1
|
Yao Y, Yang Y, Wang J, Yu P, Guo J, Dong L, Wang C, Liu P, Zhang Y, Song X. Proteomic and metabolomic proof of concept for unified airways in chronic rhinosinusitis and asthma. Ann Allergy Asthma Immunol 2024; 132:713-722.e4. [PMID: 38382675 DOI: 10.1016/j.anai.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) with comorbid asthma remains unclear. OBJECTIVE To assess upper and lower airway unity and identify a possible common pathogenesis in CRSwNP with asthma. METHODS This study analyzed the expression of proteins and metabolites in nasal lavage fluid cells (NLFCs) and induced sputum cells (ISCs). Differentially expressed proteins and their function-related metabolites in the upper and lower airways of patients having CRSwNP with or without asthma were identified; relevant signaling pathways were analyzed, and key pathway-related proteins were identified. Parallel reaction monitoring was used to verify these target proteins. RESULTS Protein or metabolite expression between NLFCs and ISCs was highly correlated and conservative on the basis of expression profiles and weighted gene coexpression network analysis. There were 17 differentially coexpressed proteins and their function-related 13 metabolites that were identified in the NLFCs and ISCs of CRSwNP, whereas 11 proteins and 11 metabolites were identified in CRSwNP with asthma. An asthma pathway was involved in the copathogenesis of upper and lower airways in whether CRSwNP or CRSwNP with asthma. The asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase, as the core of the protein-metabolism interaction networks between the upper and lower airways, were both highly coexpressed in NLFCs and ISCs in patients having either CRSwNP or CRSwNP with asthma by parallel reaction monitoring validation. CONCLUSION Proteomics and metabolomics reveal upper and lower airway unity. Asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase from the upper airway could be used to assess the potential risk of lower airway dysfunction in CRSwNP.
Collapse
Affiliation(s)
- Yao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Jianwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Jing Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Luchao Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Pengfei Liu
- Shanghai Applied Protein Technology Co, Ltd, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Fang XM, Liu Y, Wang J, Zhang X, Wang L, Zhang L, Zhang HP, Liu L, Huang D, Liu D, Deng K, Luo FM, Wan HJ, Li WM, Wang G, Oliver BG. Endogenous Adenosine 5'-Monophosphate, But Not Acetylcholine or Histamine, is Associated with Asthma Control, Quality of Life, and Exacerbations. Lung 2022; 200:579-589. [PMID: 36156139 DOI: 10.1007/s00408-022-00570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Endogenous adenosine 5'-monophosphate (AMP), acetylcholine (ACh), and histamine (HA) are known to be important in bronchial contraction, but their clinical relevance to asthma is poorly understood. We aimed to quantify endogenous AMP, ACh, and HA in induced sputum samples and explore their relationships with asthma control and exacerbations. METHODS 20 healthy subjects and 112 asthmatics underwent clinical assessment, sputum induction, and blood sampling. The level of asthma control was determined by the asthma control test (ACT) questionnaire. Asthma exacerbation was evaluated according to the criteria of the American Thoracic Society/European Respiratory Society. Levels of AMP, ACh, and HA in sputum were measured by liquid chromatography coupled to tandem mass spectrometry. IL-β, IL-4, IL-5, IL-6, IL-8, IL-13, IL-17A, TNF-α, IFN-γ, and macrophage-derived chemokine (MDC) were also measured. RESULTS Compared to healthy controls, asthmatics had higher levels of HA, lower levels of ACh, and similar levels of AMP in induced sputum samples. Compared to controlled asthma (n = 54), uncontrolled asthma (n = 58) showed higher AMP levels (P = 0.002), but similar HA and ACh levels. AMP was negatively correlated with ACT scores (r = - 0.348) and asthma quality of life questionnaire scores (r = - 0.188) and positively correlated with blood monocytes percentage (r = 0.195), sputum MDC (r = 0.214), and IL-6 levels (r = 0.196). Furthermore, AMP was associated with an increased risk of exacerbations in the preceding year. CONCLUSION Endogenous AMP, but not ACh or HA, was associated with asthma control, quality of life, and exacerbations in the previous year, which indicates that AMP could be a clinically useful biomarker of asthma.
Collapse
Affiliation(s)
- Xue Mei Fang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Wang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Ping Zhang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Huang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China.,Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ke Deng
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Ming Luo
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hua Jing Wan
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Min Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, Sichuan, China.
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Respiratory Cellular and Molecule Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, 2017, Australia
| |
Collapse
|
4
|
Clemente A, Alba-Patiño A, Santopolo G, Rojo-Molinero E, Oliver A, Borges M, Aranda M, del Castillo A, de la Rica R. Immunodetection of Lung IgG and IgM Antibodies against SARS-CoV-2 via Enzymatic Liquefaction of Respiratory Samples from COVID-19 Patients. Anal Chem 2021; 93:5259-5266. [DOI: 10.1021/acs.analchem.1c00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
| | - Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
- Chemistry Department, University of the Balearic Islands, Palma de Mallorca 07122, Spain
| | - Giulia Santopolo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
- Chemistry Department, University of the Balearic Islands, Palma de Mallorca 07122, Spain
| | - Estrella Rojo-Molinero
- Microbiology Department, Son Espases University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
| | - Antonio Oliver
- Microbiology Department, Son Espases University Hospital, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma de Mallorca 07198, Spain
| | - María Aranda
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma de Mallorca 07198, Spain
| | - Alberto del Castillo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma de Mallorca 07198, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca 07120, Spain
- Chemistry Department, University of the Balearic Islands, Palma de Mallorca 07122, Spain
| |
Collapse
|
8
|
Erin EM, Zacharasiewicz AS, Nicholson GC, Tan AJ, Neighbour H, Engelstätter R, Hellwig M, Kon OM, Barnes PJ, Hansel TT. Rapid effect of inhaled ciclesonide in asthma: a randomized, placebo-controlled study. Chest 2008; 134:740-745. [PMID: 18403668 DOI: 10.1378/chest.07-2575] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Ciclesonide is a novel inhaled corticosteroid for the treatment of asthma, and it is important to measure the onset of effect of this therapy on airway hyperresponsiveness (AHR), exhaled nitric oxide (NO), and levels of eosinophils in induced sputum. METHODS In a randomized, double-blind, crossover study, 21 patients with mild asthma inhaled ciclesonide 320 microg (ex-actuator) qd, ciclesonide 640 microg (ex-actuator) bid, and placebo for 7 days. Exhaled NO and AHR to adenosine monophosphate (AMP), measured as the provocative concentration of AMP producing a 20% reduction in FEV1 (PC20FEV1), were assessed after inhalation on days 1, 3 and 7. Eosinophil levels in induced sputum were also measured. RESULTS Ciclesonide 320 microg qd and 640 microg bid produced significantly greater improvements in PC20FEV1 compared with placebo on day 1 (within 2.5 h), and on days 3 and 7 (all p < 0.0001). On day 3, both ciclesonide doses significantly reduced exhaled NO levels by - 17.7 parts per billion (p < 0.0001) and - 15.4 parts per billion (p < 0.003) vs placebo, respectively. Significant reductions were maintained during the study with both ciclesonide doses (p < 0.01). A nonsignificant trend towards a decrease in eosinophil cell numbers was observed after 7 days of ciclesonide treatment, especially in patients receiving the higher dose. CONCLUSIONS A single dose of ciclesonide decreased AHR to AMP and exhaled NO within 3 h, while FEV, improved at 3 days and 7 days.
Collapse
Affiliation(s)
- Edward M Erin
- National Heart and Lung Institute Clinical Studies Unit, Imperial College, London, UK
| | - Angela S Zacharasiewicz
- Department of Pediatric and Adolescent Medicine, Pulmonary and Infectious Diseases, Wilhelminenspital, Vienna, Austria
| | - Grant C Nicholson
- National Heart and Lung Institute Clinical Studies Unit, Imperial College, London, UK
| | - Andrew J Tan
- National Heart and Lung Institute Clinical Studies Unit, Imperial College, London, UK
| | - Helen Neighbour
- National Heart and Lung Institute Clinical Studies Unit, Imperial College, London, UK
| | | | | | | | - Peter J Barnes
- Department of Thoracic Medicine, Imperial College, London, UK
| | - Trevor T Hansel
- National Heart and Lung Institute Clinical Studies Unit, Imperial College, London, UK.
| |
Collapse
|