1
|
Khalatyan AS, Shishparenok AN, Avetisov KS, Gladilina YA, Blinova VG, Zhdanov DD. Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration. Biomedicines 2024; 12:1893. [PMID: 39200358 PMCID: PMC11351114 DOI: 10.3390/biomedicines12081893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Age plays a primary role in the development of age-related macular degeneration (AMD). Telomere length (TL) is one of the most relevant biomarkers of aging. In our study, we aimed to determine the association of TL with T lymphocytes, B lymphocytes, NK cells or monocytes with different forms of AMD. METHODS Our study included 62 patients with AMD: geographic atrophy (GA), neovascular AMD (NVAMD) with and without macular atrophy and 22 healthy controls. Each leukocyte subtype was isolated from peripheral blood by immunomagnetic separation, and the DNA was purified. The TL in the genomic DNA was determined using qPCR by amplifying the telomere region with specific oligonucleotide primers and normalizing to the control gene. Statistical analysis was performed using R version 4.5.1. RESULTS We observed a statistically significant increase in TL in the T cells between the control and NVAMD groups but not for the GA group. The B cells and monocytes showed a significant decrease in TL in all AMD groups. The TL in the NK cells did not decrease in any of the AMD groups. CONCLUSIONS The TL in the monocytes had the strongest association with AMD. It reflects a person's "telomeric status" and may become a diagnostic hallmark of these degenerative processes.
Collapse
Affiliation(s)
- Anait S. Khalatyan
- Krasnov Research Institute of Eye Diseases, 11A, B, Rossolimo Str., Moscow 119021, Russia;
| | - Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Konstantin S. Avetisov
- Krasnov Research Institute of Eye Diseases, 11A, B, Rossolimo Str., Moscow 119021, Russia;
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| |
Collapse
|
2
|
Drobyshev A, Modestov A, Suntsova M, Poddubskaya E, Seryakov A, Moisseev A, Sorokin M, Tkachev V, Zakharova G, Simonov A, Zolotovskaia MA, Buzdin A. Pan-cancer experimental characteristic of human transcriptional patterns connected with telomerase reverse transcriptase ( TERT) gene expression status. Front Genet 2024; 15:1401100. [PMID: 38859942 PMCID: PMC11163056 DOI: 10.3389/fgene.2024.1401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.
Collapse
Affiliation(s)
- Aleksey Drobyshev
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Modestov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Poddubskaya
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Clinical Center Vitamed, Moscow, Russia
| | | | - Aleksey Moisseev
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maksim Sorokin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Galina Zakharova
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksander Simonov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
| | - Anton Buzdin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Wang B, Xiong Y, Li R, Zhang J, Zhang S. Shorter telomere length increases the risk of lymphocyte immunodeficiency: A Mendelian randomization study. Immun Inflamm Dis 2024; 12:e1251. [PMID: 38607251 PMCID: PMC11010948 DOI: 10.1002/iid3.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND For a long time, the prevailing viewpoint suggests that shorter telomere contribute to chromosomal instability, which is a shared characteristic of both aging and cancer. The newest research presented that T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to some cancers. However, the relationship between genetically determined telomere length (TL) and immune cells remains unclear. METHODS The two-sample Mendelian randomization analysis was conducted to elucidate the potential causal relationship. The genetic data of TL and immune cells were obtained from the Genome-Wide Association Study. The inverse variance weighted (IVW) method was used to estimate the effects primarily and another four methods were as a supplement. Sensitivity analysis was used to test the results. RESULTS The IVW method showed a significant correlation between TL and the percentage of T cells in lymphocytes (odds ratio [OR]: 1.222, 95% confidence interval [CI]: 1.014-1.472, p = .035), indicating that shorter TL significantly increases the risk of low T cell percentage. Further analysis of T cell subsets indicated that shorter TL may primarily lead to a lower percentage of Natural Killer T cells (OR: 1.574, 95% CI: 1.281-1.935, p < .001). Analysis of B cell subsets revealed that shorter TL may be associated with a higher percentage of Naive-mature B cells, and a lower percentage of Memory B cells. And the sensitivity analysis indicated the validity and robustness of our findings. CONCLUSION In summary, our findings suggest that shorter TL may be associated with a decline in the percentage of T cell, as well as impediments in the differentiation of B cell, consequently leading to the onset of immunosenescence and immunodeficiency. The relevant mechanisms and potential therapeutic avenues still need further investigation.
Collapse
Affiliation(s)
- Bo Wang
- Department of Geriatric Digestive Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yongqiang Xiong
- Department of Geriatric Digestive Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ren Li
- Department of Geriatric Digestive Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jiewen Zhang
- Department of Geriatric Digestive Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Shu Zhang
- Department of Geriatric Digestive Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Experimental Teaching Center for Clinical Skillsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
4
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
5
|
Soerens AG, Künzli M, Quarnstrom CF, Scott MC, Swanson L, Locquiao JJ, Ghoneim HE, Zehn D, Youngblood B, Vezys V, Masopust D. Functional T cells are capable of supernumerary cell division and longevity. Nature 2023; 614:762-766. [PMID: 36653453 DOI: 10.1038/s41586-022-05626-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Differentiated somatic mammalian cells putatively exhibit species-specific division limits that impede cancer but may constrain lifespans1-3. To provide immunity, transiently stimulated CD8+ T cells undergo unusually rapid bursts of numerous cell divisions, and then form quiescent long-lived memory cells that remain poised to reproliferate following subsequent immunological challenges. Here we addressed whether T cells are intrinsically constrained by chronological or cell-division limits. We activated mouse T cells in vivo using acute heterologous prime-boost-boost vaccinations4, transferred expanded cells to new mice, and then repeated this process iteratively. Over 10 years (greatly exceeding the mouse lifespan)5 and 51 successive immunizations, T cells remained competent to respond to vaccination. Cells required sufficient rest between stimulation events. Despite demonstrating the potential to expand the starting population at least 1040-fold, cells did not show loss of proliferation control and results were not due to contamination with young cells. Persistent stimulation by chronic infections or cancer can cause T cell proliferative senescence, functional exhaustion and death6. We found that although iterative acute stimulations also induced sustained expression and epigenetic remodelling of common exhaustion markers (including PD1, which is also known as PDCD1, and TOX) in the cells, they could still proliferate, execute antimicrobial functions and form quiescent memory cells. These observations provide a model to better understand memory cell differentiation, exhaustion, cancer and ageing, and show that functionally competent T cells can retain the potential for extraordinary population expansion and longevity well beyond their organismal lifespan.
Collapse
Affiliation(s)
- Andrew G Soerens
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Künzli
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Clare F Quarnstrom
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Milcah C Scott
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Lee Swanson
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - J J Locquiao
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benjamin Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Wang H, Yin X, Fang T, Lou S, Han B, Gao J, Wang Y, Zhang D, Wang X, Lu Z, Wu J, Zhang J, Wang Y, Zhang Y, Xue Y. Development and Validation of an Age-Related Gastric Cancer-Specific Immune Index. J Inflamm Res 2022; 15:6393-6407. [DOI: 10.2147/jir.s388792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
|
7
|
Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, Cull A, Maura F, Sanders MA, Cagan ATJ, McDonald C, Belmonte M, Shepherd MS, Vieira Braga FA, Osborne RJ, Mahbubani K, Martincorena I, Laurenti E, Green AR, Getz G, Polak P, Saeb-Parsy K, Hodson DJ, Kent DG, Campbell PJ. Diverse mutational landscapes in human lymphocytes. Nature 2022; 608:724-732. [PMID: 35948631 PMCID: PMC9402440 DOI: 10.1038/s41586-022-05072-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.
Collapse
Affiliation(s)
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Kübler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, United Kingdom
| | | | - Alyssa Cull
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK
- Biofidelity, 330 Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Krishnaa Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Anderson JJ, Susser E, Arbeev KG, Yashin AI, Levy D, Verhulst S, Aviv A. Telomere-length dependent T-cell clonal expansion: A model linking ageing to COVID-19 T-cell lymphopenia and mortality. EBioMedicine 2022; 78:103978. [PMID: 35367774 PMCID: PMC8970968 DOI: 10.1016/j.ebiom.2022.103978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Severe COVID-19 T-cell lymphopenia is more common among older adults and entails poor prognosis. Offsetting the decline in T-cell count during COVID-19 demands fast and massive T-cell clonal expansion, which is telomere length (TL)-dependent. METHODS We developed a model of TL-dependent T-cell clonal expansion capacity with age and virtually examined the relation of T-cell clonal expansion with COVID-19 mortality in the general population. FINDINGS The model shows that an individual with average hematopoietic cell TL (HCTL) at age twenty years maintains maximal T-cell clonal expansion capacity until the 6th decade of life when this capacity rapidly declines by more than 90% over the next ten years. The collapse in the T-cell clonal expansion capacity coincides with the steep increase in COVID-19 mortality with age. INTERPRETATION Short HCTL might increase vulnerability of many older adults, and some younger individuals with inherently short HCTL, to COVID-19 T-cell lymphopenia and severe disease. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- James J. Anderson
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA,Corresponding author.
| | - Ezra Susser
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA,New York State Psychiatric Institute, New York, NY 10032, USA
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 27705, USA,The Framingham Heart Study, Framingham, MA 01702, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherland
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
9
|
Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res 2021; 31:1244-1262. [PMID: 34702946 PMCID: PMC8546390 DOI: 10.1038/s41422-021-00573-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.
Collapse
|
10
|
Anderson JJ, Susser E, Arbeev KG, Yashin AI, Levy D, Verhulst S, Aviv A. Short Telomeres and a T-Cell Shortfall in COVID-19: The Aging Effect. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34268523 PMCID: PMC8282112 DOI: 10.1101/2021.05.19.21257474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The slow pace of global vaccination and the rapid emergence of SARS-CoV-2 variants suggest recurrent waves of COVID-19 in coming years. Therefore, understanding why deaths from COVID-19 are highly concentrated among older adults is essential for global health. Severe COVID-19 T-cell lymphopenia is more common among older adults, and it entails poor prognosis. Much about the primary etiology of this form of lymphopenia remains unknown, but regardless of its causes, offsetting the decline in T-cell count during SARS-CoV-2 infection demands fast and massive T-cell clonal expansion, which is telomere length (TL)-dependent. We have built a model that captures the effect of age-dependent TL shortening in hematopoietic cells and its effect on T-cell clonal expansion capacity. The model shows that an individual with average hematopoietic cell TL (HCTL) at age twenty years maintains maximal T-cell clonal expansion capacity until the 6th decade of life when this capacity plummets by more than 90% over the next ten years. The collapse coincides with the steep increase in COVID-19 mortality with age. HCTL metrics may thus explain the vulnerability of older adults to COVID-19. That said, the wide inter-individual variation in HCTL across the general population means that some younger adults with inherently short HCTL might be at risk of severe COVID-19 lymphopenia and mortality from the disease.
Collapse
|
11
|
Emerging Molecular Connections between NM23 Proteins, Telomeres and Telomere-Associated Factors: Implications in Cancer Metastasis and Ageing. Int J Mol Sci 2021; 22:ijms22073457. [PMID: 33801585 PMCID: PMC8036570 DOI: 10.3390/ijms22073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
The metastasis suppressor function of NM23 proteins is widely understood. Multiple enzymatic activities of NM23 proteins have also been identified. However, relatively less known interesting aspects are being revealed from recent developments that corroborate the telomeric interactions of NM23 proteins. Telomeres are known to regulate essential physiological events such as metastasis, ageing, and cellular differentiation via inter-connected signalling pathways. Here, we review the literature on the association of NM23 proteins with telomeres or telomere-related factors, and discuss the potential implications of emerging telomeric functions of NM23 proteins. Further understanding of these aspects might be instrumental in better understanding the metastasis suppressor functions of NM23 proteins.
Collapse
|
12
|
Tarry-Adkins JL, Aiken CE, Dearden L, Fernandez-Twinn DS, Ozanne S. Exploring Telomere Dynamics in Aging Male Rat Tissues: Can Tissue-Specific Differences Contribute to Age-Associated Pathologies? Gerontology 2021; 67:233-242. [PMID: 33677456 DOI: 10.1159/000511608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Due to increasing lifespan, global aging rates are rising rapidly and age-associated diseases are increasing. To ensure that health span is concomitant with life span, a greater understanding of cellular mechanisms of aging is important. METHODS Telomere length analysis from a wide range of tissues from weaning, young adult, and middle-aged (3, 12 and 52 week) male Wistar rats were conducted using Southern blotting. Telomere lengths were compared between tissues and ages using regression models based on the ratios of longest-to-shortest telomere fragments. RESULTS Robust linear age-dependent telomere attrition was observed in the liver; 3 versus 12 weeks, 3 versus 52 weeks (p < 0.01), 12 versus 52 weeks (p < 0.05) and the heart; 3 versus 12 weeks (p < 0.05) and 3 versus 52 weeks (p < 0.001). More subtle shortening was observed in aorta and epididymal fat; 3 and 12 versus 52 weeks (p < 0.001) and in skeletal muscle; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). Young thymus telomeres increased in length (3 vs. 12 weeks) and then shortened between 12 and 52 weeks (p < 0.001). We also reported disparity in telomere shortening within tissues: telomeres in aging brain cortex significantly shortened; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). This was not seen in the hypothalamic region. A robust stepwise shortening was observed in the renal cortex; 3 versus 12 weeks, 12 versus 52 weeks (p < 0.05), and 3 versus 52 weeks (p < 0.001), which was not as apparent in the renal medulla; 3 versus 12 weeks (p < 0.01) and 3 versus 52 weeks (p < 0.01). The vastus lateralis skeletal muscle demonstrated the shortest telomere length at weaning and underwent robust age-associated attrition; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). We demonstrated that specific tissues exhibit unique telomere attrition profiles which may partially explain why certain diseases are more prevalent in aged individuals. DISCUSSION/CONCLUSION We show wide variations between tissues in vulnerability to the aging process. In the future, this may help target potential interventions to improve health span.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom, .,Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom,
| | - Catherine E Aiken
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.,Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Susan Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Dalzini A, Petrara MR, Ballin G, Zanchetta M, Giaquinto C, De Rossi A. Biological Aging and Immune Senescence in Children with Perinatally Acquired HIV. J Immunol Res 2020; 2020:8041616. [PMID: 32509884 PMCID: PMC7246406 DOI: 10.1155/2020/8041616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-infected children suffer from premature aging and aging-related diseases. Viral replication induces an ongoing inflammation process, with the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), the activation of the immune system, and the production of proinflammatory cytokines. Although combined highly active antiretroviral therapy (ART) has significantly modified the natural course of HIV infection, normalization of T and B cell phenotype is not completely achievable; thus, many HIV-infected children display several phenotypical alterations, including higher percentages of activated cells, that favor an accelerated telomere attrition, and higher percentages of exhausted and senescent cells. All these features ultimately lead to the clinical manifestations related to premature aging and comorbidities typically observed in older general population, including non-AIDS-related malignancies. Therefore, even under effective treatment, the premature aging process of HIV-infected children negatively impacts their quality and length of life. This review examines the available data on the impact of HIV and ART on immune and biological senescence of HIV-infected children.
Collapse
Affiliation(s)
- Annalisa Dalzini
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Maria Raffaella Petrara
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Giovanni Ballin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | | | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| |
Collapse
|
14
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
15
|
Criscuolo F, Smith S, Zahn S, Heidinger BJ, Haussmann MF. Experimental manipulation of telomere length: does it reveal a corner-stone role for telomerase in the natural variability of individual fitness? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0440. [PMID: 29335364 DOI: 10.1098/rstb.2016.0440] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Telomeres, the non-coding ends of linear chromosomes, are thought to be an important mechanism of individual variability in performance. Research suggests that longer telomeres are indicative of better health and increased fitness; however, many of these data are correlational and whether these effects are causal are poorly understood. Experimental tests are emerging in medical and laboratory-based studies, but these types of experiments are rare in natural populations, which precludes conclusions at an evolutionary level. At the crossroads between telomere length and fitness is telomerase, an enzyme that can lengthen telomeres. Experimental modulation of telomerase activity is a powerful tool to manipulate telomere length, and to look at the covariation of telomerase, telomeres and individual life-history traits. Here, we review studies that manipulate telomerase activity in laboratory conditions and emphasize the associated physiological and fitness consequences. We then discuss how telomerase's impact on ageing may go beyond telomere maintenance. Based on this overview, we then propose several research avenues for future studies to explore how individual variability in health, reproduction and survival may have coevolved with different patterns of telomerase activity and expression. Such knowledge is of prime importance to fully understand the role that telomere dynamics play in the evolution of animal ageing.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- F Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - S Smith
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - S Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - B J Heidinger
- Biological Sciences Department, North Dakota State University, Stevens Hall, Fargo, ND 58108, USA
| | - M F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
16
|
Tarry-Adkins JL, Aiken CE, Ashmore TJ, Fernandez-Twinn DS, Chen JH, Ozanne SE. A suboptimal maternal diet combined with accelerated postnatal growth results in an altered aging profile in the thymus of male rats. FASEB J 2019; 33:239-253. [PMID: 29975569 PMCID: PMC6314471 DOI: 10.1096/fj.201701350rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reduced fetal nutrition and rapid postnatal growth accelerates the aging phenotype in many organ systems; however, effects on the immune system are unclear. We addressed this by studying the thymus from a rat model of developmental programming. The recuperated group was generated by in utero protein restriction, followed by cross-fostering to control-fed mothers, and were then compared with controls. Fat infiltration and adipocyte size increased with age ( P < 0.001) and in recuperated thymi ( P < 0.05). Cortex/medulla ratio decreased with age ( P < 0.001) and decreased ( P < 0.05) in 12-mo recuperated thymi. Age-associated decreases in thymic-epithelial cell ( P < 0.01) and thymocyte markers ( P < 0.01) were observed in both groups and was decreased ( P < 0.05) in recuperated thymi. These data demonstrate effects of developmental programming upon thymic involution. The recuperated group had longer thymic telomeres than controls ( P < 0.001) at 22 d and at 3 mo, which was associated with increased expression of telomere-length maintenance molecules [telomerase RNA component ( Terc; P < 0.01), P23 ( P = 0.02), and Ku70 and Ku80 ( P < 0.01)]. By 12 mo, recuperated offspring had shorter thymic telomeres than controls had ( P < 0.001) and reduced DNA damage-response markers [( DNA-PKcs, Mre11 ( P < 0.01), Xrcc4 ( P = 0.02), and γ-H2ax ( P < 0.001], suggesting failure of earlier compensatory responses. Our results suggest that low birth weight with rapid postnatal growth results in premature thymic maturation, resulting in accelerated thymic aging. This could lead to increased age-associated vulnerability to infection.-Tarry-Adkins, J. L., Aiken, C. E., Ashmore, T. J., Fernandez-Twinn, D. S., Chen, J.-H., Ozanne, S. E. A suboptimal maternal diet combined with accelerated postnatal growth results in an altered aging profile in the thymus of male rats.
Collapse
Affiliation(s)
- Jane L. Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom,Correspondence: University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Hills Rd., Cambridge CB2 OQQ, United Kingdom. E-mail:
| | - Catherine E. Aiken
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Thomas J. Ashmore
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Denise S. Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jian-Hua Chen
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
17
|
Piekna-Przybylska D, Maggirwar SB. CD4+ memory T cells infected with latent HIV-1 are susceptible to drugs targeting telomeres. Cell Cycle 2018; 17:2187-2203. [PMID: 30198385 DOI: 10.1080/15384101.2018.1520568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The population of HIV reservoir in infected person is very small, but extremely long-lived and is a major obstacle for an HIV cure. We previously showed that cells with established HIV latency have deficiencies in DNA damage response (DDR). Here, we investigated ability of HIV-1 to interfere with telomere maintenance, and the effects of targeting telomeres on latently infected cells. Our results show that telomeres are elongated in cultured primary memory CD4 + T cells (TCM) after HIV-1 infection and when virus latency is established. Similarly, much longer telomeres were found in several Jurkat-derived latently infected cell lines, indicating that virus stimulates telomere elongation. Exposing primary CD4+ TCM cells to BRACO19, an agent targeting telomeres, resulted in a higher rate of apoptosis for infected cultures at day 3 post-infection, during HIV-1 latency and for PMA-stimulated cultures with low level of HIV-1 reactivation. Importantly, BRACO19 induced apoptosis in infected cells with potency similar to etoposide and camptothecin, whereas uninfected cells were less affected by BRACO19. We also determined that apoptosis induced by BRACO19 is not caused by telomeres shortening, but is related to formation of gamma-H2AX, implicating DNA damage or uncapping of telomeres, which triggers genome instability. In conclusion, our results indicate that HIV-1 stimulates telomere elongation during latency, suggesting that HIV reservoir has greater capacity for clonal expansion and extended lifespan. Higher rates of apoptosis in response to BRACO19 treatment suggest that HIV reservoirs are more susceptible to targeting telomere maintenance and to inhibitors targeting DDR, which is also involved in stabilizing telomeres.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| | - Sanjay B Maggirwar
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| |
Collapse
|
18
|
Dong W, Wu L, Sun H, Ren X, Epling-Burnette PK, Yang L. MDS shows a higher expression of hTERT and alternative splice variants in unactivated T-cells. Oncotarget 2018; 7:71904-71914. [PMID: 27655690 PMCID: PMC5342131 DOI: 10.18632/oncotarget.12115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/10/2016] [Indexed: 12/19/2022] Open
Abstract
Telomere instability and telomerase reactivation are believed to play an important role in the development of myelodysplastic syndromes (MDS). Abnormal enzymatic activity of human telomerase reverse transcriptase (hTERT), and its alternative splice variants have been reported to account for deregulated telomerase function in many cancers. In this study, we aim to compare the differences in expression of hTERT and hTERT splice variants, as well as telomere length and telomerase activity in unstimulated T-cells between MDS subgroups and healthy controls. Telomere length in MDS cases was significantly shorter than controls (n = 20, p<0.001) and observed across all subtypes of MDS using World Health Organization classification (WHO subgroups versus control: RARS, p= 0.009; RCMD, p=0.0002; RAEB1/2, p=0.004, respectively) and the International Prognostic Scoring System (IPSS subgroups: Low+Int-1, p<0.001; Int-2+High, p=0.004). However, unstimulated T-cells from MDS patients (n=20) had significantly higher telomerase activity (p=0.002), higher total hTERT mRNA levels (p=0.001) and hTERT α+β- splice variant expression (p<0.001) compared to controls. Other hTERT splice variants were lower in expression and not significantly different among cases and controls. Telomerase activity was positively correlated with total hTERT levels in MDS (r=0.58, p=0.007). This data is in sharp contrast to data published previously by our group showing a reduction in telomerase and hTERT mRNA in MDS T-cells after activation. In conclusion, this study provides additional insight into hTERT transcript patterns and activity in peripheral T-cells of MDS patients. Additional studies are necessary to better understand the role of this pathway in MDS development and progression.
Collapse
Affiliation(s)
- Wen Dong
- Department of Orthopaedic Surgery, Tianjin Hongqiao Hospital, Tianjin, P.R. China
| | - Lei Wu
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, P.R. China.,National Clinical Research Center of Cancer, P.R. China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P.R. China
| | - Houfang Sun
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, P.R. China.,National Clinical Research Center of Cancer, P.R. China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P.R. China
| | - Xiubao Ren
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, P.R. China.,National Clinical Research Center of Cancer, P.R. China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P.R. China
| | | | - Lili Yang
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, P.R. China.,National Clinical Research Center of Cancer, P.R. China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P.R. China
| |
Collapse
|
19
|
Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, Wahl S, Colicino E, Trevisi L, Kloog I, Just AC, Vokonas P, Cyrys J, Gieger C, Schwartz J, Baccarelli AA, Schneider A, Peters A. Long-term exposure to air pollution is associated with biological aging. Oncotarget 2018; 7:74510-74525. [PMID: 27793020 PMCID: PMC5342683 DOI: 10.18632/oncotarget.12903] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022] Open
Abstract
Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 μg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted.
Collapse
Affiliation(s)
- Cavin K Ward-Caviness
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | | | - Kathrin Wolf
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Simone Wahl
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany.,Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Elena Colicino
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Letizia Trevisi
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Josef Cyrys
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany.,Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexandra Schneider
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| |
Collapse
|
20
|
Abstract
Any therapy that aims at eradicating a cancerous growth will have at its core a cell death-inducing component. Here we argue that paediatric oncology presents with its unique set of considerations and problems, which—while taking the lead from oncological research experiences obtained from the adult population—need to be clinically evaluated independently. This is particularly true when considering long-term side effects. Precision medicine offers a promising new approach in therapy, but given as a monotherapy and in a limited combination, as found in an apoptosis inducer/sensitiser combination, it will most likely lead to mutation escape of the target cell population and the emergence of resistance. However, using the increasing amount of the molecular data as the basis for a complex combination therapy combining several key components such as cell death-inducing agents, kinase inhibitors and BH3 mimetics, holds great promise.
Collapse
|
21
|
DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp Gerontol 2017; 105:118-127. [PMID: 29101015 DOI: 10.1016/j.exger.2017.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
The aging process is the major driver of morbidity and mortality, steeply increasing the risk to succumb to cancer, cardiovascular disease, infection and neurodegeneration. Inflammation is a common denominator in age-related pathologies, identifying the immune system as a gatekeeper in aging overall. Among immune cells, T cells are long-lived and exposed to intense replication pressure, making them sensitive to aging-related abnormalities. In successful T cell aging, numbers of naïve cells, repertoire diversity and activation thresholds are preserved as long as possible; in maladaptive T cell aging, protective T cell functions decline and pro-inflammatory effector cells are enriched. Here, we review in the model system of rheumatoid arthritis (RA) how maladaptive T cell aging renders the host susceptible to chronic, tissue-damaging inflammation. In T cells from RA patients, known to be about 20years pre-aged, three interconnected functional domains are altered: DNA damage repair, metabolic activity generating energy and biosynthetic precursor molecules, and shaping of plasma membranes to promote T cell motility. In each of these domains, key molecules and pathways have now been identified, including the glycolytic enzymes PFKFB3 and G6PD; the DNA repair molecules ATM, DNA-PKcs and MRE11A; and the podosome marker protein TKS5. Some of these molecules may help in defining targetable pathways to slow the T cell aging process.
Collapse
|
22
|
Abstract
BACKGROUND Telomeres are protein DNA structures present at the ends of chromosomes and are essential for genetic stability and cell replication. Telomerase is the enzyme complex that maintains telomere integrity. Hematopoietic stem cells express telomerase and contain long telomeres, which become shorter as cells differentiate and mature. The extent of telomere shortening and the level of telomerase activity often correlate with the presence and severity of some hematopoietic diseases. METHODS The fundamentals of telomeres and telomerase are reviewed, and the telomere biology of human hematopoietic cells is discussed. RESULTS Telomere length and telomerase activity are important in the self-renewal of hematopoietic stem cells. Changes within these compartments affect both normal hematopoietic cells and the generation of hematopoietic disease. Telomere length provides information pertaining to the proliferative history and potential of a hematopoietic cell. CONCLUSIONS The role of telomerase and telomeres within the hematopoietic compartment needs further clarification. Advances in our knowledge in this field may improve clinical outcomes for the treatment of hematologic disease.
Collapse
Affiliation(s)
- Ngaire Elwood
- Leukaemia Research Fund Stem Cell Laboratory, Department of Clinical Haematology and Oncology, Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
23
|
Pestana A, Vinagre J, Sobrinho-Simões M, Soares P. TERT biology and function in cancer: beyond immortalisation. J Mol Endocrinol 2017; 58:R129-R146. [PMID: 28057768 DOI: 10.1530/jme-16-0195] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Evasion of replicative senescence and proliferation without restriction, sometimes designated as immortalisation, is one of the hallmarks of cancer that may be attained through reactivation of telomerase in somatic cells. In contrast to most normal cells in which there is lack of telomerase activity, upregulation of TERT transcription/activity is detected in 80-90% of malignant tumours. In several types of cancer, there is a relationship between the presence of TERT promoter mutations, TERT mRNA expression and clinicopathological features, but the biological bridge between the occurrence of TERT promoter mutations and the aggressive/invasive features displayed by the tumours remains unidentified. We and others have associated the presence of TERT promoter mutations with metastisation/survival in several types of cancer. In follicular cell-derived thyroid cancer, such mutations are associated with worse prognostic features (age of patients, tumour size and tumour stage) as well as with distant metastases, worse response to treatment and poorer survival. In this review, we analyse the data reported in several studies that imply TERT transcription reactivation/activity with cell proliferation, tumour invasion and metastisation. A particular attention is given to the putative connections between TERT transcriptional reactivation and signalling pathways frequently altered in cancer, such as c-MYC, NF-κB and B-Catenin.
Collapse
Affiliation(s)
- Ana Pestana
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S)University of Porto, Porto, Portugal
| | - João Vinagre
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S)University of Porto, Porto, Portugal
| | - Manuel Sobrinho-Simões
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S)University of Porto, Porto, Portugal
- Medical FacultyUniversity of Porto, Porto, Portugal
- Department of PathologyCentro Hospitalar S. João, Porto, Portugal
- Department of PathologyMedical Faculty, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and ImmunologyUniversity of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S)University of Porto, Porto, Portugal
- Medical FacultyUniversity of Porto, Porto, Portugal
- Department of PathologyMedical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
24
|
Colicino E, Wilson A, Frisardi MC, Prada D, Power MC, Hoxha M, Dioni L, Spiro A, Vokonas PS, Weisskopf MG, Schwartz JD, Baccarelli AA. Telomere Length, Long-Term Black Carbon Exposure, and Cognitive Function in a Cohort of Older Men: The VA Normative Aging Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:76-81. [PMID: 27259001 PMCID: PMC5226701 DOI: 10.1289/ehp241] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 09/21/2015] [Accepted: 05/11/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Long-term air pollution exposure has been associated with age-related cognitive impairment, possibly because of enhanced inflammation. Leukocytes with longer telomere length (TL) are more responsive to inflammatory stimuli, yet TL has not been evaluated in relation to air pollution and cognition. OBJECTIVES We assessed whether TL modifies the association of 1-year exposure to black carbon (BC), a marker of traffic-related air pollution, with cognitive function in older men, and we examined whether this modification is independent of age and of C-reactive protein (CRP), a marker of inflammation. METHODS Between 1999 and 2007, we conducted 1-3 cognitive examinations of 428 older men in the Veterans Affairs (VA) Normative Aging Study. We used covariate-adjusted repeated-measure logistic regression to estimate associations of 1-year BC exposure with relative odds of being a low scorer (≤ 25) on the Mini-Mental State Examination (MMSE), which is a proxy of poor cognition. Confounders included age, CRP, and lifestyle and sociodemographic factors. RESULTS Each doubling in BC level was associated with 1.57 (95% CI: 1.20, 2.05) times higher odds of low MMSE scores. The BC-MMSE association was greater only among individuals with longer blood TL (5th quintile) (OR = 3.23; 95% CI: 1.37, 7.59; p = 0.04 for BC-by-TL-interaction). TL and CRP were associated neither with each other nor with MMSE. However, CRP modified the BC-MMSE relationship, with stronger associations only at higher CRP (5th quintile) and reference TL level (1st quintile) (OR = 2.68; 95% CI: 1.06, 6.79; p = 0.04 for BC-by-CRP-interaction). CONCLUSIONS TL and CRP levels may help predict the impact of BC exposure on cognitive function in older men. Citation: Colicino E, Wilson A, Frisardi MC, Prada D, Power MC, Hoxha M, Dioni L, Spiro A III, Vokonas PS, Weisskopf MG, Schwartz JD, Baccarelli AA. 2017. Telomere length, long-term black carbon exposure, and cognitive function in a cohort of older men: the VA Normative Aging Study. Environ Health Perspect 125:76-81; http://dx.doi.org/10.1289/EHP241.
Collapse
Affiliation(s)
- Elena Colicino
- Department of Environmental Health, and
- Address correspondence to E. Colicino, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Building 1, Room G03, Boston, MA 02115 USA. Telephone: (617) 432-1979. E-mail:
| | - Ander Wilson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Diddier Prada
- Department of Environmental Health, and
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Melinda C. Power
- Department of Environmental Health, and
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mirjam Hoxha
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Epidemiology Unit, Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Dioni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Epidemiology Unit, Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Avron Spiro
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Pantel S. Vokonas
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
25
|
Ando M, Nakauchi H. 'Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic T lymphocytes. Exp Hematol 2016; 47:2-12. [PMID: 27826124 DOI: 10.1016/j.exphem.2016.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Adoptive T-cell therapy to target and kill tumor cells shows promise and induces durable remissions in selected malignancies. However, for most cancers, clinical utility is limited. Cytotoxic T lymphocytes continuously exposed to viral or tumor antigens, with long-term expansion, may become unable to proliferate ("exhausted"). To exploit fully rejuvenated induced pluripotent stem cell (iPSC)-derived antigen-specific cytotoxic T lymphocytes is a potentially powerful approach. We review recent progress in engineering iPSC-derived T cells and prospects for clinical translation. We also describe the importance of introducing a suicide gene safeguard system into adoptive T-cell therapy, including iPSC-derived T-cell therapy, to protect from unexpected events in first-in-humans clinical trials.
Collapse
Affiliation(s)
- Miki Ando
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan.
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
Vicente R, Mausset‐Bonnefont A, Jorgensen C, Louis‐Plence P, Brondello J. Cellular senescence impact on immune cell fate and function. Aging Cell 2016; 15:400-6. [PMID: 26910559 PMCID: PMC4854915 DOI: 10.1111/acel.12455] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence occurs not only in cultured fibroblasts, but also in undifferentiated and specialized cells from various tissues of all ages, in vitro and in vivo. Here, we review recent findings on the role of cellular senescence in immune cell fate decisions in macrophage polarization, natural killer cell phenotype, and following T-lymphocyte activation. We also introduce the involvement of the onset of cellular senescence in some immune responses including T-helper lymphocyte-dependent tissue homeostatic functions and T-regulatory cell-dependent suppressive mechanisms. Altogether, these data propose that cellular senescence plays a wide-reaching role as a homeostatic orchestrator.
Collapse
Affiliation(s)
- Rita Vicente
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Anne‐Laure Mausset‐Bonnefont
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Christian Jorgensen
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Pascale Louis‐Plence
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Jean‐Marc Brondello
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| |
Collapse
|
27
|
Qian Y, Ding T, Wei L, Cao S, Yang L. Shorter telomere length of T-cells in peripheral blood of patients with lung cancer. Onco Targets Ther 2016; 9:2675-82. [PMID: 27226730 PMCID: PMC4863689 DOI: 10.2147/ott.s98488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Telomere shortening occurs in tumor tissues and peripheral blood lymphocytes of many common human malignancies, including lung cancer, but its variation in T-cells has never been investigated. Thus, the aim of this study was to assess telomere length in T-cells and its correlation with the clinical characteristics of patients with lung cancer. PATIENTS AND METHODS A total of 40 patients with lung cancer but without prior cancer history and 25 healthy individuals were selected. T-cells were isolated and their telomere lengths were measured using quantitative real-time polymerase chain reaction methods. RESULTS Telomere length in T-cells was significantly shorter in patients with lung cancer than in controls (P<0.001). Shorter telomere length was significantly associated with increased clinical stage (P=0.008) and distant metastasis (P=0.028). Naïve T-cells from patients with lung cancer had significantly decreased telomere length when compared with those from controls (P=0.012). CONCLUSION The shortened telomere length in T-cells occurred in naïve T-cells and might be related to lung cancer progression.
Collapse
Affiliation(s)
- Yaqin Qian
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Tingting Ding
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Lijuan Wei
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
| | - Shui Cao
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People's Republic of China; National Clinical Research Center of Cancer, Tianjin, People's Republic of China; Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| |
Collapse
|
28
|
Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging? Cent Eur J Immunol 2016; 41:116-24. [PMID: 27095931 PMCID: PMC4829813 DOI: 10.5114/ceji.2015.56973] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
Abstract
Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients.
Collapse
|
29
|
Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS One 2015; 10:e0144767. [PMID: 26678998 PMCID: PMC4692060 DOI: 10.1371/journal.pone.0144767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/23/2015] [Indexed: 01/21/2023] Open
Abstract
The role of PD-1 expression on CD4 T cells during HIV infection is not well
understood. Here, we describe the differential expression of PD-1 in
CD127high CD4 T cells within the early/intermediate differentiated (EI)
(CD27highCD45RAlow) T cell population among uninfected and
HIV-infected subjects, with higher expression associated with decreased viral
replication (HIV-1 viral load). A significant loss of circulating
PD-1highCTLA-4low CD4 T cells was found specifically in the
CD127highCD27highCD45RAlow compartment, while
initiation of antiretroviral treatment, particularly in subjects with advanced
disease, reversed these dynamics. Increased HIV-1 Gag DNA was also found in
PD-1high compared to PD-1low ED CD4 T cells. In line with an
increased susceptibility to HIV infection, PD-1 expression in this CD4 T cell subset
was associated with increased activation and expression of the HIV co-receptor, CCR5.
Rather than exhaustion, this population produced more IFN-g, MIP1-a, IL-4, IL-10, and
IL-17a compared to PD-1low EI CD4 T cells. In line with our previous
findings, PD-1high EI CD4 T cells were also characterized by a high
expression of CCR7, CXCR5 and CCR6, a phenotype associated with increased in
vitro B cell help. Our data show that expression of PD-1 on
early-differentiated CD4 T cells may represent a population that is highly
functional, more susceptible to HIV infection and selectively lost in chronic HIV
infection.
Collapse
|
30
|
Bassig BA, Zhang L, Cawthon RM, Smith MT, Yin S, Li G, Hu W, Shen M, Rappaport S, Barone-Adesi F, Rothman N, Vermeulen R, Lan Q. Alterations in leukocyte telomere length in workers occupationally exposed to benzene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:673-8. [PMID: 24945723 PMCID: PMC4360990 DOI: 10.1002/em.21880] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 05/19/2023]
Abstract
Exposure to benzene, a known leukemogen and probable lymphomagen, has been demonstrated to result in oxidative stress, which has previously been associated with altered telomere length (TL). TL specifically has been associated with several health outcomes in epidemiologic studies, including cancer risk, and has been demonstrated to be altered following exposure to a variety of chemical agents. To evaluate the association between benzene exposure and TL, we measured TL by monochrome multiplex quantitative PCR in 43 workers exposed to high levels of benzene and 43 age and sex-matched unexposed workers in Shanghai, China. Benzene exposure levels were monitored using organic vapor passive dosimetry badges before phlebotomy. The median benzene exposure level in exposed workers was 31 ppm. The mean TL in controls, workers exposed to levels of benzene below the median (≤31 ppm), and above the median (>31 ppm) was 1.26 ± 0.17, 1.25 ± 0.16, and 1.37 ± 0.23, respectively. Mean TL was significantly elevated in workers exposed to >31 ppm of benzene compared with controls (P = 0.03). Our findings provide evidence that high levels of occupational benzene exposure are associated with TL. Environ.
Collapse
Affiliation(s)
- Bryan A. Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland
- Correspondence to: Bryan A. Bassig, Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS 9609 Medical Center Drive Rm. 6-E634, MSC 9771, Bethesda, MD 20892, USA.
| | - Luoping Zhang
- Division of Environmental Health Science, School of Public Health, University of California at Berkeley, Berkeley, California
| | | | - Martyn T. Smith
- Division of Environmental Health Science, School of Public Health, University of California at Berkeley, Berkeley, California
| | - Songnian Yin
- Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilan Li
- Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland
| | - Min Shen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland
| | - Stephen Rappaport
- Division of Environmental Health Science, School of Public Health, University of California at Berkeley, Berkeley, California
| | - Francesco Barone-Adesi
- Division of Population Health Sciences and Education, St. George’s University of London, London, United Kingdom
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland
| |
Collapse
|
31
|
Kushida Y, Ishida JY, Fujii M, Touma M, Hosono M. Population doublings of murine CD4(+) memory T cells during continuous antigen stimulation in vivo. Cell Immunol 2014; 292:45-52. [PMID: 25261713 DOI: 10.1016/j.cellimm.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/06/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
We investigated the expansion rate of CD4(+) memory T cells using a newly developed in vivo system. Neonatal thymectomy abrogates the subsequent production of T cells and induces autoimmune gastritis (AIG) by the activation of CD4(+) T cells; this disease was transferred into athymic nude mice through the inoculation of splenic CD4(+) memory T cells. The transferred CD4(+) T cells increased logarithmically in number during the first 2months in the spleen of the recipients. The serial transfer of these splenocytes at two-month intervals revealed that the numbers of the AIG-transferable generations were inversely correlated with the age of the first AIG donors. The duration of the AIG-promoting capacity of CD4(+) T cells under continuous antigenic stimulation in vivo was approximately equivalent-one and a half years. These results indicate that there exists an intrinsic population doubling limit in memory CD4(+) T cells similar to that of self-renewing naïve ones.
Collapse
Affiliation(s)
- Yoshihiro Kushida
- Laboratory of Immunobiology, Department of Life Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Jun-ya Ishida
- Laboratory of Immunobiology, Department of Life Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Masato Fujii
- Laboratory of Immunobiology, Department of Life Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Maki Touma
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan.
| | - Masamichi Hosono
- Laboratory of Immunobiology, Department of Life Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan.
| |
Collapse
|
32
|
Qian Y, Yang L, Cao S. Telomeres and telomerase in T cells of tumor immunity. Cell Immunol 2014; 289:63-9. [PMID: 24727158 DOI: 10.1016/j.cellimm.2014.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 02/08/2023]
Abstract
Telomeres are specific nucleoprotein structures at the end of a eukaryotic chromosomes characterized by repeats of the sequence TTAGGG and regulated by the enzyme telomerase which prevents their degradation, loss, rearrangement and end-to-end fusion. During activation, T lymphocytes actively divide, albeit through only a finite number of cell divisions due to shortening of telomeres. However, studies have demonstrated that human telomerase reverse transcriptase (hTERT), thought to be the major component regulating telomerase activity, can enhance the proliferation of T cells when overexpressed. There are many treatments for cancers, most of which are targeting the telomere and telomerase of tumor cells. However, the hTERT-transduced T cells improve their potential for proliferation, making them an appropriate cell resource for tumor adoptive immunotherapy, a procedure whereby T cells are isolated from patients, expanded ex vivo and eventually delivered back into the patients, provides a new approach for tumor therapy through improved overall survival rates in cancer patients. In this review, we will focus on the telomerase activity in T cells, the regulation of telomerase activity, and hTERT-transduced T cells used in adoptive immunotherapy for cancer.
Collapse
Affiliation(s)
- Yaqin Qian
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China.
| | - Shui Cao
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China.
| |
Collapse
|
33
|
Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, Nakayama-Hosoya K, Iriguchi S, Uemura Y, Shimizu T, Takayama N, Yamada D, Nishimura K, Ohtaka M, Watanabe N, Takahashi S, Iwamoto A, Koseki H, Nakanishi M, Eto K, Nakauchi H. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 2013; 12:114-26. [PMID: 23290140 DOI: 10.1016/j.stem.2012.11.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/28/2012] [Accepted: 11/06/2012] [Indexed: 12/21/2022]
Abstract
Adoptive immunotherapy with functional T cells is potentially an effective therapeutic strategy for combating many types of cancer and viral infection. However, exhaustion of antigen-specific T cells represents a major challenge to this type of approach. In an effort to overcome this problem, we reprogrammed clonally expanded antigen-specific CD8(+) T cells from an HIV-1-infected patient to pluripotency. The T cell-derived induced pluripotent stem cells were then redifferentiated into CD8(+) T cells that had a high proliferative capacity and elongated telomeres. These "rejuvenated" cells possessed antigen-specific killing activity and exhibited T cell receptor gene-rearrangement patterns identical to those of the original T cell clone from the patient. We also found that this method can be effective for generating specific T cells for other pathology-associated antigens. Thus, this type of approach may have broad applications in the field of adoptive immunotherapy.
Collapse
Affiliation(s)
- Toshinobu Nishimura
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
DeGregori J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene 2013; 32:1869-75. [PMID: 22751134 PMCID: PMC3670419 DOI: 10.1038/onc.2012.281] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/30/2012] [Indexed: 12/15/2022]
Abstract
A widely accepted paradigm in cancer research holds that the development of cancers is rate limited by the occurrence of oncogenic mutations. In particular, the exponential rise in the incidence of most cancers with age is thought to reflect the time required for cells to accumulate the multiple oncogenic mutations needed to confer the cancer phenotype. Here I will argue against the axiom that the occurrence of oncogenic mutations limits cancer incidence with age, based on several observations, including that the rate of mutation accumulation is maximal during ontogeny, oncogenic mutations are frequently detected in normal tissues, the evolution of complex multicellularity was not accompanied by reductions in mutation rates, and that many oncogenic mutations have been shown to impair stem cell activity. Moreover, although evidence that has been used to support the current paradigm includes increased cancer incidence in individuals with inherited DNA repair deficiencies or exposed to mutagens, the pleotropic effects of these contexts could enhance tumorigenesis at multiple levels. I will further argue that age-dependent alteration of selection for oncogenic mutations provides a more plausible explanation for increased cancer incidence in the elderly. Although oncogenic mutations are clearly required for cancer evolution, together these observations counter the common view that age dependence of cancers is largely explained by the time required to accumulate sufficient oncogenic mutations.
Collapse
Affiliation(s)
- J DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
35
|
Benko AL, Olsen NJ, Kovacs WJ. Estrogen and telomerase in human peripheral blood mononuclear cells. Mol Cell Endocrinol 2012; 364:83-8. [PMID: 22954679 PMCID: PMC3473148 DOI: 10.1016/j.mce.2012.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/23/2012] [Accepted: 08/19/2012] [Indexed: 01/22/2023]
Abstract
The enzyme telomerase plays an important role in sustaining the capacity of T lymphocytes for homeostatic replication. Recent data have suggested that gonadal steroids might modulate telomerase expression or activity within these cells. We used quantitative assay techniques for both telomerase mRNA expression and telomerase enzymatic activity to systematically examine the effects of physiologic concentrations of estradiol on human peripheral blood mononuclear cells under basal conditions and under conditions that normally enhance telomerase activity in T lymphocytes. Cells from women tended to exhibit higher responsiveness of telomerase activity to induction by T cell receptor engagement. However, we found no evidence of a direct effect of physiologic concentrations of estradiol on human telomerase reverse transcriptase (hTERT) mRNA expression, hTERT protein expression, or telomerase enzymatic activity in cultured PBMCs. While estrogen might exert developmental effects on T cells to alter telomerase responsiveness to T cell receptor engagement, mature peripheral T cells do not respond to estradiol with changes in expression or function of telomerase.
Collapse
Affiliation(s)
- Ann L. Benko
- Division of Endocrinology, Diabetes, and Metabolism, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania 17033
| | - Nancy J. Olsen
- Division of Rheumatology, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania 17033
| | - William J. Kovacs
- Division of Endocrinology, Diabetes, and Metabolism, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
36
|
Hou L, Wang S, Dou C, Zhang X, Yu Y, Zheng Y, Avula U, Hoxha M, Díaz A, McCracken J, Barretta F, Marinelli B, Bertazzi PA, Schwartz J, Baccarelli AA. Air pollution exposure and telomere length in highly exposed subjects in Beijing, China: a repeated-measure study. ENVIRONMENT INTERNATIONAL 2012; 48:71-7. [PMID: 22871507 PMCID: PMC3821920 DOI: 10.1016/j.envint.2012.06.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/31/2012] [Accepted: 06/30/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) exposure has been associated with short- and long-term effects on cardiovascular disease (CVD). Telomere length (TL) is a biomarker of CVD risk that is modified by inflammation and oxidative stress, two key pathways for PM effects. Whether PM exposure modifies TL is largely unexplored. OBJECTIVES To investigate effects of PM on blood TL in a highly-exposed population. METHODS We measured blood TL in 120 blood samples from truck drivers and 120 blood samples from office workers in Beijing, China. We measured personal PM(2.5) and Elemental Carbon (EC, a tracer of traffic particles) using light-weight monitors. Ambient PM(10) was obtained from local monitoring stations. We used covariate-adjusted regression models to estimate percent changes in TL per an interquartile-range increase in exposure. RESULTS Covariate-adjusted TL was higher in drivers (mean=0.87, 95%CI: 0.74; 1.03) than in office workers (mean=0.79, 95%CI: 0.67; 0.93; p=0.001). In all participants combined, TL increased in association with personal PM(2.5) (+5.2%, 95%CI: 1.5; 9.1; p=0.007), personal EC (+4.9%, 95%CI: 1.2; 8.8; p=0.01), and ambient PM(10) (+7.7%, 95%CI: 3.7; 11.9; p<0.001) on examination days. In contrast, average ambient PM(10) over the 14 days before the examinations was significantly associated with shorter TL (-9.9%, 95%CI: -17.6; -1.5; p=0.02). CONCLUSIONS Short-term exposure to ambient PM is associated with increased blood TL, consistent with TL roles during acute inflammatory responses. Longer exposures may shorten TL as expected after prolonged pro-oxidant exposures. The observed TL alterations may participate in the biological pathways of short- and long-term PM effects.
Collapse
Affiliation(s)
- Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Chicago, Illinois, USA
- Corresponding authors: Lifang Hou, MD, PhD Department of Preventive Medicine Feinberg School of Medicine, Northwestern University 680 N Lake Shore Drive, Chicago, IL 60611 Phone: (312) 503-4798; Fax: (312) 908-9588 Sheng Wang, MD, MPH Professor and Deputy Director Department of Occupational and Environmental Health Peking University Health Science Center Beijing, 100083, China Phone: 86 10-82801533; Fax: 86 10-82801533
| | - Sheng Wang
- Department of Occupational and Environmental Health, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, Beijing, China
- Corresponding authors: Lifang Hou, MD, PhD Department of Preventive Medicine Feinberg School of Medicine, Northwestern University 680 N Lake Shore Drive, Chicago, IL 60611 Phone: (312) 503-4798; Fax: (312) 908-9588 Sheng Wang, MD, MPH Professor and Deputy Director Department of Occupational and Environmental Health Peking University Health Science Center Beijing, 100083, China Phone: 86 10-82801533; Fax: 86 10-82801533
| | - Chang Dou
- Department of Safety Engineering, China Institute of Industrial Health, No. 45 Zengguang Road, Haidian District, Beijing, China
| | - Xiao Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Chicago, Illinois, USA
| | - Yue Yu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Chicago, Illinois, USA
| | - Yinan Zheng
- The graduate school, Northwestern University, 633 Clark Street, Evanston, Illinois, USA
| | - Umakanth Avula
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Chicago, Illinois, USA
| | - Mirjam Hoxha
- Department of Occupational and Environmental Health, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via S. Barnaba 8, Milan, Italy
| | - Anaité Díaz
- Center for Health Studies, Universidad del Valle de Guatemala, 11 calle 15-70 zona 15 VHIII, Guatemala City, Guatemala
| | - John McCracken
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, Massachusetts, USA
| | - Francesco Barretta
- Department of Occupational and Environmental Health, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via S. Barnaba 8, Milan, Italy
| | - Barbara Marinelli
- Department of Occupational and Environmental Health, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via S. Barnaba 8, Milan, Italy
| | - Pier Alberto Bertazzi
- Department of Occupational and Environmental Health, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via S. Barnaba 8, Milan, Italy
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, Massachusetts, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, Massachusetts, USA
| |
Collapse
|
37
|
Lee N, Shin MS, Kang I. T-cell biology in aging, with a focus on lung disease. J Gerontol A Biol Sci Med Sci 2012; 67:254-63. [PMID: 22396471 PMCID: PMC3297764 DOI: 10.1093/gerona/glr237] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/28/2011] [Indexed: 12/13/2022] Open
Abstract
T cells are essential for defending hosts against microorganisms and malignancy as well as for regulating the development of immune-mediated inflammatory diseases like autoimmunity. Alterations in T-cell immunity occur with aging, affecting the function and proportions of T-cell subsets. Probably, the most noticeable age-associated change in T-cell immunity is an alteration in the frequency of naive and memory CD4+ and CD8+ T cells. In fact, the frequency of naive CD4+ and CD8+ T cells decreases with aging, whereas the frequency of memory CD4+ and CD8+ T cells increases. Also, changes in T-cell proliferation, cytokine production, memory response, and cytotoxicity as well as in regulatory T-cell number and function have been reported with aging. Such alterations could contribute to the development of infections, malignancies, and inflammatory diseases that rise with aging. Of interest, T cells are closely involved in the development of inflammatory airway and lung diseases including asthma and chronic obstructive pulmonary disease, which are prevalent in the elderly people. In addition, T cells play a major role in defending host against influenza virus infection, a serious medical problem with high morbidity and mortality in the elderly people. Thus, it is conceivable that altered T-cell immunity may account in part for the development of such respiratory problems with aging. Here, we will review the recent advances in T-cell immunity and its alteration with aging and discuss the potential effects of such changes on the lung.
Collapse
Affiliation(s)
- Naeun Lee
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, S525C TAC, 300 Cedar Street, New Haven, CT 06520, USA
| | | | | |
Collapse
|
38
|
Barsov EV. Immortalization of human and rhesus macaque primary antigen-specific T cells by retrovirally transduced telomerase reverse transcriptase. CURRENT PROTOCOLS IN IMMUNOLOGY 2011; Chapter 7:Unit 7.21B. [PMID: 22048804 PMCID: PMC3226752 DOI: 10.1002/0471142735.im0721bs95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human and rhesus macaque primary antigen-specific T cells derived from infected or immunized individuals or animals are a valuable material with which to study cellular immune responses against pathogens and tumors. Antigen-specific T cells can be expanded in vitro but have a finite proliferative life span. After a limited period in culture, primary T cells undergo replicative senescence and stop dividing. This restricts their applicability to short-term experiments and complicates their use in adoptive immunotherapy. The proliferative life span of primary human and rhesus macaque T cells can be considerably extended by ectopically expressed human telomerase reverse transcriptase (TERT). Antigen-specific T cells transduced with TERT-expressing retroviral vectors can proliferate and expand in culture for long periods of time while maintaining their primary T cell characteristics, including antigen-specific responses. Thus, TERT-immortalized T cells are an important and valuable resource for studying T cell-mediated immune responses and, potentially, for adoptive immunotherapy.
Collapse
Affiliation(s)
- Eugene V Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick, Maryland, USA
| |
Collapse
|
39
|
Interferon alpha on expression of hTERT mRNA in peripheral blood mononuclear cells of patients with chronic hepatitis B. Clin Dev Immunol 2011; 2011:920146. [PMID: 21647411 PMCID: PMC3102520 DOI: 10.1155/2011/920146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/07/2011] [Accepted: 03/14/2011] [Indexed: 11/17/2022]
Abstract
Cell division is closely related to telomerase activity (hTERT mRNA). Lower expression of lymphocitic hTERT mRNA may easily cause cell aging, which is not beneficial to maintaining a durable lymphocyte division. To date, there is no study to investigate IFNα therapy on hTERT mRNA expression in PBMCs of patients with chronic hepatitis B (CHB). We quantitatively detected hTERT mRNA from study subjects and made each hTERT mRNA normalized (NhTERT mRNA). Mean NhTERT mRNA level was lower in either CHB group, but it significantly increased in IFNα-treated group compared with CHB control group, and a longer duration of IFNα therapy could increase the level. Moreover, the mean NhTERT mRNA in subgroup with HBeAg loss was significantly higher than that in subgroup without. NhTERT mRNA was markedly correlated with CD3+ T lymphocyte count and CD4+/CD8+ ratio. The results showed that IFNα therapy could upregulate the expression of hTERT mRNA in PBMCs.
Collapse
|
40
|
Dioni L, Hoxha M, Nordio F, Bonzini M, Tarantini L, Albetti B, Savarese A, Schwartz J, Bertazzi PA, Apostoli P, Hou L, Baccarelli A. Effects of short-term exposure to inhalable particulate matter on telomere length, telomerase expression, and telomerase methylation in steel workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:622-7. [PMID: 21169126 PMCID: PMC3094411 DOI: 10.1289/ehp.1002486] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 12/17/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Shortened leukocyte telomere length (LTL) is a marker of cardiovascular risk that has been recently associated with long-term exposure to ambient particulate matter (PM). However, LTL is increased during acute inflammation and allows for rapid proliferation of inflammatory cells. Whether short-term exposure to proinflammatory exposures such as PM increases LTL has never been evaluated. OBJECTIVES We investigated the effects of acute exposure to metal-rich PM on blood LTL, as well as molecular mechanisms contributing to LTL regulation in a group of steel workers with high PM exposure. METHODS We measured LTL, as well as mRNA expression and promoter DNA methylation of the telomerase catalytic enzyme gene [human telomerase reverse transcriptase (hTERT)] in blood samples obtained from 63 steel workers on the first day of a workweek (baseline) and after 3 days of work (postexposure). RESULTS LTL was significantly increased in postexposure (mean ± SD, 1.43 ± 0.51) compared with baseline samples (1.23 ± 0.28, p-value < 0.001). Postexposure LTL was positively associated with PM₁₀ (β = 0.30, p-value = 0.002 for 90th vs. 10th percentile exposure) and PM₁ (β = 0.29, p-value = 0.042) exposure levels in regression models adjusting for multiple covariates. hTERT expression was lower in postexposure samples (1.31 ± 0.75) than at baseline (1.68 ± 0.86, p-value < 0.001), but the decrease in hTERT expression did not show a dose-response relationship with PM. We found no exposure-related differences in the methylation of any of the CpG sites investigated in the hTERT promoter. CONCLUSIONS Short-term exposure to PM caused a rapid increase in blood LTL. The LTL increase did not appear to be mediated by PM-related changes in hTERT expression and methylation.
Collapse
Affiliation(s)
- Laura Dioni
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Mirjam Hoxha
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Francesco Nordio
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
- Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma Medical School, Parma, Italy
| | - Matteo Bonzini
- Department of Clinical and Experimental Sciences, University of Insubria, Varese, Italy
| | - Letizia Tarantini
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Benedetta Albetti
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Alice Savarese
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Joel Schwartz
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Pier Alberto Bertazzi
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Pietro Apostoli
- Department of Experimental and Applied Medicine, Occupational Medicine and Industrial Hygiene, University of Brescia, Brescia, Italy
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrea Baccarelli
- Laboratory of Environmental Epigenetics, Department of Preventive Medicine and Department of Environmental and Occupational Health, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Address correspondence to A. Baccarelli, Department of Environmental and Occupational Health, Center of Molecular and Genetic Epidemiology, University of Milan and IRCCS Ca’ Granda Maggiore Policlinico Hospital Foundation, Via San Barnaba 8, 20122 Milan, Italy. Telephone: 39-02-503-20145. Fax: 39-02-503-20103. E-mail:
| |
Collapse
|
41
|
Pepper C, Baird DM. Shortened telomeres: a driving force behind leukemia? Future Oncol 2011; 6:1681-6. [PMID: 21142655 DOI: 10.2217/fon.10.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
42
|
Barsov EV. Telomerase and primary T cells: biology and immortalization for adoptive immunotherapy. Immunotherapy 2011; 3:407-21. [PMID: 21395382 PMCID: PMC3120014 DOI: 10.2217/imt.10.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomeres are specialized repeats, present at the end of chromosomes, whose loss during cell division is followed by growth arrest, a central mechanism of replicative senescence in human cells. Telomere length in stem cells is maintained by telomerase, a specialized reverse transcriptase, whose function is to restore shortening telomeres. Unlike most somatic cell types, human T lymphocytes are capable of briefly reactivating telomerase expression at the time of stimulation. Telomerase expression in T lymphocytes is modulated by a variety of external stimuli and by viral infections. However, telomerase reactivation in stimulated, proliferating human T lymphocytes is limited and cannot prevent the ultimate onset of senescence. Ectopic telomerase expression can rescue human and macaque antigen-specific T cells from senescence. Primary T cells have been engineered with telomerase to have substantially extended replicative lifespans without the loss of primary cell functions or malignant transformation. 'Immortal' antigen-specific T-cell lines and clones overexpressing telomerase are an invaluable source of well-characterized quasi-primary T cells for research of T-cell biology and are potentially useful for immunotherapy of cancer and AIDS.
Collapse
Affiliation(s)
- Eugene V Barsov
- SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
43
|
Lobetti-Bodoni C, Bernocco E, Genuardi E, Boccadoro M, Ladetto M. Telomeres and telomerase in normal and malignant B-cells. Hematol Oncol 2011; 28:157-67. [PMID: 20213664 DOI: 10.1002/hon.937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The telomeric checkpoint is emerging as a critical sensor of cellular damage, playing a major role in human aging and cancer development. In the meantime, telomere biology is rapidly evolving from a basic discipline to a translational branch, capable of providing major hints for biomarker development, risk assessment and targeted treatment of cancer. These advances have a number of implications in the biology of lymphoid tumours. Moreover, there is considerable interest in the potential role of telomeric dysfunction in the wide array of immunological abnormalities, grouped under the definition of 'immunosenescence'. This review will summarize the impact of recent advances in telomere biology on the physiology and pathology of the B lymphocyte, with special interest in immunosenescence and lymphomagenesis.
Collapse
Affiliation(s)
- Chiara Lobetti-Bodoni
- Department of Experimental Oncology, Division of Hematology, University of Torino, Italy
| | | | | | | | | |
Collapse
|
44
|
Yoshida T, Mei H, Dörner T, Hiepe F, Radbruch A, Fillatreau S, Hoyer BF. Memory B and memory plasma cells. Immunol Rev 2010; 237:117-39. [PMID: 20727033 DOI: 10.1111/j.1600-065x.2010.00938.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination provides a powerful means to control infections. It exploits and exemplifies the ability of the immune system to preserve the information that a specific pathogen has been encountered in the past. The cells and molecular mechanisms of immunological memory are still being discussed controversially. Here, we review the current concepts of memory B cells, the signals involved in their maintenance, and their role in enhanced secondary reactions. Memory plasma cells, secreting protective antibodies over lifetime, have been recognized only recently. Their characterization as cells resting in terms of proliferation and migration, and surviving in dedicated stromal niches, in the absence of antigen, has generated new concepts of how memory cells in general are organized by stroma cells, the 'resting memory'. In autoimmunity and chronic inflammation, memory B cells and memory plasma cells can be essential players, and they require special attention, as they do not respond to most conventional therapies. Their selective targeting will depend on a molecular understanding of their lifestyle.
Collapse
Affiliation(s)
- Taketoshi Yoshida
- Charité Centre 12, Clinic for Internal Medicine, Rheumatology, Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Liu S, Hatton MP, Khandelwal P, Sullivan DA. Culture, immortalization, and characterization of human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci 2010; 51:3993-4005. [PMID: 20335607 PMCID: PMC2910637 DOI: 10.1167/iovs.09-5108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/22/2010] [Accepted: 02/26/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Meibomian gland epithelial cells are essential in maintaining the health and integrity of the ocular surface. However, very little is known about their physiological regulation. In this study, the cellular control mechanisms were explored, first to establish a defined culture system for the maintenance of primary epithelial cells from human meibomian glands and, second, to immortalize these cells, thereby developing a preclinical model that could be used to identify factors that regulate cell activity. METHODS Human meibomian glands were removed from lid segments after surgery, enzymatically digested, and dissociated. Isolated epithelial cells were cultured in media with or without serum and/or 3T3 feeder layers. To attempt immortalization, the cells were exposed to retroviral human telomerase reverse transcriptase (hTERT) and/or SV40 large T antigen cDNA vectors, and antibiotic-resistant cells were selected, expanded, and subcultured. Analyses for possible biomarkers, cell proliferation and differentiation, lipid-related enzyme gene expression, and the cellular response to androgen were performed with biochemical, histologic, and molecular biological techniques. RESULTS It was possible to isolate viable human meibomian gland epithelial cells and to culture them in serum-free medium. These cells proliferated, survived through at least the fifth passage, and contained neutral lipids. Infection with hTERT immortalized these cells, which accumulated neutral lipids during differentiation, expressed multiple genes for lipogenic enzymes, responded to androgen, and continued to proliferate. CONCLUSIONS The results show that human meibomian gland epithelial cells may be isolated, cultured, and immortalized.
Collapse
Affiliation(s)
- Shaohui Liu
- From the Schepens Eye Research Institute and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; and
| | - Mark P. Hatton
- From the Schepens Eye Research Institute and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; and
- Ophthalmic Consultants of Boston, Boston, Massachusetts
| | - Payal Khandelwal
- From the Schepens Eye Research Institute and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; and
| | - David A. Sullivan
- From the Schepens Eye Research Institute and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
46
|
Desai A, Grolleau-Julius A, Yung R. Leukocyte function in the aging immune system. J Leukoc Biol 2010; 87:1001-9. [PMID: 20200405 DOI: 10.1189/jlb.0809542] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with a progressive dysregulation of immune responses. Whether these changes are solely responsible for the observed increased mortality and morbidity amongst the elderly is uncertain. Recent advances have highlighted the age-associated changes that occur beyond T and B lymphocytes. Additionally, multiple human and animal studies have identified a relationship between chronic low-grade inflammation and geriatric syndromes, such as frailty, suggesting that the phenomenon of "inflamm-aging" may provide a rationale for the increased vulnerability to chronic inflammatory diseases in older adults. In the present review, we broadly summarize our current understanding of age-dependent changes in leukocyte function and their contribution to aging-related disease processes.
Collapse
Affiliation(s)
- Anjali Desai
- Division of Geriatric Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
47
|
Toptan T, Ensser A, Fickenscher H. Rhadinovirus vector-derived human telomerase reverse transcriptase expression in primary T cells. Gene Ther 2010; 17:653-61. [PMID: 20164858 DOI: 10.1038/gt.2010.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rhadinovirus herpesvirus saimiri (HVS) as a gene delivery vector allows large DNA insertions and long-termed gene expression. In the case of T-cell transduction, such vectors use the viral transformation-associated genes of HVS C488 for T-cell amplification. In this report, we investigated whether the gene for the catalytic telomerase subunit human telomerase reverse transcriptase (hTERT) can substitute for the transformation-associated genes in rhadinoviral T-cell transduction and amplification. By using virus mutants generated by en passant mutagenesis from bacterial artificial chromosomes, we observed a very early and functional transgene expression even by virus mutants without transformation-associated genes. The markers of T-cell transformation by HVS, namely CD2 hyperreactivity, overexpression of interleukin-26, and of the tyrosine kinase Lyn could neither be induced nor enhanced by ectopic hTERT expression. When the viral transformation-associated genes were replaced by the hTERT gene, it was not sufficient for growth transformation, although hTERT was efficiently transduced and functionally expressed by the rhadinovirus vector. Thus, the transformation-associated proteins StpC and Tip are responsible for the T-cell phenotype after transduction by HVS and, additionally, modulate telomerase activity independently of hTERT expression.
Collapse
Affiliation(s)
- T Toptan
- Institute for Infection Medicine, Christian-Albrecht University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
48
|
Matera L. The choice of the antigen in the dendritic cell-based vaccine therapy for prostate cancer. Cancer Treat Rev 2009; 36:131-41. [PMID: 19954892 DOI: 10.1016/j.ctrv.2009.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 12/09/2022]
Abstract
Tumor antigens (TA) are promising candidates for targeted treatment of prostate cancer (PCa). Critical issues in the preparation of dendritic cell (DC)-based TA vaccines are the DC maturation state and the appropriateness of the TA. Prostate-specific antigen (PSA) and prostate acide pshosphatase (PAP) presented by DC have produced encouraging results and PAP-loaded DCs are at late-stage development for PCa patients. TAs indispensable for tumor survival and propagation are now emerging as first choice TAs for future vaccines. The increased expression and enzymatic activity of prostate specific membrane antigen (PSMA) and prostate stem cell antigen (PSCA) by aggressive prostate tumors is indicative of a unique, selective advantage on the part of cells expressing them. Human telomerase reverse transcriptase (hTERT) and survivin are both involved in tumor cell survival and considered universal TAs. The T cell epitope potential of peptides derived from these TAs has been defined by computer-assisted prediction programs and has been tested in vitro and in vivo in terms of their ability to recruit cytotoxic T lymphocytes (CTL) and to be recognised as CTL targets. Results, reviewed here, show that anti-tumor immunity can be induced in vivo by DC loaded with both whole TAs and TA peptides. The promising, but still limited clinical success suggests further exploration of this immune therapy in the more appropriate setting of minimal disease. In advanced stages, vaccine can still be effective when combined with systemic or local cytoreductive therapies, which may overcome antigen specific tolerance and subvert the tumor immunosuppressive environment.
Collapse
Affiliation(s)
- Lina Matera
- Laboratory of Tumor Immunology, Department of Internal Medicine, University of Turin, Turin, Italy.
| |
Collapse
|
49
|
Keller G, Brassat U, Braig M, Heim D, Wege H, Brümmendorf TH. Telomeres and telomerase in chronic myeloid leukaemia: impact for pathogenesis, disease progression and targeted therapy. Hematol Oncol 2009; 27:123-9. [PMID: 19569255 DOI: 10.1002/hon.901] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Telomeres are specialized structures localized at the end of human chromosomes. Due to the end replication problem, each cell division results in a loss of telomeric repeats in normal somatic cells. In germ line and stem cells, the multicomponent enzyme telomerase maintains the length of telomere repeats. However, elevated telomerase activity has also been reported in the majority of solid tumours as well as in acute and chronic leukaemia. Chronic myeloid leukaemia (CML) serves as a model disease to study telomere biology in clonal myeloproliferative disorders. In CML, telomere shortening correlates with disease stage, duration of chronic phase (CP), prognosis measured by the Hasford risk score and the response to disease-modifying therapeutics such as the tyrosine kinase inhibitor Imatinib. In addition, telomerase activity (TA) is already increased in CP CML and further upregulated with disease progression to accelerated phase and blast crisis (BC). Furthermore, a correlation of TA with increased genetic instability as well as a shorter survival of the patients has been reported. Here, we review the current state of knowledge of the role of telomere and telomerase biology in CML and discuss the possible impact of novel treatment approaches.
Collapse
Affiliation(s)
- Gunhild Keller
- Klinik für Onkologie und Hämatologie mit der Sektion Pneumologie, Universitäres Cancer Center Hamburg (UCCH), Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Regulation of telomerase activity by interferon regulatory factors 4 and 8 in immune cells. Mol Cell Biol 2008; 29:929-41. [PMID: 19047367 DOI: 10.1128/mcb.00961-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomerase activity is downregulated in somatic cells but is upregulated during the activation of cells of the immune system. The mechanism of this reactivation is not well understood. In this study, we demonstrated that interferon regulatory factor 4 (IRF-4) and, to a lesser extent, IRF-8 induce telomerase activity. The suppression of IRF-4 results in decreased levels of TERT (telomerase reverse transcriptase) mRNA and telomerase activity and reduces cell proliferation. The overexpression of TERT compensates for this proliferation defect, suggesting that telomerase contributes to the regulation of cell proliferation by IRF-4. The induction of telomerase by IRF-4 and IRF-8 correlates with the activation of the TERT promoter. IRF-4 binds the interferon response-stimulated element and the gamma interferon-activated sequence composite binding site in the TERT core promoter region in vivo. Additionally, the binding of Sp1, Sp3, USF-1, USF-2, and c-Myc to the TERT promoter is elevated in cells expressing IRF-4. IRF-4, but not IRF-8, synergistically cooperates with Sp1 and Sp3 in the activation of the TERT promoter. Collectively, these results indicate that IRF-4 and IRF-8, two lymphoid cell-specific transcription factors, increase telomerase activity by activating TERT transcription in immune cells.
Collapse
|