1
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
2
|
Mahmoud NF, Fouda HA, Omara II, Allam NM. Exposure time as an influencing factor among rheumatoid arthritis patients subjected to traditional Siwan therapy. Medicine (Baltimore) 2023; 102:e35105. [PMID: 37713862 PMCID: PMC10508496 DOI: 10.1097/md.0000000000035105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is a long-term autoimmune disease characterized by intra- and extra-articular manifestations. Sand therapy is traditionally indicated for RA, chronic pain, skin diseases, and musculoskeletal disorders. Many places in the world use sand therapy, including Siwa, which is a famous place in Egypt. This study investigated the exposure time to Siwan traditional therapy as a factor influencing central sensitization, pain severity, pain threshold, and kinesiophobia in RA by measuring the central sensory inventory (CSI), visual analogue scale, pressure algometer, and TAMPA kinesiophobia scale, respectively. Twenty-four patients with RA were recruited from 6 traditional healing centers, 24 RA patients were recruited and randomly assigned to 2 equal groups (GI and GII). The first received Siwan traditional therapy for 3 days, while the second received the same program for 5 days. The results revealed a significant difference in CSI between pre- and posttreatment within the GII (P = .038). The Tampa Scale score improved significantly in both groups (P = .004 and P = .014, respectively). Pain severity and pain threshold at all sites showed significant posttreatment improvements in the GII. Significant posttreatment changes were only found for GI in terms of pain severity and the most painful joint (P = .010 and P = .035, respectively). Significant changes were observed in kinesiophobia, pain severity, and pain threshold in the most painful joint 3 and 5 days after Siwan traditional therapy. Despite the nonsignificant differences in all parameters between the 2 groups, all the measured parameters produced favorable results after 5 days of treatment, suggesting the need for a long-term effect investigation.
Collapse
Affiliation(s)
- Noha F. Mahmoud
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Howida A. Fouda
- Department of Physical Therapy for Internal Diseases, Faculty of Physical Therapy, 6 October University, Giza, Egypt
| | - Islam I. Omara
- Department of Animal Production (Nutrition Division), Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Nashwa M. Allam
- Department of Orthopedics and Orthopedic Surgery, Faculty of Physical Therapy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
3
|
Ma L, Peng S, Wei J, Zhao M, Ahmad KA, Chen J, Wang YX. Spinal microglial β-endorphin signaling mediates IL-10 and exenatide-induced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci Ther 2021; 27:1157-1172. [PMID: 34111331 PMCID: PMC8446220 DOI: 10.1111/cns.13694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
AIM This study aimed to investigate the regulation of pain hypersensitivity induced by the spinal synaptic transmission mechanisms underlying interleukin (IL)-10 and glucagon-like peptide 1 receptor (GLP-1R) agonist exenatide-induced pain anti-hypersensitivity in neuropathic rats through spinal nerve ligations. METHODS Neuropathic pain model was established by spinal nerve ligation of L5/L6 and verified by electrophysiological recording and immunofluorescence staining. Microglial expression of β-endorphin through autocrine IL-10- and exenatide-induced inhibition of glutamatergic transmission were performed by behavioral tests coupled with whole-cell recording of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) through application of endogenous and exogenous IL-10 and β-endorphin. RESULTS Intrathecal injections of IL-10, exenatide, and the μ-opioid receptor (MOR) agonists β-endorphin and DAMGO inhibited thermal hyperalgesia and mechanical allodynia in neuropathic rats. Whole-cell recordings of bath application of exenatide, IL-10, and β-endorphin showed similarly suppressed enhanced frequency and amplitude of the mEPSCs in the spinal dorsal horn neurons of laminae II, but did not reduce the frequency and amplitude of mIPSCs in neuropathic rats. The inhibitory effects of IL-10 and exenatide on pain hypersensitive behaviors and spinal synaptic plasticity were totally blocked by pretreatment of IL-10 antibody, β-endorphin antiserum, and MOR antagonist CTAP. In addition, the microglial metabolic inhibitor minocycline blocked the inhibitory effects of IL-10 and exenatide but not β-endorphin on spinal synaptic plasticity. CONCLUSION This suggests that spinal microglial expression of β-endorphin mediates IL-10- and exenatide-induced inhibition of glutamatergic transmission and pain hypersensitivity via presynaptic and postsynaptic MORs in spinal dorsal horn.
Collapse
Affiliation(s)
- Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Shiyu Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China.,School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Jinbao Wei
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mengjing Zhao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Jinghong Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
4
|
Needling Interventions for Sciatica: Choosing Methods Based on Neuropathic Pain Mechanisms-A Scoping Review. J Clin Med 2021; 10:jcm10102189. [PMID: 34069357 PMCID: PMC8158699 DOI: 10.3390/jcm10102189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Sciatica is a condition often accompanied by neuropathic pain (NP). Acupuncture and dry needling are common treatments for pain, and the current literature supports acupuncture as an effective treatment for sciatica. However, it is unknown if the mechanisms of NP are considered in the delivery of needling interventions for sciatica. Our objective was to assess the efficacy and the effectiveness of needling therapies, to identify common needling practices and to investigate if NP mechanisms are considered in the treatment of sciatica. A scoping review of the literature on needling interventions for sciatica and a review of the literature on mechanisms related to NP and needling interventions were performed. Electronic literature searches were conducted on PubMed, MEDLINE, CINAHL and Cochrane Database of Systematic Reviews from inception to August, 2020 to identify relevant papers. Reference lists of included papers were also manually screened and a related-articles search through PubMed was performed on all included articles. Mapping of the results included description of included studies, summary of results, and identification of gaps in the existing literature. Ten articles were included. All studies used acupuncture for the treatment of sciatica, no studies on dry needling were identified. Current evidence supports the efficacy and effectiveness of acupuncture for sciatica, however, no studies considered underlying NP mechanisms in the acupuncture approach for sciatica and the rationale for using acupuncture was inconsistent among trials. This review reveals that neuropathic pain mechanisms are not routinely considered in needling approaches for patients with sciatica. Studies showed acupuncture to be an effective treatment for sciatic pain, however, further research is warranted to explore if needling interventions for sciatica and NP would be more effective if NP mechanisms are considered.
Collapse
|
5
|
Zhou LJ, Peng J, Xu YN, Zeng WJ, Zhang J, Wei X, Mai CL, Lin ZJ, Liu Y, Murugan M, Eyo UB, Umpierre AD, Xin WJ, Chen T, Li M, Wang H, Richardson JR, Tan Z, Liu XG, Wu LJ. Microglia Are Indispensable for Synaptic Plasticity in the Spinal Dorsal Horn and Chronic Pain. Cell Rep 2020; 27:3844-3859.e6. [PMID: 31242418 DOI: 10.1016/j.celrep.2019.05.087] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/29/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal long-term potentiation (LTP) at C-fiber synapses is hypothesized to underlie chronic pain. However, a causal link between spinal LTP and chronic pain is still lacking. Here, we report that high-frequency stimulation (HFS; 100 Hz, 10 V) of the mouse sciatic nerve reliably induces spinal LTP without causing nerve injury. LTP-inducible stimulation triggers chronic pain lasting for more than 35 days and increases the number of calcitonin gene-related peptide (CGRP) terminals in the spinal dorsal horn. The behavioral and morphological changes can be prevented by blocking NMDA receptors, ablating spinal microglia, or conditionally deleting microglial brain-derived neurotrophic factor (BDNF). HFS-induced spinal LTP, microglial activation, and upregulation of BDNF are inhibited by antibodies against colony-stimulating factor 1 (CSF-1). Together, our results show that microglial CSF1 and BDNF signaling are indispensable for spinal LTP and chronic pain. The microglia-dependent transition of synaptic potentiation to structural alterations in pain pathways may underlie pain chronicity.
Collapse
Affiliation(s)
- Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Jiyun Peng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ya-Nan Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Jie Zeng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ukpong B Eyo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, the Fourth Military Medical University, Xi'an 710032, China
| | - Mingtao Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Hui Wang
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 22600, China
| | - Jason R Richardson
- Departments of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
6
|
Expression and functional characterization of transient receptor potential vanilloid 4 in the dorsal root ganglion and spinal cord of diabetic rats with mechanical allodynia. Brain Res Bull 2020; 162:30-39. [PMID: 32479780 DOI: 10.1016/j.brainresbull.2020.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Diabetic mechanical allodynia (DMA) is a common manifestation in patients with diabetes mellitus, and currently, no effective treatment is available. Transient receptor potential vanilloid 4 (TRPV4) is involved in mechanical hypersensitivity resulting from varying aetiologies in animal, but its expression pattern during DMA and whether it contributes to this condition are still unclear. We investigated the spatial and temporal expression patterns of TRPV4 in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) by qRT-PCR, Western blotting and immunofluorescence assays. The pathophysiological role of TRPV4 in DMA was also investigated by intrathecal application of the TRPV4 selective antagonist HC-067047 or the agonist GSK1016790A. The results showed that both the mRNA and protein levels of TRPV4 were strikingly upregulated on day 14 in the rats with DMA. The increase in TRPV4 was mainly observed in the soma and central processes of calcitonin gene-related peptide (CGRP)- or neurofilament 200 kDa (NF200)-containing DRG neurons. Both single and repetitive intrathecal applications of HC-067047 (400 ng/kg) significantly alleviated mechanical allodynia in the rats with DMA, whereas a single application of GSK1016790A (200 ng/kg) aggravated mechanical allodynia. The present data suggest that TRPV4 undergoes expression changes that are associated with mechanical hypersensitivity in diabetic rats. TRPV4 may be a new molecular target for developing a clinical strategy to treat this intractable neuropathic pain.
Collapse
|
7
|
Reddy CG, Miller JW, Abode-Iyamah KO, Safayi S, Wilson S, Dalm BD, Fredericks DC, Gillies GT, Howard MA, Brennan TJ. Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis. J Pain Res 2018; 11:1147-1162. [PMID: 29942150 PMCID: PMC6007193 DOI: 10.2147/jpr.s139843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background It is becoming increasingly important to understand the mechanisms of spinal cord stimulation (SCS) in alleviating neuropathic pain as novel stimulation paradigms arise. Purpose Additionally, the small anatomic scale of current SCS animal models is a barrier to more translational research. Methods Using chronic constriction injury (CCI) of the common peroneal nerve (CPN) in sheep (ovine), we have created a chronic model of neuropathic pain that avoids motor deficits present in prior large animal models. This large animal model has allowed us to implant clinical grade SCS hardware, which enables both acute and chronic testing using von Frey filament thresholds and gait analysis. Furthermore, the larger anatomic scale of the sheep allows for simultaneous single-unit recordings from the dorsal horn and SCS with minimal electrical artifact. Results Detectable tactile hypersensitivity occurred 21 days after nerve injury, with preliminary indications that chronic SCS may reverse it in the painful limb. Gait analysis revealed no hoof drop in the CCI model. Single neurons were identified and discriminated in the dorsal horn, and their activity was modulated via SCS. Unlike previous large animal models that employed a complete transection of the nerve, no motor deficit was observed in the sheep with CCI. Conclusion To our knowledge, this is the first reported large animal model of chronic neuropathic pain which facilitates the study of both acute and chronic SCS using complementary behavioral and electrophysiologic measures. As demonstrated by our successful establishment of these techniques, an ovine model of neuropathic pain is suitable for testing the mechanisms of SCS.
Collapse
Affiliation(s)
- Chandan G Reddy
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - John W Miller
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kingsley O Abode-Iyamah
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sina Safayi
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Brian D Dalm
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Douglas C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy J Brennan
- Department of Anesthesia, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
8
|
Human carbonic anhydrase-8 AAV8 gene therapy inhibits nerve growth factor signaling producing prolonged analgesia and anti-hyperalgesia in mice. Gene Ther 2018; 25:297-311. [PMID: 29789638 PMCID: PMC6063772 DOI: 10.1038/s41434-018-0018-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Abstract
Carbonic anhydrase-8 (Car8; murine gene symbol) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates neuronal intracellular calcium release. We previously reported that wildtype Car8 overexpression corrects the baseline allodynia and hyperalgesia associated with calcium dysregulation in the waddle (wdl) mouse due to a 19 bp deletion in exon 8 of the Car8 gene. In this report, we provide preliminary evidence that overexpression of the human wildtype ortholog of Car8 (CA8WT), but not the reported CA8 S100P loss-of-function mutation (CA8MT); inhibits nerve growth factor (NGF)-induced phosphorylation of ITPR1, TrkA (NGF high affinity receptor); and ITPR1-mediated cytoplasmic free calcium release in vitro. Additionally, we show that gene-transfer using AAV8-V5-CA8WT viral particles via sciatic nerve injection demonstrates retrograde transport to dorsal root ganglia (DRG) producing prolonged V5-CA8WT expression, pITPR1 and pTrkA inhibition, and profound analgesia and anti-hyperalgesia in male C57BL/6J mice. AAV8-V5-CA8WT mediated overexpression prevented and treated allodynia and hyperalgesia associated with chronic neuropathic pain produced by the spinal nerve ligation (SNL) model. These AAV8-V5-CA8 data provide a proof-of-concept for precision medicine through targeted gene therapy of NGF-responsive somatosensory neurons as a long-acting local analgesic able to prevent and treat chronic neuropathic pain through regulating TrkA signaling, ITPR1 activation, and intracellular free calcium release by ITPR1.
Collapse
|
9
|
Fernández-Montoya J, Martin YB, Negredo P, Avendaño C. Changes in the axon terminals of primary afferents from a single vibrissa in the rat trigeminal nuclei after active touch deprivation or exposure to an enriched environment. Brain Struct Funct 2017; 223:47-61. [PMID: 28702736 DOI: 10.1007/s00429-017-1472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023]
Abstract
Lasting modifications of sensory input induce structural and functional changes in the brain, but the involvement of primary sensory neurons in this plasticity has been practically ignored. Here, we examine qualitatively and quantitatively the central axonal terminations of a population of trigeminal ganglion neurons, whose peripheral axons innervate a single mystacial vibrissa. Vibrissa follicles are heavily innervated by myelinated and unmyelinated fibers that exit the follicle mainly through a single deep vibrissal nerve. We made intraneural injections of a mixture of cholera-toxin B (CTB) and isolectin B4, tracers for myelinated and unmyelinated fibers, respectively, in three groups of young adult rats: controls, animals subjected to chronic haptic touch deprivation by unilateral whisker trimming, and rats exposed for 2 months to environmental enrichment. The regional and laminar pattern of terminal arborizations in the trigeminal nuclei of the brain stem did not show gross changes after sensory input modification. However, there were significant and widespread increases in the number and size of CTB-labeled varicosities in the enriched condition, and a prominent expansion in both parameters in laminae III-IV of the caudal division of the spinal nucleus in the whisker trimming condition. No obvious changes were detected in IB4-labeled terminals in laminae I-II. These results show that a prolonged exposure to changes in sensory input without any neural damage is capable of inducing structural changes in terminals of primary afferents in mature animals, and highlight the importance of peripheral structures as the presumed earliest players in sensory experience-dependent plasticity.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Departamento de Anatomía, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, UFV, Edificio E, Ctra. M-115, Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
10
|
Painful Cervical Facet Joint Injury Is Accompanied by Changes in the Number of Excitatory and Inhibitory Synapses in the Superficial Dorsal Horn That Differentially Relate to Local Tissue Injury Severity. Spine (Phila Pa 1976) 2017; 42:E695-E701. [PMID: 27755498 PMCID: PMC5393960 DOI: 10.1097/brs.0000000000001934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemistry labeled pre- and postsynaptic structural markers to quantify excitatory and inhibitory synapses in the spinal superficial dorsal horn at 14 days after painful facet joint injury in the rat. OBJECTIVE The objective of this study was to investigate the relationship between pain and synapse density in the spinal cord after facet injury. SUMMARY OF BACKGROUND DATA Neck pain is a major contributor to disability and often becomes chronic. The cervical facet joints are susceptible to loading-induced painful injury, initiating spinal central sensitization responses. Although excitatory synapse plasticity has been reported in the superficial dorsal horn early after painful facet injury, whether excitatory and/or inhibitory synapse density is altered at a time when pain is maintained is unknown. METHODS Rats underwent either a painful C6/C7 facet joint distraction or sham surgery. Mechanical hyperalgesia was measured and immunohistochemistry techniques for synapse quantification were used to quantify excitatory and inhibitory synapse densities in the superficial dorsal horn at day 14. Logarithmic correlation analyses evaluated whether the severity of facet injury correlated with either behavioral or synaptic outcomes. RESULTS Facet joint injury induces pain that is sustained until day 14 (P <0.001) and both significantly greater excitatory synapse density (P = 0.042) and lower inhibitory synapse density (P = 0.0029) in the superficial dorsal horn at day 14. Injury severity is significantly correlated with pain at days 1 (P = 0.0011) and 14 (P = 0.0002), but only with inhibitory, not excitatory, synapse density (P = 0.0025) at day 14. CONCLUSION This study demonstrates a role for structural plasticity in both excitatory and inhibitory synapses in the maintenance of facet-mediated joint pain, and that altered inhibitory, but not excitatory, synapse density correlates to the severity of painful joint injury. Understanding the functional consequences of this spinal structural plasticity is critical to elucidate mechanisms of chronic joint pain. LEVEL OF EVIDENCE N /A.
Collapse
|
11
|
Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons. Mol Cell Biol 2015; 35:4238-52. [PMID: 26416880 DOI: 10.1128/mcb.00549-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca(2+)-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca(2+)-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca(2+) signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca(2+) signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function.
Collapse
|
12
|
Abstract
Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the injured central nervous system.
Collapse
Affiliation(s)
- Justin A Beller
- Spinal Cord and Brain Injury Research Center, The University of Kentucky, Lexington, KY, USA
| | - Diane M Snow
- Spinal Cord and Brain Injury Research Center, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Belkouch M, Dansereau MA, Tétreault P, Biet M, Beaudet N, Dumaine R, Chraibi A, Mélik-Parsadaniantz S, Sarret P. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation. J Neuroinflammation 2014; 11:45. [PMID: 24606981 PMCID: PMC4007624 DOI: 10.1186/1742-2094-11-45] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain. Conclusions Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
14
|
Dynamic genotype-selective "phenotypic switching" of CGRP expression contributes to differential neuropathic pain phenotype. Exp Neurol 2013; 250:194-204. [PMID: 24076003 DOI: 10.1016/j.expneurol.2013.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/18/2013] [Accepted: 09/16/2013] [Indexed: 11/23/2022]
Abstract
Using a genetic model we demonstrate the role played by "phenotypic switching" of calcitonin gene related peptide (CGRP) expression in axotomized large Aβ afferents in the development of neuropathic pain behavior in rats. After nerve injury both substance P and CGRP are upregulated in Aβ afferents in the corresponding DRGs. It has been proposed that intraspinal release of these neurotransmitters upon gentle stroking of skin drives ascending pain signaling pathways resulting in tactile allodynia. We reported previously that in rat lines genetically selected for high (HA) vs. low (LA) pain phenotype, SP is upregulated equally in both strains, but that CGRP is upregulated exclusively in the pain prone HA line (Nitzan-Luques et al., 2011). This implicates CGRP as the principal driver of tactile allodynia. Here we confirm this conclusion by showing: 1) that the time of emergence of CGRP-IR in DRG Aβ neurons and their central terminals in HA rats matches that of pain behavior, 2) that following spinal nerve lesion (SNL) selective activation of low threshold afferents indeed drives postsynaptic pain-signaling neurons and induces central sensitization in HA rats, as monitored using c-Fos as a marker. These changes are much less prominent in LA rats, 3) that intrathecal (i.t.) administration of CGRP induces tactile allodynia in naïve rats and 4) that i.t. administration of the CGRP-receptor antagonist BIBN4096BS (Olcegepant) attenuates SNL-evoked tactile allodynia, without blocking baseline nociception. Together, these observations support the hypothesis that genotype-selective phenotypic switching of CGRP expression in Aβ afferents following nerve injury is a fundamental mechanism of neuropathic tactile allodynia.
Collapse
|
15
|
Bareiss SK, Gwaltney M, Hernandez K, Lee T, Brewer KL. Excitotoxic spinal cord injury induced dysesthesias are associated with enhanced intrinsic growth of sensory neurons. Neurosci Lett 2013; 542:113-7. [DOI: 10.1016/j.neulet.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/02/2013] [Accepted: 03/07/2013] [Indexed: 11/25/2022]
|
16
|
Matsuura Y, Ohtori S, Iwakura N, Suzuki T, Kuniyoshi K, Takahashi K. Expression of activating transcription factor 3 (ATF3) in uninjured dorsal root ganglion neurons in a lower trunk avulsion pain model in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:1794-9. [PMID: 23471575 DOI: 10.1007/s00586-013-2733-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/26/2012] [Accepted: 02/24/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE Clinically, neuropathic pain is frequent and intense following brachial plexus injury. It is thought that brachial plexus pain is not generated by avulsed roots, but rather by non-avulsed roots, since the avulsed root could not possibly transmit action potentials to central nerves. The aim of this study was to evaluate pain behavior and activation of sensory neurons in a brachial plexus avulsion (BPA) model in rats. METHODS Fifteen male Wistar rats were used. In the BPA group, the C8-T1 roots were avulsed from the spinal cord with forceps at the lower trunk level (n = 5). In the naïve group, rats did not receive any procedures (n = 5). In the sham-operated group, the lower trunk was simply exposed (n = 5). Mechanical hyperalgesia of forelimbs corresponding to C6 and C7 dermatomes was measured using von Frey filaments every third day for 3 weeks. Activation of DRG neurons was immunohistochemically examined using anti-ATF3 (a marker for neuron activation) antibodies 21 days after surgery. Von Frey and immunohistochemical data between groups were analyzed using a Kruskal-Wallis test, followed by Mann-Whitney U tests. Bonferroni corrections were performed. RESULTS Animals in the BPA group displayed significant mechanical hyperalgesia at the dermatome innervated by uninjured nerves continuing through day 21 compared with animals in the sham-operated group. ATF3-immunoreactive small and large DRG neurons were significantly activated in the BPA group (10.6 ± 9.5 and 5.2 ± 4.1 %, 39.7 ± 6.7 and 25.2 ± 10.3 %, 78.0 ± 9.1 and 53.7 ± 29.3 %) compared with the sham-operated group (0.7 ± 0.9 and 0 ± 0 %, 2.8 ± 2.0 and 1.0 ± 2.0 %, 3.9 ± 2.7 and 8.6 ± 10.1 %) at every level of C5, 6, and 7. In the naïve group, no DRG neurons were activated. ATF3-immunoreactive small and large DRG neurons were significantly activated at the level of C7 compared with C6 and C5, and significantly activated at the level of C6 compared with C5 in the BPA group. CONCLUSIONS Expression of ATF3 in uninjured DRG neurons may contribute to pain following brachial plexus avulsion injury. Consequently, spared spinal sensory nerves may represent therapeutic targets for treatment of this pain.
Collapse
Affiliation(s)
- Yusuke Matsuura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Differential effects of peripheral versus central coadministration of QX-314 and capsaicin on neuropathic pain in rats. Anesthesiology 2012; 117:365-80. [PMID: 22739765 DOI: 10.1097/aln.0b013e318260de41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Neuropathic pain is common and difficult to treat. Recently a technique was developed to selectively inhibit nociceptive inputs by simultaneously applying two drugs: capsaicin, a transient receptor potential vanilloid receptor-1 channel activator, and QX-314, a lidocaine derivative that intracellularly blocks sodium channels. We used this technique to investigate whether transient receptor potential vanilloid receptor 1-expressing nociceptors contribute to neuropathic pain. METHODS The rat chronic constriction injury model was used to induce neuropathic pain in order to test the analgesic effects of both peripheral (perisciatic) and central (intrathecal) administration of the QX-314/capsaicin combination. The Hargreaves and von Frey tests were used to monitor evoked pain-like behaviors and visual observations were used to rank spontaneous pain-like behaviors. RESULTS Perisciatic injections of the QX-314/capsaicin combination transiently increased the withdrawal thresholds by approximately 3-fold, for mechanical and thermal stimuli in rats (n = 6/group) with nerve injuries suggesting that peripheral transient receptor potential vanilloid receptor 1-expressing nociceptors contribute to neuropathic pain. In contrast, intrathecal administration of the QX-314/capsaicin combination did not alleviate pain-like behaviors (n = 5/group). Surprisingly, intrathecal QX-314 alone (n = 9) or in combination with capsaicin (n = 8) evoked spontaneous pain-like behaviors. CONCLUSIONS Data from the perisciatic injections suggested that a component of neuropathic pain was mediated by peripheral nociceptive inputs. The role of central nociceptive terminals could not be determined because of the severe side effects of the intrathecal drug combination. We concluded that only peripheral blockade of transient receptor potential vanilloid receptor 1-expressing nociceptive afferents by the QX-314/capsaicin combination was effective at reducing neuropathic allodynia and hyperalgesia.
Collapse
|
18
|
Nakao A, Takahashi Y, Nagase M, Ikeda R, Kato F. Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala. Mol Pain 2012; 8:51. [PMID: 22776418 PMCID: PMC3464693 DOI: 10.1186/1744-8069-8-51] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/09/2012] [Indexed: 12/04/2022] Open
Abstract
Background Neurons in the capsular part of the central nucleus of the amygdala (CeC), a region also called "nociceptive amygdala," receive nociceptive information from the dorsal horn via afferent pathways relayed from the lateral parabrachial nucleus (LPB). As the central amygdala is known to be involved in the acquisition and expression of emotion, this pathway is thought to play central roles in the generation of affective responses to nociceptive inputs. Excitatory synaptic transmission between afferents arising from the LPB and these CeC neurons is potentiated in arthritic, visceral, neuropathic, inflammatory and muscle pain models. In neuropathic pain models following spinal nerve ligation (SNL), in which we previously showed a robust LPB-CeC potentiation, the principal behavioral symptom is tactile allodynia triggered by non-C-fiber low-threshold mechanoreceptor afferents. Conversely, recent anatomical studies have revealed that most of the spinal neurons projecting to the LPB receive C-fiber afferent inputs. Here, we examined the hypothesis that these C-fiber-mediated inputs are necessary for the full establishment of robust synaptic potentiation of LPB-CeC transmission in the rats with neuropathic pain. Results Postnatal capsaicin treatment, which has been shown to denervate the C-fibers expressing transient receptor potential vanilloid type-1 (TRPV1) channels, completely abolished eye-wiping responses to capsaicin eye instillation in rats, but this treatment did not affect mechanical allodynia in the nerve-ligated animals. However, the postnatal capsaicin treatment prevented LPB-CeC synaptic potentiation after SNL, unlike in the vehicle-treated rats, primarily due to the decreased incidence of potentiated transmission by elimination of TRPV1-expressing C-fiber afferents. Conclusions C-fiber-mediated afferents in the nerve-ligated animals may be a required facilitator of the establishment of nerve injury-evoked synaptic potentiation in the CeC. These inputs might play essential roles in the chronic pain-induced plastic changes in the central network linking nociception and negative emotion.
Collapse
Affiliation(s)
- Ayano Nakao
- Laboratory of Neurophysiology, Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | |
Collapse
|
19
|
Shi Y, Yuan S, Li B, Wang J, Carlton SM, Chung K, Chung JM, Tang SJ. Regulation of Wnt signaling by nociceptive input in animal models. Mol Pain 2012; 8:47. [PMID: 22713358 PMCID: PMC3472283 DOI: 10.1186/1744-8069-8-47] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/04/2012] [Indexed: 01/08/2023] Open
Abstract
Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH) critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t.) injection of HIV-gp120 protein or spinal nerve ligation (SNL). Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.
Collapse
Affiliation(s)
- Yuqiang Shi
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jaken RJ, van Gorp S, Joosten EA, Losen M, Martínez-Martínez P, De Baets M, Marcus MA, Deumens R. Neuropathy-induced spinal GAP-43 expression is not a main player in the onset of mechanical pain hypersensitivity. J Neurotrauma 2011; 28:2463-73. [PMID: 21671799 DOI: 10.1089/neu.2011.1833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Structural plasticity within the spinal nociceptive network may be fundamental to the chronic nature of neuropathic pain. In the present study, the spatiotemporal expression of growth-associated protein-43 (GAP-43), a protein which has been traditionally implicated in nerve fiber growth and sprouting, was investigated in relation to mechanical pain hypersensitivity. An L5 spinal nerve transection model was validated by the presence of mechanical pain hypersensitivity and an increase in the early neuronal activation marker cFos within the superficial spinal dorsal horn upon innocuous hindpaw stimulation. Spinal GAP-43 was found to be upregulated in the superficial L5 dorsal horn from 5 up to 10 days after injury. GAP-43 was co-localized with calcitonin-gene related peptide (CGRP), but not vesicular glutamate transporter-1 (VGLUT-1), IB4, or protein kinase-γ (PKC-γ), suggesting the regulation of GAP-43 in peptidergic nociceptive afferents. These GAP-43/CGRP fibers may be indicative of sprouting peptidergic fibers. Fiber sprouting largely depends on growth factors, which are typically associated with neuro-inflammatory processes. The putative role of neuropathy-induced GAP-43 expression in the development of mechanical pain hypersensitivity was investigated using the immune modulator propentofylline. Propentofylline treatment strongly attenuated the development of mechanical pain hypersensitivity and glial responses to nerve injury as measured by microglial and astroglial markers, but did not affect neuropathy-induced levels of spinal GAP-43 or GAP-43 regulation in CGRP fibers. We conclude that nerve injury induces structural plasticity in fibers expressing CGRP, which is regarded as a main player in central sensitization. Our data do not, however, support a major role of these structural changes in the onset of mechanical pain hypersensitivity.
Collapse
Affiliation(s)
- Robby J Jaken
- Pain Management and Research Center, Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nitzan-Luques A, Devor M, Tal M. Genotype-selective phenotypic switch in primary afferent neurons contributes to neuropathic pain. Pain 2011; 152:2413-2426. [PMID: 21872992 DOI: 10.1016/j.pain.2011.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 07/06/2011] [Accepted: 07/20/2011] [Indexed: 12/23/2022]
Abstract
Pain is normally mediated by nociceptive Aδ and C fibers, while Aβ fibers signal touch. However, after nerve injury, Aβ fibers may signal pain. Using a genetic model, we tested the hypothesis that phenotypic switching in neurotransmitters expressed by Aβ afferents might account for heritable differences in neuropathic pain behavior. The study examined selection-line rats in which one line, high autotomy (HA), shows higher levels of spontaneous pain in the neuroma neuropathy model, and of tactile allodynia in the spinal nerve ligation (SNL) model, than the companion low autotomy (LA) line. Changes in calcitonin gene-related peptide (CGRP) and Substance P expression were evaluated immunohistochemically in L4 and L5 dorsal root ganglia 7 days after SNL surgery. Expression of CGRP was decreased in axotomized small- and medium-diameter neurons in both rat lines. However, in HA but not in LA rats, there was a tenfold increase in CGRP immunoreactivity (CGRP-IR) in large-diameter neurons. Corresponding changes in CGRP-IR in axon terminals in the nucleus gracilis were also seen. Finally, there were indications of enhanced CGRP neurotransmission in deep laminae of the dorsal horn. Substance P immunoreactivity was also upregulated in large-diameter neurons, but this change was similar in the 2 lines. Our findings suggest that phenotypic switching contributes to the heritable difference in pain behavior in HA vs LA rats. Specifically, we propose that in HA rats, but less so in LA rats, injured, spontaneously active Aβ afferents both directly drive CGRP-sensitive central nervous system pain-signaling neurons and also trigger and maintain central sensitization, hence generating spontaneous pain and tactile allodynia.
Collapse
Affiliation(s)
- Adi Nitzan-Luques
- Department of Medical Neurobiology, Faculties of Medicine and Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel Department of Cell and Developmental Biology, Institute of Life Science, Faculty of Natural Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
22
|
Berger JV, Knaepen L, Janssen SPM, Jaken RJP, Marcus MAE, Joosten EAJ, Deumens R. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. ACTA ACUST UNITED AC 2011; 67:282-310. [PMID: 21440003 DOI: 10.1016/j.brainresrev.2011.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/16/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Neuropathic pain is currently being treated by a range of therapeutic interventions that above all act to lower neuronal activity in the somatosensory system (e.g. using local anesthetics, calcium channel blockers, and opioids). The present review highlights novel and often still largely experimental treatment approaches based on insights into pathological mechanisms, which impact on the spinal nociceptive network, thereby opening the 'gate' to higher brain centers involved in the perception of pain. Cellular and molecular mechanisms such as ectopia, sensitization of nociceptors, phenotypic switching, structural plasticity, disinhibition, and neuroinflammation are discussed in relation to their involvement in pain hypersensitivity following either peripheral neuropathies or spinal cord injury. A mechanism-based treatment approach may prove to be successful in effective treatment of neuropathic pain, but requires more detailed insights into the persistence of cellular and molecular pain mechanisms which renders neuropathic pain unremitting. Subsequently, identification of the therapeutic window-of-opportunities for each specific intervention in the particular peripheral and/or central neuropathy is essential for successful clinical trials. Most of the cellular and molecular pain mechanisms described in the present review suggest pharmacological interference for neuropathic pain management. However, also more invasive treatment approaches belong to current and/or future options such as neuromodulatory interventions (including spinal cord stimulation) and cell or gene therapies, respectively.
Collapse
Affiliation(s)
- Julie V Berger
- Department of Anesthesiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Jaken RJ, Joosten EA, Knüwer M, Miller R, van der Meulen I, Marcus MA, Deumens R. Synaptic plasticity in the substantia gelatinosa in a model of chronic neuropathic pain. Neurosci Lett 2010; 469:30-3. [DOI: 10.1016/j.neulet.2009.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/11/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
24
|
Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2286] [Impact Index Per Article: 152.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
|
25
|
Abstract
Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
rTMS for suppressing neuropathic pain: a meta-analysis. THE JOURNAL OF PAIN 2009; 10:1205-16. [PMID: 19464959 DOI: 10.1016/j.jpain.2009.03.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 01/21/2009] [Indexed: 12/31/2022]
Abstract
UNLABELLED This pooled individual data (PID)-based meta-analysis collectively assessed the analgesic effect of repetitive transcranial magnetic stimulation (rTMS) on various neuropathic pain states based on their neuroanatomical hierarchy. Available randomized controlled trials (RCTs) were screened. PID was coded for age, gender, pain neuroanatomical origins, pain duration, and treatment parameters analyses. Coded pain neuroanatomical origins consist of peripheral nerve (PN); nerve root (NR); spinal cord (SC); trigeminal nerve or ganglion (TGN); and post-stroke supraspinal related pain (PSP). Raw data of 149 patients were extracted from 5 (1 parallel, 4 cross-over) selected (from 235 articles) RCTs. A significant (P < .001) overall analgesic effect (mean percent difference in pain visual analog scale (VAS) score reduction with 95% confidence interval) was detected with greater reduction in VAS with rTMS in comparison to sham. Including the parallel study (Khedr et al), the TGN subgroup was found to have the greatest analgesic effect (28.8%), followed by PSP (16.7%), SC (14.7%), NR (10.0%), and PN (1.5%). The results were similar when we excluded the parallel study with the greatest analgesic effect observed in TGN (33.0%), followed by SC (14.7%), PSP (10.5%), NR (10.0%), and PN (1.5%). In addition, multiple (vs single, P = .003) sessions and lower (>1 and < or =10 Hz) treatment frequency range (vs >10 Hz) appears to generate better analgesic outcome. In short, rTMS appears to be more effective in suppressing centrally than peripherally originated neuropathic pain states. PERSPECTIVE This is the first PID-based meta-analysis to assess the differential analgesic effect of rTMS on neuropathic pain based on the neuroanatomical origins of the pain pathophysiology and treatment parameters. The derived information serves as a useful resource in regards to treatment parameters and patient population selection for future rTMS-pain studies.
Collapse
|
27
|
Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. J Neurosci 2009; 29:3766-80. [PMID: 19321773 DOI: 10.1523/jneurosci.4071-08.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a degradative enzyme for a group of endogenous signaling lipids that includes anandamide (AEA). AEA acts as an endocannabinoid and an endovanilloid by activating cannabinoid and vanilloid type 1 transient receptor potential (TRPV1) receptors, respectively, on dorsal root ganglion (DRG) sensory neurons. Inhibition of FAAH activity increases AEA concentrations in nervous tissue and reduces sensory hypersensitivity in animal pain models. Using immunohistochemistry, Western blotting, and reverse transcription-PCR, we demonstrate the location of the FAAH in adult rat DRG, sciatic nerve, and spinal cord. In naive rats, FAAH immunoreactivity localized to the soma of 32.7 +/- 0.8% of neurons in L4 and L5 DRG. These were small-sized (mean soma area, 395.96 +/- 5.6 mum(2)) and predominantly colabeled with peripherin and isolectin B4 markers of unmyelinated C-fiber neurons; 68% colabeled with antibodies to TRPV1 (marker of nociceptive DRG neurons), and <2% colabeled with NF200 (marker of large myelinated neurons). FAAH-IR was also present in small, NF200-negative cultured rat DRG neurons. Incubation of these cultures with the FAAH inhibitor URB597 increased AEA-evoked cobalt uptake in a capsazepine-sensitive manner. After sciatic nerve axotomy, there was a rightward shift in the cell-size distribution of FAAH-immunoreactive (IR) DRG neurons ipsilateral to injury: FAAH immunoreactivity was detected in larger-sized cells that colabeled with NF200. An ipsilateral versus contralateral increase in both the size and proportion of FAAH-IR DRG occurred after spinal nerve transection injury but not after chronic inflammation of the rat hindpaw 2 d after injection of complete Freund's adjuvant. This study reveals the location of FAAH in neural tissue involved in peripheral nociceptive transmission.
Collapse
|
28
|
Petcu M, Dias JP, Ongali B, Thibault G, Neugebauer W, Couture R. Role of kinin B1 and B2 receptors in a rat model of neuropathic pain. Int Immunopharmacol 2007; 8:188-96. [PMID: 18182225 DOI: 10.1016/j.intimp.2007.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 12/14/2022]
Abstract
Kinin B1 and B2 receptor (R) gene expression (mRNA) is increased in the sensory system after peripheral nerve injury. This study measured the densities of B1R and B2R binding sites in the spinal cord and dorsal root ganglia (DRG) by quantitative autoradiography, and evaluated the effects of two selective non-peptide antagonists at B1R (LF22-0542) and B2R (LF16-0687) on pain behavior after partial ligation of the left sciatic nerve. Increases of B1R binding sites were seen in superficial laminae of the ipsi- and contralateral spinal cord at 2 and 14 days while B2R binding sites were increased on the ipsilateral side at 2 days and on both sides at 14 days. In DRG, B1R and B2R binding sites were significantly increased at 2 days (ipsilateral) and 14 days on both sides. Whereas tactile allodynia started to develop progressively from 2 to 25 days post-ligation, the occurrence of cold allodynia and thermal hyperalgesia became significant from day 8 and day 14 post-ligation, respectively. At day 21 after sciatic nerve ligation, thermal hyperalgesia was blocked by LF22-0542 (10 mg/kg, s.c.) and LF16-0687 (3 mg/kg, s.c.), yet both antagonists had no effect on tactile and cold allodynia. Data highlight the implication of both kinin receptors in thermal hyperalgesia but not in tactile and cold allodynia associated with peripheral nerve injury. Hence LF22-0542 and LF16-0687 present therapeutic potential for the treatment of some aspects of neuropathic pain.
Collapse
Affiliation(s)
- M Petcu
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
29
|
Dias JP, Ismael MA, Pilon M, de Champlain J, Ferrari B, Carayon P, Couture R. The kinin B1 receptor antagonist SSR240612 reverses tactile and cold allodynia in an experimental rat model of insulin resistance. Br J Pharmacol 2007; 152:280-7. [PMID: 17618300 PMCID: PMC1978253 DOI: 10.1038/sj.bjp.0707388] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetes causes sensory polyneuropathy with associated pain in the form of tactile allodynia and thermal hyperalgesia which are often intractable and resistant to current therapy. This study tested the beneficial effects of the non-peptide and orally active kinin B(1) receptor antagonist SSR240612 against tactile and cold allodynia in a rat model of insulin resistance. EXPERIMENTAL APPROACH Rats were fed with 10% D-glucose for 12 weeks and effects of orally administered SSR240612 (0.3-30 mg kg(-1)) were determined on the development of tactile and cold allodynia. Possible interference of SSR240612 with vascular oxidative stress and pancreatic function was also addressed. KEY RESULTS Glucose-fed rats exhibited tactile and cold allodynia, increases in systolic blood pressure and higher plasma levels of insulin and glucose, at 12 weeks. SSR240612 blocked tactile and cold allodynia at 3 h (ID(50)=5.5 and 7.1 mg kg(-1), respectively) in glucose-fed rats but had no effect in control rats. The antagonist (10 mg kg(-1)) had no effect on plasma glucose and insulin, insulin resistance (HOMA index) and aortic superoxide anion production in glucose-fed rats. CONCLUSIONS AND IMPLICATIONS We provide the first evidence that the B(1) receptors are involved in allodynia in an experimental rat model of insulin resistance. Allodynia was alleviated by SSR240612 most likely through a direct inhibition of B(1) receptors affecting spinal cord and/or sensory nerve excitation. Thus, orally active non-peptide B(1) receptor antagonists should have clinical therapeutic potential in the treatment of sensory polyneuropathy.
Collapse
Affiliation(s)
- J P Dias
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
| | - M A Ismael
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
| | - M Pilon
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
| | - J de Champlain
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
| | - B Ferrari
- Sanofi-Aventis R&D Montpellier, France
| | - P Carayon
- Sanofi-Aventis R&D Montpellier, France
| | - R Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
- Author for correspondence:
| |
Collapse
|
30
|
Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82:163-201. [PMID: 17643733 DOI: 10.1016/j.pneurobio.2007.06.005] [Citation(s) in RCA: 619] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/18/2007] [Accepted: 06/14/2007] [Indexed: 01/01/2023]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory and autonomic functions conveyed by the lesioned nerves to the denervated segments of the body, due to the interruption of axons continuity, degeneration of nerve fibers distal to the lesion and eventual death of axotomized neurons. Injuries to the peripheral nervous system may thus result in considerable disability. After axotomy, neuronal phenotype switches from a transmitter to a regenerative state, inducing the down- and up-regulation of numerous cellular components as well as the synthesis de novo of some molecules normally not expressed in adult neurons. These changes in gene expression activate and regulate the pathways responsible for neuronal survival and axonal regeneration. Functional deficits caused by nerve injuries can be compensated by three neural mechanisms: the reinnervation of denervated targets by regeneration of injured axons, the reinnervation by collateral branching of undamaged axons, and the remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of specificity in target reinnervation; plasticity in human has, however, limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain, hyperreflexia and dystonia. Recent research has uncovered that peripheral nerve injuries induce a concurrent cascade of events, at the systemic, cellular and molecular levels, initiated by the nerve injury and progressing throughout plastic changes at the spinal cord, brainstem relay nuclei, thalamus and brain cortex. Mechanisms for these changes are ubiquitous in central substrates and include neurochemical changes, functional alterations of excitatory and inhibitory connections, atrophy and degeneration of normal substrates, sprouting of new connections, and reorganization of somatosensory and motor maps. An important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences.
Collapse
Affiliation(s)
- X Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | |
Collapse
|
31
|
Shortland PJ, Leinster VHL, White W, Robson LG. Riluzole promotes cell survival and neurite outgrowth in rat sensory neurones in vitro. Eur J Neurosci 2007; 24:3343-53. [PMID: 17229083 DOI: 10.1111/j.1460-9568.2006.05218.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study explored the effects of riluzole administration on cell survival and neurite growth in adult and neonatal rat dorsal root ganglion (DRG) neurones in vitro. Neuronal survival was assessed by comparing numbers of remaining neurones in vehicle- and riluzole-treated cultures. A single dose of 0.1 microm riluzole was sufficient to promote neuronal survival in neonatal DRG cultures, whereas repeated riluzole administration was necessary in adult cultures. However, a single administration of riluzole was sufficient to induce neuritogenesis, promote neurite branching and enhance neurite outgrowth in both neonatal and adult DRG cultures. The effects of a single dose of riluzole on adult DRG neurones after peripheral nerve or dorsal root injury were also studied in vitro at 48 h. For both types of injury, riluzole enhanced neurite outgrowth in terms of number, length and branch pattern significantly more on the injured side as compared with the contralateral side. No effect was seen on cell survival. The results suggest that, in addition to its cell survival effects, riluzole has novel growth-promoting effects on sensory neurones in vitro and that riluzole may offer a new way to promote sensory afferent regeneration following peripheral injury.
Collapse
Affiliation(s)
- Peter J Shortland
- Neuroscience Centre, Institute of Cell and Molecular Sciences, Bart's and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK.
| | | | | | | |
Collapse
|
32
|
Shortland PJ, Baytug B, Krzyzanowska A, McMahon SB, Priestley JV, Averill S. ATF3 expression in L4 dorsal root ganglion neurons after L5 spinal nerve transection. Eur J Neurosci 2006; 23:365-73. [PMID: 16420444 DOI: 10.1111/j.1460-9568.2005.04568.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activating transcription factor 3 (ATF3) is a widely used marker of damaged primary sensory neurons that is induced in essentially all dorsal root ganglion (DRG) neurons by spinal nerve axotomy. Whether such injuries induce its expression in neurons of adjacent DRGs remains unknown. Following L5 spinal nerve ligation, experimental but not sham-operated rats develop thermal and mechanical hypersensitivity. In the L4 DRG, 11-12% of neurons were ATF3 positive by 1 day post-surgery, and numbers remain unchanged at 2 weeks. Importantly, sham exposure of the L5 spinal nerve produced a nearly identical number of ATF3-positive neurons in the L4 DRG and also a substantial increase in the L5 DRG, with a similar time-course to experimental animals. There was no correlation between behaviour and magnitude of ATF3 expression. Co-localization studies with the DRG injury markers galanin, neuropeptide Y and nitric oxide synthase (NOS) showed that approximately 75, 50 and 25%, respectively, of L4 ATF3-positive neurons co-expressed these markers after L5 transection or sham surgery. Additionally, increases in galanin and NOS were seen in ATF3-negative neurons in L4. Our results strongly suggest that the surgical exposure of spinal nerves induces ATF3 in the L4-5 DRG, irrespective of whether the L5 nerve is subsequently cut. This probably reflects minor damage to the neurons or their axons but nevertheless is sufficient to induce phenotypic plasticity. Caution is therefore warranted when interpreting the phenotypic plasticity of DRG neurons in adjacent ganglia in the absence of positive evidence that they are not damaged.
Collapse
Affiliation(s)
- Peter J Shortland
- Neuroscience Centre, Institute of Cell and Molecular Science, Bart's and The London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London E1 2AT, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Fitzcharles MA, Almahrezi A, Shir Y. Pain: understanding and challenges for the rheumatologist. ACTA ACUST UNITED AC 2006; 52:3685-92. [PMID: 16329076 DOI: 10.1002/art.21435] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Chu KL, Faltynek CR, Jarvis MF, McGaraughty S. Increased WDR spontaneous activity and receptive field size in rats following a neuropathic or inflammatory injury: implications for mechanical sensitivity. Neurosci Lett 2004; 372:123-6. [PMID: 15531101 DOI: 10.1016/j.neulet.2004.09.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/09/2004] [Accepted: 09/09/2004] [Indexed: 11/20/2022]
Abstract
Spontaneous activity and receptive field size for spinal wide dynamic range (WDR) neurons were measured and related to the mechanical allodynia in both neuropathic (L5-L6 ligation, 14 days post-injury) and complete Freund's adjuvant-inflamed rats (CFA, 2 days post-injury). The size of the WDR receptive field located on the hindpaw expanded significantly (p<0.01) following both modes of injury, with no difference between CFA and neuropathic animals. Likewise, the spontaneous firing of WDR neurons was significantly elevated following both the CFA (4.4+/-0.6 spikes/s, p<0.01) and neuropathic (3.2+/-0.3 spikes/s, p<0.05) injuries compared to naive (2.1+/-0.2 spikes/s) and sham-neuropathic (1.9+/-0.3 spikes/s) rats. Furthermore, the spontaneous WDR activity recorded from CFA rats was also significantly greater (p<0.05) than neuropathic rats. Mechanical allodynia, as measured by application of a von Frey hair stimulus, was observed from both CFA and neuropathic rats, however, the degree of sensitivity was significantly greater (p<0.01) for the CFA animals. These data suggest that the differences in mechanical sensitivity between CFA and neuropathic rats may be related to their respective changes in WDR spontaneous activity, but not to the changes in receptive field size, and is further demonstration of the importance of spontaneous WDR activity in determining mechanical sensitivity following injury.
Collapse
Affiliation(s)
- Katharine L Chu
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, R4PM, AP9-1, 100, Abbott Park, IL 60064, USA
| | | | | | | |
Collapse
|
35
|
Ro LS, Li HY, Huang KF, Chen ST. Territorial and extra-territorial distribution of Fos protein in the lumbar spinal dorsal horn neurons in rats with chronic constriction nerve injuries. Brain Res 2004; 1004:177-87. [PMID: 15033433 DOI: 10.1016/j.brainres.2003.12.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/18/2022]
Abstract
This study aimed to examine the relationship between temporal and spatial expression patterns of Fos protein in the spinal dorsal horn neurons and thermal hyperalgesia behaviors in rats with chronic constriction injury (CCI) to the sciatic nerve. Our results demonstrated that Fos protein expression in the spinal dorsal horn neurons at L5 segment ipsilateral and contralateral to CCI of the sciatic nerve was significantly greater than in sham rats from days 10 to 30 postoperatively (PO 10d to 30d), and was concentrated on the injury (ipsilateral) side. Unlike the short-lived expression after tissue inflammation, laminae I to VI (especially laminae III/IV) displayed a persistent greater number of Fos-like immunoreactive (Fos-LI) neurons for at least 30 days after CCI of the sciatic nerve. After the increase in laminae III/IV, Fos-LI neurons tended to gradually increase in laminae I/II and V/VI at L5 segment from PO 2d to 30d, which were correlated with the heat hyperalgesia (48 degrees C) behaviors measured by paw withdrawal latency in CCI rats but not in sham rats. Interestingly, a persistent increase of Fos-LI neurons in laminae I to VI at L5 segment of the ipsilateral and contralateral sides and at the L1 segment that was out of the normal central terminations of the sciatic nerve suggested the probable presence of territorial and extra-territorial central sensitization or inadequate central nervous system (CNS) adaptive mechanisms. These findings may partly explain why abnormal pain sensations are sometimes distributed in a pattern that does not coincide with the territories of nerves or with the posterior roots of the peripheral nerve after injury.
Collapse
Affiliation(s)
- Long-Sun Ro
- Second Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, 199 Tun Hwa North Road, Taipei 10591, Taiwan.
| | | | | | | |
Collapse
|
36
|
Rodrigues-Filho R, Santos ARS, Bertelli JA, Calixto JB. Avulsion injury of the rat brachial plexus triggers hyperalgesia and allodynia in the hindpaws: a new model for the study of neuropathic pain. Brain Res 2003; 982:186-94. [PMID: 12915254 DOI: 10.1016/s0006-8993(03)03007-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we sought to characterise a behavioural model of persistent peripheral neuropathic pain produced by avulsion of the right brachial plexus in rats. In addition, we compared the effects of avulsion with those of ligation or crush injury of the brachial plexus. Avulsion and, to a lesser extent, ligation and crushing of brachial plexus caused a long-lasting (up to 90 days) and highly reproducible mechanical hyperalgesia, in both ipsilateral and contralateral hindpaws. However, the same injury did not produce thermal hyperalgesia. The avulsion and, to a lesser extent, ligation and crushing of the brachial plexus elicited a significant and long-lasting (up to 90 days) ipsilateral and contralateral cold and mechanical allodynia. Furthermore, the brachial plexus injury caused a significant decrease in functional activity of the forepaws as assessed in the grasping strength test, but did not alter the locomotor activity of the rats in the open field test in comparison with control or sham groups. Taken together these results show that avulsion of the brachial plexus in rat produces persistent mechanical and cold allodynia and mechanical hyperalgesia, and might represent a valuable method for understanding the mechanisms underlying the aetiology of neuropathic pain.
Collapse
Affiliation(s)
- Rubens Rodrigues-Filho
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Rua Ferreira Lima 82, 88015-420 Florianópolis, Santa Catarina, Brazil
| | | | | | | |
Collapse
|
37
|
Siri CR, Shortland PJ, Grant G, Olivius NP. Delayed administration of NGF reverses nerve injury induced central alterations of primary afferents. Neuroreport 2001; 12:1899-902. [PMID: 11435919 DOI: 10.1097/00001756-200107030-00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have examined whether delayed exogenous NGF administered to an axotomised peripheral nerve reverses the increased transganglionic choleragenoid (CTB) labelling in lamina II. Two, four, eight or 18 weeks after bilateral sciatic nerve section, NGF was applied unilaterally for an additional 2-week period to the transected nerve stump. The transganglionic choleragenoid labelling and substance P (SP) expression were determined and compared to the contralateral axotomised side in the spinal cord dorsal horn. Delayed NGF administration reversed the transganglionic choleragenoid labelling in lamina II when administered 2 or 18 weeks after the sciatic nerve lesion, but not at 4 or 8 weeks. There was also a clear recovery of SP on the axotomised, NGF-treated side 2 or 18 weeks after the sciatic nerve lesion, but not at the intermediate survival times. At the longer survival time, however, there was a recovery of SP regardless of NGF treatment. These results suggest that there is a critical window as to when NGF administration can be effective in reversing axotomy-induced changes in the spinal cord.
Collapse
Affiliation(s)
- C R Siri
- Department of Surgery, Karolinska Institutet, Huddinge Hospital, Sweden
| | | | | | | |
Collapse
|
38
|
Catheline G, Le Guen S, Besson JM. Intravenous morphine does not modify dorsal horn touch-evoked allodynia in the mononeuropathic rat: a Fos study. Pain 2001; 92:389-398. [PMID: 11376912 DOI: 10.1016/s0304-3959(01)00283-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a model of mononeuropathic pain (chronic constriction injury of the sciatic nerve, CCI), we have demonstrated that light touch stimuli (stroking) to the paw induced Fos-like immunoreactivity (Fos-LI) in the superficial and deep dorsal horn of the rat spinal cord (Catheline et al., Pain 80 (1999a) 347). The efficacy of opioids in neuropathic pain being controversial, we have tested the effects of morphine (0.3, 1 and 3 mg/kg intravenous, i.v.) on this spinal Fos-LI evoked by light tactile stimuli, which could be related to mechanical allodynia. Morphine did not change the level of spinal Fos-LI observed following light touch stimuli in the CCI rats (43 +/- 3, 38 +/- 7, and 37 +/- 4 Fos-LI neurones/40 microm L4-L5 section, respectively, for the three doses versus 32 +/- 4 in the control group). In contrast, the administration of 3 mg/kg of i.v. morphine reduced by 30% the number of Fos-LI neurones induced by heat stimulation (52 degrees C, 15 s duration) in CCI rats (P < 0.05) as in sham-operated rats. These effects were reversed by the systemic administration of naloxone. The lack of effect of morphine on touch-evoked Fos-LI in the superficial dorsal horn reinforces the assertion that dynamic mechanical allodynia is related to information transmitted by A-beta fibres, since opioid receptors are mainly located on thin primary afferent fibres. Our results provide a basis for a certain form of allodynia that is insensitive to morphine.
Collapse
Affiliation(s)
- Gwénaëlle Catheline
- Unité de Recherche de Physiopharmacologie du Système Nerveux, INSERM U 161, and EPHE, 2 rue d'Alésia, 75014 Paris, France
| | | | | |
Collapse
|
39
|
Nakamura SI, Myers RR. Injury to dorsal root ganglia alters innervation of spinal cord dorsal horn lamina involved in nociception. Spine (Phila Pa 1976) 2000; 25:537-42. [PMID: 10749628 DOI: 10.1097/00007632-200003010-00002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A study of the relation between the development of mechanical allodynia and the reorganization of primary afferent terminals in the sensory lamina of the rat spinal cord dorsal horn after partial dorsal root ganglion injury in rats. OBJECTIVES To investigate the pathologic mechanisms of mechanical allodynia after partial dorsal root ganglion injury. SUMMARY OF BACKGROUND DATA After experimental peripheral nerve injury causing neuropathic pain, myelinated afferent fibers sprout into lamina II of the dorsal horn. This lamina is associated with nociceptive-specific neurons that generally are not stimulated by myelinated fiber input from mechanical receptors. These morphologic changes are suggested to have significance in the pathogenesis of chronic mechanical allodynia, although it is not known whether this kind of morphologic change occurs after dorsal root ganglion injury. METHODS After partial dorsal root ganglion crush injury, the mechanical force causing footpad withdrawal was measured with von Frey hairs, and myelinated primary afferents were labeled with cholera toxin B subunit horseradish peroxidase, a selective myelinated fiber tracer that identifies transganglionic synapses. RESULTS After partial dorsal root ganglion injury, mechanical allodynia developed in the corresponding footpad within 3 days and persisted throughout the experimental period. At 2 and 4 weeks after the injury, B subunit horseradish peroxidase-positive fibers, presumably myelinated afferents, were observed to be sprouting into lamina II of the dorsal horn on the injured side, but not on the contralateral control side. CONCLUSIONS Morphologic change in spinal cord dorsal horn lamina II occurs after partial dorsal root ganglion injury. This change may have significance in the pathogenesis of chronic mechanical allodynia after partial dorsal root ganglion injury.
Collapse
Affiliation(s)
- S I Nakamura
- Departments of Anesthesiology and Pathology (Neuropathology), Veterans Affairs Medical Center, San Diego, USA
| | | |
Collapse
|
40
|
Malcangio M, Ramer MS, Jones MG, McMahon SB. Abnormal substance P release from the spinal cord following injury to primary sensory neurons. Eur J Neurosci 2000; 12:397-9. [PMID: 10651897 DOI: 10.1046/j.1460-9568.2000.00946.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuropeptide substance P (SP) modulates nociceptive transmission within the spinal cord. Normally, SP is uniquely contained in a subpopulation of small-calibre axons (Adelta- and C-fibres) within primary afferent nerve. However, it has been shown that after nerve transection, besides being downregulated in small axons, SP is expressed de novo in large myelinated Abeta-fibres. In this study we investigated whether, following peripheral nerve injury, SP was released de novo from the spinal cord after selective activation of Abeta-fibres. Spinal cords with dorsal roots attached were isolated in vitro from rats 2 weeks following distal sciatic axotomy or proximal spinal nerve lesion (SNL). The ipsilateral dorsal roots were electrically stimulated for two consecutive periods at low- or high-threshold fibre strength, spinal cord superfusates were collected and SP content was determined by radioimmunoassay. SNL, but not axotomized or control rat cords, released significant amounts of SP after selective activation of Abeta-fibres. Not only do these data support the idea that Abeta myelinated fibres contribute to neuropathic pain by releasing SP, they also illustrate the importance of the proximity of the lesion to the cell body.
Collapse
Affiliation(s)
- M Malcangio
- Neuroscience Research Centre, Guy's, King's and St Thomas's School of Biomedical Sciences, King's College London, London SE1 7EH, UK.
| | | | | | | |
Collapse
|
41
|
Field MJ, Bramwell S, Hughes J, Singh L. Detection of static and dynamic components of mechanical allodynia in rat models of neuropathic pain: are they signalled by distinct primary sensory neurones? Pain 1999; 83:303-11. [PMID: 10534603 DOI: 10.1016/s0304-3959(99)00111-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study, chronic constrictive injury (CCI model) of the sciatic nerve or tight ligation of L5 and L6 spinal nerves (Chung model) produced both dynamic and static components of mechanical allodynia in rats. The two responses were detected, respectively, by lightly stroking the hind paw with cotton wool or application of pressure using von Frey hairs. Animals with spinal nerve ligation developed both types of responses at a faster rate compared to animals with the CCI. Morphine (1-3 mg/kg, s.c.) dose-dependently blocked static but not dynamic allodynia. In contrast, pregabalin (previously S-isobutylgaba and CI-1008) dose-dependently (3-30 mg/kg, p.o.) blocked both types of allodynia. In CCI animals, two administrations of capsaicin (100 microg/50 microl) into the plantar surface of the ipsilateral paw at 1-h intervals blocked the maintenance of thermal hyperalgesia without affecting either static or dynamic allodynia. The similar administration of a further two doses of capsaicin into the same animals blocked the maintenance of static allodynia without affecting the dynamic response. These data indicate that thermal hyperalgesia, static and dynamic allodynia are respectively signalled by C-, Adelta- and Abeta/capsaicin insensitive Adelta- primary sensory neurones. It is suggested that pregabalin possesses a superior antiallodynic profile than morphine and may represent a novel class of therapeutic agents for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- M J Field
- Department of Biology, Parke-Davis Neuroscience Research Centre, Cambridge University Forvie Site, Robinson Way, Cambridge, UK
| | | | | | | |
Collapse
|
42
|
Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, Bisby MA. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur J Neurosci 1999; 11:2243-53. [PMID: 10383613 DOI: 10.1046/j.1460-9568.1999.00641.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Partial nerve injury is a potential cause of distressing chronic pain for which conventional analgesic treatment with opiates or anti-inflammatory agents is not very effective. Constriction nerve injury, widely used to study neuropathic pain, was shown here to induce interleukin-6 (IL-6) mRNA in a subset of rat primary sensory neurons. When we inflicted chronic nerve constriction on mice with null mutation of the IL-6 gene, the hypersensitivity to cutaneous heat and pressure that is induced in wild-type mice was not evident, the loss of substance P in sensory neurons was excessive and the induction of galanin in central sensory projections was reduced. In additional experiments, intrathecal infusion of IL-6 in rats was shown to stimulate synthesis of galanin in approximately one-third of lumbar dorsal root ganglion neurons. The results of these experiments indicate that endogenous IL-6 mediates some of the hypersensitive responses that characterize peripheral neuropathic pain, and influences two neuropeptides that have been implicated in pain transmission.
Collapse
Affiliation(s)
- P G Murphy
- Department of Physiology, Queen's University, Kingston, Canda K7L 3N63
| | | | | | | | | | | |
Collapse
|
43
|
Shortland P, Wang HF, Molander C. Distribution of transganglionically labelled soybean agglutinin primary afferent fibres after nerve injury. Brain Res 1999; 815:206-12. [PMID: 9878739 DOI: 10.1016/s0006-8993(98)01152-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The distribution of the retrogradely-transganglionically transported lectin soybean agglutinin (SBA) and of SBA conjugated to horseradish peroxidase (SBA-HRP) has been examined in the L4-5 dorsal root ganglia, lumbar spinal cord and gracile nucleus at 2, 6 and 14 weeks after sciatic nerve transection and ligation. Cell size analysis showed there were no changes in the mean area of labelled DRG profiles after injury. In the spinal cord, terminal labelling was restricted to laminae I and II with no evidence of labelling in novel territories such as the deeper laminae after injury. At 2 weeks, the labelling on the injured side was similar in distribution and intensity to that of the contralateral, uninjured side. At 6-14 weeks the labelling on the injured side was significantly weaker as compared to the contralateral side, but not completely depleted. In the gracile nucleus, at all survival times, an increased distribution and amount of labelling was seen which may reflect sprouting of C and A-delta fibres. These results suggest that SBA is a useful tracer to study the effects of nerve injury on the central terminals of axotomised afferents terminating in laminae I-II and that C-fibres appear not to sprout outside their normal laminar distribution in the dorsal horn after injury.
Collapse
Affiliation(s)
- P Shortland
- Department of Neuroscience, Karolinska Institutet, S171 77, Stockholm,
| | | | | |
Collapse
|
44
|
Shortland P, Molander C. The time-course of abeta-evoked c-fos expression in neurons of the dorsal horn and gracile nucleus after peripheral nerve injury. Brain Res 1998; 810:288-93. [PMID: 9813372 DOI: 10.1016/s0006-8993(98)00940-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We have examined the mechanisms underlying Abeta-evoked c-fos expression in the dorsal horn and gracile nucleus following either sciatic nerve section or crush injury. The results indicate that in the spinal cord Abeta-evoked c-fos does not depend on primary afferent sprouting but is associated with the disconnection from the peripheral target since its expression in the dorsal horn reverts to normal after crush injury when regeneration occurs but persists after cut and ligation where regeneration is prevented. In contrast, however, Abeta-evoked c-fos expression in the gracile nucleus may be under some other control since its expression appears independent of peripheral nerve regeneration.
Collapse
Affiliation(s)
- P Shortland
- Karolinska Institutet, Department of Neuroscience, Doktorsringen 17, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|