1
|
Kashyap D, Rele S, Bagde PH, Saini V, Chatterjee D, Jain AK, Pandey RK, Jha HC. Comprehensive insight into altered host cell-signaling cascades upon Helicobacter pylori and Epstein-Barr virus infections in cancer. Arch Microbiol 2023; 205:262. [PMID: 37310490 DOI: 10.1007/s00203-023-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/β-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Pranit Hemant Bagde
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | | | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Solna, Sweden
| | - Hem Chandra Jha
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Madhya Pradesh, 453552, Indore, India.
| |
Collapse
|
2
|
Regulation of B cell receptor signalling by Epstein-Barr virus nuclear antigens. Biochem J 2022; 479:2395-2417. [PMID: 36383217 PMCID: PMC9788576 DOI: 10.1042/bcj20220417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
The cancer-associated Epstein-Barr virus (EBV) latently infects and immortalises B lymphocytes. EBV latent membrane protein 2A and EBV-encoded microRNAs are known to manipulate B cell receptor signalling to control cell growth and survival and suppress lytic replication. Here, we show that the EBV transcription factors EBNA2, 3A, 3B and 3C bind to genomic sites around multiple B cell receptor (BCR) pathway genes, regulate their expression and affect BCR signalling. EBNA2 regulates the majority of BCR pathway genes associated with binding sites, where EBNA3 proteins regulate only 42% of targets predicted by binding. Both EBNA2 and 3 proteins predominantly repress BCR pathway gene expression and target some common genes. EBNA2 and at least one EBNA3 protein repress the central BCR components CD79A and CD79B and the downstream genes BLNK, CD22, CD72, NFATC1, PIK3CG and RASGRP3. Studying repression of CD79B, we show that EBNA2 decreases transcription by disrupting binding of Early B cell Factor-1 to the CD79B promoter. Consistent with repression of BCR signalling, we demonstrate that EBNA2 and EBNA3 proteins suppress the basal or active BCR signalling that culminates in NFAT activation. Additionally, we show that EBNA2, EBNA3A and EBNA3C expression can result in reductions in the active serine 473 phosphorylated form of Akt in certain cell contexts, consistent with transcriptional repression of the PI3K-Akt BCR signalling arm. Overall, we identify EBNA2, EBNA3A and EBNA3C-mediated transcription control of BCR signalling as an additional strategy through which EBV may control the growth and survival of infected B cells and maintain viral latency.
Collapse
|
3
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
4
|
Shorer Arbel Y, Bronstein Y, Dadosh T, Kamdjou T, Tsuriel S, Shapiro M, Katz BZ, Herishanu Y. Spatial organization and early signaling of the B-cell receptor in CLL. Front Immunol 2022; 13:953660. [PMID: 36016925 PMCID: PMC9398492 DOI: 10.3389/fimmu.2022.953660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Most chronic lymphocytic leukemia (CLL) clones express B-cell receptors (BcR) of both IgM/IgD isotypes; however, 5%–10% of CLL cases express isotype-switched immunoglobulin G (IgG). The early signaling and spatial patterning of the various BcRs at steady state and after activation are still fully unresolved. Herein, we show higher expression of the BcR signalosome elements and a more robust constitutive cell-intrinsic proximal BcR signaling in CLL with unmutated IGHV expressing IgM isotype (IgM U-CLL), compared with IGHV-mutated CLL (M-CLL) expressing either IgM or IgG isotypes. IgM in U-CLL is frequently located in the membrane plane in polarized patches, occasionally in caps, and sometimes inside the cells. Among M-CLL, IgM is scattered laterally in the membrane plane in a similar pattern as seen in normal B cells, whereas IgG is dispersed around the cell membrane in smaller clusters than in IgM U-CLL. Upon BcR engagement, both IgG and IgM expressing M-CLL showed attenuated signaling and only slight spatial reorganization dynamics of BcR microclusters and internalization, compared with the extensive reorganization and internalization of the BcR in IgM expressing U-CLL. The global gene signature of IgG M-CLL was closely related to that of IgM M-CLL rather than IgM U-CLL. Overall, we report fundamental differences in the basal composition, biochemical status, and spatial organization of the BcR in the three examined immunogenetic CLL subtypes that correlate with their clinical behavior. On the basis of our findings, IgG class-switched M-CLL likely represents the same disease as IgM M-CLL rather than a different biological and/or clinical entity.
Collapse
MESH Headings
- Humans
- Immunoglobulin G
- Immunoglobulin M
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
| | - Yotam Bronstein
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Talia Kamdjou
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shlomo Tsuriel
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mika Shapiro
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ben-Zion Katz
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yair Herishanu
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- *Correspondence: Yair Herishanu,
| |
Collapse
|
5
|
Niedźwiedzka-Rystwej P, Grywalska E, Hrynkiewicz R, Wołącewicz M, Becht R, Roliński J. The Double-Edged Sword Role of Viruses in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12061680. [PMID: 32599870 PMCID: PMC7352989 DOI: 10.3390/cancers12061680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high morbidity and mortality, gastric cancer is a topic of a great concern throughout the world. Major ways of treatment are gastrectomy and chemotherapy, unfortunately they are not always successful. In a search for more efficient therapy strategies, viruses and their potential seem to be an important issue. On one hand, several oncogenic viruses have been noticed in the case of gastric cancer, making the positive treatment even more advantageous, but on the other, viruses exist with a potential therapeutic role in this malignancy.
Collapse
Affiliation(s)
- Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
- Correspondence:
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Mikołaj Wołącewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, 70-204 Szczecin, Poland;
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| |
Collapse
|
6
|
Sit WY, Chen YA, Chen YL, Lai CH, Wang WC. Cellular evasion strategies of Helicobacter pylori in regulating its intracellular fate. Semin Cell Dev Biol 2020; 101:59-67. [PMID: 32033828 PMCID: PMC7102552 DOI: 10.1016/j.semcdb.2020.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori colonizes human stomach mucosa and its infection causes gastrointestinal diseases with variable severity. Bacterial infection stimulates autophagy, which is a part of innate immunity used to eliminate intracellular pathogens. Several intracellular bacteria have evolved multipronged strategies to circumvent this conserved system and thereby enhance their chance of intracellular survival. Nonetheless, studies on H. pylori have produced inconsistent results, showing either elevated or reduced clearance efficiency of intracellular bacteria through autophagy. In this review, we summarize recent studies on the mechanisms involved in autophagy induced by H. pylori and the fate of intracellular bacteria.
Collapse
Affiliation(s)
- Wei Yang Sit
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Chen
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan.
| | - Wen-Ching Wang
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
7
|
Arias-Bravo G, Valderrama G, Inostroza J, Reyes-Farías M, Garcia-Diaz DF, Zorondo-Rodríguez F, Fuenzalida LF. Overnutrition in Infants Is Associated With High Level of Leptin, Viral Coinfection and Increased Severity of Respiratory Infections: A Cross-Sectional Study. Front Pediatr 2020; 8:44. [PMID: 32133330 PMCID: PMC7041426 DOI: 10.3389/fped.2020.00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/28/2020] [Indexed: 01/01/2023] Open
Abstract
Objective: To investigate the relationship of overnutrition (obese and overweight) with severity of illness in children hospitalized with acute lower respiratory infections (ALRIs), frequency of viral coinfections and leptin levels. Methods: We studied 124 children <2 years old that were hospitalized for ALRI. Nutritional status was calculated by z-scores according to weight-for-age z-scores, length or height-for-age z-scores, and weight-for-height z-scores. Nasopharyngeal aspirates (NPAs) were obtained and viral respiratory pathogens were identified using reverse transcription polymerase chain reactions (RT-PCR). Respiratory syncytial virus (RSV) load was assessed using quantitative RT-PCR. NPA and plasma leptin level were measured. Clinical data and nutritional status were recorded, and patients were followed up until hospital discharge. Viral coinfection was defined as the presence of two or more viruses detected in the same respiratory sample. Severity of illness was determined by length of hospitalization and duration of oxygen therapy. Results: Children with overnutrition showed a greater frequency of viral coinfection than those with normal weight (71% obese vs. 37% normal weight p = 0.013; 68% overweight vs. 37% normal weight p = 0.004). A lower RSV load was found in obese (5.91 log10 copies/mL) and overweight children (6.49 log10 copies/mL) compared to normal weight children (8.06 log10 copies/mL; p = 0.021 in both cases). In multivariate analysis, obese, and overweight infants <6 months old were associated with longer hospital stays (RR = 1.68; CI: 1.30-2.15 and obese: RR = 1.68; CI: 1.01-2.71, respectively) as well as a greater duration of oxygen therapy (RR = 1.80; IC: 1.41-2.29 and obese: RR = 1.91; CI: 1.15-3.15, respectively). Obese children <6 months showed higher plasma leptin level than normal weight children (7.58 vs. 5.12 ng/μl; p <0.046). Conclusions: In infants younger than 6 months, overnutrition condition was related to increased severity of infections and high plasma leptin level. Also, children with overnutrition showed a greater frequency of viral coinfection and low RSV viral load compared to normal weights children. These findings further contribute to the already existent evidence supporting the importance of overnutrition prevention in pediatric populations.
Collapse
Affiliation(s)
- Guisselle Arias-Bravo
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | | | - Jaime Inostroza
- Jeffrey Modell Centre for Diagnosis and Research in Primary Immunodeficiencies, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Marjorie Reyes-Farías
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Laboratorio de Nutrigenomica, Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Loreto F Fuenzalida
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
8
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
El-Sharkawy A, Al Zaidan L, Malki A. Epstein-Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Front Oncol 2018; 8:265. [PMID: 30116721 PMCID: PMC6082928 DOI: 10.3389/fonc.2018.00265] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Epstein–Barr virus (EBV) is the first herpesvirus identified to be associated with human cancers known to infect the majority of the world population. EBV-associated malignancies are associated with a latent form of infection, and several of the EBV-encoded latent proteins are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins (LMPs). In lymphoid and epithelial tumors, viral latent gene expressions have distinct pattern. In both primary and metastatic tumors, the constant expression of latent membrane protein 2A (LMP2A) at the RNA level suggests that this protein is the key player in the EBV-associated tumorigenesis. While LMP2A contributing to the malignant transformation possibly by cooperating with the aberrant host genome. This can be done in part by dysregulating signaling pathways at multiple points, notably in the cell cycle and apoptotic pathways. Recent studies also have confirmed that LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of these proteins on activation of multiple signaling pathways. This review article aims to investigate the aforementioned EBV-encoded proteins that reveal established roles in tumor formation, with a greater emphasis on the oncogenic LMPs (LMP1 and LMP2A) and their roles in dysregulating signaling pathways. It also aims to provide a quick look on the six members of the EBV nuclear antigens and their roles in dysregulating apoptosis.
Collapse
Affiliation(s)
- Ahmed El-Sharkawy
- Human Molecular Genetics Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB)-CNR, Naples, Italy.,Biomolecular Science Programme, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lobna Al Zaidan
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ahmed Malki
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Chandra A, Xu YM. Cholesterol: A necessary evil from a multiple sclerosis perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Avinash Chandra
- Buffalo Neuroimaging Analysis Center; Department of Neurology; Buffalo General Hospital; Buffalo NY USA
- Department of Neurology; Annapurna Neurological Institute and Allied Sciences; Kathmandu Nepal
| | - Yu Ming Xu
- Department of Neurology III; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| |
Collapse
|
11
|
Hoogeboom R, Tolar P. Molecular Mechanisms of B Cell Antigen Gathering and Endocytosis. Curr Top Microbiol Immunol 2015; 393:45-63. [PMID: 26336965 DOI: 10.1007/82_2015_476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generation of high-affinity, protective antibodies requires B cell receptor (BCR) signaling, as well as antigen internalization and presentation to helper T cells. B cell antigen internalization is initiated by antigen capture, either from solution or from immune synapses formed on the surface of antigen-presenting cells, and proceeds via clathrin-dependent endocytosis and intracellular routing to late endosomes. Although the components of this pathway are still being discovered, it has become clear that antigen internalization is actively regulated by BCR signaling at multiple steps and, vice versa, that localization of the BCR along the endocytic pathway modulates signaling. Accordingly, defects in BCR internalization or trafficking contribute to enhanced B cell activation in models of autoimmune diseases and in B cell lymphomas. In this review, we discuss how BCR signaling complexes regulate each of the steps of this endocytic process and why defects along this pathway manifest as hyperactive B cell responses in vivo.
Collapse
Affiliation(s)
- Robbert Hoogeboom
- Division of Immune Cell Biology, National Institute for Medical Research, Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Pavel Tolar
- Division of Immune Cell Biology, National Institute for Medical Research, Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.
| |
Collapse
|
12
|
Abstract
LMP2A is an EBV-encoded protein with three domains: (a) an N-terminal cytoplasmic domain, which has PY motifs that bind to WW domain-containing E3 ubiquitin ligases and an ITAM that binds to SH2 domain-containing proteins, (b) a transmembrane domain with 12 transmembrane segments that localizes LMP2A in cellular membranes, and (c) a 27-amino acid C-terminal domain which mediates homodimerization and heterodimerization of LMP2 protein isoforms. The most prominent two isoforms of the protein are LMP2A and LMP2B. The LMP2B isoform lacks the 19-amino acid N-terminal domain found in LMP2A, which modulates cellular signaling resulting in a baseline activation of B cells and degradation of cellular kinases leading to the downregulation of normal B cell signaling pathways. These two seemingly contradictory processes allow EBV to establish and maintain latency. LMP2 is expressed in many EBV-associated malignancies. While its antigenic properties may be useful in developing LMP2-specific immunity, the LMP2A N-terminal motifs also provide a basis to target LMP2A-modulated cellular kinases for the development of treatment strategies.
Collapse
|
13
|
SYK interaction with ITGβ4 suppressed by Epstein-Barr virus LMP2A modulates migration and invasion of nasopharyngeal carcinoma cells. Oncogene 2014; 34:4491-9. [PMID: 25531330 DOI: 10.1038/onc.2014.380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV)-encoded Latent Membrane Protein 2A (LMP2A) is an EBV latency-associated protein regularly expressed in nasopharyngeal carcinoma (NPC). In B cells, LMP2A activity resembles that of a constitutively activated antigen receptor, which recruits the Syk tyrosine kinase to activate a set of downstream signaling pathways. LMP2A also downregulates cellular Syk levels. In the present study, we demonstrate that Syk interacts with the integrin β4 subunit (ITGβ4) of integrin α6β4 in epithelial cells and that concurrent LMP2A expression interferes with this interaction by competitive binding to Syk. We find that both Syk and LMP2A have an effect on ITGβ4 cell surface expression. However, in LMP2A expressing cells, ITGβ4 remains concentrated at the cellular protrusions, an expression pattern characteristic of motile cells, including NPC-derived epithelial cells. This effect of LMP2A on ITGβ4 localization is associated with a greater propensity for migration and invasion in-vitro, and may contribute to the invasive property of LMP2A-expressing NPC.
Collapse
|
14
|
Abstract
During infections or acute conditions high-density lipoproteins cholesterol (HDL-C) levels decrease very rapidly and HDL particles undergo profound changes in their composition and function. These changes are associated with poor prognosis following endotoxemia or sepsis and data from genetically modified animal models support a protective role for HDL. The same is true for some parasitic infections, where the key player appears to be a specific and minor component of HDL, namely apoL-1. The ability of HDL to influence cholesterol availability in lipid rafts in immune cells results in the modulation of toll-like receptors, MHC-II complex, as well as B- and T-cell receptors, while specific molecules shuttled by HDL such as sphingosine-1-phosphate (S1P) contribute to immune cells trafficking. Animal models with defects associated with HDL metabolism and/or influencing cell cholesterol efflux present features related to immune disorders. All these functions point to HDL as a platform integrating innate and adaptive immunity. The aim of this review is to provide an overview of the connection between HDL and immunity in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy IRCCS Multimedica, Milan, Italy
| | - Angela Pirillo
- IRCCS Multimedica, Milan, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, UK
| |
Collapse
|
15
|
|
16
|
Giles BM, Boackle SA. Linking complement and anti-dsDNA antibodies in the pathogenesis of systemic lupus erythematosus. Immunol Res 2013; 55:10-21. [PMID: 22941560 DOI: 10.1007/s12026-012-8345-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Systemic lupus erythematosus is a severe autoimmune disease that affects multiple organ systems resulting in diverse symptoms and outcomes. It is characterized by antibody production to a variety of self-antigens, but it is specifically associated with those against anti-dsDNA. Anti-dsDNA antibodies are present before the onset of clinical disease and are associated with severe manifestations of lupus such as glomerulonephritis. Their levels fluctuate with changes in disease activity and, in combination with the levels of complement proteins C3 and C4, are strong indicators of disease flare and treatment response in patients with lupus. The decreased complement levels that are noted during flares of lupus activity are believed to be secondary to increased autoantibody production and immune complex formation that results in tissue damage; however, recent data suggest that complement activation can also drive development of these pathogenic autoantibodies. This review will explore the various roles of complement in the development and pathogenesis of anti-dsDNA antibodies.
Collapse
Affiliation(s)
- Brendan M Giles
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
17
|
Dergai O, Dergai M, Skrypkina I, Matskova L, Tsyba L, Gudkova D, Rynditch A. The LMP2A protein of Epstein-Barr virus regulates phosphorylation of ITSN1 and Shb adaptors by tyrosine kinases. Cell Signal 2012; 25:33-40. [PMID: 22975684 DOI: 10.1016/j.cellsig.2012.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/20/2023]
Abstract
Latent Membrane Protein 2A (LMP2A) is an Epstein-Barr virus-encoded protein that is important for the maintenance of latent infection. Its activity affects cellular differentiation, migration, proliferation and B cell survival. LMP2A resembles a constitutively activated B cell antigen receptor and exploits host kinases to activate a set of downstream signaling pathways. In the current study we demonstrate the interaction of LMP2A with intersectin 1 (ITSN1), a key endocytic adaptor protein. This interaction occurs via both the N- and C-tails of LMP2A and is mediated by the SH3 domains of ITSN1. Additionally, we identified the Shb adaptor and the Syk kinase as novel binding ligands of ITSN1. The Shb adaptor interacts simultaneously with the phosphorylated tyrosines of LMP2A and the SH3 domains of ITSN1 and mediates indirect interaction of ITSN1 to LMP2A. Syk kinase promotes phosphorylation of both ITSN1 and Shb adaptors in LMP2A-expressing cells. In contrast to ITSN1, Shb phosphorylation depends additionally on Lyn kinase activity. Considering that Shb and ITSN1 are implicated in various receptor tyrosine kinase signaling, our results indicate that LMP2A can affect a number of signaling pathways by regulating the phosphorylation of the ITSN1 and Shb adaptors.
Collapse
Affiliation(s)
- Oleksandr Dergai
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang W, Shi Q, Xu X, Chen H, Lin W, Zhang F, Zeng X, Zhang X, Ba D, He W. Aberrant CD40-induced NF-κB activation in human lupus B lymphocytes. PLoS One 2012; 7:e41644. [PMID: 22952582 PMCID: PMC3428310 DOI: 10.1371/journal.pone.0041644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Auto-reactive B lymphocytes and its abnormal CD40 signaling play important roles in the pathogenesis of systemic lupus erythematosus (SLE). In this study, we analyzed CD40 expression and CD40/CD154 induced activation of NF-κB signaling pathway in B cells from SLE patients. B cells from healthy volunteers and tonsilar B cells from chronic tonsillitis were used as negative and positive controls. Results showed CD40-induced NF-κB signaling was constitutively activated in B cells from active lupus patients, including decreased CD40 in raft portion, increased phosphorylation and degradation of IκBα, phosphorylation of P65, as well as increased nuclear translocation of P65, P50, c-Rel, which could be blocked by anti-CD154. CD154 stimulation could induce further phosphorylation and degradation of IκBα, as well as phosphorylation of P65 and nuclear translocation of P65. In addition, CD40-induced kinase activities in B cells from lupus patients mimicked that of tonsil B cells, in that IKKα/β were more activated compared to normal B cells. CD40-induced NF-κB activity was blocked by both IκB phosphorylation and proteosome degradation inhibitors in both lupus and normal B cells. All together, our findings revealed that canonical NF-κB signaling is constitutively activated in active lupus and is mediated by CD154/CD40. CD40 induced NF-κB activation is different in human lupus B lymphocytes compared with normal B cells.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Qun Shi
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaotian Xu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Wei Lin
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- * E-mail:
| | - Denian Ba
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5, Dong Dan San Tiao, Beijing, China
| | - Wei He
- Department of Immunology, School of Basic Medicine, Peking Union Medical College and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5, Dong Dan San Tiao, Beijing, China
| |
Collapse
|
19
|
Hatton O, Lambert SL, Krams SM, Martinez OM. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV)+ B cell lymphomas. PLoS One 2012; 7:e42610. [PMID: 22880054 PMCID: PMC3411813 DOI: 10.1371/journal.pone.0042610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stacie L. Lambert
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sheri M. Krams
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olivia M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
20
|
Vaughn SE, Kottyan LC, Munroe ME, Harley JB. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J Leukoc Biol 2012; 92:577-91. [PMID: 22753952 DOI: 10.1189/jlb.0212095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Over 50 genetic variants have been statistically associated with the development of SLE (or lupus). Each genetic association is a key component of a pathway to lupus pathogenesis, the majority of which requires further mechanistic studies to understand the functional changes to cellular physiology. Whereas their use in clinical practice has yet to be established, these genes guide efforts to develop more specific therapeutic approaches. The BCR signaling pathways are rich in lupus susceptibility genes and may well provide novel opportunities for the understanding and clinical treatment of this complex disease.
Collapse
Affiliation(s)
- Samuel E Vaughn
- Cincinnati Children’s Hosptial Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
21
|
Hatton O, Martinez OM, Esquivel CO. Emerging therapeutic strategies for Epstein-Barr virus+ post-transplant lymphoproliferative disorder. Pediatr Transplant 2012; 16:220-9. [PMID: 22353174 PMCID: PMC4052840 DOI: 10.1111/j.1399-3046.2012.01656.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
De novo malignancies represent an increasing concern in the transplant population, particularly as long-term graft and patient survival improves. EBV-associated B-cell lymphoma in the setting of PTLD is the leading malignancy in children following solid organ transplantation. Therapeutic strategies can be categorized as pharmacologic, biologic, and cell-based but the variable efficacy of these approaches and the complexity of PTLD suggest that new treatment options are warranted. Here, we review current therapeutic strategies for treatment of PTLD. We also describe the life cycle of EBV, addressing the viral mechanisms that contribute to the genesis and persistence of EBV+ B-cell lymphomas. Specifically, we focus on the oncogenic signaling pathways activated by the EBV LMP1 and LMP2a to understand the underlying mechanisms and mediators of lymphomagenesis with the goal of identifying novel, rational therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O. Esquivel
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 2012; 22:144-53. [PMID: 22249143 DOI: 10.1016/j.semcancer.2012.01.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
Abstract
Although frequently expressed in EBV-positive malignancies, the contribution of the oncogenic latent membrane proteins, LMP1 and LMP2, to the pathogenesis of nasopharyngeal carcinoma (NPC) is not fully defined. As a key effector in EBV-driven B cell transformation and an established "transforming" gene, LMP1 displays oncogenic properties in rodent fibroblasts and induces profound morphological and phenotypic effects in epithelial cells. LMP1 functions as a viral mimic of the TNFR family member, CD40, engaging a number of signalling pathways that induce morphological and phenotypic alterations in epithelial cells. Although LMP2A plays an essential role in maintaining viral latency in EBV infected B cells, its role in epithelial cells is less clear. Unlike LMP1, LMP2A does not display "classical" transforming functions in rodent fibroblasts but its ability to engage a number of potentially oncogenic cell signalling pathways suggests that LMP2A can also participate in EBV-induced epithelial cell growth transformation. Here we review the effects of LMP1 and LMP2 on various aspects of epithelial cell behaviour highlighting key aspects that may contribute to the pathogenesis of NPC.
Collapse
Affiliation(s)
- Christopher W Dawson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
23
|
Kim DS, Park JH, Kim JY, Kim D, Nam JH. A mechanism of immunoreceptor tyrosine-based activation motif (ITAM)-like sequences in the capsid protein VP2 in viral growth and pathogenesis of Coxsackievirus B3. Virus Genes 2011; 44:176-82. [DOI: 10.1007/s11262-011-0681-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
24
|
Hatton O, Phillips LK, Vaysberg M, Hurwich J, Krams SM, Martinez OM. Syk activation of phosphatidylinositol 3-kinase/Akt prevents HtrA2-dependent loss of X-linked inhibitor of apoptosis protein (XIAP) to promote survival of Epstein-Barr virus+ (EBV+) B cell lymphomas. J Biol Chem 2011; 286:37368-78. [PMID: 21908615 DOI: 10.1074/jbc.m111.255125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
B cell lymphoma survival requires tonic or ligand-independent signals through activation of Syk by the B cell receptor. The Epstein-Barr virus (EBV) protein latent membrane 2a (LMP2a), a mimic of the B cell receptor, provides constitutive survival signals for latently infected cells through Syk activation; however, the precise downstream mechanisms coordinating this survival response in EBV+ B cell lymphomas remain to be elucidated. Herein, we assess the mechanism of Syk survival signaling in EBV+ B cell lymphomas from post-transplant lymphoproliferative disorder (PTLD) to discover virally controlled therapeutic targets involved in lymphomagenesis and tumor progression. Using small molecule inhibition and siRNA strategies, we show that Syk inhibition reduces proliferation and induces apoptosis of PTLD-derived EBV+ B cell lines. Syk inhibition also reduces autocrine IL-10 production. Although Syk inhibition attenuates signaling through both the PI3K/Akt and Erk pathways, only PI3K/Akt inhibition causes apoptosis of PTLD-derived cell lines. Loss of the endogenous caspase inhibitor XIAP is observed after Syk or PI3K/Akt inhibition. The loss of XIAP and apoptosis that results from Syk or PI3K/Akt inhibition is reversed by inhibition of the mitochondrial protease HtrA2. Thus, Syk drives EBV+ B cell lymphoma survival through PI3K/Akt activation, which prevents the HtrA2-dependent loss of XIAP. Syk, Akt, and XIAP antagonists may present potential new therapeutic strategies for PTLD through targeting of EBV-driven survival signals.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
25
|
Martín P, Salas C, Provencio M, Abraira V, Bellas C. Heterogeneous expression of Src tyrosine kinases Lyn, Fyn and Syk in classical Hodgkin lymphoma: prognostic implications. Leuk Lymphoma 2011; 52:2162-8. [PMID: 21749309 DOI: 10.3109/10428194.2011.594926] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to determine the prognostic significance of the expression of Lyn, Fyn and Syk in Hodgkin lymphoma and its correlation with Epstein-Barr virus (EBV) infection. With this in mind, 96 patients with classical Hodgkin lymphoma were immunohistochemically evaluated for Lyn, Fyn and Syk expression in Hodgkin and Reed-Sternberg cells, and the results were correlated with the presence of EBV and patient outcomes. These three kinases were heterogeneously expressed in classical Hodgkin lymphoma cases. As there are no cut-offs established for these antibodies, they were introduced as continuous variables in the model. Statistical analysis showed that the expression of Syk and Fyn was significantly associated with shorter failure-free survival. Syk and Fyn may be useful to predict at diagnosis the treatment response of patients with classical Hodgkin lymphoma. There was a significant association between EBV infection and Lyn expression (p < 0.05). Overexpression of Syk and the availability of Syk inhibitors suggest that this molecule might be a therapeutic strategy worthy of development for cases expressing this molecule.
Collapse
Affiliation(s)
- Paloma Martín
- Department of Molecular Pathology, Puerta de Hierro University Hospital, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat Med 2009; 16:123-8. [PMID: 20023635 PMCID: PMC2861345 DOI: 10.1038/nm.2071] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 07/02/2009] [Indexed: 11/17/2022]
Abstract
B cell lymphoma (BCL)6 and Bcl-xL are expressed in germinal center (GC) B cells and enable them to endure the proliferative and mutagenic environment of the GC. By introducing these genes into peripheral blood memory B cells and culturing these cells with factors produced by follicular helper T cells, CD40L and IL-21, we convert them to highly proliferating, cell surface BCR positive, Ig-secreting B cells with features of GC B cells including expression of activation-induced cytidine deaminase. We generated cloned lines of B cells specific for respiratory syncytial virus and used these cells as a source of antibodies that effectively neutralized this virus in vivo. This method provides a new tool to study GC B cell biology, signal transduction through antigen-specific B cell receptors, and for the rapid generation of high affinity human monoclonal antibodies.
Collapse
|
28
|
The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene 2009; 28:3903-14. [PMID: 19718044 PMCID: PMC2774296 DOI: 10.1038/onc.2009.249] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although frequently expressed in Epstein-Barr virus (EBV)-positive malignancies, the role that latent membrane protein 2A and 2B (LMP2A and LMP2B) have in the oncogenic process remains obscure. Here we show a novel function for these proteins in epithelial cells, namely, their ability to modulate signalling from type I/II interferon receptors (IFNRs). We show that LMP2A- and LMP2B-expressing epithelial cells show decreased responsiveness to interferon (IFN)alpha and IFNgamma, as assessed by STAT1 phosphorylation, ISGF3 and GAF-mediated binding to IFN-stimulated response element and IFNgamma-activated factor sequence elements and luciferase reporter activation. Transcriptional profiling highlighted the extent of this modulation, with both viral proteins impacting 'globally' on IFN-stimulated gene expression. Although not affecting the levels of cell-surface IFNRs, LMP2A and LMP2B accelerated the turnover of IFNRs through processes requiring endosome acidification. This function may form part of EBV's strategy to limit anti-viral responses and define a novel function for LMP2A and LMP2B in modulating signalling from receptors that participate in innate immune responses.
Collapse
|
29
|
Cho NH, Choi YK, Choi JK. Multi-transmembrane protein K15 of Kaposi's sarcoma-associated herpesvirus targets Lyn kinase in the membrane raft and induces NFAT/AP1 activities. Exp Mol Med 2009; 40:565-73. [PMID: 18985015 DOI: 10.3858/emm.2008.40.5.565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viral proteins of gamma-2 herpesviruses, such as LMP2A of Epstein Barr virus (EBV) and Tip of herpesvirus saimiri (HVS) dysregulate lymphocyte signaling by interacting with Src family kinases. K15 open reading frame of Kaposi's sarcoma associated herpesvirus (KSHV), located at the right end of the viral genome, encodes several splicing variants differing in numbers of transmembrane domains. Previously, we demonstrated that the cytoplasmic tail of the K15 protein interfered with B cell receptor signal transduction to cellular tyrosine phosphorylation and calcium mobilization. However, the detailed mechanism underlying this phenomenon was not understood. In the C-terminal cytoplasmic region of K15, putative binding domains for Src-SH2 and -SH3 were identified. In this study, we attempted to characterize these modular elements and cellular binding protein(s) by GST pull down and co-immunoprecipitation assays. These studies revealed that K15 interacted with the major B cell tyrosine kinase Lyn. In vitro kinase and transient co-expression assays showed that the expression of K15 protein resulted in activation of Lyn kinase activity. In addition, GST pull down assay suggested that the SH2 domain of Lyn alone was necessary for interaction with the C-terminal SH2B (YEEV) of K15, but the addition of Lyn SH3 to the SH2 domain increases the binding affinity to K15 protein. The data from luciferase assays indicate that K15 expression in BJAB cells induced NFAT and AP1 activities. The tyrosine residue in the C-terminal end of K15 required for the Lyn interaction appeared to be essential for NFAT/AP1 activation, highlighting the significance of the C-terminal SH2B of K15 as a modular element in interfering with B lymphocyte signaling through interaction with Lyn kinase.
Collapse
Affiliation(s)
- Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul 110-799, Korea
| | | | | |
Collapse
|
30
|
Sharma S, Orlowski G, Song W. Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:329-39. [PMID: 19109164 PMCID: PMC2855895 DOI: 10.4049/jimmunol.182.1.329] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high efficiency of Ag processing and presentation by B cells requires Ag-induced BCR signaling and actin cytoskeleton reorganization, although the underlying mechanism for such requirements remains elusive. In this study, we identify Bruton's tyrosine kinase (Btk) as a linker connecting BCR signaling to actin dynamics and the Ag transport pathway. Using xid mice and a Btk inhibitor, we show that BCR engagement increases actin polymerization and Wiskott-Aldrich syndrome protein activation in a Btk-dependent manner. Concurrently, we observe Btk-dependent increases in the levels of phosphatidylinositide-4,5-bisphosphate and phosphorylated Vav upon BCR engagement. The rate of BCR internalization, its movement to late endosomes, and efficiency of BCR-mediated Ag processing and presentation are significantly reduced in both xid and Btk inhibitor-treated B cells. Thus, Btk regulates actin dynamics and Ag transport by activating Wiskott-Aldrich syndrome protein via Vav and phosphatidylinositides. This represents a novel mechanism by which BCR-mediated signaling regulates BCR-mediated Ag processing and presentation.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Gregory Orlowski
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
31
|
Ikeda M, Longnecker R. The c-Cbl proto-oncoprotein downregulates EBV LMP2A signaling. Virology 2008; 385:183-91. [PMID: 19081591 DOI: 10.1016/j.virol.2008.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/28/2008] [Accepted: 11/11/2008] [Indexed: 11/16/2022]
Abstract
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking signals induced by the B-cell receptor (BCR) altering normal B cell development. As c-Cbl ubiquitin ligase (E3) is a critical negative regulator in the BCR signal pathway, the role of c-Cbl in the function and formation of the LMP2A signalosome was examined. c-Cbl promoted LMP2A degradation through ubiquitination, specifically degraded the Syk protein tyrosine kinase in the presence of LMP2A, and inhibited LMP2A induction of the EBV lytic cycle. Our earlier studies indicated that LMP2A-dependent Lyn degradation was mediated by Nedd4-family E3s in LMP2A expressing cells. Combine with these new findings, we propose a model in which c-Cbl and Nedd4-family E3s cooperate to degrade target proteins at discrete steps in the function of the LMP2A signalosome.
Collapse
Affiliation(s)
- Masato Ikeda
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | |
Collapse
|
32
|
Noisakran S, Dechtawewat T, Avirutnan P, Kinoshita T, Siripanyaphinyo U, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. Association of dengue virus NS1 protein with lipid rafts. J Gen Virol 2008; 89:2492-2500. [PMID: 18796718 DOI: 10.1099/vir.0.83620-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
During the replication of dengue virus, a viral non-structural glycoprotein, NS1, associates with the membrane on the cell surface and in the RNA replication complex. NS1 lacks a transmembrane domain, and the mechanism by which it associates with the membrane remains unclear. This study aimed to investigate whether membrane-bound NS1 is present in lipid rafts in dengue virus-infected cells. Double immunofluorescence staining of infected HEK-293T cells revealed that NS1 localized with raft-associated molecules, ganglioside GM1 and CD55, on the cell surface. In a flotation gradient centrifugation assay, a small proportion of NS1 in Triton X-100 cell lysate consistently co-fractionated with raft markers. Association of NS1 with lipid rafts was detected for all four dengue serotypes, as well as for Japanese encephalitis virus. Analysis of recombinant NS1 forms showed that glycosylated NS1 dimers stably expressed in HEK-293T cells without an additional C-terminal sequence, or with a heterologous transmembrane domain, failed to associate with lipid rafts. In contrast, glycosylphosphatidylinositol-linked recombinant NS1 exhibited a predilection for lipid rafts. These results indicate an association of a minor subpopulation of NS1 with lipid rafts during dengue virus infection and suggest that modification of NS1, possibly lipidation, is required for raft association.
Collapse
Affiliation(s)
- Sansanee Noisakran
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Thanyaporn Dechtawewat
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute of Microbial Diseases, Osaka University, Osaka, Japan
| | - Uamporn Siripanyaphinyo
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand
| | - Chunya Puttikhunt
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Watchara Kasinrerk
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Prida Malasit
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| |
Collapse
|
33
|
Pan YR, Vatsyayan J, Chang YS, Chang HY. Epstein-Barr virus latent membrane protein 2A upregulates UDP-glucose dehydrogenase gene expression via ERK and PI3K/Akt pathway. Cell Microbiol 2008; 10:2447-60. [PMID: 18717819 DOI: 10.1111/j.1462-5822.2008.01221.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Epstein-Barr virus latent membrane protein 2A (LMP2A) is frequently detected in nasopharyngeal carcinoma (NPC), a tumour of high metastatic capacity. A recent microarray assay notes that expression of the UDP-glucose dehydrogenase (UGDH) gene, participating in glycosaminoglycan synthesis, shows high correlation with LMP2A levels in NPC biopsies. This study extends the finding and demonstrates that the UGDH transcript and protein quantities, the enzyme activity, and glycosaminoglycan contents increase in LMP2A overexpressed human embryonic kidney 293 (HEK293) cells. The luciferase reporter gene assay demarcates that a region from 630 to 486 bp upstream of the transcription start is critical for LMP2A-mediated gene expression. Moreover, a specificity protein 1 (Sp1) binding site mutation in this region reduces the LMP2A-responsive expression of the UGDH gene. Consistent with these findings, cell motility enhancement by LMP2A diminishes by treating the cells with Sp1-specific inhibitor and small interference RNA (siRNA). Using a signalling pathway-specific inhibitor, it is revealed that phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK), not c-Jun N-terminal kinase (JNK) and p38, participate in LMP2A-induced UGDH expression. This study provides a model for molecular mechanism participating in LMP2A-mediated UGDH gene activation.
Collapse
Affiliation(s)
- Yun-Ru Pan
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, 300, Taiwan
| | | | | | | |
Collapse
|
34
|
Epstein-Barr virus latent membrane protein 2A preferentially signals through the Src family kinase Lyn. J Virol 2008; 82:8520-8. [PMID: 18579586 DOI: 10.1128/jvi.00843-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) is a viral protein expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor signal transduction and provides survival and developmental signals to B cells in vivo. Although Lyn has been shown to be important in mediating LMP2A signaling, it is still unclear if Lyn is used preferentially or if LMP2A associates promiscuously with other Src family kinase (SFK) members. To investigate the role of various SFKs in LMP2A signaling, we crossed LMP2A transgenic mice (TgE) with Lyn(-/-), Fyn(-/-), or Blk(-/-) mice. TgE Lyn(-/-) mice had a larger immunoglobulin M (IgM)-positive B-cell population than TgE mice, suggesting that the absence of Lyn prevents LMP2A from delivering survival and developmental signals to the B cells. Both TgE Fyn(-/-) and TgE Blk(-/-) mice have an IgM-negative population of splenic B cells, similar to the TgE mice. LMP2A was also transiently transfected into the human EBV-negative B-cell line BJAB to determine which SFK members associate with LMP2A. Lyn was detected in LMP2A immunoprecipitates, whereas Fyn was not. Both Lyn and Fyn were able to bind to an LMP2A mutant which contained a sequence shown previously to bind tightly to the SH2 domain of multiple SFK members. From these results, we conclude that LMP2A preferentially associates with and signals through Lyn compared to its association with other SFKs. This preferential association is due in part to the SH2 domain of Lyn associating with LMP2A.
Collapse
|
35
|
Craig FE, Johnson LR, Harvey SAK, Nalesnik MA, Luo JH, Bhattacharya SD, Swerdlow SH. Gene expression profiling of Epstein-Barr virus-positive and -negative monomorphic B-cell posttransplant lymphoproliferative disorders. ACTA ACUST UNITED AC 2007; 16:158-68. [PMID: 17721324 DOI: 10.1097/pdm.0b013e31804f54a9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although most posttransplant lymphoproliferative disorders (PTLD) are related to Epstein-Barr virus (EBV) infection, approximately 20% lack detectable EBV (EBV-). It is uncertain whether the latter cases are truly distinct from EBV+ PTLD or possibly relate to another infectious agent. This study used gene expression profiling to further investigate the relationship between EBV+ and EBV- monomorphic B-cell PTLD, and to search for clues to their pathogenesis. Affymetrix HU133A GeneChips were used to compare 4 EBV+ and 4 EBV- cases of monomorphic B-cell PTLD. Hierarchical clustering successfully distinguished the EBV+ and EBV- groups. Relative to EBV- PTLD, 54 transcripts were over-expressed in EBV+ PTLD. The transcripts identified included IRF7 (a known regulator of EBV LMP1 expression), EBI2 (EBV-induced gene 2), and 3 that are interferon induced (MX1, IFITM1, and IFITM3). In addition, the EBV+ group contained 232 transcripts decreased relative to the EBV- group, including changes concordant with those previously reported after EBV infection of cultured B-cell lines. In summary, in a small group of monomorphic B-cell PTLD, EBV+ cases demonstrated a subset of gene expression changes associated with EBV infection of B cells. By contrast, EBV- PTLD lacked viral-associated changes suggesting that they are biologically distinct.
Collapse
Affiliation(s)
- Fiona E Craig
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Aberrant Epstein-Barr virus persistence in HIV carriers is characterized by anti-Epstein-Barr virus IgA and high cellular viral loads with restricted transcription. AIDS 2007; 21:2141-9. [PMID: 18090040 DOI: 10.1097/qad.0b013e3282eeeba0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Epstein-Barr virus (EBV)-positive lymphomas in HIV carriers are paralleled by elevated EBV-DNA loads in the circulation. Approximately 20% of asymptomatic HIV carriers also show elevated circulating EBV-DNA loads. We aimed to characterize the nature of this EBV DNA and to determine the transcriptional phenotype of EBV in blood, in relation to serological parameters. DESIGN A total of 197 random asymptomatic HIV carriers, representing 2% of the Dutch HIV-positive population, were sampled for blood, peripheral blood mononuclear cells and plasma. In addition, 39 EBV-DNA carriers were sampled twice, with a 5-year interval. METHODS EBV-DNA loads were determined by LightCycler-based real-time polymerase chain reaction (PCR). EBV transcription was studied by nucleic acid sequence-based amplification and reverse transcriptase PCR. IgA and IgG antibodies to EBV antigens EBNA1 and VCA-p18 were quantified by synthetic peptide-based enzyme-linked immunosorbent assay. RESULTS : Elevated EBV-DNA loads were found in whole blood of 19.3% of the tested HIV population, which were persistent in 82%. Plasma samples were EBV-DNA negative and circulating EBV DNA could be attributed to the B-cell compartment. Transcription of only LMP2 and (non-translated) transcripts from the BamHI-A region of the EBV genome was found, whereas EBNA1, LMP1 and lytic EBV transcripts were absent despite high cellular EBV-DNA loads. IgA-reactivity to VCA-p18 was seen in 69%. IgG to VCA-p18 was significantly higher in high EBV-DNA load carriers. CONCLUSION Asymptomatic HIV carriers show aberrant EBV persistence in the circulation, characterized by elevated, B-cell-associated EBV-DNA loads. EBV transcription is restricted, arguing for EBV gene shutdown in circulating EBV-carrying B cells. Increased IgA and IgG reactive to VCA-p18 is indicative of increased lytic EBV replication, possibly occurring at mucosal lymphoid sites but not in the circulation.
Collapse
|
37
|
Tomaszewski-Flick MJ, Rowe DT. Minimal protein domain requirements for the intracellular localization and self-aggregation of Epstein-Barr Virus Latent Membrane Protein 2. Virus Genes 2007; 35:225-34. [PMID: 17564822 DOI: 10.1007/s11262-007-0118-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 05/14/2007] [Indexed: 12/11/2022]
Abstract
The EBV Latent Membrane Protein 2 (LMP2) may have a role in the establishment and maintenance of in vivo latency. The gene is transcribed into two mRNAs that produce two LMP2 protein isoforms. The LMP2a protein isoform has 12 transmembrane segments (TMs) and an amino terminal cytoplasmic signaling domain (CSD) while the LMP2b isoform is identical but lacks the CSD. There has not been a consensus on the cellular membrane localization being sometimes ascribed to either a plasma membrane or an intracellular location [M. Rovedo, R. Longnecker, J. Virol. 81:89-94, 2007; D. Lynch, J. Zimmerman, D.T. Rowe, J. Gen. Virol. 83:1025-1035, 2002; C. Dawson, J. George, S. Blake, R. Longnecker, L.S. Young, Virology 289:192-207, 2001]. Fluorescent marker and epitope tagged LMP2b truncation mutants progressively removing TMs from the N and C termini were used to assess the localization and aggregation properties of LMP2b. wtLMP2b had an exclusively intracellular perinuclear localization, while all truncations of the protein resulted in localization to the cell surface. By epitope loop-tagging, all the truncated LMP2b proteins were verified to be in the predicted membrane orientation. In co-transfection experiments, the C-terminal region was implicated in the self-aggregation properties of LMP2b. Thus, an intact 12 TM domain was required for intracellular localization and protein-protein interaction while a C-terminal region was responsible for auto-aggregative properties.
Collapse
Affiliation(s)
- Monica Jo Tomaszewski-Flick
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto St, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
38
|
Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 2007; 110:3715-21. [PMID: 17682125 PMCID: PMC2077319 DOI: 10.1182/blood-2007-05-090142] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many cells latently infected with Epstein-Barr virus (EBV), including certain virus-associated tumors, express latent membrane protein 2A (LMP2A), suggesting an important role for this protein in viral latency and oncogenesis. LMP2A mimics B-cell receptor signaling but can also act as a decoy receptor blocking B-cell receptor (BCR) activation. Studies of peripheral B cells have not resolved this apparent contradiction because LMP2A seems to be dispensable for EBV-induced transformation of these B cells in vitro. We show here that LMP2A is essential for growth transformation of germinal center B cells, which do not express the genuine BCR because of deleterious somatic hypermutations in their immunoglobulin genes. BCR-positive (BCR(+)) and BCR-negative (BCR(-)) B cells are readily transformed with a recombinant EBV encoding a conditional, floxed LMP2A allele, but the survival and continued proliferation of both BCR(+) and BCR(-) B cells is strictly dependent on LMP2A. These findings indicate that LMP2A has potent, distinct antiapoptotic and/or transforming characteristics and point to its role as an indispensable BCR mimic in certain B cells from which human B-cell tumors such as Hodgkin lymphoma originate.
Collapse
Affiliation(s)
- Christoph Mancao
- GSF-National Research Center for Environment and Health Department of Gene Vectors, Munich, Germany
| | | |
Collapse
|
39
|
Gupta N, DeFranco AL. Lipid rafts and B cell signaling. Semin Cell Dev Biol 2007; 18:616-26. [PMID: 17719248 PMCID: PMC2169358 DOI: 10.1016/j.semcdb.2007.07.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 07/20/2007] [Accepted: 07/20/2007] [Indexed: 12/12/2022]
Abstract
B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, United States.
| | | |
Collapse
|
40
|
Al-Alwan MM, Okkenhaug K, Vanhaesebroeck B, Hayflick JS, Marshall AJ. Requirement for Phosphoinositide 3-Kinase p110δ Signaling in B Cell Antigen Receptor-Mediated Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2007; 178:2328-35. [PMID: 17277138 DOI: 10.4049/jimmunol.178.4.2328] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The BCR serves to both signal cellular activation and enhance uptake and presentation of Ags by B cells; however, the intracellular signaling mechanisms linking the BCR to Ag presentation functions have been controversial. PI3Ks are critical signaling enzymes controlling many cellular processes, with the p110delta isoform playing a critical role in BCR signaling. In this study, we used pharmacological and genetic approaches to evaluate the role of p110delta signaling in Ag presentation by primary B lymphocytes. It was found that activation of allogeneic T cells is significantly reduced when B cells are pretreated with global PI3K inhibitors, but was intact when p110delta signaling was specifically inactivated. In contrast, inactivation of p110delta significantly impaired the ability of B cells to activate T cells in a BCR-mediated Ag uptake and presentation model. Prestimulation of p110delta-inactivated B cells with anti-CD40 or LPS could not rescue their BCR-mediated Ag presentation ability to normal levels. p110delta signaling was required for efficient presentation of either anti-Ig or protein Ag via a lysozyme-specific BCR. p110delta-inactivated B cells were able to internalize Ag normally, and no defects in association of Ag with lysosome-associated membrane protein 1(+) late endosomes were observed; however, these cells were less effective in forming polarized conjugates with Ag-specific T cells. Our data demonstrate a role for p110delta signaling in B cell Ag presentation function, implicating 3-phosphoinositides and their targets in the latter stages of this process.
Collapse
|
41
|
Abstract
Epstein-Barr virus (EBV) infection is linked to approximately 90% of B-cell lymphomas associated with posttransplant lymphoproliferative disease (PTLD), a serious complication for immunosuppressed transplant recipients. In this paper, we review the myriad ways by which EBV can inadvertently drive the genesis and persistence of B-cell lymphomas, particularly when the antiviral immune response is compromised. Probing the basic mechanisms by which EBV infection proceeds and contributes to malignancy in such cases will hopefully improve our understanding and treatment of PTLD and other EBV-associated malignancies.
Collapse
Affiliation(s)
- Andrew L Snow
- Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
42
|
|
43
|
Cho NH, Kingston D, Chang H, Kwon EK, Kim JM, Lee JH, Chu H, Choi MS, Kim IS, Jung JU. Association of herpesvirus saimiri tip with lipid raft is essential for downregulation of T-cell receptor and CD4 coreceptor. J Virol 2007; 80:108-18. [PMID: 16352535 PMCID: PMC1317525 DOI: 10.1128/jvi.80.1.108-118.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipid rafts are membrane microdomains that are proposed to function as platforms for both receptor signaling and trafficking. Our previous studies have demonstrated that Tip of herpesvirus saimiri (HVS), which is a T-lymphotropic tumor virus, is constitutively targeted to lipid rafts and interacts with cellular Lck tyrosine kinase and p80 WD repeat-containing endosomal protein. Through the interactions with Lck and p80, HVS Tip modulates diverse T-cell functions, which leads to the downregulation of T-cell receptor (TCR) and CD4 coreceptor surface expression, the inhibition of TCR signal transduction, and the activation of STAT3 transcription factor. In this study, we investigated the functional significance of Tip association with lipid rafts. We found that Tip expression remarkably increased lipid raft fractions in human T cells by enhancing the recruitment of lipid raft-resident proteins. Genetic analysis showed that the carboxyl-terminal transmembrane, but not p80 and Lck interaction, of Tip was required for the lipid raft localization and that lipid raft localization of Tip was necessary for the efficient downregulation of TCR and CD4 surface expression. Correlated with this, treatment with Filipin III, a lipid raft-disrupting agent, effectively reversed the downregulation of CD3 and CD4 surface expression induced by Tip. On the other hand, Tip mutants that were no longer present in lipid rafts were still capable of inhibiting TCR signaling and activating STAT3 transcription factor activity as efficiently as wild-type (wt) Tip. These results indicate that the association of Tip with lipid rafts is essential for the downregulation of TCR and CD4 surface expression but not for the inhibition of TCR signal transduction and the activation of STAT3 transcription factor. These results also suggest that the signaling and targeting activities of HVS Tip rely on functionally and genetically separable mechanisms, which may independently modulate T-cell function for viral persistence or pathogenesis.
Collapse
Affiliation(s)
- Nam-Hyuk Cho
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rovedo M, Longnecker R. Epstein-barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J Virol 2007; 81:84-94. [PMID: 17035319 PMCID: PMC1797235 DOI: 10.1128/jvi.01302-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 09/28/2006] [Indexed: 12/14/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity.
Collapse
Affiliation(s)
- Mark Rovedo
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Ward 6-231, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
45
|
Abstract
Epstein-Barr virus (EBV), discovered > 40 years ago from a Burkitt's lymphoma biopsy, was the first virus to be directly associated with human cancer. EBV has two distinct life cycles in the human host; a lytic form of infection that produces new infectious virions, and a latent form of infection that allows the virus to persist in a dormant state for the lifetime of the host. EBV has evolved a life cycle that mimics the natural differentiation pathway of antigen-activated B cells, giving the virus access to its site of latent infection, the resting memory B cell. By steering infected cells through the various stages of lymphocyte differentiation, EBV is able to enter a cell type suitable for long-term latent persistence and periodic reactivation. However, its presence in various stages of B-cell development, and its ability to infect certain epithelial cells, can have pathogenic consequences, and can contribute to the development of a diverse group of lymphomas and carcinomas. The presence of EBV in the tumour cells of EBV-associated cancers might provide a basis for specific therapy. This article focuses on the contributions that the virus may play in different types of human cancer, particularly Burkitt's lymphoma, Hodgkin's lymphoma, lymphomas and lymphoproliferative diseases in the immunocompromised, and nasopharyngeal and gastric carcinoma.
Collapse
Affiliation(s)
- Samuel B Pattle
- Imperial College Faculty of Medicine, Department of Virology, Norfolk Place, London, W2 1PG, UK.
| | | |
Collapse
|
46
|
Ikeda M, Longnecker R. Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology 2006; 360:461-8. [PMID: 17150237 PMCID: PMC1868700 DOI: 10.1016/j.virol.2006.10.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/17/2006] [Accepted: 10/27/2006] [Indexed: 12/12/2022]
Abstract
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking signals induced by the B cell receptor (BCR) altering normal B cell development. LMP2A specifically associates with Nedd4 family ubiquitin-protein ligases which downmodulate LMP2A activity by ubiquitinating LMP2A and LMP2A-associated protein tyrosine kinases (PTKs). Since specific ubiquitin tags provide an endocytic sorting signal for plasma membrane proteins which traffic to membrane vesicles, we examined LMP2A localization and trafficking. We found that LMP2A is secreted through exosomes, small endocytic membrane vesicles, as previously demonstrated for LMP1. Interestingly, the treatment of cells with methyl-beta-cyclodextrin (MCD), which depletes cholesterol from plasma membrane, dramatically increased LMP2A abundance and LMP2A exosome secretion. Cholesterol depletion also blocked LMP2A endocytosis resulting in the accumulation of LMP2A on plasma membrane. LMP2A phosphorylation and ubiquitination were blocked by cholesterol depletion. LMP2A in the exosomal fraction was ubiquitinated but not phosphorylated. These results indicate that cholesterol-dependent LMP2A trafficking determines the fate of LMP2A degradation.
Collapse
Affiliation(s)
| | - Richard Longnecker
- *Corresponding author, Phone: +1-312-503-0467, Fax: +1-312-503-1339, E-mail:
| |
Collapse
|
47
|
Damania B. DNA tumor viruses and human cancer. Trends Microbiol 2006; 15:38-44. [PMID: 17113775 DOI: 10.1016/j.tim.2006.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/27/2006] [Accepted: 11/06/2006] [Indexed: 11/22/2022]
Abstract
There is a strong association between viruses and the development of human malignancies. A group of oncogenic DNA viruses exists in the human population today, members of which serve as infectious agents of cancer worldwide. The group includes the Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human papillomaviruses and human polyomaviruses. Globally, it is estimated that 20% of all cancers are linked to infectious agents. Studies of DNA viruses have contributed to our current understanding of the key molecular players in the transformation process. Research has also shed light on the molecular mechanisms of tumorigenesis that are employed by these viruses and there are indications that cofactors could be required for viral oncogenicity in some cases.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center, CB #7295, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Fuentes-Pananá EM, Bannish G, Karnell FG, Treml JF, Monroe JG. Analysis of the Individual Contributions of Igα (CD79a)- and Igβ (CD79b)-Mediated Tonic Signaling for Bone Marrow B Cell Development and Peripheral B Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2006; 177:7913-22. [PMID: 17114463 DOI: 10.4049/jimmunol.177.11.7913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The individual contribution of Igalpha and Igbeta for BCR-triggered fates is unclear. Prior evidence supports conflicting ideas concerning unique as well as redundant functions for these proteins in the context of BCR/pre-BCR signaling. Part of this ambiguity may reflect the recent appreciation that Igalpha and Igbeta participate in both Ag-independent (tonic) and Ag-dependent signaling. The present study undertook defining the individual requirement for Igalpha and Igbeta under conditions where only ligand-independent tonic signaling was operative. In this regard, we have constructed chimeric proteins containing one or two copies of the cytoplasmic domains of either Igalpha or Igbeta and Igalpha/Igbeta heterodimers with targeted Tyr-->Phe modifications. The ability of these proteins to act as surrogate receptors and trigger early bone marrow and peripheral B cell maturation was tested in RAG2(-/-) primary pro-B cell lines and in gene transfer experiments in the muMT mouse model. We considered that the threshold for a functional activity mediated by the pre-BCR/BCR might only be reached when two functional copies of the Igalpha/Igbeta ITAM domain are expressed together, and therefore the specificity conferred by these proteins can only be observed in these conditions. We found that the ligand-independent tonic signal is sufficient to drive development into mature follicular B cells and both Igalpha and Igbeta chains supported formation of this population. In contrast, neither marginal zone nor B1 mature B cell subsets develop from bone marrow precursors under conditions where only tonic signals are generated.
Collapse
Affiliation(s)
- Ezequiel M Fuentes-Pananá
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
49
|
Snyder MD, Pierce SK. A mutation in Epstein-Barr virus LMP2A reveals a role for phospholipase D in B-Cell antigen receptor trafficking. Traffic 2006; 7:993-1006. [PMID: 16882041 DOI: 10.1111/j.1600-0854.2006.00450.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Epstein-Barr virus (EBV) latent infection of B cells blocks the interrelated signaling and antigen-trafficking functions of the BCR through the activity of its latent membrane protein 2A (LMP2A). At present, the molecular mechanisms by which LMP2A exerts its control of BCR functions are only poorly understood. Earlier studies showed that in B cells expressing LMP2A containing a tyrosine mutation at position 112 in its cytoplasmic domain (Y112-LMP2A), the BCR could initiate signaling but could not properly traffic antigen for processing. Here, we show that BCR signaling in Y112-LMP2A-expressing cells is attenuated with a reduction in both the degree and duration of phosphorylation of key components of the BCR signaling cascade including Syk, BLNK, PI3K, and Btk. Notably, Y112-LMP2A expression completely blocked the BCR-induced activation of phospholipase D (PLD), a lipase implicated in the intracellular trafficking of a variety of surface receptors. We show that blocking PLD activity, by expressing Y112-LMP2A, treating cells with the PLD inhibitor 1-butanol or reducing PLD expression by siRNA, blocked BCR trafficking to class II-containing compartments. Moreover, Y112-LMP2A expression blocked the recruitment of phosphorylated forms of the downstream BCR signaling components, Erk and JNK, through both PLD-dependent and PLD-independent mechanisms. Thus, the investigation of the mechanism by which Y112-LMP2A blocks BCR function revealed an essential role for PLD in BCR trafficking for antigen processing.
Collapse
Affiliation(s)
- Michelle D Snyder
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | |
Collapse
|
50
|
Swanson-Mungerson M, Bultema R, Longnecker R. Epstein-Barr virus LMP2A enhances B-cell responses in vivo and in vitro. J Virol 2006; 80:6764-70. [PMID: 16809282 PMCID: PMC1489056 DOI: 10.1128/jvi.00433-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes latent infections in a significant percentage of the population. Latent membrane protein 2A (LMP2A) is an EBV protein expressed during latency that inhibits B-cell receptor signaling in lymphoblastoid cell lines. In the present study, we have utilized a transgenic mouse system in which LMP2A is expressed in B cells that are specific for hen egg lysozyme (E/HEL-Tg). To determine if LMP2A allows B cells to respond to antigen, E/HEL-Tg mice were immunized with hen egg lysozyme. E/HEL-Tg mice produced antibody in response to antigen, indicating that LMP2A allows B cells to respond to antigen. In addition, E/HEL-Tg mice produced more antibody and an increased percentage of plasma cells after immunization compared to HEL-Tg littermates, suggesting that LMP2A increased the antibody response in vivo. Finally, in vitro studies determined that LMP2A acts directly on the B cell to increase antibody production by augmenting the expansion and survival of the activated B cells, as well as increasing the percentage of plasma cells generated. Taken together, these data suggest that LMP2A enhances, not diminishes, B-cell-specific antibody responses in vivo and in vitro in the E/HEL-Tg system.
Collapse
Affiliation(s)
- Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Ward 6-231, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|