulitis, a leukocytic infiltrate of the pancreatic islets. The onset of diabetes is associated with moderate glycosuria and nonfasting hyperglycemia. Previously, in NOD/ShiLtJ mice spontaneously developing type 1 diabetes, the possible involvement of decreased expression of nuclear factor-kappa B1 (NF-κB1) (also known as p50) in the development of type 1 diabetes was investigated. In response to these arguments, NOD mice with inconsistent NF-κB1 expression were established. Surprisingly, the majority of NOD Nfκb1 homozygote mice were found to die by the eighth week of life because of severe myocarditis. The incidence of spontaneous myocarditis in mice was slightly higher in males than in females. Furthermore, insulitis was observed in all NOD Nfκb1 heterozygote mice as early as 4 months of age. Additionally, in NOD Nfκb1 heterozygote mice, myocarditis with an increase in cTnT levels due to influenza or hepatitis B virus vaccination was observed with no significant gender difference. However, myocarditis was not observed with the two types of human papillomavirus vaccination. The results of immunological assays and histopathological examinations indicated that vaccination could induce myocarditis in genetically modified mice. In this study, we report that NOD Nfκb1 heterozygote mice can be used for investigating the risk of myocarditis development after vaccination.
Collapse
Affiliation(s)
- Takuma Hayashi
- School of Medicine, Shinshu University, Nagano 390-8621, Japan;
- START-Program, Japan Science and Technology Agency (JST), Tokyo 102-8666, Japan
| | - Motoki Ichikawa
- School of Medicine, Shinshu University, Nagano 390-8621, Japan;
| | - Ikuo Konishi
- National Hospital Organization Kyoto Medical Centre, Kyoto 612-8555, Japan;
- Department of Obstetrics and Gynecology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Protective effect and mechanism of Schistosoma japonicum soluble egg antigen against type 1 diabetes in NOD mice. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Badal D, Sachdeva N, Maheshwari D, Basak P. Role of nucleic acid sensing in the pathogenesis of type 1 diabetes. World J Diabetes 2021; 12:1655-1673. [PMID: 34754369 PMCID: PMC8554372 DOI: 10.4239/wjd.v12.i10.1655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
During infections, nucleic acids of pathogens are also engaged in recognition via several exogenous and cytosolic pattern recognition receptors, such as the toll-like receptors, retinoic acid inducible gene-I-like receptors, and nucleotide-binding and oligomerization domain-like receptors. The binding of the pathogen-derived nucleic acids to their corresponding sensors initiates certain downstream signaling cascades culminating in the release of type-I interferons (IFNs), especially IFN-α and other cytokines to induce proinflammatory responses towards invading pathogens leading to their clearance from the host. Although these sensors are hardwired to recognize pathogen associated molecular patterns, like viral and bacterial nucleic acids, under unusual physiological conditions, such as excessive cellular stress and increased apoptosis, endogenous self-nucleic acids like DNA, RNA, and mitochondrial DNA are also released. The presence of these self-nucleic acids in extranuclear compartments or extracellular spaces or their association with certain proteins sometimes leads to the failure of discriminating mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in autoimmune disorders, like systemic lupus erythematosus, psoriasis and to some extent in type 1 diabetes (T1D). This review discusses the involvement of various nucleic acid sensors in autoimmunity and discusses how aberrant recognition of self-nucleic acids by their sensors activates the innate immune responses during the pathogenesis of T1D.
Collapse
Affiliation(s)
- Darshan Badal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deep Maheshwari
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Preetam Basak
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
14
|
Waters MF, Delghingaro-Augusto V, Javed K, Dahlstrom JE, Burgio G, Bröer S, Nolan CJ. Knockout of the Amino Acid Transporter SLC6A19 and Autoimmune Diabetes Incidence in Female Non-Obese Diabetic (NOD) Mice. Metabolites 2021; 11:metabo11100665. [PMID: 34677380 PMCID: PMC8540324 DOI: 10.3390/metabo11100665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
High protein feeding has been shown to accelerate the development of type 1 diabetes in female non-obese diabetic (NOD) mice. Here, we investigated whether reducing systemic amino acid availability via knockout of the Slc6a19 gene encoding the system B(0) neutral amino acid transporter AT1 would reduce the incidence or delay the onset of type 1 diabetes in female NOD mice. Slc6a19 gene deficient NOD mice were generated using the CRISPR-Cas9 system which resulted in marked aminoaciduria. The incidence of diabetes by week 30 was 59.5% (22/37) and 69.0% (20/29) in NOD.Slc6a19+/+ and NOD.Slc6a19-/- mice, respectively (hazard ratio 0.77, 95% confidence interval 0.41-1.42; Mantel-Cox log rank test: p = 0.37). The median survival time without diabetes was 28 and 25 weeks for NOD.Slc6a19+/+ and NOD.Slc6a19-/- mice, respectively (ratio 1.1, 95% confidence interval 0.6-2.0). Histological analysis did not show differences in islet number or the degree of insulitis between wild type and Slc6a19 deficient NOD mice. We conclude that Slc6a19 deficiency does not prevent or delay the development of type 1 diabetes in female NOD mice.
Collapse
Affiliation(s)
- Matthew F. Waters
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Viviane Delghingaro-Augusto
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Kiran Javed
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; (K.J.); (S.B.)
| | - Jane E. Dahlstrom
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
- ACT Pathology, The Canberra Hospital, Canberra Health Services, Garran, ACT 2605, Australia
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
| | - Stefan Bröer
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia; (K.J.); (S.B.)
| | - Christopher J. Nolan
- Australian National University Medical School, Australian National University, Acton, ACT 2601, Australia; (M.F.W.); (V.D.-A.); (J.E.D.)
- John Curtin School of Medical Research, Australian National University, Acton, ACT 2601, Australia;
- Department of Endocrinology, The Canberra Hospital, Garran, ACT 2505, Australia
- Correspondence: ; Tel.: +61-2-5124-4224
| |
Collapse
|
15
|
Zhang M, Wang Y, Li X, Meng G, Chen X, Wang L, Lin Z, Wang L. A Single L/D-Substitution at Q4 of the mInsA 2-10 Epitope Prevents Type 1 Diabetes in Humanized NOD Mice. Front Immunol 2021; 12:713276. [PMID: 34526989 PMCID: PMC8435724 DOI: 10.3389/fimmu.2021.713276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Autoreactive CD8+ T cells play an indispensable key role in the destruction of pancreatic islet β-cells and the initiation of type 1 diabetes (T1D). Insulin is an essential β-cell autoantigen in T1D. An HLA-A*0201-restricted epitope of insulin A chain (mInsA2-10) is an immunodominant ligand for autoreactive CD8+ T cells in NOD.β2mnull .HHD mice. Altered peptide ligands (APLs) carrying amino acid substitutions at T cell receptor (TCR) contact positions within an epitope are potential to modulate autoimmune responses via triggering altered TCR signaling. Here, we used a molecular simulation strategy to guide the generation of APL candidates by substitution of L-amino acids with D-amino acids at potential TCR contact residues (positions 4 and 6) of mInsA2-10, named mInsA2-10DQ4 and mInsA2-10DC6, respectively. We found that administration of mInsA2-10DQ4, but not DC6, significantly suppressed the development of T1D in NOD.β2mnull .HHD mice. Mechanistically, treatment with mInsA2-10DQ4 not only notably eliminated mInsA2-10 autoreactive CD8+ T cell responses but also prevented the infiltration of CD4+ T and CD8+ T cells, as well as the inflammatory responses in the pancreas of NOD.β2mnull.HHD mice. This study provides a new strategy for the development of APL vaccines for T1D prevention.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China.,Institute of Immunology People's Libration Army (PLA) & Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanqiang Wang
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiangqian Li
- Institute of Immunology People's Libration Army (PLA) & Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoling Chen
- Institute of Immunology People's Libration Army (PLA) & Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lina Wang
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Zhihua Lin
- Department of Pharmaceutical Engineering, School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Li Wang
- Institute of Immunology People's Libration Army (PLA) & Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
16
|
Lee JS, Han P, Chaudhury R, Khan S, Bickerton S, McHugh MD, Park HB, Siefert AL, Rea G, Carballido JM, Horwitz DA, Criscione J, Perica K, Samstein R, Ragheb R, Kim D, Fahmy TM. Metabolic and immunomodulatory control of type 1 diabetes via orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin. Nat Biomed Eng 2021; 5:983-997. [PMID: 34616050 DOI: 10.1038/s41551-021-00791-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Oral formulations of insulin are typically designed to improve its intestinal absorption and increase its blood bioavailability. Here we show that polymerized ursodeoxycholic acid, selected from a panel of bile-acid polymers and formulated into nanoparticles for the oral delivery of insulin, restored blood-glucose levels in mice and pigs with established type 1 diabetes. The nanoparticles functioned as a protective insulin carrier and as a high-avidity bile-acid-receptor agonist, increased the intestinal absorption of insulin, polarized intestinal macrophages towards the M2 phenotype, and preferentially accumulated in the pancreas of the mice, binding to the islet-cell bile-acid membrane receptor TGR5 with high avidity and activating the secretion of glucagon-like peptide and of endogenous insulin. In the mice, the nanoparticles also reversed inflammation, restored metabolic functions and extended animal survival. When encapsulating rapamycin, they delayed the onset of diabetes in mice with chemically induced pancreatic inflammation. The metabolic and immunomodulatory functions of ingestible bile-acid-polymer nanocarriers may offer translational opportunities for the prevention and treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jung Seok Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Patrick Han
- Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - Rabib Chaudhury
- Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - Shihan Khan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sean Bickerton
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Michael D McHugh
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hyun Bong Park
- Department of Chemistry, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - Alyssa L Siefert
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | | | - David A Horwitz
- Medicine and Molecular Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason Criscione
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Karlo Perica
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Robert Samstein
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ragy Ragheb
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Dongin Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tarek M Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA. .,Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA. .,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Jo S, Fang S. Therapeutic Strategies for Diabetes: Immune Modulation in Pancreatic β Cells. Front Endocrinol (Lausanne) 2021; 12:716692. [PMID: 34484126 PMCID: PMC8415970 DOI: 10.3389/fendo.2021.716692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Increased incidence of type I and type II diabetes has been prevailed worldwide. Though the pathogenesis of molecular mechanisms remains still unclear, there are solid evidence that disturbed immune homeostasis leads to pancreatic β cell failure. Currently, autoimmunity and uncontrolled inflammatory signaling pathways have been considered the major factors in the pathogenesis of diabetes. Many components of immune system have been reported to implicate pancreatic β cell failure, including helper T cells, cytotoxic T cells, regulatory T cells and gut microbiota. Immune modulation of those components using small molecules and antibodies, and fecal microbiota transplantation are undergoing in many clinical trials for the treatment of type I and type II diabetes. In this review we will discuss the basis of molecular pathogenesis focusing on the disturbed immune homeostasis in type I and type II diabetes, leading to pancreatic β cell destruction. Finally, we will introduce current therapeutic strategies and clinical trials by modulation of immune system for the treatment of type I and type II diabetes patients.
Collapse
Affiliation(s)
- Sugyeong Jo
- Department of Medical Science, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungsoon Fang
- Department of Medical Science, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Kong BS, Min SH, Lee C, Cho YM. Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes. Cell Rep 2021; 36:109447. [PMID: 34320351 PMCID: PMC10083145 DOI: 10.1016/j.celrep.2021.109447] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/08/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are principal metabolic organelles that are increasingly unveiled as immune regulators. However, it is currently not known whether mitochondrial-encoded peptides modulate T cells to induce changes in phenotype and function. In this study, we found that MOTS-c (mitochondrial open reading frame of the 12S rRNA type-c) prevented autoimmune β cell destruction by targeting T cells in non-obese diabetic (NOD) mice. MOTS-c ameliorated the development of hyperglycemia and reduced islet-infiltrating immune cells. Furthermore, adoptive transfer of T cells from MOTS-c-treated NOD mice significantly decreased the incidence of diabetes in NOD-severe combined immunodeficiency (SCID) mice. Metabolic and genomic analyses revealed that MOTS-c modulated T cell phenotype and function by regulating T cell receptor (TCR)/mTOR complex 1 (mTORC1) signaling. Type 1 diabetes (T1D) patients had a lower serum MOTS-c level than did healthy controls. Furthermore, MOTS-c reduced T cell activation by alleviating T cells from the glycolytic stress in T1D patients, suggesting therapeutic potential. Our findings indicate that MOTS-c regulates the T cell phenotype and suppresses autoimmune diabetes.
Collapse
Affiliation(s)
- Byung Soo Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Hee Min
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
19
|
Aldrich VR, Hernandez-Rovira BB, Chandwani A, Abdulreda MH. NOD Mice-Good Model for T1D but Not Without Limitations. Cell Transplant 2021; 29:963689720939127. [PMID: 32762460 PMCID: PMC7563935 DOI: 10.1177/0963689720939127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) was discovered by coincidence in the 1980s and has since been widely used in the investigation of T1D and diabetic complications. The current in vivo study was originally designed to prospectively assess whether hyperglycemia onset is associated with physical destruction or functional impairment of beta cells under inflammatory insult during T1D progression in diabetes-prone female NOD mice. Prediabetic 16- to 20-wk-old NOD mice were transplanted with green fluorescent protein (GFP)-expressing reporter islets in the anterior chamber of the eye (ACE) that were monitored longitudinally, in addition to glycemia, with and without immune modulation using anti-CD3 monoclonal antibody therapy. However, there was an early and vigorous immune reaction against the GFP-expressing beta cells that lead to their premature destruction independent of autoimmune T1D development in progressor mice that eventually became hyperglycemic. This immune reaction also occurred in nonprogressor NOD recipients. These findings showed a previously unknown reaction of NOD mice to GFP that prevented achieving the original goals of this study but highlighted a new feature of the NOD mice that should be considered when designing experiments using this model in T1D research.
Collapse
Affiliation(s)
- Virginia R Aldrich
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Barbara B Hernandez-Rovira
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ankit Chandwani
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Midhat H Abdulreda
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
20
|
Pastore I, Assi E, Ben Nasr M, Bolla AM, Maestroni A, Usuelli V, Loretelli C, Seelam AJ, Abdelsalam A, Zuccotti GV, D'Addio F, Fiorina P. Hematopoietic Stem Cells in Type 1 Diabetes. Front Immunol 2021; 12:694118. [PMID: 34305929 PMCID: PMC8299361 DOI: 10.3389/fimmu.2021.694118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the increasing knowledge of pathophysiological mechanisms underlying the onset of type 1 diabetes (T1D), the quest for therapeutic options capable of delaying/reverting the diseases is still ongoing. Among all strategies currently tested in T1D, the use of hematopoietic stem cell (HSC)-based approaches and of teplizumab, showed the most encouraging results. Few clinical trials have already demonstrated the beneficial effects of HSCs in T1D, while the durability of the effect is yet to be established. Investigators are also trying to understand whether the use of selected and better-characterized HSCs subsets may provide more benefits with less risks. Interestingly, ex vivo manipulated HSCs showed promising results in murine models and the recent introduction of the humanized mouse models accelerated the translational potentials of such studies and their final road to clinic. Indeed, immunomodulatory as well as trafficking abilities can be enhanced in genetically modulated HSCs and genetically engineered HSCs may be viewed as a novel "biologic" therapy, to be further tested and explored in T1D and in other autoimmune/immune-related disorders.
Collapse
Affiliation(s)
- Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Ahmed Abdelsalam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Francesca D'Addio
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital and Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Dong M, Audiger C, Adegoke A, Lebel MÈ, Valbon SF, Anderson CC, Melichar HJ, Lesage S. CD5 levels reveal distinct basal T-cell receptor signals in T cells from non-obese diabetic mice. Immunol Cell Biol 2021; 99:656-667. [PMID: 33534942 DOI: 10.1111/imcb.12443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes in non-obese diabetic (NOD) mice occurs when autoreactive T cells eliminate insulin producing pancreatic β cells. While extensively studied in T-cell receptor (TCR) transgenic mice, the contribution of alterations in thymic selection to the polyclonal T-cell pool in NOD mice is not yet resolved. The magnitude of signals downstream of TCR engagement with self-peptide directs the development of a functional T-cell pool, in part by ensuring tolerance to self. TCR interactions with self-peptide are also necessary for T-cell homeostasis in the peripheral lymphoid organs. To identify differences in TCR signal strength that accompany thymic selection and peripheral T-cell maintenance, we compared CD5 levels, a marker of basal TCR signal strength, on immature and mature T cells from autoimmune diabetes-prone NOD and -resistant B6 mice. The data suggest that there is no preferential selection of NOD thymocytes that perceive stronger TCR signals from self-peptide engagement. Instead, NOD mice have an MHC-dependent increase in CD4+ thymocytes and mature T cells that express lower levels of CD5. In contrast, T cell-intrinsic mechanisms lead to higher levels of CD5 on peripheral CD8+ T cells from NOD relative to B6 mice, suggesting that peripheral CD8+ T cells with higher basal TCR signals may have survival advantages in NOD mice. These differences in the T-cell pool in NOD mice may contribute to the development or progression of autoimmune diabetes.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Cindy Audiger
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Adeolu Adegoke
- Departments of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Stefanie F Valbon
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Colin C Anderson
- Departments of Surgery and Medical Microbiology & Immunology, Alberta Diabetes Institute, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
22
|
Douillet C, Ji J, Meenakshi IL, Lu K, de Villena FPM, Fry RC, Stýblo M. Diverse genetic backgrounds play a prominent role in the metabolic phenotype of CC021/Unc and CC027/GeniUNC mice exposed to inorganic arsenic. Toxicology 2021; 452:152696. [PMID: 33524430 DOI: 10.1016/j.tox.2021.152696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Accepted: 01/23/2021] [Indexed: 12/30/2022]
Abstract
Arsenic methyltransferase (AS3MT) is the key enzyme in the pathway for the methylation of inorganic arsenic (iAs), a potent human carcinogen and diabetogen. AS3MT converts iAs to mono- and dimethylated arsenic species (MAs, DMAs) that are excreted mainly in urine. Polymorphisms in AS3MT is a key genetic factor affecting iAs metabolism and toxicity. The present study examined the role of As3mt polymorphisms in the susceptibility to the diabetogenic effects of iAs exposure using two Collaborative Cross mouse strains, CC021/Unc and CC027/GeniUnc, carrying different As3mt haplotypes. Male mice from the two strains were exposed to iAs in drinking water (0, 0.1 or 50 ppm) for 11 weeks. Blood glucose and plasma insulin levels were measured after 6-h fasting and 15 min after i.p. injection of glucose. Body composition was determined using magnetic resonance imaging. To asses iAs metabolism, the concentrations of iAs, MAs and DMAs were measured in urine. The results show that CC021 mice, both iAs-exposed and controls, had higher body fat percentage, lower fasting blood glucose, higher fasting plasma insulin, and were more insulin resistant than their CC027 counterparts. iAs exposure had a minor effect on diabetes indicators and only in CC027 mice. Blood glucose levels 15 min after glucose injection were significantly higher in CC027 mice exposed to 0.1 ppm iAs than in control mice. No significant differences were found in the concentrations or proportions of arsenic species in urine of CC021 and CC027 mice at the same exposure level. These results suggest that the differences in As3mt haplotypes did not affect the profiles of iAs or its metabolites in mouse urine. The major differences in diabetes indicators were associated with the genetic backgrounds of CC021 and CC027 mice. The effects of iAs exposure, while minor, were genotype- and dose-dependent.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jinglin Ji
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Immaneni Lakshmi Meenakshi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Gill RG, Burrack AL. Diverse Routes of Allograft Tolerance Disruption by Memory T Cells. Front Immunol 2020; 11:580483. [PMID: 33117387 PMCID: PMC7578217 DOI: 10.3389/fimmu.2020.580483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Memory T lymphocytes constitute a significant problem in tissue and organ transplantation due their contribution to early rejection and their relative resistance to tolerance-promoting therapies. Memory cells generated by environmental antigen exposure, as with T cells in general, harbor a high frequency of T cell receptors (TCR) spontaneously cross-reacting with allogeneic major histocompatibility complex (MHC) molecules. This phenomenon, known as ‘heterologous’ immunity, is thought to be a key barrier to transplant tolerance induction since such memory cells can potentially react directly with essentially any prospective allograft. In this review, we describe two additional concepts that expand this commonly held view of how memory cells contribute to transplant immunity and tolerance disruption. Firstly, autoimmunity is an additional response that can comprise an endogenously generated form of heterologous alloimmunity. However, unlike heterologous immunity generated as a byproduct of indiscriminate antigen sensitization, autoimmunity can generate T cells that have the unusual potential to interact with the graft either through the recognition of graft-bearing autoantigens or by their cross-reactive (heterologous) alloimmune specificity to MHC molecules. Moreover, we describe an additional pathway, independent of significant heterologous immunity, whereby immune memory to vaccine- or pathogen-induced antigens also may impair tolerance induction. This latter form of immune recognition indirectly disrupts tolerance by the licensing of naïve alloreactive T cells by vaccine/pathogen directed memory cells recognizing the same antigen-presenting cell in vivo. Thus, there appear to be recognition pathways beyond typical heterologous immunity through which memory T cells can directly or indirectly impact allograft immunity and tolerance.
Collapse
Affiliation(s)
- Ronald G Gill
- Departments of Surgery and Immunology and Microbiology, University of Colorado Denver, Aurora, CO, United States
| | - Adam L Burrack
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
24
|
Zampieri R, Brozzetti A, Pericolini E, Bartoloni E, Gabrielli E, Roselletti E, Lomonosoff G, Meshcheriakova Y, Santi L, Imperatori F, Merlin M, Tinazzi E, Dotta F, Nigi L, Sebastiani G, Pezzotti M, Falorni A, Avesani L. Prevention and treatment of autoimmune diseases with plant virus nanoparticles. SCIENCE ADVANCES 2020; 6:eaaz0295. [PMID: 32494704 PMCID: PMC7202875 DOI: 10.1126/sciadv.aaz0295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 05/15/2023]
Abstract
Plant viruses are natural, self-assembling nanostructures with versatile and genetically programmable shells, making them useful in diverse applications ranging from the development of new materials to diagnostics and therapeutics. Here, we describe the design and synthesis of plant virus nanoparticles displaying peptides associated with two different autoimmune diseases. Using animal models, we show that the recombinant nanoparticles can prevent autoimmune diabetes and ameliorate rheumatoid arthritis. In both cases, this effect is based on a strictly peptide-related mechanism in which the virus nanoparticle acts both as a peptide scaffold and as an adjuvant, showing an overlapping mechanism of action. This successful preclinical testing could pave the way for the development of plant viruses for the clinical treatment of human autoimmune diseases.
Collapse
Affiliation(s)
- Roberta Zampieri
- Department of Biotechnology, University of Verona, Verona, Italy
- Diamante srl, Strada Le Grazie, 15, 37134 Verona, Italy
| | | | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Bartoloni
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | | | | | - Luca Santi
- Department of Agriculture and Forest Sciences, University of La Tuscia, Viterbo, Italy
| | - Francesca Imperatori
- Department of Agriculture and Forest Sciences, University of La Tuscia, Viterbo, Italy
| | - Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Umberto Di Mario Foundation ONLUS, Toscana Life Sciences, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Umberto Di Mario Foundation ONLUS, Toscana Life Sciences, Siena, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alberto Falorni
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
25
|
Wei H, Huang L, Wei F, Li G, Huang B, Li J, Cao C. Up-regulation of miR-139-5p protects diabetic mice from liver tissue damage and oxidative stress through inhibiting Notch signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:390-400. [PMID: 32293663 DOI: 10.1093/abbs/gmaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
The occurrence and development of diabetes seriously threaten the health of patients. Therefore, the mechanism exploration of diabetes is of great significance for more effective control of this disease. In this study, we aimed to investigate the regulatory mechanism of miR-139-5p and Notch signaling pathway on liver damage and oxidative stress in diabetic mice. The mouse model of diabetes was established, and the mice were divided into normal group, model group, negative control (NC) group, miR-139-5p mimic group, miR-139-5p inhibitor group, DAPT group, and miR-139-5p inhibitor + DAPT group. The mRNA expressions of miR-139-5p, Notch1, Jagged1, and NICD1, and the protein expressions of Notch1, Jagged1, and NICD1 were detected. In addition, HepG2 cells were cultured for high glucose induction, and cell cycle distribution and apoptosis were detected by flow cytometry. The results showed that the body weights of mice in the model, NC, miR-139-5p mimic, miR-139-5p inhibitor, DAPT, and miR-139-5p inhibitor + DAPT groups were all lower than that in the normal group. Co-localization of miR-139-5p and Notch1 was observed in the fluorescence in situ hybridization assay, and miR-139-5p was found to negatively regulate Notch1. Furthermore, reduced blood glucose level and inhibited liver oxidative stress were observed in mice with miR-139-5p overexpression or DAPT treatment. DAPT treatment reversed the increase of blood glucose level and oxidative stress injury caused by miR-139-5p silencing. In conclusion, up-regulation of miR-139-5p expression can protect liver tissue from oxidative stress injury in diabetic mice, and its mechanism may be related to the inhibition of Notch signaling pathway.
Collapse
Affiliation(s)
- Hua Wei
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Liwei Huang
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Fenghua Wei
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Guangzhi Li
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Bin Huang
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Jun Li
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Cong Cao
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| |
Collapse
|
26
|
Alcazar O, Hernandez LF, Tschiggfrie A, Muehlbauer MJ, Bain JR, Buchwald P, Abdulreda MH. Feasibility of Localized Metabolomics in the Study of Pancreatic Islets and Diabetes. Metabolites 2019; 9:E207. [PMID: 31569489 PMCID: PMC6835460 DOI: 10.3390/metabo9100207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Disruption of insulin production by native or transplanted pancreatic islets caused by auto/allo-immunity leads to hyperglycemia, a serious health condition and important therapeutic challenge due to the lifelong need for exogeneous insulin administration. Early metabolic biomarkers can prompt timely interventions to preserve islet function, but reliable biomarkers are currently lacking. We explored the feasibility of "localized metabolomics" where initial biomarker discovery is made in aqueous humor samples for further validation in the circulation. (2) Methods: We conducted non-targeted metabolomic studies in parallel aqueous humor and plasma samples from diabetic and nondiabetic mice. Metabolite levels and associated pathways were compared in both compartments as well as to an earlier longitudinal dataset in hyperglycemia-progressor versus non-progressor non-obese diabetic (NOD) mice. (3) Results: We confirmed that aqueous humor samples can be used to assess metabolite levels. About half of the identified metabolites had well-correlated levels in the aqueous humor and plasma. Several plasma metabolites were significantly different between diabetic and nondiabetic animals and between males and females, and many of them were correlated with the aqueous humor. (4) Conclusions: This study provides proof-of-concept evidence that aqueous humor samples enriched with islet-related metabolites and representative of the immediate islet microenvironment following intraocular islet transplant can be used to assess metabolic changes that could otherwise be overlooked in the general circulation. The findings support localized metabolomics, with and without intraocular islet transplant, to identify biomarkers associated with diabetes and islet allograft rejection.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Luis F Hernandez
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ashley Tschiggfrie
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - James R Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - Peter Buchwald
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Midhat H Abdulreda
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
27
|
Syed I, Rubin de Celis MF, Mohan JF, Moraes-Vieira PM, Vijayakumar A, Nelson AT, Siegel D, Saghatelian A, Mathis D, Kahn BB. PAHSAs attenuate immune responses and promote β cell survival in autoimmune diabetic mice. J Clin Invest 2019; 129:3717-3731. [PMID: 31380811 PMCID: PMC6715391 DOI: 10.1172/jci122445] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Palmitic acid esters of hydroxy stearic acids (PAHSAs) are endogenous antidiabetic and antiinflammatory lipids. Here, we show that PAHSAs protect against type 1 diabetes (T1D) and promote β cell survival and function. Daily oral PAHSA administration to nonobese diabetic (NOD) mice delayed the onset of T1D and markedly reduced the incidence of T1D, whether PAHSAs were started before or after insulitis was established. PAHSAs reduced T and B cell infiltration and CD4+ and CD8+ T cell activation, while increasing Treg activation in pancreata of NOD mice. PAHSAs promoted β cell proliferation in both NOD mice and MIN6 cells and increased the number of β cells in NOD mice. PAHSAs attenuated cytokine-induced apoptotic and necrotic β cell death and increased β cell viability. The mechanism appears to involve a reduction of ER stress and MAPK signaling, since PAHSAs lowered ER stress in NOD mice, suppressed thapsigargin-induced PARP cleavage in human islets, and attenuated ERK1/2 and JNK1/2 activation in MIN6 cells. This appeared to be mediated in part by glucagon-like peptide 1 receptor (GLP-1R) and not the G protein-coupled receptor GPR40. PAHSAs also prevented impairment of glucose-stimulated insulin secretion and improved glucose tolerance in NOD mice. Thus, PAHSAs delayed the onset of T1D and reduced its incidence by attenuating immune responses and exerting direct protective effects on β cell survival and function.
Collapse
Affiliation(s)
- Ismail Syed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Maria F. Rubin de Celis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - James F. Mohan
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Pedro M. Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Archana Vijayakumar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T. Nelson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara B. Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Tang CL, Gao YR, Wang LX, Zhu YW, Pan Q, Zhang RH, Xiong Y. Role of regulatory T cells in Schistosoma-mediated protection against type 1 diabetes. Mol Cell Endocrinol 2019; 491:110434. [PMID: 31078638 DOI: 10.1016/j.mce.2019.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
The prevalence of T1D in developed societies is partly based on the hygiene hypothesis, that is, the loss of exposure to infectious agents accompanies the loss of immune stimuli shaping the immune system during development. Indeed, the components of parasites, such as Schistosoma, have been reported to ameliorate or prevent the development of T1D, which might be associated with immune cell activity especially that of regulatory T cells (Tregs). Schistosoma infection can lead to the expansion of Treg. Herein, we provide a comprehensive overview of the involvement of Tregs in the response against Schistosoma infection and the mechanism of Schistosoma-associated host protection against T1D.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Li-Xia Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ying Xiong
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
29
|
Arsenijevic A, Milovanovic J, Stojanovic B, Djordjevic D, Stanojevic I, Jankovic N, Vojvodic D, Arsenijevic N, Lukic ML, Milovanovic M. Gal-3 Deficiency Suppresses Novosphyngobium aromaticivorans Inflammasome Activation and IL-17 Driven Autoimmune Cholangitis in Mice. Front Immunol 2019; 10:1309. [PMID: 31231399 PMCID: PMC6568238 DOI: 10.3389/fimmu.2019.01309] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Gal-3 has the role in multiple inflammatory pathways. Multiple-hit etiology of primary biliary cholangitis (PBC) and evolving immune response at various stages of the disease includes involvement of Gal-3 in PBC pathogenesis. In this study we aimed to clarify the role of Gal-3 in Novosphingobium aromaticivorans (N. aromaticivorans) induced biliary disease. Autoimmune cholangitis was induced in mice by two intra-peritoneal injections of N. aromaticivorans within 2 weeks. The role of Gal-3 was evaluated by using Lgals3−/− mice and mice treated with Gal-3 inhibitor. The histological and serological parameters of disease, phenotype of dendritic, NK, NKT, and T cells and inflammasome expression were evaluated. Marked attenuation of the disease in Lgals3−/− and Gal-3 inhibitor, DAVANAT®, treated mice is manifested by the absence of bile duct damage, granulomas and fibrosis. Liver infiltrates of N. aromaticivorans infected wild type mice had higher incidence of pro-inflammatory macrophages, dendritic cells, NK, NKT, and T cells. Lgals3 deletion and treatment with Gal-3 inhibitor reduced inflammatory mononuclear cell infiltrate, expression of NLRP3 inflammasome in the liver infiltrates and interleukin-1β (IL-1β) production in the livers of N. aromaticivorans infected mice. In vitro stimulation of wild type peritoneal macrophages with N. aromaticivorans caused increased NLRP3 expression, caspase-1 activity and IL-1β production compared with Lgals3−/− cells. Our data highlight the importance of Gal-3 in promotion of inflammation in N. aromaticivorans induced PBC by enhancing the activation of NLRP3 inflammasome and production of IL-1β and indicate Gal-3 as possible therapeutical target in autoimmune cholangitis. Galectin-3 appears involved in inflammatory response to gut commensal leading to PBC.
Collapse
Affiliation(s)
- Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Faculty of Medical Sciences, Institute of Histology, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Faculty of Medical Sciences, Institute of Pathophysiology, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Djordjevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Stanojevic
- Institute of Medical Research, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Nenad Jankovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Danilo Vojvodic
- Institute of Medical Research, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
30
|
Haque M, Lei F, Xiong X, Das JK, Ren X, Fang D, Salek-Ardakani S, Yang JM, Song J. Stem cell-derived tissue-associated regulatory T cells suppress the activity of pathogenic cells in autoimmune diabetes. JCI Insight 2019; 4:126471. [PMID: 30777937 DOI: 10.1172/jci.insight.126471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The autoantigen-specific Tregs from pluripotent stem cells (PSCs), i.e., PSC-Tregs, have the ability to suppress autoimmunity. PSC-Tregs can be programmed to be tissue associated and to infiltrate into local inflamed tissues to suppress autoimmune responses after adoptive transfer. Nevertheless, the mechanisms by which the autoantigen-specific PSC-Tregs suppress the autoimmune response remain to be fully elucidated. In this study, we generated functional autoantigen-specific Tregs from the induced PSC (iPSCs), i.e., iPSC-Tregs, and investigated the underlying mechanisms of autoimmunity suppression by these Tregs in a type 1 diabetes (T1D) murine model. A double-Tg mouse model of T1D was established in F1 mice, in which the first generation of RIP-mOVA Tg mice that were crossed with OT-I T cell receptor (TCR) Tg mice was challenged with vaccinia viruses expressing OVA (VACV-OVA). We show that adoptive transfer of OVA-specific iPSC-Tregs greatly suppressed autoimmunity in the animal model and prevented the insulin-secreting pancreatic β cells from destruction. Further, we demonstrate that the adoptive transfer significantly reduced the expression of ICAM-1 in the diabetic pancreas and inhibited the migration of pathogenic CD8+ T cells and the production of the proinflammatory IFN-γ in the pancreas. These results indicate that the stem cell-derived tissue-associated Tregs can robustly accumulate in the diabetic pancreas, and, through downregulating the expression of ICAM-1 in the local inflamed tissues and inhibiting the production of proinflammatory cytokine IFN-γ, suppress the migration and activity of the pathogenic immune cells that cause T1D.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Fengyang Lei
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Xingcong Ren
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Jin-Ming Yang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| |
Collapse
|
31
|
Chen Y, Nagy T, Guo TL. Glycated Whey Proteins Protect NOD Mice against Type 1 Diabetes by Increasing Anti-Inflammatory Responses and Decreasing Autoreactivity to Self-Antigens. J Funct Foods 2019; 56:171-181. [PMID: 31832103 DOI: 10.1016/j.jff.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our previous studies suggested that early glycation products (EGPs) generated in the first step of Maillard reaction/glycation were anti-inflammatory. The objectives of the present study were to determine the effects of EGPs derived from the whey protein isolate-glucose system on type 1 diabetes (T1D), and the underlying immunological mechanisms. In non-obese diabetic (NOD) mice, EGPs at the physiological dose of 600 mg/kg/day increased glucose metabolism, decreased non-fasting blood glucose levels and T1D incidence, decreased insulin resistance, and decreased the pancreatic immune infiltration. The protective effects were accompanied with decreases in CD4-CD8+ thymocytes, CD8+ T cells and serum insulin autoantibody levels, and increases in splenic CD4+CD25+ T cells, macrophage M2/M1 ratio and serum IL-10 level. However, similar treatment with EGPs produced minimal effect on the multiple low-dose streptozotocin-induced hyperglycemia. In conclusion, EGPs protected NOD mice against T1D via increasing anti-inflammatory immune responses and decreasing autoreactivity to self-antigens.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
32
|
Yong J, Tian J, Dang H, Wu TT, Atkinson MA, Sun R, Kaufman DL. Increased risk for T cell autoreactivity to ß-cell antigens in the mice expressing the A vy obesity-associated gene. Sci Rep 2019; 9:4269. [PMID: 30862859 PMCID: PMC6414670 DOI: 10.1038/s41598-019-38905-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
There has been considerable debate as to whether obesity can act as an accelerator of type 1 diabetes (T1D). We assessed this possibility using transgenic mice (MIP-TF mice) whose ß-cells express enhanced green fluorescent protein (EGFP). Infecting these mice with EGFP-expressing murine herpes virus-68 (MHV68-EGFP) caused occasional transient elevation in their blood glucose, peri-insulitis, and Th1 responses to EGFP which did not spread to other ß-cell antigens. We hypothesized that obesity-related systemic inflammation and ß-cell stress could exacerbate the MHV68-EGFP-induced ß-cell autoreactivity. We crossed MIP-TF mice with Avy mice which develop obesity and provide models of metabolic disease alongside early stage T2D. Unlike their MIP-TF littermates, MHV68-EGFP-infected Avy/MIP-TF mice developed moderate intra-insulitis and transient hyperglycemia. MHV68-EGFP infection induced a more pronounced intra-insulitis in older, more obese, Avy/MIP-TF mice. Moreover, in MHV68-EGFP-infected Avy/MIP-TF mice, Th1 reactivity spread from EGFP to other ß-cell antigens. Thus, the spreading of autoreactivity among ß-cell antigens corresponded with the transition from peri-insulitis to intra-insulitis and occurred in obese Avy/MIP-TF mice but not lean MIP-TF mice. These observations are consistent with the notion that obesity-associated systemic inflammation and ß-cell stress lowers the threshold necessary for T cell autoreactivity to spread from EGFP to other ß-cell autoantigens.
Collapse
Affiliation(s)
- Jing Yong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095-1735, United States.,Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, United States
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095-1735, United States
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095-1735, United States
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095-1735, United States
| | - Mark A Atkinson
- Departments of Pathology and Paediatrics, University of Florida Diabetes Institute, Gainesville, FL, 32610, United States
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095-1735, United States
| | - Daniel L Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095-1735, United States.
| |
Collapse
|
33
|
Shariff AI, Syed S, Shelby RA, Force J, Clarke JM, D'Alessio D, Corsino L. Novel cancer therapies and their association with diabetes. J Mol Endocrinol 2019; 62:R187-R199. [PMID: 30532995 DOI: 10.1530/jme-18-0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, there has been a shift in the focus of cancer therapy from conventional cytotoxic drugs to therapies more specifically directed to cancer cells. These novel therapies include immunotherapy, targeted therapy and precision medicine, each developed in great part with a goal of limiting collateral destruction of normal tissues, while enhancing tumor destruction. Although this approach is sound in theory, even new, specific therapies have some undesirable, 'off target effects', in great part due to molecular pathways shared by neoplastic and normal cells. One such undesirable effect is hyperglycemia, which results from either the loss of immune tolerance and autoimmune destruction of pancreatic β-cells or dysregulation of the insulin signaling pathway resulting in insulin resistance. These distinct pathogenic mechanisms lead to clinical presentations similar to type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. Both types of diabetes have been reported in patients across clinical trials, and data on the mechanism(s) for developing hyperglycemia, prevalence, prognosis and effect on cancer mortality is still emerging. With the rapidly expanding list of clinical indications for new cancer therapies, it is essential to understand the impact of their adverse effects. In this review, we focus on hyperglycemia and diabetes related to cancer therapies, describe what is known about mechanism(s) leading to dysregulated glucose metabolism and provide a guide to management of complex oncology patients with a new diagnosis of diabetes.
Collapse
Affiliation(s)
- Afreen Idris Shariff
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sohail Syed
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rebecca A Shelby
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeremy Force
- Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeffrey Melson Clarke
- Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David D'Alessio
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Leonor Corsino
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
34
|
Kihl P, Krych L, Deng L, Kildemoes AO, Laigaard A, Hansen LH, Hansen CHF, Buschard K, Nielsen DS, Hansen AK. Oral LPS Dosing Induces Local Immunological Changes in the Pancreatic Lymph Nodes in Mice. J Diabetes Res 2019; 2019:1649279. [PMID: 30956991 PMCID: PMC6431374 DOI: 10.1155/2019/1649279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
Lacking the initial contact between the immune system and microbial-associated molecular patterns (MAMPs), such as lipopolysaccharides (LPS), early in life, may be regarded as one of the causal factors of the increasing global increase in the incidence of autoimmune diseases, such as type 1 diabetes (T1D). Previously, a reduced incidence of T1D accompanied by dramatically increased abundances of both the mucin-metabolising bacterium Akkermansia muciniphila, and LPS-carrying Proteobacteria was observed, when vancomycin was given to pups of nonobese diabetic (NOD) mice. While the T1D incidence reducing effect of A. muciniphila has been shown in further studies, little is known as to whether the increased abundance of LPS-carrying bacteria also has a protective effect. Therefore, we fed NOD pups with Eschericia coli LPS orally from birth to weaning, which decreased the gene expressions of TNFα, IL-10, IL-6, IFNγ, IL-1β, IL-2, IL-4, and FoxP3 in the pancreatic lymph nodes, while the same gene expression profile in the spleen was unaffected. However, no significant difference in the incidence of T1D, gut microbiota composition, or ileum expression of the genetic markers of gut permeability, Claudin8, Occludin, Zonulin-1 (Tjp1), Claudin15, Muc1, and Muc2 were observed in relation to LPS ingestion. It is, therefore, concluded that early life oral E. coli LPS has an impact on the local immune response, which, however, did not influence T1D incidence in NOD mice later in life.
Collapse
Affiliation(s)
- Pernille Kihl
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Anna Overgaard Kildemoes
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Ann Laigaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Lars Hestbjerg Hansen
- Department of Environmental Sciences, University of Århus, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Karsten Buschard
- Bartholin Institute, Rigshospitalet, Ole Måløesvej 5, 2200 Copenhagen N, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| |
Collapse
|
35
|
An Analysis of the Intracellular Signal Transduction of Peripheral Blood Leukocytes in Animal Models of Diabetes Using Flow Cytometry. Methods Mol Biol 2018. [PMID: 30535695 DOI: 10.1007/978-1-4939-8994-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Various complications of diabetes are induced by the augmentation of chronic inflammation and attenuation of immunity. Leukocytes, which play major roles in inflammation and immune responses, are affected by the glycemic status and blood insulin level. In this chapter, we explain a method for analyzing the signal transduction pathway of leukocytes in peripheral blood. This method using flow cytometry can analyze a small amount of blood (50-100 μL/sample) without leukocyte purification. Thus, this procedure is useful for experiments using small-animal models of diabetes, such as mice and rats. We also introduce a new method for classifying intracellular signal transduction by combining the dispersibility level and the activation level of the signaling molecules.
Collapse
|
36
|
O'Driscoll CA, Mezrich JD. The Aryl Hydrocarbon Receptor as an Immune-Modulator of Atmospheric Particulate Matter-Mediated Autoimmunity. Front Immunol 2018; 9:2833. [PMID: 30574142 PMCID: PMC6291477 DOI: 10.3389/fimmu.2018.02833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
This review examines the current literature on the effects of atmospheric particulate matter (PM) on autoimmune disease and proposes a new role for the aryl hydrocarbon receptor (AHR) as a modulator of T cells in PM-mediated autoimmune disease. There is a significant body of literature regarding the strong epidemiologic correlations between PM exposures and worsened autoimmune diseases. Genetic predispositions account for 30% of all autoimmune disease leaving environmental factors as major contributors. Increases in incidence and prevalence of autoimmune disease have occurred concurrently with an increase in air pollution. Currently, atmospheric PM is considered to be the greatest environmental health risk worldwide. Atmospheric PM is a complex heterogeneous mixture composed of diverse adsorbed organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and dioxins, among others. Exposure to atmospheric PM has been shown to aggravate several autoimmune diseases. Despite strong correlations between exposure to atmospheric PM and worsened autoimmune disease, the mechanisms underlying aggravated disease are largely unknown. The AHR is a ligand activated transcription factor that responds to endogenous and exogenous ligands including toxicants present in PM, such as PAHs and dioxins. A few studies have investigated the effects of atmospheric PM on AHR activation and immune function and demonstrated that atmospheric PM can activate the AHR, change cytokine expression, and alter T cell differentiation. Several studies have found that the AHR modulates the balance between regulatory and effector T cell functions and drives T cell differentiation in vitro and in vivo using murine models of autoimmune disease. However, there are very few studies on the role of AHR in PM-mediated autoimmune disease. The AHR plays a critical role in the balance of effector and regulatory T cells and in autoimmune disease. With increased incidence and prevalence of autoimmune disease occurring concurrently with increases in air pollution, potential mechanisms that drive inflammatory and exacerbated disease need to be elucidated. This review focuses on the AHR as a potential mechanistic target for modulating T cell responses associated with PM-mediated autoimmune disease providing the most up-to-date literature on the role of AHR in autoreactive T cell function and autoimmune disease.
Collapse
Affiliation(s)
- Chelsea A. O'Driscoll
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua D. Mezrich
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
37
|
Ren Y, Sekine-Kondo E, Tateyama M, Kasetthat T, Wongratanacheewin S, Watarai H. New Genetically Manipulated Mice Provide Insights Into the Development and Physiological Functions of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1294. [PMID: 29963043 PMCID: PMC6010523 DOI: 10.3389/fimmu.2018.01294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell subset that exhibits characteristics of both innate immune cells and T cells. They express Vα14-Jα18 (Trav11-Traj18) as an invariant chain of the T cell receptor (TCR) and are restricted to the MHC class I-like monomorphic antigen presenting molecule CD1d. iNKT cells are known as immune regulators that bridge the innate and acquired immune systems by rapid and massive production of a wide range of cytokines, which could enable them to participate in immune responses during various disease states. Thus, Traj18-deficient mice, Cd1d-deficient mice, or iNKT cell-overexpressing mice such as iNKT TCRα transgenic mice and iNKT cell cloned mice which contain a Vα14-Jα18 rearrangement in the TCRα locus are useful experimental models for the analysis of iNKT cells in vivo and in vitro. In this review, we describe the pros and cons of the various available genetically manipulated mice and summarize the insights gained from their study, including the possible roles of iNKT cells in obesity and diabetes.
Collapse
Affiliation(s)
- Yue Ren
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Neurology, The Neurological Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Etsuko Sekine-Kondo
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Midori Tateyama
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Thitinan Kasetthat
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Xu J, Bartolome CL, Low CS, Yi X, Chien CH, Wang P, Kong D. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 2018; 556:505-509. [PMID: 29670283 PMCID: PMC5920723 DOI: 10.1038/s41586-018-0049-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Abstract
Leptin, a hormone produced in white adipose tissue, acts in the brain to communicate fuel status, suppress appetite following a meal, promote energy expenditure, and maintain blood glucose stability1,2. Dysregulations of leptin or its receptors (LepR) result in severe obesity and diabetes3–5. Although intensive studies on leptin have transformed obesity and diabetes research2,6, clinical applications of the molecule are still limited7 which, at least in part, is due to the complexity and our incomplete understanding of the underlying neural circuits. The hypothalamic neurons expressing agouti-related peptide (AgRP) and proopiomelanocortin (POMC) were posited as the first-order leptin-responsive neurons. Selective deletion of LepR in these neurons with Cre-loxP system, however, failed to or marginally recapitulated obesity and diabetes in LepR-deficient Leprdb/db mice, suggesting that AgRP or POMC neurons are not directly required8–10. The primary neural targets for leptin are thus still unclear. Here, we conduct a systematic, unbiased survey of leptin-responsive neurons in streptozotocin (STZ)-induced diabetic mice and exploit CRISPR/Cas9-mediated genetic ablation of LepR in vivo. Unexpectedly, we find that AgRP neurons but not POMC neurons integrate the primary action of leptin to regulate both energy balance and glucose homeostasis. Leptin deficiency disinhibits AgRP neurons, and their chemogenetic inhibition reverses both diabetic hyperphagia and hyperglycemia. In sharp contrast with prior studies, we show that CRISPR-mediated deletion of LepR in AgRP neurons causes severe obesity and diabetes, fatefully replicating the phenotype of Leprdb/db mice. We also uncover divergent mechanisms underlying leptin’s acute and chronic inhibition of AgRP neurons (i.e., presynaptic potentiation of GABAergic neurotransmission and postsynaptic activation of ATP-sensitive potassium channels, respectively). Our findings provide the framework underlying the neurobiological mechanisms of leptin and associated metabolic disorders.
Collapse
Affiliation(s)
- Jie Xu
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Christopher L Bartolome
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.,Program of Neuroscience, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Cho Shing Low
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.,Program of Cellular, Molecular, and Developmental Biology, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Xinchi Yi
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Cheng-Hao Chien
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Peng Wang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA. .,Program of Neuroscience, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA. .,Program of Cellular, Molecular, and Developmental Biology, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA, USA.
| |
Collapse
|
39
|
Newman JRB, Conesa A, Mika M, New FN, Onengut-Gumuscu S, Atkinson MA, Rich SS, McIntyre LM, Concannon P. Disease-specific biases in alternative splicing and tissue-specific dysregulation revealed by multitissue profiling of lymphocyte gene expression in type 1 diabetes. Genome Res 2017; 27:1807-1815. [PMID: 29025893 PMCID: PMC5668939 DOI: 10.1101/gr.217984.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
Genome-wide association studies (GWAS) have identified multiple, shared allelic associations with many autoimmune diseases. However, the pathogenic contributions of variants residing in risk loci remain unresolved. The location of the majority of shared disease-associated variants in noncoding regions suggests they contribute to risk of autoimmunity through effects on gene expression in the immune system. In the current study, we test this hypothesis by applying RNA sequencing to CD4+, CD8+, and CD19+ lymphocyte populations isolated from 81 subjects with type 1 diabetes (T1D). We characterize and compare the expression patterns across these cell types for three gene sets: all genes, the set of genes implicated in autoimmune disease risk by GWAS, and the subset of these genes specifically implicated in T1D. We performed RNA sequencing and aligned the reads to both the human reference genome and a catalog of all possible splicing events developed from the genome, thereby providing a comprehensive evaluation of the roles of gene expression and alternative splicing (AS) in autoimmunity. Autoimmune candidate genes displayed greater expression specificity in the three lymphocyte populations relative to other genes, with significantly increased levels of splicing events, particularly those predicted to have substantial effects on protein isoform structure and function (e.g., intron retention, exon skipping). The majority of single-nucleotide polymorphisms within T1D-associated loci were also associated with one or more cis-expression quantitative trait loci (cis-eQTLs) and/or splicing eQTLs. Our findings highlight a substantial, and previously underrecognized, role for AS in the pathogenesis of autoimmune disorders and particularly for T1D.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Matthew Mika
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Felicia N New
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Mark A Atkinson
- Diabetes Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Stephen S Rich
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
40
|
Metabolic pressure and the breach of immunological self-tolerance. Nat Immunol 2017; 18:1190-1196. [DOI: 10.1038/ni.3851] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
|
41
|
Dooley J, Pasciuto E, Lagou V, Lampi Y, Dresselaers T, Himmelreich U, Liston A. NOD mice, susceptible to pancreatic autoimmunity, demonstrate delayed growth of pancreatic cancer. Oncotarget 2017; 8:80167-80174. [PMID: 29113292 PMCID: PMC5655187 DOI: 10.18632/oncotarget.21261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/26/2017] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is a high mortality form of cancer, with a median survival only six months. There are multiple associated risk factors associated, most importantly type 2 diabetes, obesity, pancreatitis and smoking. The relative rarity of the disease, however, has made it difficult to dissect causative risk factors, especially with related risk factors. A major unanswered question with important therapeutic implications is the effect of immunological responses on pancreatic cancer formation, with data from other cancers suggesting the potential for local immunological responses to either increase cancer development or increase cancer elimination. Due to the rarity and late diagnosis of pancreatic cancer direct epidemiological evidence is lacking, thus necessitating a reliance on animal models. Here we investigated the relationship between pancreatic autoimmunity and cancer by backcrossing the well characterised Ela1-Tag transgenic model of pancreatic cancer onto the pancreatic autoimmune susceptible NOD mouse strain. Through longitudinal magnetic resonance imaging we found that the NOD genetic background delayed the onset of pancreatic tumours and substantially slowed the growth rate of tumours after development. These results suggest that elevated autoimmune surveillance of the pancreas limits tumour formation and growth, identifying pancreatic cancer as a promising target for immune checkpoint blockade therapies that unleash latent autoimmunity.
Collapse
Affiliation(s)
- James Dooley
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Emanuela Pasciuto
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Vasiliki Lagou
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Yulia Lampi
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Tom Dresselaers
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Biomedical MRI/MoSAIC, Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Biomedical MRI/MoSAIC, Leuven, Belgium
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Buchwald P, Tamayo-Garcia A, Ramamoorthy S, Garcia-Contreras M, Mendez AJ, Ricordi C. Comprehensive Metabolomics Study To Assess Longitudinal Biochemical Changes and Potential Early Biomarkers in Nonobese Diabetic Mice That Progress to Diabetes. J Proteome Res 2017; 16:3873-3890. [PMID: 28799767 DOI: 10.1021/acs.jproteome.7b00512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A global nontargeted longitudinal metabolomics study was carried out in male and female NOD mice to characterize the time-profile of the changes in the metabolic signature caused by onset of type 1 diabetes (T1D) and identify possible early biomarkers in T1D progressors. Metabolomics profiling of samples collected at five different time-points identified 676 and 706 biochemicals in blood and feces, respectively. Several metabolites were expressed at significantly different levels in progressors at all time-points, and their proportion increased strongly following onset of hyperglycemia. At the last time-point, when all progressors were diabetic, a large percentage of metabolites had significantly different levels: 57.8% in blood and 27.8% in feces. Metabolic pathways most strongly affected included the carbohydrate, lipid, branched-chain amino acid, and oxidative ones. Several biochemicals showed considerable (>4×) change. Maltose, 3-hydroxybutyric acid, and kojibiose increased, while 1,5-anhydroglucitol decreased more than 10-fold. At the earliest time-point (6-week), differences between the metabolic signatures of progressors and nonprogressors were relatively modest. Nevertheless, several compounds had significantly different levels and show promise as possible early T1D biomarkers. They include fatty acid phosphocholine derivatives from the phosphatidylcholine subpathway (elevated in both blood and feces) as well as serotonin, ribose, and arabinose (increased) in blood plus 13-HODE, tocopherol (increased), diaminopimelate, valerate, hydroxymethylpyrimidine, and dulcitol (decreased) in feces. A combined metabolic signature based on these compounds might serve as an early predictor of T1D-progressors.
Collapse
|
43
|
Kornete M, Mason E, Istomine R, Piccirillo CA. KLRG1 expression identifies short-lived Foxp3 + T reg effector cells with functional plasticity in islets of NOD mice. Autoimmunity 2017; 50:354-362. [PMID: 28850267 DOI: 10.1080/08916934.2017.1364368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A progressive waning in Foxp3+ regulatory T (Treg) cell function provokes autoimmunity in the non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D), a cellular defect rescued by prophylactic IL-2 therapy. We showed that most islet-infiltrating Treg cells express inducible T-cell co-stimulator (ICOS) in pre-diabetic NOD mice, and that ICOS+ Treg cells display enhanced fitness and suppressive function in situ. Moreover, T1D progression is associated with decreased expansion and suppressive activity of ICOS+Foxp3+ Treg cells, in islets, an observation consistent with the exacerbated T1D seen in NOD.BDC2.5 mice in which the ICOS pathway is abrogated. Here, we show that a large proportion of islet-resident Treg cells express the KLRG1 marker of terminally differentiation, in contrast to islet-infiltrating ICOS- Treg or Teff cells. We hypothesized that KLRG1 expression designates a subpopulation of ICOS+ Treg cells in islets that progressively loses function, and contributes to the immune dysregulation observed at T1D onset. Indeed, KLRG1-expressing ICOS+ Treg cells are prone to apoptosis, and have an impaired proliferative capacity and suppressive function in vitro and in vivo. T1D protective low-dose IL-2 treatment in vivo could not rescue the loss of KLRG1-expressing Treg cells in situ. While the global pool of Foxp3+ Treg cells displays some degree of functional plasticity in vivo, the KLRG1+ ICOS+ Treg cell subset is particularly susceptible to lose Foxp3 expression and reprogram into Th1- or Th17-like effector T (Teff) cells in the pancreas microenvironment. Overall, KLRG1 expression delineates a subpopulation of dysfunctional Treg cells during T1D progression in autoantigen-specific TCR transgenic NOD mice.
Collapse
Affiliation(s)
- Mara Kornete
- a Department of Microbiology and Immunology , McGill University , Montréal , Québec , Canada
| | - Edward Mason
- a Department of Microbiology and Immunology , McGill University , Montréal , Québec , Canada
| | - Roman Istomine
- a Department of Microbiology and Immunology , McGill University , Montréal , Québec , Canada.,b Translational Immunology, Program in Infectious Disease and Immunity in Global Health , Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Centre of Excellence in Translational Immunology (CETI) , McGill University and the Research Institute of the McGill University Health Centre , Montréal , Québec , Canada
| | - Ciriaco A Piccirillo
- a Department of Microbiology and Immunology , McGill University , Montréal , Québec , Canada.,b Translational Immunology, Program in Infectious Disease and Immunity in Global Health , Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Centre of Excellence in Translational Immunology (CETI) , McGill University and the Research Institute of the McGill University Health Centre , Montréal , Québec , Canada
| |
Collapse
|
44
|
Role of TGF-β in Self-Peptide Regulation of Autoimmunity. Arch Immunol Ther Exp (Warsz) 2017; 66:11-19. [PMID: 28733878 DOI: 10.1007/s00005-017-0482-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Transforming growth factor (TGF)-β has been implicated in regulation of the immune system, including autoimmunity. We have found that TGF-β is readily produced by T cells following immunization with self-peptide epitopes that downregulate autoimmune responses in type 1 diabetes (T1D) prone nonobese diabetic (NOD) mice. These include multiple peptide epitopes derived from the islet β-cell antigens GAD65 (GAD65 p202-221, GAD65 p217-236), GAD67 (GAD67 p210-229, GAD67 p225-244), IGRP (IGRP p123-145, IGRP p195-214) and insulin B-chain (Ins. B:9-23) that protected NOD mice from T1D. Immunization of NOD mice with the self-MHC class II I-Ag7 β-chain-derived peptide, I-Aβg7 p54-76 also induced large amounts of TGF-β and also protected these mice from diabetes development. These results indicate that peptides derived from disease related self-antigens and MHC class II molecules primarily induce TGF-β producing regulatory Th3 and Tr1-like cells. TGF-β produced by these cells could enhance the differentiation of induced regulatory iTreg and iTreg17 cells to prevent induction and progression of autoimmune diseases. We therefore suggest that peripheral immune tolerance could be induced and maintained by immunization with self-peptides that induce TGF-β producing T cells.
Collapse
|
45
|
Truong W, Shapiro AMJ. The TIM Family of Cosignaling Receptors: Emerging Targets for the Regulation of Autoimmune Disease and Transplantation Tolerance. Cell Transplant 2017; 16:977-986. [DOI: 10.3727/000000007783472390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Currently, lifelong immune suppression regimens are required for solid organ and cellular transplantation and carry significant increased risk of infection, malignancy, and toxicity. For non-life-saving procedures such as islet transplantation, the risk/benefit ratio of lifelong immunosuppression versus benefit from transplantation requires even more careful balance. The search for specific agents to modulate the immune system without chronic immunosuppression is important for the broad application of islet transplantation. The T-cell immunoglobulin mucin (TIM) family is a distinct group of coreceptors that are differentially expressed on TH1 and TH2 cells, and have the potential to regulate both cytotoxic and humoral immune responses. Completed murine studies demonstrate Tim pathways may be important in the regulation of tolerance to self (auto), harmless (allergic), and transplant (allo) antigen; however, the potential impact of targeting Tim coreceptors has yet to be fully explored in transplantation tolerance induction or autoimmune disease. The current review examines the impact of Tim coreceptor targeting as an emerging therapeutic option for regulating autoimmune diseases and prevention of allograft rejection.
Collapse
Affiliation(s)
- Wayne Truong
- The Surgical Medical Research Institute, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - A. M. James Shapiro
- The Surgical Medical Research Institute, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
46
|
Fenske RJ, Cadena MT, Harenda QE, Wienkes HN, Carbajal K, Schaid MD, Laundre E, Brill AL, Truchan NA, Brar H, Wisinski J, Cai J, Graham TE, Engin F, Kimple ME. The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice. Endocrinology 2017; 158:1645-1658. [PMID: 28419211 PMCID: PMC5460933 DOI: 10.1210/en.2016-1700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 01/23/2023]
Abstract
The α-subunit of the heterotrimeric Gz protein, Gαz, promotes β-cell death and inhibits β-cell replication when pancreatic islets are challenged by stressors. Thus, we hypothesized that loss of Gαz protein would preserve functional β-cell mass in the nonobese diabetic (NOD) model, protecting from overt diabetes. We saw that protection from diabetes was robust and durable up to 35 weeks of age in Gαz knockout mice. By 17 weeks of age, Gαz-null NOD mice had significantly higher diabetes-free survival than wild-type littermates. Islets from these mice had reduced markers of proinflammatory immune cell infiltration on both the histological and transcript levels and secreted more insulin in response to glucose. Further analyses of pancreas sections revealed significantly fewer terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive β-cells in Gαz-null islets despite similar immune infiltration in control mice. Islets from Gαz-null mice also exhibited a higher percentage of Ki-67-positive β-cells, a measure of proliferation, even in the presence of immune infiltration. Finally, β-cell-specific Gαz-null mice phenocopy whole-body Gαz-null mice in their protection from developing hyperglycemia after streptozotocin administration, supporting a β-cell-centric role for Gαz in diabetes pathophysiology. We propose that Gαz plays a key role in β-cell signaling that becomes dysfunctional in the type 1 diabetes setting, accelerating the death of β-cells, which promotes further accumulation of immune cells in the pancreatic islets, and inhibiting a restorative proliferative response.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Female
- GTP-Binding Protein alpha Subunits/genetics
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Streptozocin
Collapse
Affiliation(s)
- Rachel J. Fenske
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
| | - Mark T. Cadena
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Quincy E. Harenda
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Haley N. Wienkes
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Kathryn Carbajal
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Michael D. Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
| | - Erin Laundre
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Allison L. Brill
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Nathan A. Truchan
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Harpreet Brar
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Jaclyn Wisinski
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Jinjin Cai
- Molecular Medicine Program, Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Nutrition, and Department of Biological Chemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84112
| | - Timothy E. Graham
- Molecular Medicine Program, Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Nutrition, and Department of Biological Chemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84112
| | - Feyza Engin
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Michelle E. Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
47
|
Bi X, Li F, Liu S, Jin Y, Zhang X, Yang T, Dai Y, Li X, Zhao AZ. ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J Clin Invest 2017; 127:1757-1771. [PMID: 28375156 DOI: 10.1172/jci87388] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
Despite the benefit of insulin, blockade of autoimmune attack and regeneration of pancreatic islets are ultimate goals for the complete cure of type 1 diabetes (T1D). Long-term consumption of ω-3 polyunsaturated fatty acids (PUFAs) is known to suppress inflammatory processes, making these fatty acids candidates for the prevention and amelioration of autoimmune diseases. Here, we explored the preventative and therapeutic effects of ω-3 PUFAs on T1D. In NOD mice, dietary intervention with ω-3 PUFAs sharply reduced the incidence of T1D, modulated the differentiation of Th cells and Tregs, and decreased the levels of IFN-γ, IL-17, IL-6, and TNF-α. ω-3 PUFAs exerted similar effects on the differentiation of CD4+ T cells isolated from human peripheral blood mononuclear cells. The regulation of CD4+ T cell differentiation was mediated at least in part through ω-3 PUFA eicosanoid derivatives and by mTOR complex 1 (mTORC1) inhibition. Importantly, therapeutic intervention in NOD mice through nutritional supplementation or lentivirus-mediated expression of an ω-3 fatty acid desaturase, mfat-1, normalized blood glucose and insulin levels for at least 182 days, blocked the development of autoimmunity, prevented lymphocyte infiltration into regenerated islets, and sharply elevated the expression of the β cell markers pancreatic and duodenal homeobox 1 (Pdx1) and paired box 4 (Pax4). The findings suggest that ω-3 PUFAs could potentially serve as a therapeutic modality for T1D.
Collapse
|
48
|
Nonobese Diabetic (NOD) Mice Lack a Protective B-Cell Response against the "Nonlethal" Plasmodium yoelii 17XNL Malaria Protozoan. Malar Res Treat 2016; 2016:6132734. [PMID: 28074170 PMCID: PMC5198185 DOI: 10.1155/2016/6132734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 11/06/2016] [Indexed: 11/18/2022] Open
Abstract
Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull) used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD) mice prone to type 1 diabetes (T1D) and C57BL/6 mice (control mice) that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs), and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg) cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.
Collapse
|
49
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
50
|
Askenasy N. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res 2016; 64:36-43. [PMID: 26482052 DOI: 10.1007/s12026-015-8725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.
Collapse
|