1
|
Chen J, Sathiaseelan V, Reddy Chilamakuri CS, Roamio Franklin VN, Jakwerth CA, D’Santos C, Ringshausen I. ZAP-70 augments tonic B-cell receptor and CCR7 signaling in IGHV-unmutated chronic lymphocytic leukemia. Blood Adv 2024; 8:1167-1178. [PMID: 38113463 PMCID: PMC10910066 DOI: 10.1182/bloodadvances.2022009557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT Expression of ZAP-70 in a subset of patients with chronic lymphocytic leukemia (CLL) positively correlates with the absence of immunoglobulin heavy-chain gene (IGHV) mutations and is indicative of a more active disease and shorter treatment-free survival. We recently demonstrated that ZAP-70 regulates the constitutive expression of CCL3 and CCL4, activation of AKT, and expression of MYC in the absence of an overt B-cell receptor (BCR) signal, bona fide functions of BCR activation. We, here, provide evidence that these features relate to the presence of a constitutive tonic BCR signal, exclusively found in IGHV-unmutated CLL and dependent on the ZAP-70-mediated activation of AKT and its downstream target GSK-3β. These findings are associated with increased steady-state activation of CD19 and SRC. Notably this tonic BCR signal is not present in IGHV-mutated CLL cells, discordantly expressing ZAP-70. Results of quantitative mass spectrometry and phosphoprotein analyses indicate that this ZAP-70-dependent, tonic BCR signal regulates CLL cell migration through phosphorylation of LCP1 on serine-5. Indeed, we show that CCL19- and CCL21-induced chemotaxis is regulated by and dependent on the expression of ZAP-70 through its function to enhance CCR7 signaling to LCP1. Thus, our data demonstrate that ZAP-70 converges a tonic BCR signal, exclusively present in IGHV-unmutated CLL and CCR7-mediated chemotaxis.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People’s Republic of China
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Vijitha Sathiaseelan
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health & German Center for Lung Research (DZL), Munich, Germany
| | - Clive D’Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ingo Ringshausen
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- University College London, Cancer Institute, London, United Kingdom
| |
Collapse
|
2
|
Ishihara S, Sato T, Fujikado N, Miyazaki H, Yoshimoto T, Yamamoto H, Fukuda S, Katagiri K. Rap1 prevents colitogenic Th17 cell expansion and facilitates Treg cell differentiation and distal TCR signaling. Commun Biol 2022; 5:206. [PMID: 35246619 PMCID: PMC8897436 DOI: 10.1038/s42003-022-03129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
T-cell-specific Rap1 deletion causes spontaneous colitis in mice. In the present study, we revealed that Rap1 deficiency in T cells impaired the preceding induction of intestinal RORγt+ Treg cells. In the large intestinal lamina propria (LILP) of T-cell-specific Rap1-knockout mice (Rap1KO mice), Th17 cells were found to increase in a microbiota-dependent manner, and the inhibition of IL-17A production prevented the development of colitis. In the LILP of Rap1KO mice, RORγt+ Treg cells were scarcely induced by 4 weeks of age. The expression of CTLA-4 on Rap1-deficient Treg cells was reduced and the expression of CD80 and CD86 on dendritic cells was consequently elevated in Rap1KO mice. When cultured under each polarizing condition, Rap1-deficient naïve CD4+ T cells did not show biased differentiation into Th17 cells; their differentiation into Treg cells as well as Th1 and Th2 cells was lesser than that of wild-type cells. Rap1-deficient naïve CD4+ T cells were found to exhibit the defective nuclear translocation of NFAT and formation of actin foci in response to TCR engagement. These data suggest that Rap1 amplifies the TCR signaling required for Treg-mediated control of intestinal colitogenic Th17 responses.
Collapse
Affiliation(s)
- Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan
| | - Tsuyoshi Sato
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan
| | - Noriyuki Fujikado
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Haruka Miyazaki
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Hiromitsu Yamamoto
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0344, Japan.
| |
Collapse
|
3
|
Ngoenkam J, Paensuwan P, Wipa P, Schamel WWA, Pongcharoen S. Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Front Cell Dev Biol 2021; 9:674572. [PMID: 34169073 PMCID: PMC8217661 DOI: 10.3389/fcell.2021.674572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. A. Schamel
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Freiburg University Clinics, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
4
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
5
|
Fray MA, Charpentier JC, Sylvain NR, Seminario MC, Bunnell SC. Vav2 lacks Ca 2+ entry-promoting scaffolding functions unique to Vav1 and inhibits T cell activation via Cdc42. J Cell Sci 2020; 133:jcs238337. [PMID: 31974114 PMCID: PMC7075049 DOI: 10.1242/jcs.238337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Vav family guanine nucleotide exchange factors (GEFs) are essential regulators of immune function. Despite their structural similarity, Vav1 promotes and Vav2 opposes T cell receptor (TCR)-induced Ca2+ entry. By using a Vav1-deficient Jurkat T cell line, we find that Vav1 facilitates Ca2+ entry via non-catalytic scaffolding functions that are encoded by the catalytic core of Vav1 and flanking linker regions. We implicate, in this scaffolding function, a previously undescribed polybasic motif that is strictly conserved in Vav1 and absent from Vav2 in tetrapods. Conversely, the catalytic activity of Vav2 contributes to the suppression of TCR-mediated Ca2+ entry. By performing an in vivo 'GEF trapping' assay in intact cells, we demonstrate that Cdc42 interacts with the catalytic surface of Vav2 but not Vav1, and that Vav1 discriminates Cdc42 from Rac1 via F56 (W56 in Rac1). Finally, the Cdc42-specific inhibitor ZCL278 and the shRNA-mediated suppression of Cdc42 each prevent the inhibition of TCR-induced Ca2+ entry by Vav2. These findings define stark differences in the functions of Vav1 and Vav2, and provide an explanation for the differential usage of these Vav isoforms by immune subpopulations.
Collapse
Affiliation(s)
- Michael A Fray
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - John C Charpentier
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicholas R Sylvain
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Maria-Cristina Seminario
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen C Bunnell
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
6
|
Rossatti P, Ziegler L, Schregle R, Betzler VM, Ecker M, Rossy J. Cdc42 Couples T Cell Receptor Endocytosis to GRAF1-Mediated Tubular Invaginations of the Plasma Membrane. Cells 2019; 8:cells8111388. [PMID: 31690048 PMCID: PMC6912536 DOI: 10.3390/cells8111388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
: T cell activation is immediately followed by internalization of the T cell receptor (TCR). TCR endocytosis is required for T cell activation, but the mechanisms supporting removal of TCR from the cell surface remain incompletely understood. Here we report that TCR endocytosis is linked to the clathrin-independent carrier (CLIC) and GPI-enriched endocytic compartments (GEEC) endocytic pathway. We show that unlike the canonical clathrin cargo transferrin or the adaptor protein Lat, internalized TCR accumulates in tubules shaped by the small GTPase Cdc42 and the Bin/amphiphysin/Rvs (BAR) domain containing protein GRAF1 in T cells. Preventing GRAF1-positive tubules to mature into endocytic vesicles by expressing a constitutively active Cdc42 impairs the endocytosis of TCR, while having no consequence on the uptake of transferrin. Together, our data reveal a link between TCR internalization and the CLIC/GEEC endocytic route supported by Cdc42 and GRAF1.
Collapse
Affiliation(s)
- Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| | - Luca Ziegler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Richard Schregle
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| | - Verena M Betzler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| | - Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
7
|
Ditlev JA, Vega AR, Köster DV, Su X, Tani T, Lakoduk AM, Vale RD, Mayor S, Jaqaman K, Rosen MK. A composition-dependent molecular clutch between T cell signaling condensates and actin. eLife 2019; 8:e42695. [PMID: 31268421 PMCID: PMC6624021 DOI: 10.7554/elife.42695] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/14/2019] [Indexed: 01/04/2023] Open
Abstract
During T cell activation, biomolecular condensates form at the immunological synapse (IS) through multivalency-driven phase separation of LAT, Grb2, Sos1, SLP-76, Nck, and WASP. These condensates move radially at the IS, traversing successive radially-oriented and concentric actin networks. To understand this movement, we biochemically reconstituted LAT condensates with actomyosin filaments. We found that basic regions of Nck and N-WASP/WASP promote association and co-movement of LAT condensates with actin, indicating conversion of weak individual affinities to high collective affinity upon phase separation. Condensates lacking these components were propelled differently, without strong actin adhesion. In cells, LAT condensates lost Nck as radial actin transitioned to the concentric network, and engineered condensates constitutively binding actin moved aberrantly. Our data show that Nck and WASP form a clutch between LAT condensates and actin in vitro and suggest that compositional changes may enable condensate movement by distinct actin networks in different regions of the IS.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Howard Hughes Medical Institute, Summer Institute, Marine Biological LaboratoryWoods HoleUnited States
- Department of BiophysicsHoward Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Anthony R Vega
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Darius Vasco Köster
- Howard Hughes Medical Institute, Summer Institute, Marine Biological LaboratoryWoods HoleUnited States
- National Centre for Biological Sciences, Tata Institute for Fundamental ResearchBangaloreIndia
| | - Xiaolei Su
- Howard Hughes Medical Institute, Summer Institute, Marine Biological LaboratoryWoods HoleUnited States
- Department of Cellular and Molecular PharmacologyHoward Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Tomomi Tani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological LaboratoryWoods HoleUnited States
| | - Ashley M Lakoduk
- Department of Cell BiologyUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Ronald D Vale
- Howard Hughes Medical Institute, Summer Institute, Marine Biological LaboratoryWoods HoleUnited States
- Department of Cellular and Molecular PharmacologyHoward Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Satyajit Mayor
- Howard Hughes Medical Institute, Summer Institute, Marine Biological LaboratoryWoods HoleUnited States
- National Centre for Biological Sciences, Tata Institute for Fundamental ResearchBangaloreIndia
| | - Khuloud Jaqaman
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of BioinformaticsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Michael K Rosen
- Howard Hughes Medical Institute, Summer Institute, Marine Biological LaboratoryWoods HoleUnited States
- Department of BiophysicsHoward Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
8
|
Li L, Han L, Zhang J, Liu X, Ma R, Hou X, Ge J, Wang Q. Epsin2 promotes polarity establishment and meiotic division through activating Cdc42 in mouse oocyte. Oncotarget 2018; 7:50927-50936. [PMID: 27463009 PMCID: PMC5239448 DOI: 10.18632/oncotarget.10815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 01/04/2023] Open
Abstract
Epsins are a conserved family of endocytic adaptors essential for diverse biological events. However, its role in oocytes remains completely unknown. Here, we report that specific depletion of Epsin2 in mouse oocytes significantly disrupts meiotic progression. Confocal microscopy reveals that Epsin2 knockdown results in the failure of actin cap formation and polar body extrusion during meiosis, indicative of the importance of Epsin2 in polarity establishment and cytokinesis. In addition, spindle defects and chromosome misalignment are readily observed in oocytes depleted of Epsin2. Moreover, we find that Epsin2 knockdown markedly decreases the activity of Cdc42 in oocytes and importantly, that the dominant-positive mutant of Cdc42 (Cdc42Q61L) is capable of partially rescuing the deficient phenotypes of Epsin2-knockdown oocytes. Together, our data identify Epsin2 as a novel player in regulating oocyte maturation, and demonstrate that Epsin2 promotes polarity establishment and meiotic division via activating Cdc42.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaohui Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Zhang J, Ma R, Li L, Wang L, Hou X, Han L, Ge J, Li M, Wang Q. Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway. FASEB J 2017. [PMID: 28626024 DOI: 10.1096/fj.201700179r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intersectins (ITSNs), an evolutionarily conserved adaptor protein family, have been implicated in multiple biologic processes; however, their functions in mammalian oocytes have not been addressed. Here, we report delayed meiotic resumption and defective cytokinesis upon specific depletion of ITSN2 in mouse oocytes. In particular, abnormal spindle, misaligned chromosomes, and loss of cortical actin cap are readily observed in ITSN2-depleted oocytes. Similarly, a small molecule that targets the Cdc42-ITSN interaction also disrupts oocyte maturation and actin polymerization. Moreover, we find that ITSN2 depletion reduces the activity of Cdc42 in oocytes and, of note, that forced expression of the dominant-positive mutant of Cdc42, in part, prevents the effects of ITSN2 knockdown on actin cap formation. In addition, the localization of WASP and Arp2, the downstream effector proteins of Cdc42, is altered in ITSN2-depleted oocytes accordingly. In summary, our data support a model in which ITSN2 depletion induces the inactivation of Cdc42, which, in turn, influences the distribution and function of Arp2/3 and WASP, consequently disrupting oocyte polarity establishment and meiotic division.-Zhang, J., Ma, R., Li, L., Wang, L., Hou, X., Han, L., Ge, J., Li, M., Wang, Q. Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rujun Ma
- Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lina Wang
- Key Laboratory of Birth Defects Prevention, National Health and Family Planning Commission, Zhengzhou, China
| | - Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China;
| |
Collapse
|
10
|
Roybal KT, Buck TE, Ruan X, Cho BH, Clark DJ, Ambler R, Tunbridge HM, Zhang J, Verkade P, Wülfing C, Murphy RF. Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics. Sci Signal 2016; 9:rs3. [PMID: 27095595 DOI: 10.1126/scisignal.aad4149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems.
Collapse
Affiliation(s)
- Kole T Roybal
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK. Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taráz E Buck
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xiongtao Ruan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Baek Hwan Cho
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Danielle J Clark
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Jianwei Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK. Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Robert F Murphy
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Departments of Biological Sciences, Biomedical Engineering, and Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Freiburg Institute for Advanced Studies and Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg im Breisgau 79104, Baden-Württemberg, Germany.
| |
Collapse
|
11
|
Niedergang F, Di Bartolo V, Alcover A. Comparative Anatomy of Phagocytic and Immunological Synapses. Front Immunol 2016; 7:18. [PMID: 26858721 PMCID: PMC4729869 DOI: 10.3389/fimmu.2016.00018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022] Open
Abstract
The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated.
Collapse
Affiliation(s)
- Florence Niedergang
- U1016, Institut Cochin, INSERM, Paris, France; UMR 8104, CNRS, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France; U1221, INSERM, Paris, France
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, Paris, France; U1221, INSERM, Paris, France
| |
Collapse
|
12
|
Molecular difference between WASP and N-WASP critical for chemotaxis of T-cells towards SDF-1α. Sci Rep 2015; 5:15031. [PMID: 26463123 PMCID: PMC4604493 DOI: 10.1038/srep15031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/26/2015] [Indexed: 11/13/2022] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASP) integrates cell signaling pathways to the actin cytoskeleton, which play a critical role in T-cell activation and migration. Hematopoietic cells express both WASP and neural-WASP (N-WASP) which share similar domain structure, yet WASP deficiency causes Wiskott-Aldrich syndrome, suggesting that N-WASP present in the cells is not able to carry out all the functions of WASP. We have identified a unique internal thirty amino acid region (I30) in WASP, which regulates its function in chemotaxis of Jurkat T-cells. Deletion of the I30 region altered the WASP’s closed conformation and impaired its ability to rescue the chemotactic defect of WASP-deficient (JurkatWKD) T-cells. Expression of N-WASP in JurkatWKD T-cells using WASP promoter restored the migration velocity without correcting the chemotactic defect. However, insertion of I30 region in N-WASP (N-WASP-I30) enabled N-WASP to rescue the chemotactic defect of JurkatWKD T-cells. N-WASP-I30-EGFP displayed a punctate localization in contrast to the predominant nuclear localization of N-WASP-EGFP. Thus, our study has demonstrated that the I30 region of WASP is critical for localization and chemotaxis. This suggests that N-WASP’s failure to compensate for WASP in rescuing chemotaxis could be due to the absence of this I30 region.
Collapse
|
13
|
Kumari S, Depoil D, Martinelli R, Judokusumo E, Carmona G, Gertler FB, Kam LC, Carman CV, Burkhardt JK, Irvine DJ, Dustin ML. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. eLife 2015; 4. [PMID: 25758716 PMCID: PMC4355629 DOI: 10.7554/elife.04953] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
Wiscott Aldrich Syndrome protein (WASP) deficiency results in defects in calcium ion signaling, cytoskeletal regulation, gene transcription and overall T cell activation. The activation of WASP constitutes a key pathway for actin filament nucleation. Yet, when WASP function is eliminated there is negligible effect on actin polymerization at the immunological synapse, leading to gaps in our understanding of the events connecting WASP and calcium ion signaling. Here, we identify a fraction of total synaptic F-actin selectively generated by WASP in the form of distinct F-actin ‘foci’. These foci are polymerized de novo as a result of the T cell receptor (TCR) proximal tyrosine kinase cascade, and facilitate distal signaling events including PLCγ1 activation and subsequent cytoplasmic calcium ion elevation. We conclude that WASP generates a dynamic F-actin architecture in the context of the immunological synapse, which then amplifies the downstream signals required for an optimal immune response. DOI:http://dx.doi.org/10.7554/eLife.04953.001 The immune system is made up of several types of cells that protect the body against infection and disease. Immune cells such as T cells survey the body and when receptors on their surface encounter infected cells, the receptors activate the T cell by triggering a signaling pathway. The early stages of T cell receptor signaling lead to the formation of a cell–cell contact zone called the immunological synapse. Filaments of a protein called F-actin—which are continuously assembled and taken apart—make versatile networks and help the immunological synapse to form. F-actin filaments have crucial roles in the later stages of T cell receptor signaling as well, but how they contribute to this is not clear. Whether it is the same F-actin network that participates both in synapse formation and the late stages of T cell receptor signaling, and if so, then by what mechanism, remains unknown. The answers came from examining the function of a protein named Wiscott-Aldrich Syndrome Protein (WASP), which forms an F-actin network at the synapse. Loss of WASP is known to result in the X-linked Wiscott-Aldrich Syndrome immunodeficiency and bleeding disorder in humans. Although T cells missing WASP can construct immunological synapses, and these synapses do have normal levels of F-actin and early T cell receptor signaling, they still fail to respond to infected cells properly. Kumari et al. analyzed the detailed structure and dynamics of actin filament networks at immunological synapses of normal and WASP-deficient T cells. Normally, cells had visible foci of newly polymerized F-actin directly above T cell receptor clusters in the immunological synapses, but these foci were not seen in the cells lacking WASP. Kumari et al. found that the F-actin foci facilitate the later stages of the signaling that activates the T cells; this signaling was lacking in WASP-deficient cells. Altogether, Kumari et al. show that WASP-generated F-actin foci at immunological synapses bridge the early and later stages of T cell receptor signaling, effectively generating an optimal immune response against infected cells. Further work will now be needed to understand whether there are other F-actin substructures that play specialized roles in T cell signaling, and if foci play a related role in other cell types known to be affected in Wiscott-Aldrich Syndrome immunodeficiency. DOI:http://dx.doi.org/10.7554/eLife.04953.002
Collapse
Affiliation(s)
- Sudha Kumari
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - David Depoil
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Roberta Martinelli
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Edward Judokusumo
- Department of Biological Engineering, Columbia University, New York, United States
| | - Guillaume Carmona
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Lance C Kam
- Department of Biological Engineering, Columbia University, New York, United States
| | - Christopher V Carman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, United States
| | - Darrell J Irvine
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| |
Collapse
|
14
|
Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cell Mol Life Sci 2014; 72:537-556. [PMID: 25355055 DOI: 10.1007/s00018-014-1760-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Transient,specialized cell-cell interactions play a central role in leukocyte function by enabling specific intercellular communication in the context of a highly dynamic systems level response. The dramatic structural changes required for the formation of these contacts are driven by rapid and precise cytoskeletal remodeling events. In recent years, the immunological synapse that forms between a T lymphocyte and its antigen-presenting target cell has emerged as an important model system for understanding immune cell interactions. In this review, we discuss how regulators of the cortical actin cytoskeleton control synaptic architecture and in this way specify T cell function.
Collapse
|
15
|
Pauker MH, Reicher B, Joseph N, Wortzel I, Jakubowicz S, Noy E, Perl O, Barda-Saad M. WASp family verprolin-homologous protein-2 (WAVE2) and Wiskott-Aldrich syndrome protein (WASp) engage in distinct downstream signaling interactions at the T cell antigen receptor site. J Biol Chem 2014; 289:34503-19. [PMID: 25342748 DOI: 10.1074/jbc.m114.591685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins.
Collapse
Affiliation(s)
- Maor H Pauker
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noah Joseph
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Inbal Wortzel
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomi Jakubowicz
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elad Noy
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orly Perl
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
16
|
Huff LP, DeCristo MJ, Cox AD. Effector recruitment method to study spatially regulated activation of Ras and Rho GTPases. Methods Mol Biol 2014; 1120:263-83. [PMID: 24470032 DOI: 10.1007/978-1-62703-791-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Ras and Rho family GTPases control a wide variety of cellular processes, and the signaling downstream of these GTPases is influenced by their subcellular localization when activated. Since only a minority of total cellular GTPases is active, observation of the total subcellular distribution of GTPases does not reveal where active GTPases are localized. In this chapter, we describe the use of effector recruitment assays to monitor the subcellular localization of active Ras and Rho family GTPases. The recruitment assay relies on preferential binding of downstream effectors to active GTPases versus inactive GTPases. Tagging the GTPase-binding-domain (GBD) of a downstream effector with a fluorescent protein produces a probe that is recruited to compartments where GTPases are active. We describe an example of a recruitment assay using the GBD of PAK1 to monitor Rac1 activity and explain how the assay can be expanded to determine the subcellular localization of activation of other GTPases.
Collapse
Affiliation(s)
- Lauren P Huff
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
17
|
Abstract
WIP plays an important role in the remodeling of the actin cytoskeleton, which controls cellular activation, proliferation, and function. WIP regulates actin polymerization by linking the actin machinery to signaling cascades. WIP binding to WASp and to its homolog, N-WASp, which are central activators of the actin-nucleating complex Arp2/3, regulates their cellular distribution, function, and stability. By binding to WASp, WIP protects it from degradation and thus, is crucial for WASp retention. Indeed, most mutations that result in WAS, an X-linked immunodeficiency caused by defective/absent WASp activity, are located in the WIP-binding region of WASp. In addition, by binding directly to actin, WIP promotes the formation and stabilization of actin filaments. WASp-independent activities of WIP constitute a new research frontier and are discussed extensively in this article. Here, we review the current information on WIP in human and mouse systems, focusing on its associated proteins, its molecular-regulatory mechanisms, and its role as a key regulator of actin-based processes in the immune system.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Jain N, Tan JH, Feng S, George B, Thanabalu T. X-linked thrombocytopenia causing mutations in WASP (L46P and A47D) impair T cell chemotaxis. J Biomed Sci 2014; 21:91. [PMID: 25200405 PMCID: PMC4266975 DOI: 10.1186/s12929-014-0091-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 09/02/2014] [Indexed: 11/28/2022] Open
Abstract
Background Mutation in the Wiskott-Aldrich syndrome Protein (WASP) causes Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN). The majority of missense mutations causing WAS and XLT are found in the WH1 (WASP Homology) domain of WASP, known to mediate interaction with WIP (WASP Interacting Protein) and CIB1 (Calcium and Integrin Binding). Results We analyzed two WASP missense mutants (L46P and A47D) causing XLT for their effects on T cell chemotaxis. Both mutants, WASPRL46P and WASPRA47D (S1-WASP shRNA resistant) expressed well in JurkatWASP-KD T cells (WASP knockdown), however expression of these two mutants did not rescue the chemotaxis defect of JurkatWASP-KD T cells towards SDF-1α. In addition JurkatWASP-KD T cells expressing these two WASP mutants were found to be defective in T cell polarization when stimulated with SDF-1α. WASP exists in a closed conformation in the presence of WIP, however both the mutants (WASPRL46P and WASPRA47D) were found to be in an open conformation as determined in the bi-molecular complementation assay. WASP protein undergoes proteolysis upon phosphorylation and this turnover of WASP is critical for T cell migration. Both the WASP mutants were found to be stable and have reduced tyrosine phosphorylation after stimulation with SDF-1α. Conclusion Thus our data suggest that missense mutations WASPRL46P or WASPRA47D affect the activity of WASP in T cell chemotaxis probably by affecting the turnover of the protein. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
19
|
Fried S, Reicher B, Pauker MH, Eliyahu S, Matalon O, Noy E, Chill J, Barda-Saad M. Triple-color FRET analysis reveals conformational changes in the WIP-WASp actin-regulating complex. Sci Signal 2014; 7:ra60. [PMID: 24962707 DOI: 10.1126/scisignal.2005198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASp) is a key regulator of the actin cytoskeletal machinery. Binding of WASp-interacting protein (WIP) to WASp modulates WASp activity and protects it from degradation. Formation of the WIP-WASp complex is crucial for the adaptive immune response. We found that WIP and WASp interacted in cells through two distinct molecular interfaces. One interaction occurred between the WASp-homology-1 (WH1) domain of WASp and the carboxyl-terminal domain of WIP that depended on the phosphorylation status of WIP, which is phosphorylated by protein kinase C θ (PKCθ) in response to T cell receptor activation. The other interaction occurred between the verprolin homology, central hydrophobic region, and acidic region (VCA) domain of WASp and the amino-terminal domain of WIP. This latter interaction required actin, because it was inhibited by latrunculin A, which sequesters actin monomers. With triple-color fluorescence resonance energy transfer (3FRET) technology, we demonstrated that the WASp activation mechanism involved dissociation of the first interaction, while leaving the second interaction intact. This conformation exposed the ubiquitylation site on WASp, leading to degradation of WASp. Together, these data suggest that the activation and degradation of WASp are delicately balanced and depend on the phosphorylation state of WIP. Our molecular analysis of the WIP-WASp interaction provides insight into the regulation of actin-dependent processes.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shani Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Jordan Chill
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
20
|
Wiskott-Aldrich Syndrome causing mutation, Pro373Ser restricts conformational changes essential for WASP activity in T-cells. Biochim Biophys Acta Mol Basis Dis 2014; 1842:623-34. [PMID: 24440360 DOI: 10.1016/j.bbadis.2014.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 01/04/2014] [Accepted: 01/08/2014] [Indexed: 11/22/2022]
Abstract
Wiskott-Aldrich Syndrome (WAS) is caused by mutations in Wiskott-Aldrich Syndrome Protein (WASP) and majority of the mutations are found in the WASP Homology 1 (WH1) domain which mediates interaction with WIP (WASP Interacting Protein), a WASP chaperone. Two point mutations together in the proline rich region (PRR) domain of WASP (S339Y/P373S) have been reported to cause WAS however the molecular defect has not been characterized. Expression of these mutants separately (WASPR(S339Y), WASPR(P373S)) or together (WASPR(SP/YS)) did not rescue the chemotaxis defect or membrane projection defect of Jurkat(WKD) T-cells (WASP knockdown). This is not due to the inability of WASP-PRR mutants to form functional WASP-WIP complex in growth rescue experiments in las17Δ yeast strain. Expression of WASPR(S339Y) but not WASPR(P373S) or WASPR(SP/YS) rescued the IL-2 expression defect of Jurkat(WKD) T-cells, suggesting that Pro373Ser mutation alone is sufficient to inhibit WASP functions in T-cell activation. The diffused localization of WASP-PRR mutants in activated Jurkat T-cells suggests that Ser339 and Pro373 are critical for WASP localization. WASP-PRR mutations either together or individually did not abolish interaction of WASP with sixteen WASP binding proteins including Hck, however they caused reduction in Hck mediated tyrosine phosphorylation of WASP which is critical for WASP activity. The auto-inhibitory conformation of WASP(P373S) mutant was not relieved by the binding of Toca-1 or Nck1. Thus, our results suggest that Pro373Ser mutation reduces Tyr291 phosphorylation and prevents conformational changes required for WASP activity in chemotaxis and T-cell activation. Thus Pro3373Ser is probably responsible for all the defects associated with WAS in the patients.
Collapse
|
21
|
Cannon JL, Asperti-Boursin F, Letendre KA, Brown IK, Korzekwa KE, Blaine KM, Oruganti SR, Sperling AI, Moses ME. PKCθ regulates T cell motility via ezrin-radixin-moesin localization to the uropod. PLoS One 2013; 8:e78940. [PMID: 24250818 PMCID: PMC3826749 DOI: 10.1371/journal.pone.0078940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/17/2013] [Indexed: 01/05/2023] Open
Abstract
Cell motility is a fundamental process crucial for function in many cell types, including T cells. T cell motility is critical for T cell-mediated immune responses, including initiation, activation, and effector function. While many extracellular receptors and cytoskeletal regulators have been shown to control T cell migration, relatively few signaling mediators have been identified that can modulate T cell motility. In this study, we find a previously unknown role for PKCθ in regulating T cell migration to lymph nodes. PKCθ localizes to the migrating T cell uropod and regulates localization of the MTOC, CD43 and ERM proteins to the uropod. Furthermore, PKCθ-deficient T cells are less responsive to chemokine induced migration and are defective in migration to lymph nodes. Our results reveal a novel role for PKCθ in regulating T cell migration and demonstrate that PKCθ signals downstream of CCR7 to regulate protein localization and uropod formation.
Collapse
Affiliation(s)
- Judy L. Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| | - Francois Asperti-Boursin
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Kenneth A. Letendre
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Ivy K. Brown
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Katy E. Korzekwa
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Kelly M. Blaine
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Sreenivasa R. Oruganti
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Anne I. Sperling
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Melanie E. Moses
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
22
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
23
|
T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation. J Allergy Clin Immunol 2013; 132:648-655.e1. [PMID: 23684068 DOI: 10.1016/j.jaci.2013.03.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome protein (WASP) links T-cell receptor (TCR) signaling to the actin cytoskeleton. WASP is normally protected from degradation by the Ca(++)-dependent protease calpain and by the proteasome because of its interaction with the WASP-interacting protein. OBJECTIVE We investigated whether WASP is degraded after TCR ligation and whether its degradation downregulates F-actin assembly caused by TCR ligation. METHODS Primary T cells, Jurkat T cells, and transfected 293T cells were used in immunoprecipitation experiments. Intracellular F-actin content was measured in splenic T cells from wild-type, WASP-deficient, and c-Casitas B-lineage lymphoma (Cbl)-b-deficient mice by using flow cytometry. Calpeptin and MG-132 were used to inhibit calpain and the proteasome, respectively. RESULTS A fraction of WASP in T cells was degraded by calpain and by the ubiquitin-proteasome pathway after TCR ligation. The Cbl-b and c-Cbl E3 ubiquitin ligases associated with WASP after TCR signaling and caused its ubiquitination. Inhibition of calpain and lack of Cbl-b resulted in a significantly more sustained increase in F-actin content after TCR ligation in wild-type T cells but not in WASP-deficient T cells. CONCLUSION TCR ligation causes WASP to be degraded by calpain and to be ubiquitinated by Cbl family E3 ligases, which targets it for destruction by the proteasome. WASP degradation might provide a mechanism for regulating WASP-dependent TCR-driven assembly of F-actin.
Collapse
|
24
|
T cell antigen receptor activation and actin cytoskeleton remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:546-56. [PMID: 23680625 DOI: 10.1016/j.bbamem.2013.05.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
T cells constitute a crucial arm of the adaptive immune system and their optimal function is required for a healthy immune response. After the initial step of T cell-receptor (TCR) triggering by antigenic peptide complexes on antigen presenting cell (APC), the T cell exhibits extensive cytoskeletal remodeling. This cytoskeletal remodeling leads to the formation of an "immunological synapse" [1] characterized by regulated clustering, segregation and movement of receptors at the interface. Synapse formation regulates T cell activation and response to antigenic peptides and proceeds via feedback between actin cytoskeleton and TCR signaling. Actin polymerization participates in various events during the synapse formation, maturation, and eventually its disassembly. There is increasing knowledge about the actin effectors that couple TCR activation to actin rearrangements [2,3], and how defects in these effectors translate into impairment of T cell activation. In this review we aim to summarize and integrate parts of what is currently known about this feedback process. In addition, in light of recent advancements in our understanding of TCR triggering and translocation at the synapse, we speculate on the organizational and functional diversity of microfilament architecture in the T cell. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
25
|
Dehapiot B, Carrière V, Carroll J, Halet G. Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes. Dev Biol 2013; 377:202-12. [PMID: 23384564 PMCID: PMC3690527 DOI: 10.1016/j.ydbio.2013.01.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 12/22/2012] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
Abstract
Asymmetric meiotic divisions in mammalian oocytes rely on the eccentric positioning of the spindle and the remodeling of the overlying cortex, resulting in the formation of small polar bodies. The mechanism of this cortical polarization, exemplified by the formation of a thick F-actin cap, is poorly understood. Cdc42 is a major player in cell polarization in many systems; however, the spatio-temporal dynamics of Cdc42 activation during oocyte meiosis, and its contribution to mammalian oocyte polarization, have remained elusive. In this study, we investigated Cdc42 activation (Cdc42–GTP), dynamics and role during mouse oocyte meiotic divisions. We show that Cdc42–GTP accumulates in restricted cortical regions overlying meiotic chromosomes or chromatids, in a Ran–GTP-dependent manner. This polarized activation of Cdc42 is required for the recruitment of N-WASP and the formation of F-actin-rich protrusions during polar body formation. Cdc42 inhibition in MII oocytes resulted in the release of N-WASP into the cytosol, a loss of the polarized F-actin cap, and a failure to protrude the second polar body. Cdc42 inhibition also resulted in central spindle defects in activated MII oocytes. In contrast, emission of the first polar body during oocyte maturation could occur in the absence of a functional Cdc42/N-WASP pathway. Therefore, Cdc42 is a new protagonist in chromatin-induced cortical polarization in mammalian oocytes, with an essential role in meiosis II completion, through the recruitment and activation of N-WASP, downstream of the chromatin-centered Ran–GTP gradient.
Collapse
Affiliation(s)
- Benoit Dehapiot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
| | | | | | | |
Collapse
|
26
|
Humphries LA, Shaffer MH, Sacirbegovic F, Tomassian T, McMahon KA, Humbert PO, Silva O, Round JL, Takamiya K, Huganir RL, Burkhardt JK, Russell SM, Miceli MC. Characterization of in vivo Dlg1 deletion on T cell development and function. PLoS One 2012; 7:e45276. [PMID: 23028902 PMCID: PMC3445470 DOI: 10.1371/journal.pone.0045276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/15/2012] [Indexed: 01/25/2023] Open
Abstract
Background The polarized reorganization of the T cell membrane and intracellular signaling molecules in response to T cell receptor (TCR) engagement has been implicated in the modulation of T cell development and effector responses. In siRNA-based studies Dlg1, a MAGUK scaffold protein and member of the Scribble polarity complex, has been shown to play a role in T cell polarity and TCR signal specificity, however the role of Dlg1 in T cell development and function in vivo remains unclear. Methodology/Principal Findings Here we present the combined data from three independently-derived dlg1-knockout mouse models; two germline deficient knockouts and one conditional knockout. While defects were not observed in T cell development, TCR-induced early phospho-signaling, actin-mediated events, or proliferation in any of the models, the acute knockdown of Dlg1 in Jurkat T cells diminished accumulation of actin at the IS. Further, while Th1-type cytokine production appeared unaffected in T cells derived from mice with a dlg1germline-deficiency, altered production of TCR-dependent Th1 and Th2-type cytokines was observed in T cells derived from mice with a conditional loss of dlg1 expression and T cells with acute Dlg1 suppression, suggesting a differential requirement for Dlg1 activity in signaling events leading to Th1 versus Th2 cytokine induction. The observed inconsistencies between these and other knockout models and siRNA strategies suggest that 1) compensatory upregulation of alternate gene(s) may be masking a role for dlg1 in controlling TCR-mediated events in dlg1 deficient mice and 2) the developmental stage during which dlg1 ablation begins may control the degree to which compensatory events occur. Conclusions/Significance These findings provide a potential explanation for the discrepancies observed in various studies using different dlg1-deficient T cell models and underscore the importance of acute dlg1 ablation to avoid the upregulation of compensatory mechanisms for future functional studies of the Dlg1 protein.
Collapse
Affiliation(s)
- Lisa A Humphries
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chemin K, Bohineust A, Dogniaux S, Tourret M, Guégan S, Miro F, Hivroz C. Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. THE JOURNAL OF IMMUNOLOGY 2012; 189:2159-68. [PMID: 22821962 DOI: 10.4049/jimmunol.1200156] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cytokine secretion by T lymphocytes plays a central role in mounting adaptive immune responses. However, little is known about how newly synthesized cytokines, once produced, are routed within T cells and about the mechanisms involved in regulating their secretions. In this study, we investigated the role of cytoskeleton remodeling at the immunological synapse (IS) in cytokine secretion. We show that a key regulator of cytoskeleton remodeling, the Rho GTPase Cdc42, controls IFN-γ secretion by primary human CD4+ T lymphocytes. Surprisingly, microtubule organizing center polarity at the IS, which does not depend on Cdc42, is not required for cytokine secretion by T lymphocytes, whereas microtubule polymerization is required. In contrast, actin remodeling at the IS, which depends on Cdc42, controls the formation of the polymerized actin ring at the IS, the dynamic concentration of IFN-γ-containing vesicles inside this ring, and the secretion of these vesicles. These results reveal a previously unidentified role of Cdc42-dependent actin remodeling in cytokine exocytosis at the IS.
Collapse
Affiliation(s)
- Karine Chemin
- Institut Curie, Centre de Recherche, Paris F-75248, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Ubiquitylation-dependent negative regulation of WASp is essential for actin cytoskeleton dynamics. Mol Cell Biol 2012; 32:3153-63. [PMID: 22665495 DOI: 10.1128/mcb.00161-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin dynamics during cell motility and adhesion, and mutations in its gene are responsible for Wiskott-Aldrich syndrome (WAS). Here, we demonstrate that WASp is ubiquitylated following T-cell antigen receptor (TCR) activation. WASp phosphorylation at tyrosine 291 results in recruitment of the E3 ligase Cbl-b, which, together with c-Cbl, carries out WASp ubiquitylation. Lysine residues 76 and 81, located at the WASp WH1 domain, which contains the vast majority of WASp gene mutations, serve as the ubiquitylation sites. Disruption of WASp ubiquitylation causes WASp accumulation and alters actin dynamics and the formation of actin-dependent structures. Our data suggest that regulated degradation of activated WASp might be an efficient strategy by which the duration and localization of actin rearrangement and the intensity of T-cell activation are controlled.
Collapse
|
29
|
Srinivasan M, Dunker AK. Proline rich motifs as drug targets in immune mediated disorders. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:634769. [PMID: 22666276 PMCID: PMC3362030 DOI: 10.1155/2012/634769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/15/2012] [Indexed: 12/26/2022]
Abstract
The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs) are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis 1121 West Michigan Street, DS290, Indianapolis, IN 46268, USA
| | - A. Keith Dunker
- Department of Biochemistry and Molecular Biology and School of Informatics, Indiana University School of Medicine, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
30
|
Dovas A, Cox D. Regulation of WASp by phosphorylation: Activation or other functions? Commun Integr Biol 2011; 3:101-5. [PMID: 20585499 DOI: 10.4161/cib.3.2.10759] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 11/28/2009] [Indexed: 11/19/2022] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASp) is an actin nucleation-promoting factor that regulates actin polymerisation via the Arp2/3 complex. Its mutation in human syndromes has led to extensive studies on the regulation and activities of this molecule. Several mechanisms for the regulation of WASp activity have been proposed, however, the role of tyrosine phosphorylation remains controversial, particularly due to inconsistencies between results obtained through biochemical and cell biological approaches. In this mini-review, we are addressing the major aspects of WASp regulation with an emphasis on the role of tyrosine phosphorylation on WASp activities.
Collapse
|
31
|
Calvez R, Lafouresse F, De Meester J, Galy A, Valitutti S, Dupré L. The Wiskott-Aldrich syndrome protein permits assembly of a focused immunological synapse enabling sustained T-cell receptor signaling. Haematologica 2011; 96:1415-23. [PMID: 21659358 DOI: 10.3324/haematol.2011.040204] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND T-cell activation relies on the assembly of the immunological synapse, a structure tightly regulated by the actin cytoskeleton. The precise role of the Wiskott-Aldrich syndrome protein, an actin cytoskeleton regulator, in linking immunological synapse structure to downstream signaling remains to be clarified. DESIGN AND METHODS To address this point, CD4(+) T cells from patients with Wiskott-Aldrich syndrome were stimulated with antigen-presenting cells. The structure and dynamics of the immunological synapse were studied by confocal and video-microscopy. RESULTS Upon stimulation by antigen-presenting cells, Wiskott-Aldrich syndrome protein-deficient T cells displayed reduced cytokine production and proliferation. Although Wiskott-Aldrich syndrome T cells formed conjugates with antigen-presenting cells at normal frequency and exhibited normal T-cell receptor down-regulation, they emitted actin-rich protrusions away from the immunological synapse area and their microtubule organizing center failed to polarize fully towards the center of the immunological synapse. In parallel, abnormally dispersed phosphotyrosine staining revealed unfocused synaptic signaling in Wiskott-Aldrich syndrome T cells. Time-lapse microscopy confirmed the anomalous morphology of Wiskott-Aldrich syndrome T-cell immunological synapses and showed erratic calcium mobilization at the single-cell level. CONCLUSIONS Taken together, our data show that the Wiskott-Aldrich syndrome protein is required for the assembly of focused immunological synapse structures allowing optimal signal integration and sustained calcium signaling.
Collapse
|
32
|
Functional cooperation between the proteins Nck and ADAP is fundamental for actin reorganization. Mol Cell Biol 2011; 31:2653-66. [PMID: 21536650 DOI: 10.1128/mcb.01358-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell antigen receptor (TCR) activation triggers profound changes in the actin cytoskeleton. In addition to controlling cellular shape and polarity, this process regulates vital T cell responses, such as T cell adhesion, motility, and proliferation. These depend on the recruitment of the signaling proteins Nck and Wiskott-Aldrich syndrome protein (WASp) to the site of TCR activation and on the functional properties of the adapter proteins linker for activation of T cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP76). We now demonstrate that Nck is necessary but insufficient for the recruitment of WASp. We show that two pathways lead to SLP76-dependent actin rearrangement. One requires the SLP76 acidic domain, crucial to association with the Nck SH2 domain, and another requires the SLP76 SH2 domain, essential for interaction with the adhesion- and degranulation-promoting adapter protein ADAP. Functional cooperation between Nck and ADAP mediates SLP76-WASp interactions and actin rearrangement. We also reveal the molecular mechanism linking ADAP to actin reorganization.
Collapse
|
33
|
Driessens G, Zheng Y, Locke F, Cannon JL, Gounari F, Gajewski TF. Beta-catenin inhibits T cell activation by selective interference with linker for activation of T cells-phospholipase C-γ1 phosphorylation. THE JOURNAL OF IMMUNOLOGY 2010; 186:784-90. [PMID: 21149602 DOI: 10.4049/jimmunol.1001562] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite the defined function of the β-catenin pathway in thymocytes, its functional role in peripheral T cells is poorly understood. We report that in a mouse model, β-catenin protein is constitutively degraded in peripheral T cells. Introduction of stabilized β-catenin into primary T cells inhibited proliferation and cytokine secretion after TCR stimulation and blunted effector cell differentiation. Functional and biochemical studies revealed that β-catenin selectively inhibited linker for activation of T cells phosphorylation on tyrosine 136, which was associated with defective phospholipase C-γ1 phosphorylation and calcium signaling but normal ERK activation. Our findings indicate that β-catenin negatively regulates T cell activation by a previously undescribed mechanism and suggest that conditions under which β-catenin might be inducibly stabilized in vivo would be inhibitory for T cell-based immunity.
Collapse
Affiliation(s)
- Gregory Driessens
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
34
|
Guo F, Hildeman D, Tripathi P, Velu CS, Grimes HL, Zheng Y. Coordination of IL-7 receptor and T-cell receptor signaling by cell-division cycle 42 in T-cell homeostasis. Proc Natl Acad Sci U S A 2010; 107:18505-10. [PMID: 20937872 PMCID: PMC2972959 DOI: 10.1073/pnas.1010249107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell homeostasis is essential for normal functioning of the immune system. IL-7 receptor (IL-7R) and T-cell receptor (TCR) signaling are pivotal for T-cell homeostatic regulation. The detailed mechanisms regulating T-cell homeostasis and how IL-7R and TCR signaling are coordinated are largely unknown. Here we demonstrate that T cell-specific deletion of cell-division cycle 42 (Cdc42) GTPase causes a profound loss of mature T cells. Deletion of Cdc42 leads to a markedly increased expression of growth factor independence-1 (Gfi-1) and represses expression of IL-7Rα. In the absence of Cdc42, aberrant ERK1/2 MAP kinase activity results in enhanced, TCR-mediated T-cell proliferation. In vivo reconstitution of effector-binding-defective Cdc42 mutants and the effector p21 protein-activated kinase 1 (PAK1) into Cdc42-deficient T cells showed that PAK1 is both necessary and sufficient for Cdc42-regulated T-cell homeostasis. Thus, T-cell homeostasis is maintained through a concerted regulation of Gfi-1-IL-7R-controlled cytokine responsiveness and ERK-mediated TCR signaling strength by the Cdc42-PAK1 signaling axis.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The concept of an immunological synapse goes back to the early 1980s with the discovery of the relationship between T-cell antigen receptor mediated Ca(2+) signaling, adhesion, and directed secretion. However, this concept did not gain traction until images were published starting in 1998 that revealed a specific molecular pattern in the interface between T cells and model antigen-presenting cells or supported planar bilayers. The dominant pattern, a ring of adhesion molecules surrounding a central cluster of antigen receptors, was observed in both model systems. Analysis of the origins of this pattern over the past 10 years has presented a solution for a difficult problem in lymphocyte biology--how a highly motile cell can suddenly stop when it encounters a signal delivered by just a few antigenic ligands on the surface of another cell without disabling the sensory machinery of the motile cell. The T lymphocyte actively assembles the immunological synapse pattern following a modular design with roots in actin-myosin-based motility.
Collapse
|
36
|
Reicher B, Barda-Saad M. Multiple pathways leading from the T-cell antigen receptor to the actin cytoskeleton network. FEBS Lett 2010; 584:4858-64. [PMID: 20828569 DOI: 10.1016/j.febslet.2010.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/10/2010] [Accepted: 09/01/2010] [Indexed: 12/29/2022]
Abstract
Dynamic rearrangements of the actin cytoskeleton, following T-cell antigen receptor (TCR) engagement, provide the structural matrix and flexibility to enable intracellular signal transduction, cellular and subcellular remodeling, and driving effector functions. Recently developed cutting-edge imaging technologies have facilitated the study of TCR signaling and its role in actin-dependent processes. In this review, we describe how TCR signaling cascades induce the activation of actin regulatory proteins and the formation of actin networks, and how actin dynamics is important for T-cell homeostasis, activation, migration, and other effector functions.
Collapse
Affiliation(s)
- Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
37
|
Mace EM, Zhang J, Siminovitch KA, Takei F. Elucidation of the integrin LFA-1-mediated signaling pathway of actin polarization in natural killer cells. Blood 2010; 116:1272-9. [PMID: 20472831 DOI: 10.1182/blood-2009-12-261487] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leukocyte integrin LFA-1 is critical for natural killer (NK) cell cytotoxicity as it mediates NK-cell adhesion to target cells and generates activating signals that lead to polarization of the actin cytoskeleton. However, the LFA-1-mediated signaling pathway is not fully understood. Here, we examined the subcellular localization of actin-associated proteins in wild-type, talin-deficient, and Wiskott-Aldrich Syndrome protein (WASP)-deficient NK cells bound to beads coated with the LFA-1 ligand intercellular adhesion molecule-1 (ICAM-1). In addition, we carried out coimmunoprecipitation analyses and also used a pharmacologic reagent to reduce the level of phosphatidylinositol-4,5-bisphosphate (PIP(2)). The results revealed the following signaling pathways. Upon ICAM-1 binding to LFA-1, talin redistributes to the site of LFA-1 ligation and initiates 2 signaling pathways. First, talin recruits the actin nucleating protein complex Arp2/3 via constitutive association of vinculin with talin and Arp2/3. Second, talin also associates with type I phosphatidylinositol 4-phosphate 5-kinase (PIPKI) and binding of LFA-1 to ICAM-1 results in localized increase in PIP(2). This increase in PIP(2) recruits WASP to the site of LFA-1 ligation where WASP promotes Arp2/3-mediated actin polymerization. These processes are critical for the initiation of NK cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Emily M Mace
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC
| | | | | | | |
Collapse
|
38
|
Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO J 2010; 29:2315-28. [PMID: 20562827 DOI: 10.1038/emboj.2010.133] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/25/2010] [Indexed: 12/22/2022] Open
Abstract
T-cell antigen receptor (TCR) engagement induces formation of multi-protein signalling complexes essential for regulating T-cell functions. Generation of a complex of SLP-76, Nck and VAV1 is crucial for regulation of the actin machinery. We define the composition, stoichiometry and specificity of interactions in the SLP-76, Nck and VAV1 complex. Our data reveal that this complex can contain one SLP-76 molecule, two Nck and two VAV1 molecules. A direct interaction between Nck and VAV1 is mediated by binding between the C-terminal SH3 domain of Nck and the VAV1 N-terminal SH3 domain. Disruption of the VAV1:Nck interaction deleteriously affected actin polymerization. These novel findings shed new light on the mechanism of actin polymerization after T-cell activation.
Collapse
|
39
|
Systemic autoimmunity and defective Fas ligand secretion in the absence of the Wiskott-Aldrich syndrome protein. Blood 2010; 116:740-7. [PMID: 20457871 DOI: 10.1182/blood-2009-08-237560] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autoimmunity is a surprisingly common complication of primary immunodeficiencies, yet the molecular mechanisms underlying this clinical observation are not well understood. One widely known example is provided by Wiskott-Aldrich syndrome (WAS), an X-linked primary immunodeficiency disorder caused by mutations in the gene encoding the WAS protein (WASp) with a high incidence of autoimmunity in affected patients. WASp deficiency affects T-cell antigen receptor (TCR) signaling and T-cell cytokine production, but its role in TCR-induced apoptosis, one of the mechanisms of peripheral immunologic tolerance, has not been investigated. We find that WASp-deficient mice produce autoantibodies and develop proliferative glomerulonephritis with immune complex deposition as they age. We also find that CD4(+) T lymphocytes from WASp-deficient mice undergo reduced apoptosis after restimulation through the TCR. While Fas-induced cell death is normal, WASp deficiency affects TCR-induced secretion of Fas ligand (FasL) and other components of secretory granules by CD4(+) T cells. These results describe a novel role of WASp in regulating TCR-induced apoptosis and FasL secretion and suggest that WASp-deficient mice provide a good model for the study of autoimmune manifestations of WAS and the development of more specific therapies for these complications.
Collapse
|
40
|
Beemiller P, Zhang Y, Mohan S, Levinsohn E, Gaeta I, Hoppe AD, Swanson JA. A Cdc42 activation cycle coordinated by PI 3-kinase during Fc receptor-mediated phagocytosis. Mol Biol Cell 2010; 21:470-80. [PMID: 19955216 PMCID: PMC2814791 DOI: 10.1091/mbc.e08-05-0494] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/09/2008] [Accepted: 11/19/2009] [Indexed: 11/15/2022] Open
Abstract
Fcgamma Receptor (FcR)-mediated phagocytosis by macrophages requires phosphatidylinositol 3-kinase (PI3K) and activation of the Rho-family GTPases Cdc42 and Rac1. Cdc42 is activated at the advancing edge of the phagocytic cup, where actin is concentrated, and is deactivated at the base of the cup. The timing of 3' phosphoinositide (3'PI) concentration changes in cup membranes suggests a role for 3'PIs in deactivation of Cdc42. This study examined the relationships between PI3K and the patterns of Rho-family GTPase signaling during phagosome formation. Inhibition of PI3K resulted in persistently active Cdc42 and Rac1, but not Rac2, in stalled phagocytic cups. Patterns of 3'PIs and Rho-family GTPase activities during phagocytosis of 5- and 2-mum-diameter microspheres indicated similar underlying mechanisms despite particle size-dependent sensitivities to PI3K inhibition. Expression of constitutively active Cdc42(G12V) increased 3'PI concentrations in plasma membranes and small phagosomes, indicating a role for Cdc42 in PI3K activation. Cdc42(G12V) inhibited phagocytosis at a later stage than inhibition by dominant negative Cdc42(N17). Together, these studies identified a Cdc42 activation cycle organized by PI3K, in which FcR-activated Cdc42 stimulates PI3K and actin polymerization, and the subsequent increase of 3'PIs in cup membranes inactivates Cdc42 to allow actin recycling necessary for phagosome formation.
Collapse
Affiliation(s)
| | - Youxin Zhang
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI 48109-1055
| | - Suresh Mohan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
| | - Erik Levinsohn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
| | - Isabella Gaeta
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
| | - Adam D. Hoppe
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007-0896
| | - Joel A. Swanson
- *Cellular and Molecular Biology Graduate Program, and
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620; and
| |
Collapse
|
41
|
Bunnell SC. Multiple microclusters: diverse compartments within the immune synapse. Curr Top Microbiol Immunol 2010; 340:123-54. [PMID: 19960312 DOI: 10.1007/978-3-642-03858-7_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The activation of classical alphabeta T cells is initiated when the T cell receptor (TCR) recognizes peptide antigens presented by major histocompatibility complex (pMHC) molecules. This recognition always occurs at the junction of a T cell and antigen-presenting cell (APC). Existing models of T-cell activation accurately explain the sensitivity and selectivity of antigen recognition within the immunological synapse. However, these models have not fully incorporated the diverse microcluster types revealed by current imaging technologies. It is increasingly clear that a better understanding of T-cell activation will require an appreciation of the diverse signaling assemblies arising within the immune synapse, the interrelationships between these structures, and the mechanisms by which underlying cytoskeletal systems govern their assembly and fate. Here, we will provide a brief framework for understanding these issues, review our contributions to current knowledge, and provide perspectives on the future of this rapidly advancing field.
Collapse
Affiliation(s)
- Stephen C Bunnell
- Department of Pathology, Tufts University Medical School, Boston, MA 02111, USA.
| |
Collapse
|
42
|
Biswas PS, Bhagat G, Pernis AB. IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol Rev 2010; 233:79-96. [PMID: 20192994 PMCID: PMC2920730 DOI: 10.1111/j.0105-2896.2009.00864.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence from murine and human studies supports a key role for interleukin-17 (IL-17) and IL-21 in the pathogenesis of inflammatory arthritis. The pathways and molecular mechanisms that underlie the production of IL-17 and IL-21 are being rapidly elucidated. This review focuses on interferon regulatory factor 4 (IRF4), a member of the IRF family of transcription factors, which has emerged as a crucial controller of both IL-17 and IL-21 production. We first outline the complex role of IRF4 in the function of CD4(+) T cells and then discuss recent studies from our laboratory that have revealed a surprising role for components of Rho GTPase-mediated pathways in controlling the activity of IRF4. A better understanding of these novel pathways will hopefully provide new insights into mechanisms responsible for the development of inflammatory arthritis and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Govind Bhagat
- Department of Pathology, Columbia University, New York, NY, USA
| | | |
Collapse
|
43
|
Abstract
TCR engagement with peptide/MHC complexes displayed on the surface of the antigen-presenting cells is the crucial event in developing an adaptive immune response and occurs within specialized signaling areas named immunological synapses. Immunological synapses are diverse both in structure and function and exhibit a strikingly dynamic molecular organization. In this review, we focus on the diversity of immunological synapses and on their plasticity in response to stimulation. We discuss how the study of the adaptable features of immunological synapses can be instrumental to a better understanding of the complex regulation of adaptive immunity.
Collapse
|
44
|
Carrizosa E, Gomez TS, Labno CM, Klos Dehring DA, Liu X, Freedman BD, Billadeau DD, Burkhardt JK. Hematopoietic lineage cell-specific protein 1 is recruited to the immunological synapse by IL-2-inducible T cell kinase and regulates phospholipase Cgamma1 Microcluster dynamics during T cell spreading. THE JOURNAL OF IMMUNOLOGY 2009; 183:7352-61. [PMID: 19917685 DOI: 10.4049/jimmunol.0900973] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Productive T cell activation requires efficient reorganization of the actin cytoskeleton. We showed previously that the actin-regulatory protein, hematopoietic lineage cell-specific protein 1 (HS1), is required for the stabilization of F-actin and Vav1 at the immunological synapse and for efficient calcium responses. The Tec family kinase IL-2-inducible T cell kinase (Itk) regulates similar aspects of T cell activation, suggesting that these proteins act in the same pathway. Using video microscopy, we show that T cells lacking Itk or HS1 exhibited similar defects in actin responses, extending unstable lamellipodial protrusions upon TCR stimulation. HS1 and Itk could be coimmunoprecipitated from T cell lysates, and GST-pulldown studies showed that Itk's Src homology 2 domain binds directly to two phosphotyrosines in HS1. In the absence of Itk, or in T cells overexpressing an Itk Src homology 2 domain mutant, HS1 failed to localize to the immunological synapse, indicating that Itk serves to recruit HS1 to sites of TCR engagement. Because Itk is required for phospholipase C (PLC)gamma1 phosphorylation and calcium store release, we examined the calcium signaling pathway in HS1(-/-) T cells in greater detail. In response to TCR engagement, T cells lacking HS1 exhibited diminished calcium store release, but TCR-dependent PLCgamma1 phosphorylation was intact, indicating that HS1's role in calcium signaling is distinct from that of Itk. HS1-deficient T cells exhibited defective cytoskeletal association of PLCgamma1 and altered formation of PLCgamma1 microclusters. We conclude that HS1 functions as an effector of Itk in the T cell actin-regulatory pathway, and directs the spatial organization of PLCgamma1 signaling complexes.
Collapse
Affiliation(s)
- Esteban Carrizosa
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Beal AM, Anikeeva N, Varma R, Cameron TO, Vasiliver-Shamis G, Norris PJ, Dustin ML, Sykulev Y. Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain. Immunity 2009; 31:632-42. [PMID: 19833088 DOI: 10.1016/j.immuni.2009.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 09/02/2009] [Accepted: 09/22/2009] [Indexed: 01/03/2023]
Abstract
Cytolytic granules mediate killing of virus-infected cells by cytotoxic T lymphocytes. We show here that the granules can take long or short paths to the secretory domain. Both paths utilized the same intracellular molecular events, which have different spatial and temporal arrangements and are regulated by the kinetics of Ca(2+)-mediated signaling. Rapid signaling caused swift granule concentration near the microtubule-organizing center (MTOC) and subsequent delivery by the polarized MTOC directly to the secretory domain-the shortest path. Indolent signaling led to late recruitment of granules that moved along microtubules to the periphery of the synapse and then moved tangentially to fuse at the outer edge of the secretory domain-a longer path. The short pathway is associated with faster granule release and more efficient killing than the long pathway. Thus, the kinetics of early signaling regulates the quality of the T cell cytolytic response.
Collapse
Affiliation(s)
- Allison M Beal
- Department of Microbiology and Immunology and Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang J, Dong B, Siminovitch KA. Contributions of Wiskott-Aldrich syndrome family cytoskeletal regulatory adapters to immune regulation. Immunol Rev 2009; 232:175-94. [PMID: 19909364 DOI: 10.1111/j.1600-065x.2009.00846.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytoskeletal structure and dynamic rearrangement are integrally involved in coupling external stimuli to the orchestrated network of molecular interactions and cellular responses required for T-cell effector function. Members of the Wiskott-Aldrich syndrome protein (WASp) family are now widely recognized as cytoskeletal scaffolding adapters that coordinate the transmission of stimulatory signals to downstream induction of actin remodeling and cytoskeletal-dependent T-cell responses. In this review, we discuss the structural and functional properties of the WASp family members, with an emphasis on the roles of these proteins in the molecular pathways underpinning T-cell activation. The contributions of WASp family proteins and the cytoskeletal reorganization they evoke to expression of specific T-cell effector functions and the implications of such activity to normal immune responses and to the immunologic deficits manifested by Wiskott-Aldrich syndrome patients are also described.
Collapse
Affiliation(s)
- Jinyi Zhang
- Department of Medicine, University of Toronto, Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | | | | |
Collapse
|
47
|
Abstract
WASP, the product of the gene mutated in Wiskott-Aldrich syndrome, is expressed only in hematopoietic cells and is the archetype of a family of proteins that include N-WASP and Scar/WAVE. WASP plays a critical role in T cell activation and actin reorganization. WASP has multiple protein-interacting domains. Through its N-terminal EVH1 domain WASP binds to its partner WASP interacting protein (WIP) and through its C-terminal end it interacts with and activates the Arp2/3 complex. In lymphocytes, most of WASP is sequestered with WIP and binding to WIP is essential for the stability of WASP. The central proline-rich region of WASP serves as docking site to several adaptor proteins. Through these multiple interactions WASP integrates many cellular signals to actin cytoskeleton remodeling. In this review, we have summarized recent developments in the biology of WASP and the role of WIP in regulating WASP function. We also discuss WASP-independent functions of WIP.
Collapse
Affiliation(s)
- Narayanaswamy Ramesh
- Division of Immunology, Department of Pediatrics, Childrens Hospital, Harvard Medical School, Karp 10 One Blackfan Circle, Boston, MA, 02115, USA
| | | |
Collapse
|
48
|
Bouma G, Burns SO, Thrasher AJ. Wiskott-Aldrich Syndrome: Immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology 2009; 214:778-90. [PMID: 19628299 PMCID: PMC2738782 DOI: 10.1016/j.imbio.2009.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulation of the actin cytoskeleton is crucial for many aspects of correct and cooperative functioning of immune cells, such as migration, antigen uptake and cell activation. The Wiskott-Aldrich Syndrome protein (WASp) is an important regulator of actin cytoskeletal rearrangements and lack of this protein results in impaired immune function. This review discusses recent new insights of the role of WASp at molecular and cellular level and evaluates how WASp deficiency affects important immunological features and how defective immune cell function contributes to compromised host defence.
Collapse
Affiliation(s)
- Gerben Bouma
- Centre for Immunodeficiency, UCL Institute of Child Health, London, UK.
| | | | | |
Collapse
|
49
|
Yuseff MI, Lankar D, Lennon-Duménil AM. Dynamics of membrane trafficking downstream of B and T cell receptor engagement: impact on immune synapses. Traffic 2009; 10:629-36. [PMID: 19416472 PMCID: PMC2723867 DOI: 10.1111/j.1600-0854.2009.00913.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/12/2009] [Indexed: 12/01/2022]
Abstract
The onset of an adaptive immune response requires the activation of T and B lymphocytes by antigen-presenting cells, through a specialized form of intercellular communication, known as the immunological synapse (IS). In B lymphocytes the IS promotes efficient recognition and acquisition of membrane-bound Ags, while in T cells, it modulates the T cell response upon exposure to peptide-major histocompatibility complexes. In this review, we highlight the similarities that determine B and T cell activation, focusing on immune receptor downstream signaling events that lead to synapse formation. We stress the notion that polarization of T and B lymphocytes characterized by global changes in cytoskeleton and membrane trafficking modulates synapse structure and function, thus determining lymphocyte effector functions and fate.
Collapse
Affiliation(s)
| | - Danielle Lankar
- INSERM U932, Institut Curie12 rue Lhomond, 75005, Paris, France
| | | |
Collapse
|
50
|
Shaffer MH, Dupree RS, Zhu P, Saotome I, Schmidt RF, McClatchey AI, Freedman BD, Burkhardt JK. Ezrin and moesin function together to promote T cell activation. THE JOURNAL OF IMMUNOLOGY 2009; 182:1021-32. [PMID: 19124745 DOI: 10.4049/jimmunol.182.2.1021] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The highly homologous proteins ezrin, radixin, and moesin link proteins to the actin cytoskeleton. The two family members expressed in T cells, ezrin and moesin, are implicated in promoting T cell activation and polarity. To elucidate the contributions of ezrin and moesin, we conducted a systematic analysis of their function during T cell activation. In response to TCR engagement, ezrin and moesin were phosphorylated in parallel at the regulatory threonine, and both proteins ultimately localized to the distal pole complex (DPC). However, ezrin exhibited unique behaviors, including tyrosine phosphorylation and transient localization to the immunological synapse before movement to the DPC. To ask whether these differences reflect unique requirements for ezrin vs moesin in T cell signaling, we generated mice with conditional deletion of ezrin in mature T cells. Ezrin-/- T cells exhibited normal immunological synapse organization based upon localization of protein kinase C-theta, talin, and phospho-ZAP70. DPC localization of CD43 and RhoGDP dissociation inhibitor, as well as the novel DPC protein Src homology region 2 domain-containing phosphatase-1, was also unaffected. However, recruitment of three novel DPC proteins, ezrin binding protein of 50 kDa, Csk binding protein, and the p85 subunit of PI3K was partially perturbed. Biochemical analysis of ezrin-/- T cells or T cells suppressed for moesin using small interfering RNA showed intact early TCR signaling, but diminished levels of IL-2. The defects in IL-2 production were more pronounced in T cells deficient for both ezrin and moesin. These cells also exhibited diminished phospholipase C-gamma1 phosphorylation and calcium flux. We conclude that despite their unique movement and phosphorylation patterns, ezrin and moesin function together to promote T cell activation.
Collapse
Affiliation(s)
- Meredith H Shaffer
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|