1
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
2
|
Bitting K, Hedgespeth B, Ehrhardt-Humbert LC, Arthur GK, Schubert AG, Bradding P, Tilley SL, Cruse G. Identification of redundancy between human FcεRIβ and MS4A6A proteins points toward additional complex mechanisms for FcεRI trafficking and signaling. Allergy 2023; 78:1204-1217. [PMID: 36424895 PMCID: PMC10159887 DOI: 10.1111/all.15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Allergic diseases are triggered by signaling through the high-affinity IgE receptor, FcεRI. In both mast cells (MCs) and basophils, FcεRI is a tetrameric receptor complex comprising a ligand-binding α subunit (FcεRIα), a tetraspan β subunit (FcεRIβ, MS4A2) responsible for trafficking and signal amplification, and a signal transducing dimer of single transmembrane γ subunits (FcεRIγ). However, FcεRI also exists as presumed trimeric complexes that lack FcεRIβ and are expressed on several cell types outside the MC and basophil lineages. Despite known differences between humans and mice in the presence of the trimeric FcεRI complex, questions remain as to how it traffics and whether it signals in the absence of FcεRIβ. We have previously reported that targeting FcεRIβ with exon-skipping oligonucleotides eliminates IgE-mediated degranulation in mouse MCs, but equivalent targeting in human MCs was not effective at reducing degranulation. RESULTS Here, we report that the FcεRIβ-like protein MS4A6A exists in human MCs and compensates for FcεRIβ in FcεRI trafficking and signaling. Human MS4A6A promotes surface expression of FcεRI complexes and facilitates degranulation. MS4A6A and FcεRIβ are encoded by highly related genes within the MS4A gene family that cluster within the human gene loci 11q12-q13, a region linked to allergy and asthma susceptibility. CONCLUSIONS Our data suggest the presence of either FcεRIβ or MS4A6A is sufficient for degranulation, indicating that MS4A6A could be an elusive FcεRIβ-like protein in human MCs that performs compensatory functions in allergic disease.
Collapse
Affiliation(s)
- Katie Bitting
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Barry Hedgespeth
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Lauren C. Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Greer K. Arthur
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Alicia G. Schubert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Peter Bradding
- Department of Respiratory Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Stephen L. Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| |
Collapse
|
3
|
Mattiola I, Mantovani A, Locati M. The tetraspan MS4A family in homeostasis, immunity, and disease. Trends Immunol 2021; 42:764-781. [PMID: 34384709 DOI: 10.1016/j.it.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
The membrane-spanning 4A (MS4A) family includes 18 members with a tetraspan structure in humans. They are differentially and selectively expressed in immunocompetent cells, such as B cells (CD20/MS4A1) and macrophages (MS4A4A), and associate with, and modulate the signaling activity of, different classes of immunoreceptor, including pattern recognition receptors (PRRs) and Ig receptors. Evidence from preclinical models and genetic evidence from humans suggest that members of the MS4A family have key roles in different pathological settings, including cancer, infectious diseases, and neurodegeneration. Therefore, MS4A family members might serve as candidate biomarkers and therapeutic targets for various conditions.
Collapse
Affiliation(s)
- Irene Mattiola
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charitè - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany.
| | - Alberto Mantovani
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Massimo Locati
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Department of Medical Biotechnologies and Translation Medicine, University of Milan, Italy.
| |
Collapse
|
4
|
Michelet M, Balbino B, Guilleminault L, Reber LL. IgE in the pathophysiology and therapy of food allergy. Eur J Immunol 2021; 51:531-543. [PMID: 33527384 DOI: 10.1002/eji.202048833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Food allergy is becoming a major public health issue, with no regulatory approved therapy to date. Food allergy symptoms range from skin rash and gastrointestinal symptoms to anaphylaxis, a potentially fatal systemic allergic shock reaction. IgE antibodies are thought to contribute importantly to key features of food allergy and anaphylaxis, and measurement of allergen-specific IgE is fundamental in diagnosing food allergy. This review will discuss recent advances in the regulation of IgE production and IgE repertoires in food allergy. We will describe the current understanding of the role of IgE and its high-affinity receptor FcεRI in food allergy and anaphylaxis, by reviewing insights gained from analyses of mouse models. Finally, we will review data derived from clinical studies of the effect of anti-IgE therapeutic monoclonal antibodies (mAbs) in food allergy, and recent insight on the efficiency and mechanisms through which these mAbs block IgE effector functions.
Collapse
Affiliation(s)
- Marine Michelet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Pediatric Pneumo-allergology Department, Children's Hospital, University Hospital Centre of Toulouse, Toulouse, France
| | - Bianca Balbino
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France
| | - Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Department of Respiratory Medicine and Allergic Diseases, University Hospital Centre of Toulouse, Toulouse, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France
| |
Collapse
|
5
|
Arthur GK, Ehrhardt-Humbert LC, Snider DB, Jania C, Tilley SL, Metcalfe DD, Cruse G. The FcεRIβ homologue, MS4A4A, promotes FcεRI signal transduction and store-operated Ca 2+ entry in human mast cells. Cell Signal 2020; 71:109617. [PMID: 32240745 DOI: 10.1016/j.cellsig.2020.109617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Members of the membrane spanning 4A (MS4A) gene family are clustered around 11q12-13, a region linked to allergy and asthma susceptibility. Other than the known functions of FcεRIβ (MS4A2) and CD20 (MS4A1) in mast cell and B cell signaling, respectively, functional studies for the remaining MS4A proteins are lacking. We thus explored whether MS4A4A, a mast cell expressed homologue of FcεRIβ, has related functions to FcεRIβ in FcεRI signaling. We establish in this study that MS4A4A promotes phosphorylation of PLCγ1, calcium flux and degranulation in response to IgE-mediated crosslinking of FcεRI. We previously demonstrated that MS4A4A promotes recruitment of KIT into caveolin-1-enriched microdomains and signaling through PLCγ1. Caveolin-1 itself is an important regulator of IgE-dependent store-operated Ca2+ entry (SOCE) and promotes expression of the store-operated Ca2+ channel pore-forming unit, Orai1. We thus further report that MS4A4A functions through interaction with caveolin-1 and recruitment of FcεRI and KIT into lipid rafts. In addition to proximal FcεRI signaling, we similarly show that MS4A4A regulates Orai1-mediated calcium entry downstream of calcium release from stores. Both MS4A4A and Orai1 had limited effects with compound 48/80 stimulation, demonstrating some degree of selectivity of both proteins to FcεRI receptor signaling over Mas-related G Protein coupled receptor X2 signaling. Overall, our data are consistent with the conclusion that MS4A4A performs a related function to the homologous FcεRIβ to promote PLCγ1 signaling, SOCE, and degranulation through FcεRI in human mast cells and thus represents a new target in the regulation of IgE-mediated mast cell activation.
Collapse
Affiliation(s)
- Greer K Arthur
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Lauren C Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Douglas B Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA; Comparative Medicine Institute, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Corey Jania
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen L Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA; Comparative Medicine Institute, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA.
| |
Collapse
|
6
|
The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat Immunol 2019; 20:1012-1022. [PMID: 31263276 DOI: 10.1038/s41590-019-0417-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages. MS4A4A interacted and colocalized with the β-glucan receptor dectin-1 in lipid rafts. In response to dectin-1 ligands, Ms4a4a-deficient macrophages showed defective signaling and defective production of effector molecules. In experimental models of tumor progression and metastasis, Ms4a4a deficiency in macrophages had no impact on primary tumor growth, but was essential for dectin-1-mediated activation of macrophages and natural killer (NK) cell-mediated metastasis control. Thus, MS4A4A is a tetraspan molecule selectively expressed in macrophages during differentiation and polarization, essential for dectin-1-dependent activation of NK cell-mediated resistance to metastasis.
Collapse
|
7
|
Abstract
Mast cells are key effector cells in allergic inflammation and consequently are ideal targets for new therapeutics. The high-affinity IgE receptor complex, FcεRI, plays a critical role in mast cell and basophil activation by allergens to drive the immediate allergic inflammatory response. The β subunit of FcεRI is critical for trafficking the FcεRI complex to the cell membrane and amplifies the FcεRI signaling cascade. We have utilized splice switching antisense oligonucleotides to force expression of a truncated isoform of FcεRIβ, which we have shown does not associate with the FcεRI complex. This approach eliminates surface FcεRI expression in mast cells by targeting protein-protein interactions. Exon skipping has several therapeutic applications, and our findings demonstrate a novel application to alter receptor trafficking and dampen allergic inflammation. Here, we describe the methods of exon skipping in mast cells and the assays used to examine the responses of mast cells in vitro and in vivo.
Collapse
|
8
|
Kow ASF, Chik A, Soo KM, Khoo LW, Abas F, Tham CL. Identification of Soluble Mediators in IgG-Mediated Anaphylaxis via Fcγ Receptor: A Meta-Analysis. Front Immunol 2019; 10:190. [PMID: 30809224 PMCID: PMC6379333 DOI: 10.3389/fimmu.2019.00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Anaphylaxis is an acute and life-threatening allergic response. Classically and most commonly, it can be mediated by the crosslinking of allergens to immunoglobulin E (IgE)- high affinity IgE receptor (FcεRI) complex found mostly on mast cells. However, there is another pathway of anaphylaxis that is less well-studied. This pathway known as the alternative pathway is mediated by IgG and its Fc gamma receptor (Fcγ). Though it was not documented in human anaphylaxis, a few studies have found that IgG-mediated anaphylaxis can happen as demonstrated in rodent models of anaphylaxis. In these studies, a variety of soluble mediators were being evaluated and they differ from each study which causes confusion in the suitability, and reliability of choice of soluble mediators to be analyzed for diagnosis or therapeutic purposes. Hence, the objective of this meta-analysis is to identify the potential soluble mediators that are involved in an IgG-mediated anaphylaxis reaction. Methods: Studies related to IgG-mediated anaphylaxis were sourced from five search engines namely PubMed, Scopus, Ovid, Cochrane Library, and Center for Agricultural Bioscience International (CABI) regardless of publication year. Relevant studies were then reviewed based on specific inclusion factors. The means and standard deviations of each soluble mediator studied were then extracted using ImageJ or Get Data Graph Digitiser software and the data were subjected to meta-analysis. Results: From our findings, we found that histamine, serotonin, platelet activating factor (PAF), β-hexosaminidase, leukotriene C4 (LTC4), mucosal mast cell protease-1 (MMCP-1), interleukins (IL)-4,−6, and−13; tumor necrosis factor alpha (TNF-α), and macrophage inflammatory protein-1α (MIP-1α) were often being analyzed. Out of these soluble mediators, histamine, PAF, β-hexosaminidase, IL-6, and−13, MIP-1α and TNF-α were more significant with positive effect size and p < 0.001. As study effect was relatively small, we performed publication bias and found that there was publication bias and this could be due to the small sample size studied. Conclusion: As such, we proposed that through meta-analysis, the potential soluble mediators involved in rodent IgG-mediated anaphylaxis to be histamine, PAF, β-hexosaminidase, IL-6 and−13 and MIP-1α, and TNF-α but will require further studies with larger sample size.
Collapse
Affiliation(s)
- Audrey Siew Foong Kow
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azirah Chik
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kuan-Meng Soo
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Leng Wei Khoo
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
9
|
Lahiani S, Dumez M, Bitam I, Galleni M. Der p 5 allergen from house dust mite: first epitope mapping of rabbit IgG blocking antibodies. New Microbes New Infect 2019; 27:69-74. [PMID: 30622713 PMCID: PMC6317277 DOI: 10.1016/j.nmni.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 02/03/2023] Open
Abstract
Der p 5 is one of the important house dust mite allergens in Algeria; this allergen is frequently recognized by patients with allergic asthma. However, there is no information on its IgG-binding epitopes. In the present study, rabbits were immunized with recombinant Der p 5 allergen, and serum samples were obtained. Recognition of linear IgG epitopes of Der p 5 was determined using synthesized peptides derived from the allergen sequence. The results showed that serum from immunized rabbits recognized three linear epitopes from Der p 5 (28EDKKHDYQNEFDFLLMERIHEQIK43), (37IHEQIKKGELALFYLQEQ55) and (92LMQRKDLDIFEQYNLEMAKKS112). More interestingly, we observed that the 92L-S112 amino acid sequence is well recognized by both IgE and IgG antibodies. Der p 5 stimulates the synthesis of specific IgG antibodies which recognize common but also novel epitopes compared to IgE antibody binding. Indeed, the potential to induce IgG antibodies can be used to inhibit human IgE binding to allergens which may be part of the mechanism of action of specific immunotherapy.
Collapse
Affiliation(s)
- S. Lahiani
- Laboratoire Valorisation et Conservation des Ressources Biologiques ‘VALCORE,’ Faculté des sciences, Université M'Hamed Bougara de Boumerdès, Algeria
- Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| | - M.E. Dumez
- Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| | - I. Bitam
- Superior Normal School Veterinarian (ENSV), Algiers, Algeria
| | - M. Galleni
- Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| |
Collapse
|
10
|
Association of FcεRIβ polymorphisms with risk of asthma and allergic rhinitis: evidence based on 29 case-control studies. Biosci Rep 2018; 38:BSR20180177. [PMID: 29654163 PMCID: PMC6066650 DOI: 10.1042/bsr20180177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose: Accumulating evidence has shown that allergic diseases are caused by a complex interaction of genetic and environmental factors, some single nucleotide polymorphisms (SNPs) existing in high-affinity IgE receptor β chain (FcεRIβ) are potential risk factors for allergic diseases. However, the results have been inconsistent and inconclusive due to the limited statistical power in individual study. Thus, we conducted a meta-analysis to systematically evaluate the association between FcεRIβ SNPs and allergic diseases risk. Methods: Eligible studies were collected from PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure, and WanFang databases. Pooled odd ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were calculated to assess the strength of the relationships between five polymorphisms (E237G, -109 C/T, RsaI_in2, RsaI_ex7, and I181L) and the risk of allergic diseases by using five genetic models. In addition, the stability of our analysis was evaluated by publication bias, sensitivity, and heterogeneity analysis. Results: Overall, a total of 29 case–control studies were included in this meta-analysis. We found that E237G (B vs. A: OR = 1.28, 95% CI = 1.06–1.53, P<0.001, I2 = 63.1%) and -109 C/T (BB vs. AA + AB: OR = 1.58, 95%CI = 1.26–1.98, P<0.001, I2 = 66.4%) were risk factors for allergic diseases. Conclusion: Our meta-analysis suggests that polymorphisms in FcεRIβ may be associated with the development of allergic diseases.
Collapse
|
11
|
Balbino B, Conde E, Marichal T, Starkl P, Reber LL. Approaches to target IgE antibodies in allergic diseases. Pharmacol Ther 2018; 191:50-64. [PMID: 29909239 DOI: 10.1016/j.pharmthera.2018.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
IgE is the antibody isotype found at the lowest concentration in the circulation. However IgE can undeniably play an important role in mediating allergic reactions; best exemplified by the clinical benefits of anti-IgE monoclonal antibody (omalizumab) therapy for some allergic diseases. This review will describe our current understanding of the interactions between IgE and its main receptors FcεRI and CD23 (FcεRII). We will review the known and potential functions of IgE in health and disease: in particular, its detrimental roles in allergic diseases and chronic spontaneous urticaria, and its protective functions in host defense against parasites and venoms. Finally, we will present an overview of the drugs that are in clinical development or have therapeutic potential for IgE-mediated allergic diseases.
Collapse
Affiliation(s)
- Bianca Balbino
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Eva Conde
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France; Neovacs SA, Paris, France
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, 4000, Liege, Belgium; Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Philipp Starkl
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria; Department of Medicine I, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France.
| |
Collapse
|
12
|
An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods Mol Biol 2018; 1828:31-55. [PMID: 30171533 DOI: 10.1007/978-1-4939-8651-4_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exon skipping is a therapeutic approach that is feasible for various genetic diseases and has been studied and developed for over two decades. This approach uses antisense oligonucleotides (AON) to modify the splicing of pre-mRNA to correct the mutation responsible for a disease, or to suppress a particular gene expression, as in allergic diseases. Antisense-mediated exon skipping is most extensively studied in Duchenne muscular dystrophy (DMD) and has developed from in vitro proof-of-concept studies to clinical trials targeting various single exons such as exon 45 (casimersen), exon 53 (NS-065/NCNP-01, golodirsen), and exon 51 (eteplirsen). Eteplirsen (brand name Exondys 51), is the first approved antisense therapy for DMD in the USA, and provides a treatment option for ~14% of all DMD patients, who are amenable to exon 51 skipping. Eteplirsen is granted accelerated approval and marketing authorization by the US Food and Drug Administration (FDA), on the condition that additional postapproval trials show clinical benefit. Permanent exon skipping achieved at the DNA level using clustered regularly interspaced short palindromic repeats (CRISPR) technology holds promise in current preclinical trials for DMD. In hopes of achieving clinical success parallel to DMD, exon skipping and splice modulation are also being studied in other muscular dystrophies, such as Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy including limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy (DMAT), myotonic dystrophy, and merosin-deficient congenital muscular dystrophy type 1A (MDC1A). This chapter also summarizes the development of antisense-mediated exon skipping therapy in diseases such as Usher syndrome, dystrophic epidermolysis bullosa, fibrodysplasia ossificans progressiva (FOP), and allergic diseases.
Collapse
|
13
|
Kaneko T, Toshimori K, Iida H. Subcellular localization of MS4A13 isoform 2 in mouse spermatozoa. Reproduction 2017; 154:843-857. [PMID: 28971897 DOI: 10.1530/rep-17-0477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023]
Abstract
To identify upregulated genes during the development of spermatozoa, we performed PCR-selected subtraction analysis of testes RNA samples from 10-day-old and 12-week-old shrews. A transcript, highly homologous to two mouse transcripts, Ms4a13-1 and Ms4a13-2, was differentially regulated. Ms4a13-2, but not Ms4a13-1, was shown to be primarily expressed in mouse testes in an age-dependent manner. Ms4a13-2 cDNA contains an open-reading frame of 522 nucleotides, encoding a protein of 174 amino acids, with predicted molecular mass, 19,345 Da. MS4A13-2 protein was expressed along the periphery of nuclei of round and elongated spermatids (steps 3-16) in adult mouse testes, and in the equatorial region of the heads of fresh mature mouse spermatozoa. In addition, MS4A13-2 was found to localize to the outer acrosomal membrane in the equatorial region of heads in fresh spermatozoa. In acrosome-reacted spermatozoa, the MS4A13-2 expression extended to the entire sperm head including the postacrosomal region and acrosomal cap. MS4A family proteins are known to facilitate intracellular protein-protein interactions as ion channel/adaptor proteins by oligomerization, and have important regulatory roles in cellular growth, survival and activation. We report that the MS4A family member, MS4A13-2, may form oligomers in sperm membranes, which may be involved in an interaction with the zona pellucida or cumulus during fertilization.
Collapse
Affiliation(s)
- Takane Kaneko
- Laboratory of ZoologyGraduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kiyotaka Toshimori
- Future Medicine Research Center and Department of Reproductive Biology and MedicineGraduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Iida
- Laboratory of ZoologyGraduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol 2017; 140:335-348. [PMID: 28780941 PMCID: PMC5657389 DOI: 10.1016/j.jaci.2017.06.003] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/14/2023]
Abstract
Anaphylaxis is a severe systemic hypersensitivity reaction that is rapid in onset; characterized by life-threatening airway, breathing, and/or circulatory problems; and usually associated with skin and mucosal changes. Because it can be triggered in some persons by minute amounts of antigen (eg, certain foods or single insect stings), anaphylaxis can be considered the most aberrant example of an imbalance between the cost and benefit of an immune response. This review will describe current understanding of the immunopathogenesis and pathophysiology of anaphylaxis, focusing on the roles of IgE and IgG antibodies, immune effector cells, and mediators thought to contribute to examples of the disorder. Evidence from studies of anaphylaxis in human subjects will be discussed, as well as insights gained from analyses of animal models, including mice genetically deficient in the antibodies, antibody receptors, effector cells, or mediators implicated in anaphylaxis and mice that have been "humanized" for some of these elements. We also review possible host factors that might influence the occurrence or severity of anaphylaxis. Finally, we will speculate about anaphylaxis from an evolutionary perspective and argue that, in the context of severe envenomation by arthropods or reptiles, anaphylaxis might even provide a survival advantage.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Paris, France; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
15
|
Jensen‐Jarolim E, Bax HJ, Bianchini R, Capron M, Corrigan C, Castells M, Dombrowicz D, Daniels‐Wells TR, Fazekas J, Fiebiger E, Gatault S, Gould HJ, Janda J, Josephs DH, Karagiannis P, Levi‐Schaffer F, Meshcheryakova A, Mechtcheriakova D, Mekori Y, Mungenast F, Nigro EA, Penichet ML, Redegeld F, Saul L, Singer J, Spicer JF, Siccardi AG, Spillner E, Turner MC, Untersmayr E, Vangelista L, Karagiannis SN. AllergoOncology - the impact of allergy in oncology: EAACI position paper. Allergy 2017; 72:866-887. [PMID: 28032353 PMCID: PMC5498751 DOI: 10.1111/all.13119] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Th2 immunity and allergic immune surveillance play critical roles in host responses to pathogens, parasites and allergens. Numerous studies have reported significant links between Th2 responses and cancer, including insights into the functions of IgE antibodies and associated effector cells in both antitumour immune surveillance and therapy. The interdisciplinary field of AllergoOncology was given Task Force status by the European Academy of Allergy and Clinical Immunology in 2014. Affiliated expert groups focus on the interface between allergic responses and cancer, applied to immune surveillance, immunomodulation and the functions of IgE-mediated immune responses against cancer, to derive novel insights into more effective treatments. Coincident with rapid expansion in clinical application of cancer immunotherapies, here we review the current state-of-the-art and future translational opportunities, as well as challenges in this relatively new field. Recent developments include improved understanding of Th2 antibodies, intratumoral innate allergy effector cells and mediators, IgE-mediated tumour antigen cross-presentation by dendritic cells, as well as immunotherapeutic strategies such as vaccines and recombinant antibodies, and finally, the management of allergy in daily clinical oncology. Shedding light on the crosstalk between allergic response and cancer is paving the way for new avenues of treatment.
Collapse
Affiliation(s)
- E. Jensen‐Jarolim
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - H. J. Bax
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - R. Bianchini
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
| | - M. Capron
- LIRIC‐Unité Mixte de Recherche 995 INSERMUniversité de Lille 2CHRU de LilleLilleFrance
| | - C. Corrigan
- Division of Asthma, Allergy and Lung BiologyMedical Research Council and Asthma UK Centre in Allergic Mechanisms in AsthmaKing's College LondonLondonUK
| | - M. Castells
- Division of Rheumatology, Immunology and AllergyDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - D. Dombrowicz
- INSERMCHU LilleEuropean Genomic Institute of DiabetesInstitut Pasteur de LilleU1011 – récepteurs nucléaires, maladies cardiovasculaires et diabèteUniversité de LilleLilleFrance
| | - T. R. Daniels‐Wells
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - J. Fazekas
- The Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaViennaAustria
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - E. Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition ResearchDepartment of Medicine ResearchChildren's University Hospital BostonBostonMAUSA
| | - S. Gatault
- LIRIC‐Unité Mixte de Recherche 995 INSERMUniversité de Lille 2CHRU de LilleLilleFrance
| | - H. J. Gould
- Division of Asthma, Allergy and Lung BiologyMedical Research Council and Asthma UK Centre in Allergic Mechanisms in AsthmaKing's College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | - J. Janda
- Center PigmodInstitute of Animal Physiology and GeneticsAcademy of Sciences of Czech RepublicLibechovCzech Republic
| | - D. H. Josephs
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - P. Karagiannis
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | - F. Levi‐Schaffer
- Pharmacology and Experimental Therapeutics UnitFaculty of MedicineSchool of PharmacyThe Institute for Drug ResearchThe Hebrew University of JerusalemJerusalemIsrael
| | - A. Meshcheryakova
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - D. Mechtcheriakova
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - Y. Mekori
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - F. Mungenast
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - E. A. Nigro
- IRCCS San Raffaele Scientific InstituteMilanItaly
| | - M. L. Penichet
- Division of Surgical OncologyDepartment of SurgeryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCAUSA
| | - F. Redegeld
- Division of PharmacologyFaculty of ScienceUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - L. Saul
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
| | - J. Singer
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - J. F. Spicer
- Division of Cancer StudiesFaculty of Life Sciences & MedicineKing's College LondonGuy's HospitalLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| | | | - E. Spillner
- Immunological EngineeringDepartment of EngineeringAarhus UniversityAarhusDenmark
| | - M. C. Turner
- ISGlobalCentre for Research in Environmental Epidemiology (CREAL)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
- McLaughlin Centre for Population Health Risk AssessmentUniversity of OttawaOttawaONCanada
| | - E. Untersmayr
- Institute of Pathophysiology & Allergy ResearchCenter of Pathophysiology, Infectiology & ImmunologyMedical University ViennaViennaAustria
| | - L. Vangelista
- Department of Biomedical SciencesNazarbayev University School of MedicineAstanaKazakhstan
| | - S. N. Karagiannis
- Division of Genetics & Molecular MedicineFaculty of Life Sciences and MedicineSt. John's Institute of DermatologyKing's College LondonLondonUK
- NIHR Biomedical Research Centre at Guy's and St. Thomas’ Hospitals and King's College LondonKing's College LondonGuy's HospitalLondonUK
| |
Collapse
|
16
|
Sanyal R, Polyak MJ, Zuccolo J, Puri M, Deng L, Roberts L, Zuba A, Storek J, Luider JM, Sundberg EM, Mansoor A, Baigorri E, Chu MP, Belch AR, Pilarski LM, Deans JP. MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells. Immunol Cell Biol 2017; 95:611-619. [PMID: 28303902 DOI: 10.1038/icb.2017.18] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
MS4A4A is a member of the membrane-spanning, four domain family, subfamily A (MS4A) that includes CD20 (MS4A1), FcRβ (MS4A2) and Htm4 (MS4A3). Like the first three members of this family, transcription of MS4A4A appears to be limited to hematopoietic cells. To evaluate expression of the MS4A4A protein in hematopoietic cell lineages and subsets we generated monoclonal antibodies against extracellular epitopes for use in flow cytometry. In human peripheral blood we found that MS4A4A is expressed at the plasma membrane in monocytes but not in granulocytes or lymphocytes. In vitro differentiation of monocytes demonstrated that MS4A4A is expressed in immature but not activated dendritic cells, and in macrophages generated in the presence of interleukin-4 ('alternatively activated' or M2 macrophages) but not by interferon-γ and lipopolysaccharide ('classically' activated or M1 macrophages). MS4A4A was expressed in the U937 monocytic cell line only after differentiation. In normal bone marrow, MS4A4A was expressed in mature monocytes but was undetected, or detected at only a low level, in myeloid/monocytic precursors, as well as their malignant counterparts in patients with various subtypes of myeloid leukemia. Although MS4A4A was not expressed in healthy B lymphocytes, it was highly expressed in normal plasma cells, CD138+ cells from multiple myeloma patients, and bone marrow B cells from a patient with mantle cell lymphoma. These findings suggest immunotherapeutic potential for MS4A4A antibodies in targeting alternatively activated macrophages such as tumor-associated macrophages, and in the treatment of multiple myeloma and mantle cell lymphoma.
Collapse
Affiliation(s)
- Ratna Sanyal
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Polyak
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan Zuccolo
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Mandip Puri
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Lili Deng
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Luc Roberts
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ania Zuba
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jan Storek
- Departments of Medicine and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Joanne M Luider
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ellen M Sundberg
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Adnan Mansoor
- Calgary Laboratory Services, Foothills Medical Centre, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eva Baigorri
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Michael P Chu
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Andrew R Belch
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Linda M Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Julie P Deans
- Department of Biochemistry and Molecular Biology, and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
18
|
Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, Masuda FK, Nowlan AC, Kirchner R, Hoekstra HE, Datta SR. A Family of non-GPCR Chemosensors Defines an Alternative Logic for Mammalian Olfaction. Cell 2016; 165:1734-1748. [PMID: 27238024 DOI: 10.1016/j.cell.2016.05.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/14/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Odor perception in mammals is mediated by parallel sensory pathways that convey distinct information about the olfactory world. Multiple olfactory subsystems express characteristic seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-per-neuron pattern that facilitates odor discrimination. Sensory neurons of the "necklace" subsystem are nestled within the recesses of the olfactory epithelium and detect diverse odorants; however, they do not express known GPCR odor receptors. Here, we report that members of the four-pass transmembrane MS4A protein family are chemosensors expressed within necklace sensory neurons. These receptors localize to sensory endings and confer responses to ethologically relevant ligands, including pheromones and fatty acids, in vitro and in vivo. Individual necklace neurons co-express many MS4A proteins and are activated by multiple MS4A ligands; this pooling of information suggests that the necklace is organized more like subsystems for taste than for smell. The MS4As therefore define a distinct mechanism and functional logic for mammalian olfaction.
Collapse
Affiliation(s)
- Paul L Greer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel M Bear
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-Marc Lassance
- Departments of Molecular and Cellular Biology and Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | | | - Tatsuya Tsukahara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Francis Kei Masuda
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Nowlan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hopi E Hoekstra
- Departments of Molecular and Cellular Biology and Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | | |
Collapse
|
19
|
Blank U, Charles N, Benhamou M. The high-affinity immunoglobulin E receptor as pharmacological target. Eur J Pharmacol 2016; 778:24-32. [PMID: 26130123 DOI: 10.1016/j.ejphar.2015.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/29/2015] [Accepted: 05/17/2015] [Indexed: 01/02/2023]
|
20
|
Terada T, Takahashi T, Arikawa H, Era S. Analysis of the conformation and thermal stability of the high-affinity IgE Fc receptor β chain polymorphic proteins. Biosci Biotechnol Biochem 2016; 80:1356-61. [PMID: 26940508 DOI: 10.1080/09168451.2016.1153958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The high-affinity IgE Fc receptor (FcεRI) β chain acts as a signal amplifier through the immunoreceptor tyrosine-based activation motif in its C-terminal intracellular region. Polymorphisms in FcεRI β have been linked to atopy, asthma, and allergies. We investigated the secondary structure, conformation, and thermal stability of FcεRI β polymorphic (β-L172I, β-L174V, and β-E228G) proteins. Polymorphisms did not affect the secondary structure and conformation of FcεRI β. However, we calculated Gibbs free energy of unfolding (ΔGunf) and significant differences were observed in ΔGunf values between the wild-type FcεRI β (β-WT) and β-E228G. These results suggested that β-E228G affected the thermal stability of FcεRI β. The role of β-E228G in biological functions and its involvement in allergic reactions have not yet been elucidated in detail; therefore, differences in the thermal stability of β-E228G may affect the function of FcεRI β.
Collapse
Affiliation(s)
- Tomoyoshi Terada
- a Department of Physiology and Biophysics , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Teppei Takahashi
- a Department of Physiology and Biophysics , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Hajime Arikawa
- a Department of Physiology and Biophysics , Gifu University Graduate School of Medicine , Gifu , Japan.,b Department of Early Childhood Education , Chubu-gakuin College , Seki , Japan
| | - Seiichi Era
- a Department of Physiology and Biophysics , Gifu University Graduate School of Medicine , Gifu , Japan
| |
Collapse
|
21
|
Wawrzyniak M, Pich C, Gross B, Schütz F, Fleury S, Quemener S, Sgandurra M, Bouchaert E, Moret C, Mury L, Rommens C, Mottaz H, Dombrowicz D, Michalik L. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. J Allergy Clin Immunol 2015; 135:1625-35.e5. [DOI: 10.1016/j.jaci.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
|
22
|
The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol 2015; 94:11-23. [PMID: 25835430 DOI: 10.1038/icb.2015.48] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 02/01/2023]
Abstract
The MS4A (membrane-spanning 4-domain family, subfamily A) family of proteins contains some well-known members including MS4A1 (CD20), MS4A2 (FcɛRIβ) and MS4A3 (HTm4). These three MS4A family members are expressed on the cell surface of specific leukocyte subsets and have been well characterized as having key roles in regulating cell activation, growth and development. However, beyond MS4A1-3 there are a large number of related molecules (18 to date in humans) where our understanding of their biological roles is at a relatively nascent stage. This review examines the larger MS4A family focusing on their structure, expression, regulation and characterized and/or emerging biological roles. Our own work on one family member MS4A8B, and its possible role in epithelial cell regulation, is also highlighted.
Collapse
|
23
|
Abstract
The success of antibody therapy in cancer is consistent with the ability of these molecules to activate immune responses against tumors. Experience in clinical applications, antibody design, and advancement in technology have enabled antibodies to be engineered with enhanced efficacy against cancer cells. This allows re-evaluation of current antibody approaches dominated by antibodies of the IgG class with a new light. Antibodies of the IgE class play a central role in allergic reactions and have many properties that may be advantageous for cancer therapy. IgE-based active and passive immunotherapeutic approaches have been shown to be effective in both in vitro and in vivo models of cancer, suggesting the potential use of these approaches in humans. Further studies on the anticancer efficacy and safety profile of these IgE-based approaches are warranted in preparation for translation toward clinical application.
Collapse
Affiliation(s)
- Lai Sum Leoh
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA
| | - Tracy R. Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA
| | - Manuel L. Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA. Department of Microbiology, Immunology, and Molecular Genetics, University of California, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, CA 90095, USA. The Jonsson Comprehensive Cancer Center, University of California, 10833 Le Conte Ave, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095, USA. The Molecular Biology Institute, University of California, 611 Charles E. Young Dr., Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Huber M, Gibbs BF. SHIP1 and the negative control of mast cell/basophil activation by supra-optimal antigen concentrations. Mol Immunol 2015; 63:32-7. [DOI: 10.1016/j.molimm.2014.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
25
|
Iwamoto T, Hirai H, Yamaguchi N, Kobayashi N, Sugimoto H, Tabata T, Okuda M. Carboplatin-induced severe hypersensitivity reaction: role of IgE-dependent basophil activation and FcεRI. Cancer Sci 2014; 105:1472-9. [PMID: 25230301 PMCID: PMC4462369 DOI: 10.1111/cas.12538] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/27/2022] Open
Abstract
Basophil activation was observed in patients with a history of carboplatin-induced severe hypersensitivity reaction (HR). However, the precise mechanism by which carboplatin induces basophil activation and the associated surrogate markers remains to be elucidated. To investigate whether IgE-dependent mechanisms, including the overexpression of FcεRI, participate in carboplatin-induced basophil activation, 13 ovarian cancer patients were enrolled: 5 with a history of carboplatin-induced severe hypersensitivity reaction within the past 2 years, and 8 with no such history. The expression levels of FcεRI, IgE, and CD203c on basophils were measured using a flow cytometer. Immunoglobulin E-dependent basophil activation was evaluated by testing for IgE passive sensitization using lactic acid, and by testing for phosphatidylinositol 3-kinase inhibition, using wortmannin. In three patients positive for carboplatin hypersensitivity, pretreatment with wortmannin almost completely inhibited carboplatin-induced basophil activation (P < 0.05). In a healthy control subject, whose own IgE showed no response to carboplatin, acquired reactivity to carboplatin when exposed to plasma from patients positive for carboplatin hypersensitivity. This did not occur when the same experiment was carried out using plasma from the patients negative for carboplatin hypersensitivity. Moreover, pretreatment with omalizumab, a monoclonal anti-IgE antibody, almost completely blocked carboplatin-induced basophil activation in the plasma of patients positive for carboplatin hypersensitivity. On further investigation, the HR-positive group had significantly higher levels of FcεRI compared with the negative group (P < 0.05). In conclusion, an IgE-dependent mechanism incorporating FcεRI overexpression participates in carboplatin-induced severe HR. These results establish the relevance of monitoring the pharmacodynamic changes of basophils to prevent carboplatin-induced severe HR.
Collapse
Affiliation(s)
- Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Mie University Graduate School of Medicine, Tsu, Japan; Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Xu Y, Liu M, Gu YH, Jia XF, Chen YM, Santos M, Wu AZ, Zhang XD, Shi HJ, Chen CLC. cDNA cloning and localization of Sp3111 (also called Ms4a14) in the rat testis. Reproduction 2014; 148:81-6. [DOI: 10.1530/rep-14-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With tetraspanning topology, members of the membrane-spanning four-domain subfamily A (MS4A) may facilitate signaling or ion channel functions in many tissues. In this study, we report the cloning of a full-length cDNA from rat testis, designatedMs4a14(Sp3111), which encodes the MS4A protein with 1139 amino acid residues.In situhybridization and immunohistochemical analyses indicate thatMs4a14is predominantly expressed from round spermatids to spermatozoa at specific stages in the rat testis at both the mRNA and protein level. Immunofluorescence analysis revealed that MS4A14 (SP3111) is located in the acrosome and the midpiece of the flagellum in mature sperm. Previously, we explored and reported the involvement of MS4A14 in reproductive functions, using antibody blockage during IVF and a transgenic RNA interference method in a mouse model. Our results suggested that MS4A14 is involved in fertilization and zygote division. As MS4A14 protein exists in mammals, such as humans, cows, dogs, and rodents, MS4A14 may play a ubiquitous role in mammalian reproduction.
Collapse
|
27
|
Ma J, Yu JT, Tan L. MS4A Cluster in Alzheimer's Disease. Mol Neurobiol 2014; 51:1240-8. [PMID: 24981432 DOI: 10.1007/s12035-014-8800-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/22/2014] [Indexed: 01/13/2023]
Abstract
Several variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated the association of Alzheimer's disease (AD) by serial recent genome-wide association studies (GWAS). As cell membrane proteins, MS4A family members are found to participate in the regulation of calcium signaling which have been widely discussed in neurodegeneration and AD. Besides, although the MS4A family members are poorly characterized, an important role in immunity has already been identified for several members of this cluster (such as MS4A1, MS4A2, and MS4A4B), indicating the possible involvement of MS4A gene cluster in AD pathogenesis. In this article, we briefly summarize the structure, localization, and function of MS4A gene cluster, review recent genetic and expression findings concerning the association of MS4A gene cluster with AD pathogenesis, and also speculate the possible roles of MS4A gene cluster in this disease. Based on the contributing effects of MS4A gene cluster in AD pathogenesis, targeting MS4A gene cluster might provide new opportunities for AD treatment.
Collapse
Affiliation(s)
- Jing Ma
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | | | |
Collapse
|
28
|
Nishiyama C. Molecular Mechanism of Allergy-Related Gene Regulation and Hematopoietic Cell Development by Transcription Factors. Biosci Biotechnol Biochem 2014; 70:1-9. [PMID: 16428815 DOI: 10.1271/bbb.70.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional regulation for the genes encoding alpha- and beta-chains of the high-affinity receptor for IgE (FcepsilonRI) have been analyzed in mast cells and regulatory mechanisms are beginning to be elucidated. Transcription factors GATA-1 and PU.1 cooperatively transactivate the alpha-chain gene, and three transcription factors, GATA-1, Oct-1, and MZF-1, are involved in regulation of beta-chain gene expression. No single nucleotide polymorphisms (SNPs) that are functionally related to the allergic diseases have been identified in coding regions of the alpha- and beta-chain genes in a definitive way. However, recent studies on SNPs in the promoter regions have revealed that these genes are probable candidates for new types of allergy-related genes whose transcription levels are affected by transcription factors which discriminate SNPs in the promoters. Another interesting finding on transcription factors functioning in mast cells is that the expression level of PU.1 determines cell fate between mast cells and monocytes.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Japan.
| |
Collapse
|
29
|
Chirumbolo S. Immunotherapy in allergy and cellular tests: state of art. Hum Vaccin Immunother 2014; 10:1595-610. [PMID: 24717453 PMCID: PMC5396242 DOI: 10.4161/hv.28592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022] Open
Abstract
The basophil activation test (BAT) is an in vitro assay where the activation of basophils upon exposure to various IgE-challenging molecules is measured by flow cytometry. It is a cellular test able to investigate basophil behavior during allergy and allergy immunotherapy. A panoply of critical issues and suggestive advances have rendered this assay a promising yet puzzling tool to endeavor a full comprehension of innate immunity of allergy desensitization and manage allergen or monoclonal anti-IgE therapy. In this review a brief state of art of BAT in immunotherapy is described focusing onto the analytical issue pertaining BAT performance in allergy specific therapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Medicine; University of Verona; Verona, Italy
- Laboratory of Physiopathology of Obesity; Depertment of Medicine-University of Verona; LURM Est Policlinico GB Rossi; Verona, Italy
| |
Collapse
|
30
|
Chirumbolo S, Olivieri M. Increase in human basophils IgE-mediated stimulation by omalizumab: A role for membrane FcγRs? J Allergy Clin Immunol 2014; 133:1493-4. [DOI: 10.1016/j.jaci.2013.12.1094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/05/2013] [Indexed: 12/18/2022]
|
31
|
Baravalle G, Greer AM, LaFlam TN, Shin JS. Antigen-conjugated human IgE induces antigen-specific T cell tolerance in a humanized mouse model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:3280-8. [PMID: 24610015 PMCID: PMC4472313 DOI: 10.4049/jimmunol.1301751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) play an important role in immune homeostasis through their ability to present Ags at steady state and mediate T cell tolerance. This characteristic renders DCs an attractive therapeutic target for the induction of tolerance against auto-antigens or allergens. Accordingly, Ag-conjugated DC-specific Abs have been proposed to be an excellent vehicle to deliver Ags to DCs for presentation and tolerance induction. However, this approach requires laborious reagent generation procedures and entails unpredictable side effects resulting from Ab-induced crosslinking of DC surface molecules. In this study, we examined whether IgE, a high-affinity, non-cross-linking natural ligand of FcεRI, could be used to target Ags to DCs and to induce Ag-specific T cell tolerance. We found that Ag-conjugated human IgE Fc domain (Fcε) effectively delivered Ags to DCs and enhanced Ag presentation by 1000- to 2500-fold in human FcεRIα-transgenic mice. Importantly, this presentation resulted in a systemic deletion of Ag-specific T cells and prevented these mice from developing delayed-type hypersensitivity, which is critically dependent on Ag-specific T cell immunity. Thus, targeting FcεRI on DCs via Ag-Fcε fusion protein may serve an alternative method to induce Ag-specific T cell tolerance in humans.
Collapse
Affiliation(s)
- Günther Baravalle
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143
| | - Alexandra M. Greer
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143
| | - Taylor N. LaFlam
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
32
|
Greer AM, Wu N, Putnam AL, Woodruff PG, Wolters P, Kinet JP, Shin JS. Serum IgE clearance is facilitated by human FcεRI internalization. J Clin Invest 2014; 124:1187-98. [PMID: 24569373 DOI: 10.1172/jci68964] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 12/12/2013] [Indexed: 11/17/2022] Open
Abstract
The high-affinity IgE receptor FcεRI is constitutively expressed in mast cells and basophils and is required for transmitting stimulatory signals upon engagement of IgE-bound allergens. FcεRI is also constitutively expressed in dendritic cells (DCs) and monocytes in humans; however, the specific functions of the FcεRI expressed by these cells are not completely understood. Here, we found that FcεRI expressed by human blood DC antigen 1-positive (BDCA1+) DCs and monocytes, but not basophils, traffics to endolysosomal compartments under steady-state conditions. Furthermore, IgE bound to FcεRI on BDCA1+ DCs was rapidly endocytosed, transported to the lysosomes, and degraded in vitro. IgE injected into mice expressing human FcεRIα (FCER1A-Tg mice) was endocytosed by conventional DCs and monocytes, and endocytosis was associated with rapid clearance of circulating IgE from these mice. Importantly, this rapid IgE clearance was dependent on monocytes or DCs but not basophils. These findings strongly suggest that constitutive internalization of human FcεRI by DCs and monocytes distinctively contributes to serum IgE clearance.
Collapse
|
33
|
Singer J, Jensen‐Jarolim E. IgE-based immunotherapy of cancer: challenges and chances. Allergy 2014; 69:137-49. [PMID: 24117861 PMCID: PMC4022995 DOI: 10.1111/all.12276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 12/16/2022]
Abstract
Passive immunotherapy with monoclonal antibodies is an indispensable cornerstone of clinical oncology. Notably, all FDA-approved antibodies comprise the IgG class, although numerous research articles proposed monoclonal antibodies of the IgM, IgG, IgA and IgE classes directed specifically against tumor-associated antigens. In particular, for the IgE isotype class, several recent studies could demonstrate high tumoricidic efficacy. Therefore, this review specifically highlights the latest developments toward IgE-based immunotherapy of cancer. Possible mechanisms and safety aspects of IgE-mediated tumor cell death are discussed with special focus on the attracted immune cells. An outlook is given on how especially comparative oncology could contribute to further developments. Humans and dogs have a highly comparable IgE biology, suggesting that translational AllergoOncology studies in patients with canine cancer could have predictive value for the potential of IgE-based anticancer immunotherapy in human clinical oncology.
Collapse
Affiliation(s)
- J. Singer
- Comparative Immunology and Oncology Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - E. Jensen‐Jarolim
- Comparative Immunology and Oncology Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
- Comparative Medicine Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
| |
Collapse
|
34
|
Okayama Y, Matsuda A, Kashiwakura JI, Sasaki-Sakamoto T, Nunomura S, Shimokawa T, Yamaguchi K, Takahashi S, Ra C. Highly expressed cytoplasmic FcεRIβ in human mast cells functions as a negative regulator of the FcRγ-mediated cell activation signal. Clin Exp Allergy 2014; 44:238-49. [DOI: 10.1111/cea.12210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Okayama
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - A. Matsuda
- Department of Ophthalmology; Juntendo University School of Medicine; Tokyo Japan
| | - J.-I. Kashiwakura
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - T. Sasaki-Sakamoto
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - S. Nunomura
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - T. Shimokawa
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - K. Yamaguchi
- Department of Urology; Nihon University School of Medicine; Tokyo Japan
| | - S. Takahashi
- Department of Urology; Nihon University School of Medicine; Tokyo Japan
| | - C. Ra
- Department of Microbiology; Nihon University School of Medicine; Tokyo Japan
| |
Collapse
|
35
|
Abstract
Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin that play a prominent role in allergic diseases. They express the high-affinity receptor for IgE (FcεRI), which when cross-linked by multivalent antigens triggers the release of preformed mediators, generation of arachidonic acid metabolites, and the synthesis of cytokines and chemokines. Stimulation of the FcεRI with increasing antigen concentrations follows a characteristic bell-shaped dose-responses curve. At high antigen concentrations, the so-called supra-optimal conditions, repression of FcεRI-induced responses is facilitated by activation and incorporation of negative signaling regulators. In this context, the SH2-containing inositol-5'-phosphatase, SHIP1, has been demonstrated to be of particular importance. SHIP1 with its catalytic and multiple protein interaction sites provides several layers of control for FcεRI signaling. Regulation of SHIP1 function occurs on various levels, e.g., protein expression, receptor and membrane recruitment, competition for protein-protein interaction sites, and activating modifications enhancing the phosphatase function. Apart from FcεRI-mediated signaling, SHIP1 can be activated by diverse unrelated receptor systems indicating its involvement in the regulation of antigen-dependent cellular responses by autocrine feedback mechanisms or tissue-specific and/or (patho-) physiologically determined factors. Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for patients suffering from acute or chronic inflammation or allergies.
Collapse
|
36
|
Abstract
Antibody-based immunotherapies are important therapy options in human oncology. Although human humoral specific immunity is constituted of five different immunoglobulin classes, currently only IgG-based immunotherapies have proceeded to clinical application. This review, however, discusses the benefits and difficulties of IgE-based immunotherapy of cancer, with special emphasis on how to translate promising preclinical results into clinical studies. Pursuing the “Comparative Oncology” approach, novel drug candidates are investigated in clinical trials with veterinary cancer patients, most often dogs. By this strategy drug development could be speeded up, animal experiments could be reduced and novel therapy options could be introduced benefitting humans as well as man’s best friend.
Collapse
Affiliation(s)
- Josef Singer
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria ; Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Abós B, Castro R, Pignatelli J, Luque A, González L, Tafalla C. Transcriptional heterogeneity of IgM+ cells in rainbow trout (Oncorhynchus mykiss) tissues. PLoS One 2013; 8:e82737. [PMID: 24324826 PMCID: PMC3855791 DOI: 10.1371/journal.pone.0082737] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022] Open
Abstract
Two major classes of B lymphocytes have been described to date in rainbow trout: IgM+ and IgT+ cells. IgM+ cells are mainly localized in the spleen, peripheral blood and kidney but are also found in other tissues. However, differences among IgM+ cell populations attending to its location are poorly defined in fish. Thus, the aim of this work was to characterize the expression of different immune molecules such as chemokine receptors, Toll-like receptors (TLRs) and transcription factors on sorted IgM+ lymphocytes from different rainbow trout tissues. IgM+ populations from blood, spleen, kidney, gills, intestine and liver were isolated by cell sorting and the constitutive levels of transcription of these genes evaluated by real-time PCR. To further characterize B cells, we identified an MS4A sequence. In humans, the MS4A family includes several genes with immune functions, such as the B cell marker CD20 or FcRβ. Subsequently, we have also evaluated the mRNA levels of this MS4A gene in the different IgM+ populations. The relevant differences in transcriptional patterns observed for each of these IgM+ populations analyzed, point to the presence of functionally different tissue-specific B cell populations in rainbow trout. The data shown provides a pattern of genes transcribed in IgM+ B cells not previously revealed in teleost fish. Furthermore, the constitutive expression of all the TLR genes analyzed in IgM+ cells suggests an important role for these cells in innate immunity.
Collapse
Affiliation(s)
- Beatriz Abós
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Rosario Castro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Jaime Pignatelli
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Alfonso Luque
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Lucia González
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
- * E-mail:
| |
Collapse
|
38
|
Daniels-Wells TR, Helguera G, Leuchter RK, Quintero R, Kozman M, Rodríguez JA, Ortiz-Sánchez E, Martínez-Maza O, Schultes BC, Nicodemus CF, Penichet ML. A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy. BMC Cancer 2013; 13:195. [PMID: 23594731 PMCID: PMC3651304 DOI: 10.1186/1471-2407-13-195] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 03/06/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 and CD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa. METHODS Binding characteristics of the antibody were determined by ELISA and flow cytometry. In vitro degranulation was determined by the release of β-hexosaminidase from effector cells. In vivo degranulation was monitored in human FcεRIα transgenic mice using the passive cutaneous anaphylaxis assay. These mice were also used for a vaccination study to determine the in vivo anti-cancer effects of this antibody. Significant differences in survival were determined using the Log Rank test. In vitro T-cell activation was studied using human dendritic cells and autologous T cells. RESULTS The anti-PSA IgE, expressed in murine myeloma cells, is properly assembled and secreted, and binds the antigen and FcεRI. In addition, this antibody is capable of triggering effector cell degranulation in vitro and in vivo when artificially cross-linked, but not in the presence of the natural soluble antigen, suggesting that such an interaction will not trigger systemic anaphylaxis. Importantly, the anti-PSA IgE combined with PSA also triggers immune activation in vitro and in vivo and significantly prolongs the survival of human FcεRIα transgenic mice challenged with PSA-expressing tumors in a prophylactic vaccination setting. CONCLUSIONS The anti-PSA IgE exhibits the expected biological properties and is capable of triggering immune activation and anti-tumor protection. Further studies on this antibody as a potential PCa therapy are warranted.
Collapse
Affiliation(s)
- Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gustavo Helguera
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Current Affiliation: School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Richard K Leuchter
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rafaela Quintero
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maggie Kozman
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - José A Rodríguez
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Elizabeth Ortiz-Sánchez
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Current Affiliation: Unit of Biomedical Research in Cancer, Basic Research Division, National Institute of Cancerology, Mexico City, Mexico
| | - Otoniel Martínez-Maza
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Birgit C Schultes
- Advanced Immune Therapeutics, Inc, Charlestown, MA, USA
- Current Affiliation: Momenta Pharmaceuticals, Inc, Cambridge, MA, USA
| | - Christopher F Nicodemus
- Advanced Immune Therapeutics, Inc, Charlestown, MA, USA
- Current Affiliation: AIT Strategies, Franconia, NH, USA
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Molecular Biology Institute, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Huber M. Activation/Inhibition of mast cells by supra-optimal antigen concentrations. Cell Commun Signal 2013; 11:7. [PMID: 23339289 PMCID: PMC3598417 DOI: 10.1186/1478-811x-11-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/13/2013] [Indexed: 01/12/2023] Open
Abstract
Mast cells (MCs) are tissue resident cells of hemopoietic origin and are critically involved in allergic diseases. MCs bind IgE by means of their high-affinity receptor for IgE (FcεRI). The FcεRI belongs to a family of multi-chain immune recognition receptors and is activated by cross-linking in response to multivalent antigens (Ags)/allergens. Activation of the FcεRI results in immediate release of preformed granular substances (e.g. histamine, heparin, and proteases), generation of arachidonic acid metabolites, and production of pro-inflammatory cytokines. The FcεRI shows a remarkable, bell-shaped dose-response behavior with weak induction of effector responses at both low and high (so-called supra-optimal) Ag concentrations. This is significantly different from many other receptors, which reach a plateau phase in response to high ligand concentrations. To explain this unusual dose-response behavior of the FcεRI, scientists in the past have drawn parallels to so-called precipitin curves resulting from titration of Ag against a fixed concentration of antibody (Ab) in solution (a.k.a. Heidelberger curves). Thus, for high, supra-optimal Ag concentrations one could assume that every IgE-bound FcεRI formed a monovalent complex with “its own Ag”, thus resulting in marginal induction of effector functions due to absence of receptor cross-linking. However, this was never proven to be the case. More recently, careful studies of FcεRI activation and signaling events in MCs in response to supra-optimal Ag concentrations have suggested a molecular explanation for the descending part of this bell-shaped curve. It is obvious now that extensive FcεRI/IgE/Ag clusters are formed and inhibitory molecules and signalosomes are engaged in response to supra-optimal cross-linking (amongst them the Src family kinase Lyn and the inositol-5′-phosphatase SHIP1) and they actively down-regulate MC effector responses. Thus, the analysis of MC signaling triggered by supra-optimal crosslinking holds great potential for identifying novel targets for pharmacologic therapeutic intervention to benefit patients with acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstr, 30, 52074, Aachen, Germany.
| |
Collapse
|
40
|
Nam YH, Kim JE, Kim SH, Jin HJ, Hwang EK, Shin YS, Ye YM, Park HS. Identifying genetic susceptibility to sensitization to cephalosporins in health care workers. J Korean Med Sci 2012; 27:1292-9. [PMID: 23166408 PMCID: PMC3492661 DOI: 10.3346/jkms.2012.27.11.1292] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022] Open
Abstract
Exposure to cephalosporins could cause occupational allergic diseases in health care workers (HCWs). We evaluated the prevalence of serum specific IgE and IgG antibodies to cephalosporin-human serum albumin (HSA) conjugate and to identify potential genetic risk factors associated with sensitization to cephalosporins in exposed HCWs. The study population consisted of 153 HCWs who had been exposed to antibiotics in a single university hospital and 86 unexposed healthy controls. A questionnaire survey of work-related symptoms (WRS) was administered. A skin-prick test (SPT) was performed, and serum-specific IgE and IgG antibodies to 3 commonly prescribed cephalosporins were measured by ELISA. Four single-nucleotide polymorphisms of the candidate genes related to IgE sensitization were genotyped. The prevalence of WRS to cephalosporins was 2.6%. The prevalence rates of serum-specific IgE and IgG antibodies to cephalosporins were 20.3% and 14.7%, respectively. The FcεR1β-109T > C polymorphism was significantly associated with IgE sensitization to cephalosporins in HCWs (P = 0.036, OR = 3.553; CI, 1.324-9.532). The in vitro functional assay demonstrated that the T allele of FcεR1β-109T had greater promoter activity than did the C allele (P < 0.001). The FcεR1β-109T > C polymorphism may be a potential genetic risk factor for increased IgE sensitization to cephalosporins.
Collapse
Affiliation(s)
- Young-Hee Nam
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Jeong-Eun Kim
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Seung-Hyun Kim
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Jung Jin
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Eui-Kyung Hwang
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo-Seob Shin
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Young-Min Ye
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
41
|
Okayama Y, Kashiwakura JI, Matsuda A, Sasaki-Sakamoto T, Nunomura S, Yokoi N, Ebihara N, Kuroda K, Ohmori K, Saito H, Ra C. The interaction between Lyn and FcεRIβ is indispensable for FcεRI-mediated human mast cell activation. Allergy 2012; 67:1241-9. [PMID: 22845063 DOI: 10.1111/j.1398-9995.2012.02879.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Y. Okayama
- Division of Molecular Cell Immunology and Allergology; Department of Biomedical Sciences; Nihon University School of Medicine; Tokyo; Japan
| | - J.-I. Kashiwakura
- Division of Molecular Cell Immunology and Allergology; Department of Biomedical Sciences; Nihon University School of Medicine; Tokyo; Japan
| | - A. Matsuda
- Department of Ophthalmology; Juntendo University School of Medicine; Tokyo; Japan
| | - T. Sasaki-Sakamoto
- Division of Molecular Cell Immunology and Allergology; Department of Biomedical Sciences; Nihon University School of Medicine; Tokyo; Japan
| | - S. Nunomura
- Division of Molecular Cell Immunology and Allergology; Department of Biomedical Sciences; Nihon University School of Medicine; Tokyo; Japan
| | - N. Yokoi
- Department of Ophthalmology; Kyoto Prefectural University of Medicine; Kyoto; Japan
| | - N. Ebihara
- Department of Ophthalmology; Juntendo University School of Medicine; Tokyo; Japan
| | - K. Kuroda
- Division of Microbiology; Nihon University School of Medicine; Tokyo; Japan
| | - K. Ohmori
- Department of Thoracic Surgery; Nihon University School of Medicine; Tokyo; Japan
| | - H. Saito
- Department of Allergy and Immunology; National Research Institute for Child Health and Development; Tokyo; Japan
| | - C. Ra
- Division of Molecular Cell Immunology and Allergology; Department of Biomedical Sciences; Nihon University School of Medicine; Tokyo; Japan
| |
Collapse
|
42
|
Okayama Y, Kashiwakura JI, Matsuda A, Sasaki-Sakamoto T, Nunomura S, Yokoi N, Ebihara N, Kuroda K, Ohmori K, Saito H, Ra C. The interaction between Lyn and FcεRIβ is indispensable for FcεRI-mediated human mast cell activation. Allergy 2012. [PMID: 22845063 DOI: 10.1111/j.1398-9995.2012.02879.x.] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND FcεRIβ reportedly functions as an amplifier of the FcεRIγ-mediated activation signal using a reconstitution system. However, the amplification mechanisms in human mast cells (MCs) are poorly understood. We previously reported the hyperexpression of FcεRIβ of MCs in giant papillae from vernal keratoconjunctivitis patients, compared with that in conjunctivae from nonallergic conjunctivitis patients. Elucidation of the molecular mechanisms of the amplification induced by FcεRIβ should provide new targets for novel therapeutic interventions. The aim is to understand in greater details the function of FcεRIβ in human MC FcεRI expression and signaling. METHODS FcεRIβ and Lyn expression was reduced using a lentiviral shRNA silencing technique. Localization of Lyn and FcεRIβ in cultured MCs was examined by confocal microscopic analysis. Mediators were measured by ELISAs. RESULTS The diminution of FcεRIβ significantly downregulated cell surface FcεRI expression and FcεRI-mediated mediator release/production. The downregulation of FcεRI-mediated degranulation was not only due to the decrease in FcεRI expression. The diminution of FcεRIβ inhibited the redistribution of Lyn within the cell membrane following IgE sensitization. The diminution of Lyn in MCs significantly downregulated FcεRI-mediated degranulation. The recombinant cell-penetrating forms of phosphorylated FcεRIβ immunoreceptor tyrosine-based activation motif (ITAM) for intracellular delivery disturbed the interaction between Lyn and phosphorylated endogenous FcεRIβ ITAM, resulted in inhibiting IgE-dependent histamine release from MCs in vitro and from giant papillae specimens ex vivo. CONCLUSION The interaction between Lyn and FcεRIβ is indispensable for FcεRI-mediated human MC activation, and specific inhibition of the interaction may represent a new therapeutic strategy for the treatment of human allergic diseases.
Collapse
Affiliation(s)
- Y Okayama
- Division of Molecular Cell Immunology and Allergology, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ra C, Nunomura S, Okayama Y. Fine-Tuning of Mast Cell Activation by FcεRIβ Chain. Front Immunol 2012; 3:112. [PMID: 22623922 PMCID: PMC3353146 DOI: 10.3389/fimmu.2012.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/20/2012] [Indexed: 12/23/2022] Open
Abstract
Mast cells play a key role in allergic reaction and disorders through the high affinity receptor for IgE (FcεRI) which is primarily activated by IgE and antigen complex. In humans, mast cells express two types of FcεRI on the cell surface, tetrameric αβγ2 and trimeric αγ2, whereas in mice, the tetrameric αβγ2 type is exclusively expressed. In human allergic inflammation lesions, mast cells increase in number and preferentially express the αβγ2 type FcεRI. By contrast, in the lesion of non-allergic inflammation, mast cells mainly express the αγ2type. Since the β chain amplifies the expression and signaling of FcεRI, mast cell effector functions and allergic reaction in vivo are enhanced in the presence of the β chain. In contrast, a truncated β chain-isoform (βT) inhibits FcεRI surface expression. The human FcεRIβ gene contains seven exons and a repressor element located in the forth intron, through which FcεRIβ transcription is repressed in the presence of GM-CSF. Regarding the additional signal regulatory function of the β chain, the β chain ITAM has dual (positive and negative) functions in the regulation of the mast cell activation. Namely, the FcεRIβ chain ITAM enhances the mast cell activation signal triggered by a low-intensity (weak) stimulation whereas it suppresses the signal triggered by high-intensity (strong) stimulation. In an oxazolone-induced mouse CHS model, IgE-mediated mast cell activation is required and the β chain ITAM is crucially involved. Adenosine receptor, one of the GPCRs, triggers a synergistic degranulation response with FcεRI in mast cells, for which the β chain ITAM critically plays positive role, possibly reflecting the in vivo allergic response. These regulatory functions of the FcεRIβ ITAM finely tune FcεRI-induced mast cell activation depending on the stimulation strength, enabling the FcεRIβ chain to become a potential molecular target for the development of new strategies for therapeutic interventions for allergies.
Collapse
Affiliation(s)
- Chisei Ra
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science Tokyo, Japan
| | | | | |
Collapse
|
44
|
Redhu NS, Gounni AS. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle. Pulm Pharmacol Ther 2012; 26:86-94. [PMID: 22580035 DOI: 10.1016/j.pupt.2012.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 12/27/2022]
Abstract
The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.
Collapse
Affiliation(s)
- Naresh Singh Redhu
- Department of Immunology, Faculty of Medicine, University of Manitoba, 419 Apotex Centre, 750 McDermot Ave, Winnipeg, Manitoba, Canada R3E 0T5
| | | |
Collapse
|
45
|
Daniels TR, Martínez-Maza O, Penichet ML. Animal models for IgE-meditated cancer immunotherapy. Cancer Immunol Immunother 2011; 61:1535-46. [PMID: 22193986 DOI: 10.1007/s00262-011-1169-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
Although most monoclonal antibodies developed for cancer therapy are of the IgG class, antibodies of the IgE class have certain properties that make them attractive as cancer therapeutics. These properties include the superior affinity for the Fc epsilon receptors (FcεRs), the low serum level of IgE that minimizes competition of endogenous IgE for FcεR occupancy, and the ability to induce a broad and vigorous immune response through the interaction with multiple cells including mast cells, basophils, monocytes, macrophages, dendritic cells, and eosinophils. Tumor-targeted IgE antibodies are expected to harness the allergic response against tumors and activate a secondary, T-cell-mediated immune response. Importantly, the IgE antibody can be used for passive immunotherapy and as an adjuvant of cancer vaccines. However, there are important limitations in the use of animal models including the fact that human IgE does not interact with rodent FcεRs and that there is a different cellular distribution of FcεRs in humans and rodents. Despite these limitations, different murine models have been used with success to evaluate the in vivo anti-cancer activity of several IgE antibodies. These models include wild-type immunocompetent animals bearing syngeneic tumors, xenograft models using immunocompromised mice bearing human tumors and reconstituted with human effector cells, and human FcεRIα transgenic mice bearing syngeneic tumors. In addition, non-human primates such as cynomolgus monkeys can be potentially used for toxicological and pharmacokinetic studies. This article describes the advantages and disadvantages of these models and their use in evaluating the in vivo properties of IgE antibodies for cancer therapy.
Collapse
Affiliation(s)
- Tracy R Daniels
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
46
|
Feng XL, Liu QT, Cao RB, Zhou B, Ma ZY, Deng WL, Wei JC, Qiu YF, Wang FQ, Gu JY, Wang FJ, Zheng QS, Ishag H, Chen PY. Identification and characterization of novel immunomodulatory bursal-derived pentapeptide-II (BPP-II). J Biol Chem 2011; 287:3798-807. [PMID: 22184121 DOI: 10.1074/jbc.m111.273854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bursa of Fabricius, the acknowledged central humoral immune organ, plays a vital role in B lymphocyte differentiation. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of bursal-derived peptides. In this paper, a novel bursal-derived pentapeptide-II (BPP-II, MTLTG) was isolated and exerted immunomodulatory functions on antibody responses in vitro. Gene microarray analyses demonstrated that BPP-II regulated expression of 2478 genes in a mouse-derived hybridoma cell line. Immune-related gene ontology functional procedures were employed for further functional analysis. Furthermore, the majority of BPP-II-regulated pathways were associated with immune responses and tumor processes. Moreover, BPP-II exhibited immunomodulatory effects on antigen-specific immune responses in vivo, including enhancement of avian influenza virus (H9N2 subtype)-specific antibody and cytokine production and modification of T cell immunophenotypes and lymphocyte proliferation. Finally, BPP-II triggered p53 expression and stabilization and selectively inhibited tumor cell proliferation. These data identified the multifunctional factor, BPP-II, as a novel biomaterial representing an important linking between the humoral central immune system and immune induction, including antitumor. Information generated in this study elucidates further the mechanisms involved in humoral immune system and represents the potential basis of effective immunotherapeutic strategies for treating human tumors and immune improvement.
Collapse
Affiliation(s)
- Xiu-Li Feng
- Division of Key Laboratory of Animal Disease Diagnosis and Immunology, Department of Agriculture of China, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Daniels TR, Leuchter RK, Quintero R, Helguera G, Rodríguez JA, Martínez-Maza O, Schultes BC, Nicodemus CF, Penichet ML. Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells. Cancer Immunol Immunother 2011; 61:991-1003. [PMID: 22127364 DOI: 10.1007/s00262-011-1150-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/28/2011] [Indexed: 12/23/2022]
Abstract
Breast and ovarian cancer are two of the leading causes of cancer deaths among women in the United States. Overexpression of the HER2/neu oncoprotein has been reported in patients affected with breast and ovarian cancers, and is associated with poor prognosis. To develop a novel targeted therapy for HER2/neu expressing tumors, we have constructed a fully human IgE with the variable regions of the scFv C6MH3-B1 specific for HER2/neu. This antibody was expressed in murine myeloma cells and was properly assembled and secreted. The Fc region of this antibody triggers in vitro degranulation of rat basophilic cells expressing human FcεRI (RBL SX-38) in the presence of murine mammary carcinoma cells that express human HER2/neu (D2F2/E2), but not the shed (soluble) antigen (ECD(HER2)) alone. This IgE is also capable of inducing passive cutaneous anaphylaxis in a human FcεRIα transgenic mouse model, in the presence of a cross-linking antibody, but not in the presence of soluble ECD(HER2). Additionally, IgE enhances antigen presentation in human dendritic cells and facilitates cross-priming, suggesting that the antibody is able to stimulate a secondary T-cell anti-tumor response. Furthermore, we show that this IgE significantly prolongs survival of human FcεRIα transgenic mice bearing D2F2/E2 tumors. We also report that the anti-HER2/neu IgE is well tolerated in a preliminary study conducted in Macaca fascicularis (cynomolgus) monkeys. In summary, our results suggest that this IgE should be further explored as a potential therapeutic against HER2/neu overexpressing tumors, such as breast and ovarian cancers.
Collapse
Affiliation(s)
- Tracy R Daniels
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 90095-1782, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nigro EA, Soprana E, Brini AT, Ambrosi A, Yenagi VA, Dombrowicz D, Siccardi AG, Vangelista L. An Antitumor Cellular Vaccine Based on a Mini-Membrane IgE. THE JOURNAL OF IMMUNOLOGY 2011; 188:103-10. [DOI: 10.4049/jimmunol.1101842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
FcεRI-induced mast cell cytokine production critically involves an aspartic acid residue (D234) in the C-terminal intracellular domain of the FcεRIβ chain. Biochem Biophys Res Commun 2011; 410:744-8. [DOI: 10.1016/j.bbrc.2011.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/03/2011] [Indexed: 11/21/2022]
|
50
|
Cruse G, Kaur D, Leyland M, Bradding P. A novel FcεRIβ-chain truncation regulates human mast cell proliferation and survival. FASEB J 2010; 24:4047-57. [PMID: 20554927 PMCID: PMC2996906 DOI: 10.1096/fj.10-158378] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 06/03/2010] [Indexed: 12/26/2022]
Abstract
Mast cells contribute to allergy through IgE-dependent activation via the high-affinity IgE receptor FcεRI. The role of the FcεRIβ chain (MS4A2) in mast cell function is not understood fully, although it serves to amplify FcεRI-dependent signaling. We demonstrate the expression of a novel MS4A2 truncation lacking exon 3 in human mast cells termed MS4A2(trunc). MS4A2(trunc) gene expression was regulated negatively by the mast cell growth factor stem cell factor (SCF), and its expression was not detected in the SCF receptor gain-of-function human mast cell line HMC-1. Unlike MS4A2, MS4A2(trunc) did not traffic to the cytoplasmic membrane but instead was associated with the nuclear membrane. Overexpression of MS4A2(trunc) induced human lung mast cell death and profoundly inhibited HMC-1 cell proliferation by inducing G(2)-phase cell cycle arrest and apoptosis. Thus, we have identified a novel splice variant of MS4A2 that might be important in the regulation of human mast cell proliferation and survival. This finding demonstrates that the MS4A2 gene has multiple roles, extending beyond the regulation of acute allergic responses. By understanding the mechanisms regulating its function, it might be possible to induce its expression in mast cells in vivo, which could lead to better treatments for diseases such as mastocytosis and asthma.
Collapse
Affiliation(s)
- Glenn Cruse
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Glenfield Hospital, University of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|