1
|
Forston MJ, Jordan SL, Cesarz GM, Burke DA, Shum-Siu A, Petruska JC, Magnuson DSK. Combining clinically common drugs with hindlimb stretching in spinal cord injured rodents. Spinal Cord 2024; 62:574-583. [PMID: 39187628 DOI: 10.1038/s41393-024-01023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
STUDY DESIGN Preclinical pilot study. OBJECTIVES To explore peripheral and central nociceptive mechanisms that contribute to muscle stretch-induced locomotor deficits following spinal cord injury. SETTING Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA. METHODS Ten female Sprague-Dawley rats received moderate, 25 g/cm T10 contusion injuries and recovered for 4 weeks. Rats were divided into three groups: Morphine/Ibuprofen-treated, Acetaminophen/Baclofen-treated, and saline control. Each group received daily hindlimb muscle stretching during weeks 4, 5, 9, and 10 post-injury and drugs were administered with stretching during weeks 4 and 9 only. Locomotor function was assessed throughout the experiment using the BBB Open Field Locomotor Scale. Hindlimb responses including spasticity, writhing, and clonic-like vibrations during muscle stretching were classified and scored. RESULTS Consistent with our previous studies, hindlimb muscle stretching caused significant deficits in locomotor recovery following spinal cord injury. Baclofen and Ibuprofen partially mitigated the stretching effect, but none of the drugs significantly prevented the drop in locomotor function during stretching. Interestingly, treatment with Baclofen or Ibuprofen significantly reduced hindlimb responses such as spasticity and writhing during stretching, while Morphine exacerbated clonic-like vibrations in response to stretching maneuvers. CONCLUSIONS These findings suggest that stretching may inhibit locomotor recovery through combined mechanisms of peripheral inflammation and sensitization of nociceptive afferents. When combined with central sprouting and loss of descending controls after SCI, this results in exaggerated nociceptive input during stretching. The inability of the applied clinical drugs to mitigate the detrimental effects of stretching highlights the complexity of the stretching phenomenon and emphasizes the need for further investigation.
Collapse
Affiliation(s)
- Morgan J Forston
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, USA
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Savannah L Jordan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Greta M Cesarz
- Department of Health and Sports Sciences, University of Louisville, Louisville, KY, USA
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| | - David S K Magnuson
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, USA.
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, USA.
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Jesus CHA, Ferreira MV, Gasparin AT, Rosa ES, Genaro K, Crippa JADS, Chichorro JG, Cunha JMD. Cannabidiol enhances the antinociceptive effects of morphine and attenuates opioid-induced tolerance in the chronic constriction injury model. Behav Brain Res 2022; 435:114076. [PMID: 36028000 DOI: 10.1016/j.bbr.2022.114076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Neuropathic pain (NP) is a complex health problem that includes sensorial manifestations such as evoked and ongoing pain. Cannabidiol (CBD) has shown potential in the treatment of NP and the combination between opioids and cannabinoids has provided promising results on pain relief. Thus, our study aimed to investigate the effect of treatment combination between CBD and morphine on evoked and ongoing pain, and the effect of CBD on morphine-induced tolerance in the model of chronic constriction injury (CCI) of the sciatic nerve in rats. Mechanical thresholds (i.e., evoked pain) were evaluated before and 7 days after surgery. We also employed a 4-day conditioned place preference (CPP) protocol, to evaluate relief of ongoing pain (6-9 days after surgery). Treatment with morphine (2 and 4 mg/kg) or CBD (30 mg/kg) induced a significant antinociceptive effect on evoked pain. The combination of CBD (30 mg/kg) and morphine (1 mg/kg) produced an enhanced antinociceptive effect, when compared to morphine alone (1 mg/Kg). Treatment with morphine (1 and 2 mg/kg) or CBD (30 mg/kg) alone failed to induce significant scores in the CPP test. However, combined treatment of CBD (30 mg/kg) and morphine (1 mg/kg) provided significant positive scores, increased the number of entrances in the drug-paired chamber in the CPP test and did not alter locomotor activity in rats. Lastly, treatment with CBD partially attenuated morphine-induced tolerance. In summary, our results support the indication of CBD as an adjuvant to opioid therapy for the attenuation of NP and opioid-induced analgesic tolerance.
Collapse
Affiliation(s)
- Carlos Henrique Alves Jesus
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Matheus Vinicius Ferreira
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Aléxia Thamara Gasparin
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Evelize Stacoviaki Rosa
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA; Institute of Neurosciences and Behavior (INeC), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná, Curitiba, Paraná, Brazil; Institute of Neurosciences and Behavior (INeC), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Zhu QM, Wu LX, Zhang B, Dong YP, Sun L. Donepezil prevents morphine tolerance by regulating N-methyl-d-aspartate receptor, protein kinase C and CaM-dependent kinase II expression in rats. Pharmacol Biochem Behav 2021; 206:173209. [PMID: 34058253 DOI: 10.1016/j.pbb.2021.173209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Current studies have indicated that donepezil as a cholinesterase inhibitor can attenuate morphine-induced tolerance. The present study aimed to evaluate the possible role of N-methyl-d-aspartate receptors (NMDARs), protein kinase C (PKC) and CaM-dependent kinase II (CaMKII) pathways in this effect. Female Wistar rats received daily morphine (10 mg/kg, i.p.) alone or in combination with donepezil (1.5 or 2 mg/kg, gavaged) for 14 days. The analgesic effect was assessed by Von-frey, hotplate and tail flick test. On the 15th day, the periaqueductal gray (PAG) and lumbar spinal cord of rats were dissected. Then, protein levels of NMDAR-NR1, NR2B, PKCγ and CaMKIIα were tested using Western blot method. The results showed that morphine tolerance was seen after 8-10 days of injection compared with control group, while daily co-administration of donepezil with morphine prolonged the occurrence of analgesic tolerance. Western blot showed that morphine significantly increased NR1, PKCγ and CaMKIIα expressions in PAG, and significantly increased PKCγ and CaMKIIα in spinal cord. In contrast, donepezil downregulated NR1 and PKCγ in PAG, and downregulated PKCγ and CaMKIIα in spinal cord. Moreover, donepezil alone activates NR1 and NR2B in spinal cord, which needs to be further studied. Thus, the present results suggest that the attenuation effects of donepezil on morphine tolerance are possibly mediated by preventing morphine-induced upregulations in NR1, PKCγ and CaMKIIα expressions.
Collapse
Affiliation(s)
- Qian-Mei Zhu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Bo Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yan-Peng Dong
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Li Sun
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China; Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.113 Baohe Road, Longgang District, Shenzhen 518116, China.
| |
Collapse
|
4
|
Kazantzis NP, Casey SL, Seow PW, Mitchell VA, Vaughan CW. Opioid and cannabinoid synergy in a mouse neuropathic pain model. Br J Pharmacol 2016; 173:2521-31. [PMID: 27278681 DOI: 10.1111/bph.13534] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Clinical studies have reported that pan-cannabinoid receptor agonists may have efficacy in neuropathic pain states and that this might be enhanced by co-administration with opioids. While cannabinoid-opioid analgesic synergy has been demonstrated in animal models of acute pain, it has not been examined in neuropathic pain models. We examined the effect of combination treatment with cannabinoid and opioid receptor agonists on allodynia and side effects in a nerve injury-induced neuropathic pain model. EXPERIMENTAL APPROACH C57BL/6 mice were subjected to chronic constriction injury (CCI) of the sciatic nerve. The effects of systemic administration of morphine and the pan-cannabinoid receptor agonist, WIN55212, on allodynia and side effects were examined at 7-10 days post-CCI surgery. Isobolographic analysis was used to determine whether the effects of the combination were synergistic. KEY RESULTS The opioid agonist morphine reduced CCI-induced mechanical and cold allodynia and produced motor incoordination, in a dose-dependent manner. WIN55212 reduced CCI-induced allodynia and produced motor incoordination, catalepsy and sedation, in a dose-dependent manner, as we have observed previously. When administered together, WIN55212 and morphine reduced allodynia in a synergistic manner but had only an additive effect on motor incoordination. CONCLUSIONS AND IMPLICATIONS These findings indicate that administration of a combination of a non-selective opioid and cannabinoid receptor agonist synergistically reduces nerve injury-induced allodynia, while producing side effects in an additive manner. This suggests that this combination treatment has an improved anti-allodynic potency and therapeutic index in a neuropathic pain model.
Collapse
Affiliation(s)
- Nicholas P Kazantzis
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Sherelle L Casey
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Patrick W Seow
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Vanessa A Mitchell
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Christopher W Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
5
|
Hama AT, Germano P, Varghese MS, Cravatt BF, Milne GT, Pearson JP, Sagen J. Fatty acid amide hydrolase (FAAH) inhibitors exert pharmacological effects, but lack antinociceptive efficacy in rats with neuropathic spinal cord injury pain. PLoS One 2014; 9:e96396. [PMID: 24788435 PMCID: PMC4008577 DOI: 10.1371/journal.pone.0096396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/07/2014] [Indexed: 12/04/2022] Open
Abstract
Amelioration of neuropathic spinal cord injury (SCI) pain is a clinical challenge. Increasing the endocannabinoid anandamide and other fatty acid amides (FAA) by blocking fatty acid amide hydrolase (FAAH) has been shown to be antinociceptive in a number of animal models of chronic pain. However, an antinociceptive effect of blocking FAAH has yet to be demonstrated in a rat model of neuropathic SCI pain. Four weeks following a SCI, rats developed significantly decreased hind paw withdrawal thresholds, indicative of below-level cutaneous hypersensitivity. A group of SCI rats were systemically treated (i.p.) with either the selective FAAH inhibitor URB597 or vehicle twice daily for seven days. A separate group of SCI rats received a single dose (p.o.) of either the selective FAAH inhibitor PF-3845 or vehicle. Following behavioral testing, levels of the FAA N-arachidonoylethanolamide, N-oleoyl ethanolamide and N-palmitoyl ethanolamide were quantified in brain and spinal cord from SCI rats. Four weeks following SCI, FAA levels were markedly reduced in spinal cord tissue. Although systemic treatment with URB597 significantly increased CNS FAA levels, no antinociceptive effect was observed. A significant elevation of CNS FAA levels was also observed following oral PF-3845 treatment, but only a modest antinociceptive effect was observed. Increasing CNS FAA levels alone does not lead to robust amelioration of below-level neuropathic SCI pain. Perhaps utilizing FAAH inhibition in conjunction with other analgesic mechanisms could be an effective analgesic therapy.
Collapse
Affiliation(s)
- Aldric T. Hama
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Peter Germano
- Ironwood Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Matthew S. Varghese
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - G. Todd Milne
- Ironwood Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - James P. Pearson
- Ironwood Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Jacqueline Sagen
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
6
|
Analgesic effect of sinomenine in rodents after inflammation and nerve injury. Eur J Pharmacol 2013; 721:5-11. [PMID: 24120369 DOI: 10.1016/j.ejphar.2013.09.062] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 09/10/2013] [Accepted: 09/22/2013] [Indexed: 12/30/2022]
Abstract
Sinomenine is an alkaloid originally isolated from the root of the plant Sinomenium acutum. It is used in traditional medicine in China to treat rheumatic arthritis. In the present study, we evaluated the potential antinociceptive effects of sinomenine in rodents with nociceptive, inflammatory and neuropathic pain. In normal rats and mice, systemic sinomenine produced moderate antinociceptive effect in the hot plate and tail flick tests. Sinomenine also exerted analgesic effects on mechanical and heat hypersensitivity in mice after carrageenan induced inflammation. Finally, sinomenine effectively alleviated mechanical and cold allodynia in rats and mice after injury to peripheral nerve or spinal cord. The analgesic effect of sinomenine is not associated with side effects and is not reversed by the opioid receptor antagonist naloxone. Our results showed that sinomenine has a wide spectrum analgesic effect in rodent models of nociceptive, inflammatory and neuropathic pain.
Collapse
|
7
|
Woller SA, Moreno GL, Hart N, Wellman PJ, Grau JW, Hook MA. Analgesia or addiction?: implications for morphine use after spinal cord injury. J Neurotrauma 2012; 29:1650-62. [PMID: 22214368 DOI: 10.1089/neu.2011.2100] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Opioid analgesics are among the most effective agents for treatment of moderate to severe pain. However, the use of morphine after a spinal cord injury (SCI) can potentiate the development of paradoxical pain symptoms, and continuous administration can lead to dependence, tolerance, and addiction. Although some studies suggest that the addictive potential of morphine decreases when it is used to treat neuropathic pain, this has not been studied in a SCI model. Accordingly, the present studies investigated the addictive potential of morphine in a rodent model of SCI using conditioned place preference (CPP) and intravenous self-administration paradigms. A contusion injury significantly increased the expression of a CPP relative to sham and intact controls in the acute phase of injury. However, contused animals self-administered significantly less morphine than sham and intact controls, but this was dose-dependent; at a high concentration, injured rats exhibited an increase in drug-reinforced responses over time. Exposure to a high concentration of morphine impeded weight gain and locomotor recovery. We suggest that the increased preference observed in injured rats reflects a motivational effect linked in part to the drug's anti-nociceptive effect. Further, although injured rats exhibited a suppression of opiate self-administration, when given access to a high concentration, addictive-like behavior emerged and was associated with poor recovery.
Collapse
Affiliation(s)
- Sarah A Woller
- Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Choi JI, Kim WM, Yoon MH, Lee HG. Antiallodynic Effect of Thalidomide and Morphine on Rat Spinal Nerve Ligation-induced Neuropathic Pain. Korean J Pain 2010; 23:172-8. [PMID: 20830262 PMCID: PMC2935978 DOI: 10.3344/kjp.2010.23.3.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 11/21/2022] Open
Abstract
Background Tumor necrosis factor-alpha and other proinflammatory cytokines are becoming well recognized as key mediators in the pathogenesis of many types of neuropathic pain. Thalidomide has profound immunomodulatory actions in addition to their originally intended pharmacological actions. There has been debate on the analgesic efficacy of opioids in neuropathic pain. The aim of this study was to investigate the effect of thalidomide and morphine on a spinal nerve ligation model in rats. Methods Male Sprague-Dawley rats weighing 100-120 g were used. Lumbar (L) 5 and 6 spinal nerve ligations were performed to induce neuropathic pain. For assessment of mechanical allodynia, mechanical stimulus using von Frey filament was applied to the paw to measure withdrawal threshold. The effects of intraperitoneal thalidomide (6.25, 12.5, 25 and 50 mg/kg, respectively) and morphine (3 and 10 mg/kg, respectively) were examined on a withdrawal threshold evoked by spinal nerve ligation. Results After L5 and 6 spinal nerve ligation, paw withdrawal thresholds on the ipsilateral side were significantly decreased compared with pre-operative baseline and with those in the sham-operated group. Intraperitoneal thalidomide and morphine significantly increased the paw withdrawal threshold compared to controls and produced dose-responsiveness. Conclusions Systemic thalidomide and morphine have antiallodynic effect on neuropathic pain induced by spinal nerve ligation in rat. These results suggest that morphine and thalidomide may be alternative therapeutic approaches for neuropathic pain.
Collapse
Affiliation(s)
- Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Korea
| | | | | | | |
Collapse
|
9
|
Kim YK, Park JY, Hwang JH. Comparison of antiallodynic effect of intrathecal morphine, brimonidine and rilmenidine between neuritis and ligation injury induced neuropathic pain. Korean J Anesthesiol 2009; 56:425-432. [DOI: 10.4097/kjae.2009.56.4.425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Young-Kug Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Yeon Park
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jai-Hyun Hwang
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Chung KY, Shin SW, Kwon SA, Kim TK, Baek SH, Baik SW. The Antiallodynic Effect and the Change of the α 2Adrenergic Receptor Subtype mRNA Expression by Morphine Administration in a Spinal Nerve Ligation Rat Model. Korean J Pain 2009. [DOI: 10.3344/kjp.2009.22.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kyu Yeon Chung
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Sang Wook Shin
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Su Ah Kwon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Tae Kyun Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Seung Hoon Baek
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Seong Wan Baik
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| |
Collapse
|
11
|
Qian L, Tan KS, Wei SJ, Wu HM, Xu Z, Wilson B, Lu RB, Hong JS, Flood PM. Microglia-Mediated Neurotoxicity Is Inhibited by Morphine through an Opioid Receptor-Independent Reduction of NADPH Oxidase Activity. THE JOURNAL OF IMMUNOLOGY 2007; 179:1198-209. [PMID: 17617613 DOI: 10.4049/jimmunol.179.2.1198] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have shown that morphine modulates the function of glia cells through both opioid receptor dependent and independent mechanisms. However, the mechanism by which morphine regulates neuronal disorders through the alteration of microglia activity remains unclear. In this study, using rat primary mesencephalic neuron-glia cultures, we report that both l-morphine and its synthetic stereoenantiomer, d-morphine, an ineffective opioid receptor agonist, significantly reduced LPS- or 1-methyl-4-phenylpyridinium-induced dopaminergic neurotoxicity with similar efficacy, indicating a nonopioid receptor-mediated effect. In addition, using reconstituted neuron and glia cultures, subpicomolar concentrations of morphine were found to be neuroprotective only in the presence of microglia, and significantly inhibited the production of inflammatory mediators from LPS-stimulated microglia cells. Mechanistic studies showed that both l- and d- morphine failed to protect dopaminergic neurons in cultures from NADPH oxidase (PHOX) knockout mice and significantly reduced LPS-induced PHOX cytosolic subunit p47(phox) translocation to the cell membrane by inhibiting ERK phosphorylation. Taken together, our results demonstrate that morphine, even at subpicomolar concentrations, exerts potent anti-inflammatory and neuroprotective effects either through the inhibition of direct microglial activation by LPS or through the inhibition of reactive microgliosis elicited by 1-methyl-4-phenylpyridinium. Furthermore, our study reveals that inhibition of PHOX is a novel site of action for the mu-opioid receptor-independent effect of morphine.
Collapse
Affiliation(s)
- Li Qian
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nielsen CK, Lewis RJ, Alewood D, Drinkwater R, Palant E, Patterson M, Yaksh TL, McCumber D, Smith MT. Anti-allodynic efficacy of the chi-conopeptide, Xen2174, in rats with neuropathic pain. Pain 2005; 118:112-24. [PMID: 16154696 DOI: 10.1016/j.pain.2005.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 07/07/2005] [Accepted: 08/01/2005] [Indexed: 01/10/2023]
Abstract
Xen2174 is a structural analogue of Mr1A, a chi-conopeptide recently isolated from the venom of the marine cone snail, Conus marmoreus. Although both chi-conopeptides are highly selective inhibitors of the norepinephrine transporter (NET), Xen2174 has superior chemical stability relative to Mr1A. It is well-known that tricyclic antidepressants (TCAs) are also potent NET inhibitors, but their poor selectivity relative to other monoamine transporters and various G-protein-coupled receptors, results in dose-limiting side-effects in vivo. As TCAs and the alpha(2)-adrenoceptor agonist, clonidine, have established efficacy for the relief of neuropathic pain, this study examined whether intrathecal (i.t.) Xen2174 alleviated mechanical allodynia in rats with either a chronic constriction injury of the sciatic nerve (CCI-rats) or an L5/L6 spinal-nerve injury. The anti-allodynic responses of i.t. Mr1A and i.t. morphine were also investigated in CCI-rats. Paw withdrawal thresholds were assessed using calibrated von Frey filaments. Bolus doses of i.t. Xen2174 produced dose-dependent relief of mechanical allodynia in CCI-rats and in spinal nerve-ligated rats. Dose-dependent anti-allodynic effects were also produced by i.t. bolus doses of Mr1A and morphine in CCI-rats, but a pronounced 'ceiling' effect was observed for i.t. morphine. The side-effect profiles were mild for both chi-conopeptides with an absence of sedation. Confirming the noradrenergic mechanism of action, i.t. co-administration of yohimbine (100 nmol) with Xen2174 (10 nmol) abolished Xen2174s anti-allodynic actions. Xen2174 appears to be a promising candidate for development as a novel therapeutic for i.t. administration to patients with persistent neuropathic pain.
Collapse
Affiliation(s)
- Carsten K Nielsen
- School of Pharmacy, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Pertovaara A, Wei H. A dissociative change in the efficacy of supraspinal versus spinal morphine in the neuropathic rat. Pain 2003; 101:237-250. [PMID: 12583866 DOI: 10.1016/s0304-3959(02)00320-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficacy of spinally versus supraspinally administered morphine was studied in rats with a spinal nerve ligation-induced neuropathy. Behavioural assessment indicated that the effect of intrathecally administered morphine on pain-related responses was attenuated when compared with unoperated controls. The decreased efficacy of spinal morphine was associated with neuropathic symptoms, since sham ligation or nerve ligation without accompanying tactile allodynia did not lead to spinal inefficacy of morphine. In contrast, the pain attenuating effect of morphine in the periaqueductal gray (PAG) was enhanced in neuropathic animals. The effect of systemically administered morphine on pain-related behavior of neuropathic rats was in the same range as in controls or decreased, depending on the test. Coadministration of lidocaine or MK-801, a N-methyl-D-aspartate (NMDA) receptor antagonist, into the rostroventromedial medulla enhanced the tactile antiallodynic but not the thermal antinociceptive effect of intrathecally administered morphine in neuropathic animals. Supraspinal administration of MK-801 or lidocaine did not influence efficacy of spinal morphine in sham-operated animals. Electrophysiological recordings of nociceptive wide-dynamic range (WDR) neurons in the deep spinal dorsal horn of pentobarbitone-anesthetized animals corresponded to a large extent with behavioral results. The inhibitory effect of spinally and systemically administered morphine on WDR neuron responses was attenuated whereas that induced by morphine in the PAG was enhanced in neuropathic animals. The results indicate that in spinal nerve ligation-induced neuropathy the efficacy of spinal morphine is decreased whereas that of supraspinal morphine is increased. Descending influence from brainstem-spinal pathways, involving NMDA receptors in the rostroventromedial medulla, may contribute to the selective reduction in tactile antiallodynic efficacy of spinal morphine.
Collapse
Affiliation(s)
- Antti Pertovaara
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland Department of Physiology, Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
15
|
Kouya PF, Hao JX, Xu XJ. Buprenorphine alleviates neuropathic pain-like behaviors in rats after spinal cord and peripheral nerve injury. Eur J Pharmacol 2002; 450:49-53. [PMID: 12176108 DOI: 10.1016/s0014-2999(02)02052-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have studied and compared the antinociceptive and anti-hyperalgesic effect of the partial opioid receptor agonist buprenorphine in normal and neuropathic rats. In normal rats, systemic buprenorphine produced dose-dependent antinociception on the hot plate test. In rats with peripheral nerve or spinal cord injury, buprenorphine markedly alleviated neuropathic pain-related behaviors, including mechanical and cold allodynia/hyperalgesia at doses comparable to that producing antinociception. The results suggest that buprenorphine may be a useful analgesic for treating neuropathic pain and thus is an atypical opioid since morphine tends to be less potent after nerve injury.
Collapse
Affiliation(s)
- Poli Francois Kouya
- Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Huddinge University Hospital, Karolinska Institute, S-141 86 Huddinge, Sweden
| | | | | |
Collapse
|
16
|
|
17
|
Xu M, Kontinen VK, Kalso E. Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain. Eur J Pharmacol 1999; 366:41-5. [PMID: 10064150 DOI: 10.1016/s0014-2999(98)00910-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endogenous inhibitory controls were studied in the spinal nerve ligation model of neuropathic pain. Atipamezole, a selective alpha2-adrenoceptor antagonist, produced both mechanical and cold allodynia in those rats which had not developed clear neuropathic symptoms. The same doses (50 microg i.t. or 1 mg/kg s.c.) did not increase the severity of symptoms in rats which had developed them. The opioid receptor antagonist naloxone (20 microg i.t. or 1 mg/kg s.c.) had no effect on the neuropathic symptoms. These results indicate that mechanical and cold allodynia are under endogenous noradrenergic rather than opioidergic control in this model of neuropathic pain.
Collapse
Affiliation(s)
- M Xu
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Helsinki, Finland.
| | | | | |
Collapse
|
18
|
Wei H, Panula P, Pertovaara A. A differential modulation of allodynia, hyperalgesia and nociception by neuropeptide FF in the periaqueductal gray of neuropathic rats: interactions with morphine and naloxone. Neuroscience 1998; 86:311-9. [PMID: 9692764 DOI: 10.1016/s0306-4522(98)00027-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of neuropeptide FF in the periaqueductal gray on pain behaviour was studied in rats with a chronic neuropathy induced by unilateral ligation of two spinal nerves. Neuropeptide FF produced in a non-monotonic fashion a significant attenuation of tactile allodynia. The antiallodynic effect was not significantly modulated by naloxone administered systemically or intracerebrally. The dose of neuropeptide FF producing a significant antiallodynic effect was not antinociceptive in a test of mechanical or thermal nociception. The thermal antinociceptive effect induced by morphine administered in the periaqueductal gray was significantly attenuated by neuropeptide FF, whereas that induced by systemically administered morphine was not. The interaction of neuropeptide FF with intracerebrally or systemically administered morphine in a test of tactile allodynia was not significant. The results indicate that neuropeptide FF in the periaqueductal gray may produce a selective attenuation of tactile allodynia in neuropathic rats. This antiallodynic effect is at least partly independent of naloxone-sensitive opioid receptors. Furthermore, neuropeptide FF in the periaqueductal gray attenuates antinociception induced by intracerebrally but not systemically administered morphine.
Collapse
Affiliation(s)
- H Wei
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | | | | |
Collapse
|