1
|
Yoo JJ, Hayes M, Serafin EK, Baccei ML. Early-Life Iron Deficiency Persistently Alters Nociception in Developing Mice. THE JOURNAL OF PAIN 2023; 24:1321-1336. [PMID: 37019165 PMCID: PMC10523944 DOI: 10.1016/j.jpain.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Clinical association studies have identified early-life iron deficiency (ID) as a risk factor for the development of chronic pain. While preclinical studies have shown that early-life ID persistently alters neuronal function in the central nervous system, a causal relationship between early-life ID and chronic pain has yet to be established. We sought to address this gap in knowledge by characterizing pain sensitivity in developing male and female C57Bl/6 mice that were exposed to dietary ID during early life. Dietary iron was reduced by ∼90% in dams between gestational day 14 and postnatal day (P)10, with dams fed an ingredient-matched, iron-sufficient diet serving as controls. While cutaneous mechanical and thermal withdrawal thresholds were not altered during the acute ID state at P10 and P21, ID mice were more sensitive to mechanical pressure at P21 independent of sex. During adulthood, when signs of ID had resolved, mechanical and thermal thresholds were similar between early-life ID and control groups, although male and female ID mice displayed increased thermal tolerance at an aversive (45 °C) temperature. Interestingly, while adult ID mice showed decreased formalin-induced nocifensive behaviors, they showed exacerbated mechanical hypersensitivity and increased paw guarding in response to hindpaw incision in both sexes. Collectively, these results suggest that early-life ID elicits persistent changes in nociceptive processing and appears capable of priming developing pain pathways. PERSPECTIVE: This study provides novel evidence that early-life ID evokes sex-independent effects on nociception in developing mice, including an exacerbation of postsurgical pain during adulthood. These findings represent a critical first step towards the long-term goal of improving health outcomes for pain patients with a prior history of ID.
Collapse
Affiliation(s)
- Judy J. Yoo
- Medical Scientist Training Program and Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Madailein Hayes
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Elizabeth K. Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L. Baccei
- Medical Scientist Training Program and Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Xinqiang Y, Yuanyuan J, Zhipeng Y, Jie K, Xiao T, Yumeng H, Chenxi Z, Shiyu D, Mingpeng Y, Yanlin Z, Sihan C, Hao Y. Systemic administration of dorsomorphin relieves inflammatory nociception in the mouse formalin test. Int Immunopharmacol 2022; 113:109337. [DOI: 10.1016/j.intimp.2022.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
3
|
Alonso-Castro AJ, Arana-Argáez V, Yáñez-Barrientos E, Torres-Romero JC, Chable-Cetz RJ, Worbel K, Euan-Canto ADJ, Wrobel K, González-Ibarra A, Solorio-Alvarado CR, Juárez-Vázquez MDC. Pharmacological activities of Asclepias curassavica L. (Apocynaceae) aerial parts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114554. [PMID: 34438037 DOI: 10.1016/j.jep.2021.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asclepias curassavica L. (Apocynaceae) is a perennial shrub used in the folk treatment of parasitism, pain, and inflammation. AIM OF THE STUDY This work assessed the antiparasitic, anti-inflammatory, antinociceptive, and sedative effects of an ethanol extract from the aerial parts of Asclepias curassavica (ACE). MATERIALS AND METHODS The antiparasitic activity against Trichomonas vaginalis was evaluated using the trypan blue exclusion test. The in vitro anti-inflammatory actions of ACE (1-200 μg/ml) were analyzed using LPS-stimulated primary murine macrophages. The in vivo pharmacological activity of ACE (50-200 mg/kg p.o.) was evaluated using animal models of inflammation (TPA-induced ear edema test and carrageenan-induced paw edema test) and nociception (acetic acid-induced writhing test, formalin-induced licking test, and hot plate test). RESULTS ACE showed poor antiparasitic effects against Trichomonas vaginalis (IC50 = 302 μg/ml). ACE increased the production of IL-10 in both in vitro assays (EC50 = 3.2 pg/ml) and in vivo assays (ED50 = 111 mg/kg). ACE showed good antinociceptive actions (ED50 = 158 mg/kg in phase 1 and ED50 = 83 mg/kg in phase 2) in the formalin test. Pre-treatment with naloxone blocked the antinociceptive response induced by ACE. In addition, ACE did not induce sedative effects or motor coordination deficits in mice. CONCLUSION Findings showed that the anti-inflammatory activity of ACE is associated with increasing levels of IL-10 in both in vitro and in vivo assays, whereas the antinociceptive effect is associated with the participation of the opioidergic system, without inducing sedation or motor coordination impairment.
Collapse
Affiliation(s)
- Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | - Victor Arana-Argáez
- Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico.
| | - Eunice Yáñez-Barrientos
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | | | | | - Katarzyna Worbel
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | | | - Kazimierz Wrobel
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | - Alan González-Ibarra
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | | | | |
Collapse
|
4
|
Felipe do Nascimento K, Leite Kassuya CA, Pereira Cabral MR, Carvalho Souza RI, Marangoni JA, Mussury Franco Silva RM, Alves da Costa Canella D, Nazari Formagio AS. Chemical analysis and antioxidant, anti-inflammatory and toxicological evaluations of the hydromethanolic extract of Psidium guineense Swartz leaves. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114492. [PMID: 34380066 DOI: 10.1016/j.jep.2021.114492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/25/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psidium guineense, popularly known as "araçá-do-campo", is used in popular medicine for the treatment of inflammatory diseases. Our research group studied an essential oil obtained from its leaves and reported anti-inflammatory and analgesic properties. However, to date, the anti-inflammatory actions of the leaf extract have not been evaluated although the traditional folk use of this plant has these indications. AIM OF STUDY The current study was designed to evaluate the antioxidant and anti-inflammatory effects and toxicity of the hydromethanolic extract of the leaves from P. guineense (HME-PG), as well as to investigate the chemical composition. MATERIALS AND METHODS HME-PG was chemically investigated by Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The antioxidant activity was evaluated with 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and malondialdehyde (MDA). Swiss mice were orally (p.o.) pretreated with HME-PG (30, 100 and 300 mg/kg), and after 1 h received carrageenan via paw injection (edema, cold sensitivity and mechanical hyperalgesia were analyzed) or pleural injection (leukocyte migration was analyzed after 4 h) and for nociception using the formalin model. Acute (14 days) and subacute (28 days) toxicity was assessed with female Wistar rats orally treated with 500 and 2000 mg/kg HME-PG. RESULTS HME-PG showed high levels of phenolic and flavonoid compounds. Six compounds were identified based on UHPLC-MS/MS analysis, including gallic acid, quercetin, 3'-formyl-2',4',6'-trihydroxy-5'-methyldihydrochalcone, vanillic acid, ursolic acid and corilagin. HME-PG exhibited an IC50 of 48.14 μg/mL in the MDA assay and an IC50 of 45.15 μg/mL in the DPPH test. The treatment with HME-PG (100 and 300 mg/kg) significantly inhibited edema at all time points evaluated, mechanical hyperalgesia after 4 h and the response to cold 3 and 4 h after carrageenan injection and anti-nociceptive effects in both phases of formalin nociception. All oral HME-PG treatments significantly inhibited leukocyte migration and plasma extravasation in the pleurisy model. Toxicity tests did not cause signs of toxicity in the treated animals. CONCLUSIONS The present study showed that HME-PG has antioxidant and anti-inflammatory properties, and no toxicity was detected after acute or subacute treatment with HME-PG, showing the possibility for the safe traditional use of P. guineense.
Collapse
Affiliation(s)
| | | | | | | | - Janaine Alberto Marangoni
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados UFGD, MS, Brazil
| | | | | | | |
Collapse
|
5
|
Selective MOR activity of DAPEA and Endomorphin-2 analogues containing a (R)-γ-Freidinger lactam in position two. Bioorg Chem 2021; 115:105219. [PMID: 34343741 DOI: 10.1016/j.bioorg.2021.105219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
The use of α-amino-γ lactam of Freidinger (Agl) may serve as an impressive method to increase the biological stability of peptides and an appropriate tool to elucidate their structure-activity relationships. The endomorphin-2 (EM-2) and [D-Ala2, des-Leu5] enkephalin amide (DAPEA) are two linear opioid tetrapeptides agonists of MOR and MOR/DOR respectively. Herein, we investigated the influence of the incorporation of (R/S)-Agl in position 2 and 3 on the biological profile of the aforementioned products in vitro and in vivo. Receptor radiolabeled displacement and functional assays were used to measure in vitro the binding affinity and receptors activation of the novel analogues. The mouse tail flick and formalin tests allowed to observe their antinociceptive effect in vivo. Data revealed that peptide A2D was able to selectively bind and activate MOR with a potent antinociceptive effect after intracerebroventricular (i.c.v.) administration, performing better than the parent compounds EM-2 and DAPEA. Molecular docking calculations helped us to understand the key role exerted by the Freidinger Agl moiety in A2D for the interaction with the MOR binding pocket.
Collapse
|
6
|
Aberrant Early in Life Stimulation of the Stress-Response System Affects Emotional Contagion and Oxytocin Regulation in Adult Male Mice. Int J Mol Sci 2021; 22:ijms22095039. [PMID: 34068684 PMCID: PMC8126076 DOI: 10.3390/ijms22095039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Results over the last decades have provided evidence suggesting that HPA axis dysfunction is a major risk factor predisposing to the development of psychopathological behaviour. This susceptibility can be programmed during developmental windows of marked neuroplasticity, allowing early-life adversity to convey vulnerability to mental illness later in life. Besides genetic predisposition, also environmental factors play a pivotal role in this process, through embodiment of the mother's emotions, or via nutrients and hormones transferred through the placenta and the maternal milk. The aim of the current translational study was to mimic a severe stress condition by exposing female CD-1 mouse dams to abnormal levels of corticosterone (80 µg/mL) in the drinking water either during the last week of pregnancy (PreCORT) or the first one of lactation (PostCORT), compared to an Animal Facility Rearing (AFR) control group. When tested as adults, male mice from PostCORT offspring and somewhat less the PreCORT mice exhibited a markedly increased corticosterone response to acute restraint stress, compared to perinatal AFR controls. Aberrant persistence of adolescence-typical increased interest towards novel social stimuli and somewhat deficient emotional contagion also characterised profiles in both perinatal-CORT groups. Intranasal oxytocin (0 or 20.0 µg/kg) generally managed to reduce the stress response and restore a regular behavioural phenotype. Alterations in density of glucocorticoid and mineralocorticoid receptors, oxytocin and µ- and κ-opioid receptors were found. Changes differed as a function of brain areas and the specific age window of perinatal aberrant stimulation of the HPA axis. Present results provided experimental evidence in a translational mouse model that precocious adversity represents a risk factor predisposing to the development of psychopathological behaviour.
Collapse
|
7
|
Wotton JM, Peterson E, Anderson L, Murray SA, Braun RE, Chesler EJ, White JK, Kumar V. Machine learning-based automated phenotyping of inflammatory nocifensive behavior in mice. Mol Pain 2020; 16:1744806920958596. [PMID: 32955381 PMCID: PMC7509709 DOI: 10.1177/1744806920958596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The discovery and development of new and potentially nonaddictive pain therapeutics requires rapid, yet clinically relevant assays of nociception in preclinical models. A reliable and scalable automated scoring system for nocifensive behavior of mice in the formalin assay would dramatically lower the time and labor costs associated with experiments and reduce experimental variability. Here, we present a method that exploits machine learning techniques for video recordings that consists of three components: key point detection, per frame feature extraction using these key points, and classification of behavior using the GentleBoost algorithm. This approach to automation is flexible as different model classifiers or key points can be used with only small losses in accuracy. The adopted system identified the behavior of licking/biting of the hind paw with an accuracy that was comparable to a human observer (98% agreement) over 111 different short videos (total 284 min) at a resolution of 1 s. To test the system over longer experimental conditions, the responses of two inbred strains, C57BL/6NJ and C57BL/6J, were recorded over 90 min post formalin challenge. The automated system easily scored over 80 h of video and revealed strain differences in both response timing and amplitude. This machine learning scoring system provides the required accuracy, consistency, and ease of use that could make the formalin assay a feasible choice for large-scale genetic studies.
Collapse
|
8
|
Grauer SM, Sanoja R, Poulin D, Rashid H, Jochnowitz N, Calhoun M, Zwilling D, Varty GB, Rosahl TW, Meziane H, Mittlelhaeuser C, Mazzola R, Morrow J, Smith SM, Henze D, Marcus J. Antinociceptive effects of potent, selective and brain penetrant muscarinic M4 positive allosteric modulators in rodent pain models. Brain Res 2020; 1737:146814. [DOI: 10.1016/j.brainres.2020.146814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 11/27/2022]
|
9
|
Yin X, Jing Y, Chen Q, Abbas AB, Hu J, Xu H. The intraperitoneal administration of MOTS-c produces antinociceptive and anti-inflammatory effects through the activation of AMPK pathway in the mouse formalin test. Eur J Pharmacol 2020; 870:172909. [DOI: 10.1016/j.ejphar.2020.172909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
|
10
|
Potent nonopioid antinociceptive activity of telocinobufagin in models of acute pain in mice. Pain Rep 2019; 4:e791. [PMID: 31984296 PMCID: PMC6903372 DOI: 10.1097/pr9.0000000000000791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/04/2019] [Accepted: 09/03/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction: In recent decades, several researches have been conducted in search of new analgesics that do not present the side effects of opioids. In this context, animal venoms contain natural painkillers that have been used for the development of new analgesics. Objective: The aims of this study were to evaluate the antinociceptive effects of telocinobufagin (TCB), a bufadienolide isolated from Rhinella jimi venom, in murine acute pain models, and to verify the participation of the opioid system in these effects. Methods: TCB was purified from R. jimi venom by high-performance liquid chromatography, and its structure was confirmed by spectrometric techniques. TCB was administered intraperitoneally (i.p.) (0.062, 0.125, 0.25, 0.5, and 1 mg·kg−1) and orally (p.o.) (0.625, 1.125, 2.5, 5, and 10 mg·kg−1) in mice, which were then subjected to pain tests: acetic acid–induced writhing, formalin, tail-flick, and hot-plate. Involvement of the opioid system in TCB action was evaluated by naloxone i.p. injected (2.5 mg·kg−1) 20 minutes before TCB administration. In addition, the TCB action on the μ, δ, and κ opioid receptors was performed by radioligand binding assays. Results: In all the tests used, TCB showed dose-dependent antinociceptive activity with more than 90% inhibition of the nociceptive responses at the doses of 1 mg·kg−1 (i.p.) and 10 mg·kg−1 (p.o.). Naloxone did not alter the effect of TCB. In addition, TCB did not act on the μ, δ, and κ opioid receptors. Conclusion: The results suggest that TCB may represent a novel potential nonopioid therapeutic analgesic for treatment of acute pains.
Collapse
|
11
|
Wong SSC, Lee UM, Wang XM, Chung SK, Cheung CW. Role of DLC2 and RhoA/ROCK pathway in formalin induced inflammatory pain in mice. Neurosci Lett 2019; 709:134379. [DOI: 10.1016/j.neulet.2019.134379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
|
12
|
Zoratto F, Franchi F, Macrì S, Laviola G. Methylphenidate administration promotes sociability and reduces aggression in a mouse model of callousness. Psychopharmacology (Berl) 2019; 236:2593-2611. [PMID: 30955107 DOI: 10.1007/s00213-019-05229-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/18/2019] [Indexed: 01/06/2023]
Abstract
RATIONALE Deficits in empathy constitute a distinctive feature of several psychopathologies, including conduct disorder (CD). The co-occurrence of callous-unemotional (CU) traits, excess rates of aggression and violation of societal norms confers specific risk for adult psychopathy. To date, the off-label use of methylphenidate (MPH) constitutes the drug treatment of choice. OBJECTIVES Herein, we tested the therapeutic potential of MPH in a recently devised mouse model recapitulating the core phenotypic abnormalities of CD. METHODS Two subgroups of BALB/cJ male mice exhibiting opposite profiles of emotional contagion (i.e. socially transmitted adoption of another's emotional states) were investigated for reactive aggression, sociability, attention control, anxiety-related behaviours and locomotor activity, in response to MPH administration (0.0, 3.0 or 6.0 mg/kg). RESULTS Our data indicate that mice selected for excess callousness exhibit phenotypic abnormalities isomorphic to the symptoms of CD: stability of the low emotional contagion trait, increased aggression and reduced sociability. In accordance with our predictions, MPH reduced aggression and increased sociability in callous mice; yet, it failed to restore the low responsiveness to the emotions of a conspecific in pain, isomorphic to CU traits. CONCLUSIONS Although our data support the notion that MPH may contribute to the management of excess aggression in CD patients, additional studies shall identify specific treatments to target the callousness domain. The latter, unaffected by MPH in our experimental model, demands focused consideration whereby it constitutes a specifier associated with a worse prognosis.
Collapse
Affiliation(s)
- Francesca Zoratto
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy.
| | - Francesca Franchi
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Simone Macrì
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Giovanni Laviola
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy.
| |
Collapse
|
13
|
Intranasal oxytocin administration promotes emotional contagion and reduces aggression in a mouse model of callousness. Neuropharmacology 2018; 143:250-267. [DOI: 10.1016/j.neuropharm.2018.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022]
|
14
|
Wang H, Xie M, Charpin-El Hamri G, Ye H, Fussenegger M. Treatment of chronic pain by designer cells controlled by spearmint aromatherapy. Nat Biomed Eng 2018; 2:114-123. [PMID: 31015627 DOI: 10.1038/s41551-018-0192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Current treatment options for chronic pain are often associated with dose-limiting toxicities, or lead to drug tolerance or addiction. Here, we describe a pain management strategy, based on cell-engineering principles and inspired by synthetic biology, consisting of microencapsulated human designer cells that produce huwentoxin-IV (a safe and potent analgesic peptide that selectively inhibits the pain-triggering voltage-gated sodium channel NaV1.7) in response to volatile spearmint aroma and in a dose-dependent manner. Spearmint sensitivity was achieved by ectopic expression of the R-carvone-responsive olfactory receptor OR1A1 rewired via an artificial G-protein deflector to induce the expression of a secretion-engineered and stabilized huwentoxin-IV variant. In a model of chronic inflammatory and neuropathic pain, mice bearing the designer cells showed reduced pain-associated behaviour on oral intake or inhalation-based intake of spearmint essential oil, and absence of cardiovascular, immunogenic and behavioural side effects. Our proof-of-principle findings indicate that therapies based on engineered cells can achieve robust, tunable and on-demand analgesia for the long-term management of chronic pain.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Laviola G, Zoratto F, Ingiosi D, Carito V, Huzard D, Fiore M, Macrì S. Low empathy-like behaviour in male mice associates with impaired sociability, emotional memory, physiological stress reactivity and variations in neurobiological regulations. PLoS One 2017; 12:e0188907. [PMID: 29200428 PMCID: PMC5714342 DOI: 10.1371/journal.pone.0188907] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
Deficits in empathy have been proposed to constitute a hallmark of several psychiatric disturbances like conduct disorder, antisocial and narcissistic personality disorders. Limited sensitivity to punishment, shallow or deficient affect and reduced physiological reactivity to environmental stressors have been often reported to co-occur with limited empathy and contribute to the onset of antisocial phenotypes. Empathy in its simplest form (i.e. emotional contagion) is addressed in preclinical models through the evaluation of the social transmission of emotional states: mice exposed to a painful stimulus display a higher response if in the presence of a familiar individual experiencing a higher degree of discomfort, than in isolation. In the present study, we investigated whether a reduction of emotional contagion can be considered a predictor of reduced sociality, sensitivity to punishment and physiological stress reactivity. To this aim, we first evaluated emotional contagion in a group of Balb/cJ mice and then discretised their values in four quartiles. The upper (i.e. Emotional Contagion Prone, ECP) and the lower (i.e. Emotional Contagion Resistant, ECR) quartiles constituted the experimental groups. Our results indicate that mice in the lower quartile are characterized by reduced sociability, impaired memory of negative events and dampened hypothalamic-pituitary-adrenocortical reactivity to external stressors. Furthermore, in the absence of changes in oxytocin receptor density, we show that these mice exhibit elevated concentrations of oxytocin and vasopressin and reduced density of BDNF receptors in behaviourally-relevant brain areas. Thus, not only do present results translate to the preclinical investigation of psychiatric disturbances, but also they can contribute to the study of emotional contagion in terms of its adaptive significance.
Collapse
Affiliation(s)
- Giovanni Laviola
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
- * E-mail:
| | - Francesca Zoratto
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Danilo Ingiosi
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Rome, Italy
| | - Damien Huzard
- Laboratory of Behavioural Genetics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Rome, Italy
| | - Simone Macrì
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| |
Collapse
|
16
|
Choi JG, Kim JM, Kang DW, Choi JW, Park JB, Ahn SH, Ryu Y, Kim HW. Inoculation of Lewis lung carcinoma cells enhances formalin-induced pain behavior and spinal Fos expression in mice. J Vet Sci 2017; 18:267-272. [PMID: 27586465 PMCID: PMC5639078 DOI: 10.4142/jvs.2017.18.3.267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/01/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022] Open
Abstract
The incidence of lung cancer has rapidly increased and cancer patients at a later cancer stage frequently suffer from unbearable cancer-associated pain. However, the pathophysiology of lung cancer pain has not been fully described due to a lack of appropriate animal models. This study was designed to determine the effect of Lewis lung carcinoma (LLC) cell inoculation on formalin-induced pain behavior and spinal Fos expression in C57BL/6 mice. LLC cells (1.5 × 105, 2.5 × 105, 3.0 × 105 or 5.0 × 105) were inoculated into back or peri-sciatic nerve areas. Back area inoculation was adopted to determine the effect of cancer cell circulating factors and the peri-sciatic nerve area was used to evaluate the possible effects of cancer cell contacting and circulating factors on formalin-induced pain. At postinoculation day 7, LLC cell (5.0 × 105) inoculations in both back and peri-sciatic nerve area significantly increased formalin-induced paw-licking time and spinal Fos expression over those in cell-media-inoculated (control) mice. Enhanced pain behavior and spinal Fos expression were significantly suppressed by ibuprofen pretreatment (250 mg/kg). The results of this study suggest that LLC cell circulating factors and inflammatory responses may be critical in enhancing pain sensation in the early stage of lung cancer cell inoculation.
Collapse
Affiliation(s)
- Jae-Gyun Choi
- Department of Physiology and Medical Science and Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jae-Min Kim
- Department of Physiology and Medical Science and Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Dong-Wook Kang
- Department of Physiology and Medical Science and Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jung-Wan Choi
- Department of Physiology and Medical Science and Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Jin Bong Park
- Department of Physiology and Medical Science and Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Seong-Hun Ahn
- Department of Meridian & Acupoint, College of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Yeonhee Ryu
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Hyun-Woo Kim
- Department of Physiology and Medical Science and Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
17
|
Pitcher MH, Gonzalez-Cano R, Vincent K, Lehmann M, Cobos EJ, Coderre TJ, Baeyens JM, Cervero F. Mild Social Stress in Mice Produces Opioid-Mediated Analgesia in Visceral but Not Somatic Pain States. THE JOURNAL OF PAIN 2017; 18:716-725. [PMID: 28219667 DOI: 10.1016/j.jpain.2017.02.422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/14/2017] [Accepted: 02/02/2017] [Indexed: 12/30/2022]
Abstract
Visceral pain has a greater emotional component than somatic pain. To determine if the stress-induced analgesic response is differentially expressed in visceral versus somatic pain states, we studied the effects of a mild social stressor in either acute visceral or somatic pain states in mice. We show that the presence of an unfamiliar conspecific mouse (stranger) in an adjacent cubicle of a standard transparent observation box produced elevated plasma corticosterone levels compared with mice tested alone, suggesting that the mere presence of a stranger is stressful. We then observed noxious visceral or somatic stimulation-induced nociceptive behavior in mice tested alone or in mildly stressful conditions (ie, beside an unfamiliar stranger). Compared with mice tested alone, the presence of a stranger produced a dramatic opioid-dependent reduction in pain behavior associated with visceral but not somatic pain. This social stress-induced reduction of visceral pain behavior relied on visual but not auditory/olfactory cues. These findings suggest that visceral pain states may provoke heightened responsiveness to mild stressors, an effect that could interfere with testing outcomes during simultaneous behavioral testing of multiple rodents. PERSPECTIVE In mice, mild social stress due to the presence of an unfamiliar conspecific mouse reduces pain behavior associated with noxious visceral but not somatic stimulation, suggesting that stress responsiveness may be enhanced in visceral pain versus somatic pain states.
Collapse
Affiliation(s)
- Mark H Pitcher
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland.
| | | | - Kathleen Vincent
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Michael Lehmann
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Enrique J Cobos
- Department of Pharmacology, University of Granada, Granada, Spain
| | - Terence J Coderre
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - José M Baeyens
- Department of Pharmacology, University of Granada, Granada, Spain
| | - Fernando Cervero
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
McDonald T, Liang HA, Sanoja R, Gotter AL, Kuduk SD, Coleman PJ, Smith KM, Winrow CJ, Renger JJ. Pharmacological evaluation of orexin receptor antagonists in preclinical animal models of pain. J Neurogenet 2016; 30:32-41. [DOI: 10.3109/01677063.2016.1171862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Moniruzzaman M, Bose S, Kim YM, Chin YW, Cho J. The ethyl acetate fraction from Physalis alkekengi inhibits LPS-induced pro-inflammatory mediators in BV2 cells and inflammatory pain in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:26-36. [PMID: 26806571 DOI: 10.1016/j.jep.2016.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalis alkekengi is an edible herb whose fruit and calyx are traditionally used to treat a wide range of diseases including inflammation, toothache, and rheumatism. However, the effects of Physalis alkekengi fruit along with its calyx (PAF) on neuroinflammation and inflammatory pain behavior have not been reported yet. AIM OF THE STUDY This study evaluated the anti-inflammatory effect of PAF on lipopolysaccharide (LPS)-induced neuroinflammation and several in vivo model of inflammatory pain in mice. MATERIALS AND METHODS Here, first we studied the effects of PAF fractions on the production of pro-inflammatory mediators in LPS-treated BV2 microglial cells using enzyme-linked immunosorbent assay. The translocation of nuclear factor-kappa B (NF-κB) and the involvements of Akt and mitogen-activated protein (MAP) kinases in ethyl acetate fraction of PAF (PAF-EA)-mediated anti-inflammatory effect were measured using Western blotting. In in vivo experiments, the efficacy of PAF-EA was evaluated at the doses of 100 and 200mg/kg using several chemical-induced models of inflammatory pain such as acetic acid-induced writhing, formalin-induced paw licking and edema. RESULTS We found that compared to other fractions, the PAF-EA more potently inhibited the LPS-induced generation of nitric oxide, tumor necrosis factor-α, interleukin-6 and reactive oxygen species. It also inhibited LPS-induced nuclear translocation of NF-κB. These actions of EA fraction were found to be associated with a disruption of Akt and MAP kinases signaling pathways. The EA fraction also significantly inhibited acetic acid-induced writhing, formalin-induced licking time and edema in mice. CONCLUSIONS Our findings support the ethnopharmacological use of P. alkekengi fruit along with its calyx as an anti-inflammatory agent and suggest that the EA fraction of PAF may serve as a potential candidate to treat different neurological disorders and pain associated with inflammation.
Collapse
Affiliation(s)
- Md Moniruzzaman
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Shambhunath Bose
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and BK-Plus Team, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and BK-Plus Team, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
20
|
Leivas CL, Nascimento LF, Barros WM, Santos AR, Iacomini M, Cordeiro LM. Substituted galacturonan from starfruit: Chemical structure and antinociceptive and anti-inflammatory effects. Int J Biol Macromol 2016; 84:295-300. [DOI: 10.1016/j.ijbiomac.2015.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 01/25/2023]
|
21
|
Tung D, Ciallella J, Hain H, Cheung PH, Saha S. Possible therapeutic effect of trilostane in rodent models of inflammation and nociception. CURRENT THERAPEUTIC RESEARCH 2014; 75:71-6. [PMID: 24465047 PMCID: PMC3898193 DOI: 10.1016/j.curtheres.2013.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 11/25/2022]
Abstract
Background Trilostane was identified in an in vivo screen of compounds in a lipopolysaccharide model of inflammation to support a repurposing effort. There is no previous documentation of any anti-inflammatory effects of trilostane. Objective The aim of this study was to elucidate the novel pharmacologic activity of trilostane in a series of inflammation and nociception signal-finding models. Methods Anti-inflammatory effects of trilostane were evaluated in lipopolysaccharide-induced systemic and lung inflammation models and in a 2,4-dinitrofluorobenzene–induced delayed-type hypersensitivity (DTH) model in the mouse ear. The analgesic activities of trilostane were evaluated in a hot plate nociception model as a function of paw-withdrawal latency and in the formalin-induced nociception model with a behavioral end point. In all studies, trilostane was administered 15 minutes before challenge. In the DTH model, the animals were given a second dose 24 hours after the first dose. Results Trilostane inhibited tumor necrosis factor-α and monocyte chemoattractant protein-1 production in the lipopolysaccharide-induced systemic and pulmonary inflammation models. It also significantly reduced ear swelling in the 2,4-dinitrofluorobenzene–induced DTH model. In the hot plate nociception model, trilostane increased the latency of paw-licking behavior. Trilostane also significantly reduced the duration of pain behaviors in the late phase of the formalin-induced inflammatory pain model. Conclusions These signal-finding studies suggest that trilostane has novel anti-inflammatory and analgesic properties.
Collapse
Affiliation(s)
- David Tung
- BioMed Valley Discoveries, Kansas City, Missouri
| | | | | | | | - Saurabh Saha
- BioMed Valley Discoveries, Kansas City, Missouri
| |
Collapse
|
22
|
Chen Z, Liao L, Zhang Z, Wu L, Wang Z. Comparison of active constituents, acute toxicity, anti-nociceptive and anti-inflammatory activities of Porana sinensis Hemsl., Erycibe obtusifolia Benth. and Erycibe schmidtii Craib. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:501-506. [PMID: 24055469 DOI: 10.1016/j.jep.2013.08.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erycibe obtusifolia and Erycibe schmidtii, which belong to the same genus as Erycibe, are widely used in traditional medicine for the treatment of joint pain and rheumatoid arthritis (RA). Porana sinensis has become a widely used substitute for Erycibe obtusifolia and Erycibe schmidtii as they have declined in the wild. In the present work, the content of the main active components, the acute toxicity, the anti-nociceptive and anti-inflammatory activities of Porana sinensis, Erycibe obtusifolia and Erycibe schmidtii were compared, and the mechanisms of anti-nociceptive and anti-inflammatory activities were discussed. MATERIALS AND METHODS A quantitative HPLC (high performance liquid chromatography) method was first developed to compare the content of the main active components (scopoletin, scopolin and chlorogenic acid). The anti-inflammatory and anti-nociceptive activities of 40% ethanolic extracts of the three plants were compared using the models of xylene-induced ear edema, formalin-induced inflammation, carrageenan-induced air pouch inflammation, acetic acid-induced writhing and formalin-induced nociception. The acute toxicity of the 40% ethanolic extracts of the three plants was studied. RESULTS The assay suggested a large content of scopoletin, scopolin and chlorogenic acid in the three plants. The 40% ethanolic extracts of the three plants were almost non-toxic at the dose of 5g/kg and all of them showed significant anti-inflammatory effects in the tests of xylene-induced ear edema and formalin-induced inflammation. In the carrageenan-induced air pouch inflammation test, the synthesis of PGE2 was significantly inhibited by all the extracts. They significantly inhibited the number of contortions induced by acetic acid and the second phase of the formalin-induced licking response. Naloxone was not able to reverse the analgesic effect of these extracts. CONCLUSION The study identifies the similarity of the three plants in their main active components as well as acute toxicity, anti-nociceptive and anti-inflammatory activities. It supports the use of Porana sinensis as a suitable substitute, but further studies are needed to confirm this.
Collapse
Affiliation(s)
- Zhiyong Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, People's Republic of China; The Shanghai Key Laboratory for Compound Chinese medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Aghajani M, Vaez Mahdavi MR, Khalili Najafabadi M, Ghazanfari T, Azimi A, Arbab Soleymani S, Mahdi Dust S. Effects of dominant/subordinate social status on formalin-induced pain and changes in serum proinflammatory cytokine concentrations in mice. PLoS One 2013; 8:e80650. [PMID: 24278302 PMCID: PMC3835427 DOI: 10.1371/journal.pone.0080650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/07/2013] [Indexed: 12/31/2022] Open
Abstract
Current investigations regarding social stress primarily focus on the health consequences of being in stressful social hierarchies. The repetitive nature of social conflicts seems to favor an induction of hyperalgesia or hypoalgesia, both in rodents and humans. Additionally, social conflicts may affect the immune system. In order to better establish the pain and immune responses to stress, the present study implemented a sensory contact model on 32 male BALB/c mice. Subsequent to establishing a dominance/submissive social relationship, each mouse was injected with formalin (20 μl, 2%) and their pain behavior was scored and serum concentrations of proinflammatory cytokines IL-1 and IL-6, and corticosterone were also measured. Test results revealed that subordinate mice were hypoalgesic during chronic phase of formalin test compared to control and dominant mice (P<0.05). On the other hand, subordinate mice were hyperalgesic compared to dominant mice during the whole acute phase of formalin test (P<0.05). Corticosterone, IL-1 and IL-6 concentrations were much higher in serum of dominant and subordinate mice than in the control group (p<0.05). The results indicated that, although both dominant and subordinate animals displayed an increase in serum corticosterone and proinflammatory cytokines during social interactions, their response to pain perception differently was affected with the social status.
Collapse
Affiliation(s)
- Marjan Aghajani
- Department of Physiology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
- Equity and Health research Department, Shahed University, Tehran, Iran
- Department of Physiology, Faculty of Medical Sciences, Tehran Medical University, Tehran, Iran
| | - Mohammad Reza Vaez Mahdavi
- Department of Physiology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
- Equity and Health research Department, Shahed University, Tehran, Iran
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
- *
| | | | - Tooba Ghazanfari
- Equity and Health research Department, Shahed University, Tehran, Iran
- Department of Immunology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
| | - Armin Azimi
- Department of Physiology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
| | - Saeid Arbab Soleymani
- Department of Physiology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
| | - Shirin Mahdi Dust
- Department of Physiology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
24
|
Rowe AH, Xiao Y, Rowe MP, Cummins TR, Zakon HH. Voltage-gated sodium channel in grasshopper mice defends against bark scorpion toxin. Science 2013; 342:441-446. [PMID: 24159039 DOI: 10.1126/science.1236451] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Painful venoms are used to deter predators. Pain itself, however, can signal damage and thus serves an important adaptive function. Evolution to reduce general pain responses, although valuable for preying on venomous species, is rare, likely because it comes with the risk of reduced response to tissue damage. Bark scorpions capitalize on the protective pain pathway of predators by inflicting intensely painful stings. However, grasshopper mice regularly attack and consume bark scorpions, grooming only briefly when stung. Bark scorpion venom induces pain in many mammals (house mice, rats, humans) by activating the voltage-gated Na(+) channel Nav1.7, but has no effect on Nav1.8. Grasshopper mice Nav1.8 has amino acid variants that bind bark scorpion toxins and inhibit Na(+) currents, blocking action potential propagation and inducing analgesia. Thus, grasshopper mice have solved the predator-pain problem by using a toxin bound to a nontarget channel to block transmission of the pain signals the venom itself is initiating.
Collapse
Affiliation(s)
- Ashlee H Rowe
- Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yucheng Xiao
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew P Rowe
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Harold H Zakon
- Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA.,Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
25
|
Cortright DN, Matson DJ, Broom DC. New frontiers in assessing pain and analgesia in laboratory animals. Expert Opin Drug Discov 2013; 3:1099-108. [PMID: 23506182 DOI: 10.1517/17460441.3.9.1099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Translating promising analgesic compounds into reliable pain therapeutics in humans is made particularly challenging by the difficulty in measuring the pain quantitatively. This problem is manifest not only in clinical settings in which patient pain assessments involve mostly subjective measures but also in preclinical settings wherein laboratory animals, most commonly rodents, are typically evaluated in stimulus-evoked response tests. OBJECTIVE Given the limitations of traditional pain tests, we sought out new approaches to measure pain, and analgesia, in laboratory animals. METHODS We reviewed the peer reviewed literature to identify pain tests that could be utilized in preclinical settings to understand the effects of new and established analgesics. RESULTS/CONCLUSIONS The tests identified include weight bearing differential, suppression of feeding, reduction in locomotor activity, gait analysis, conditioning models and functional MRI. Although the pharmacology of known and new analgesics has not been broadly established in these models, they hold the promise of better predictive utility for the discovery of pain relievers.
Collapse
|
26
|
Aghajani M, Vaez Mahdavi MR, Khalili Najafabadi M, Ghazanfari T. The effect of social stress on chronic pain perception in female and male mice. PLoS One 2012; 7:e47218. [PMID: 23082150 PMCID: PMC3474835 DOI: 10.1371/journal.pone.0047218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/10/2012] [Indexed: 01/03/2023] Open
Abstract
The current investigations on social stress primarily point to the negative health consequences of being in a stressful social hierarchy. The repetitive nature of such stressors seems to affect behavioral response to pain both in rodents and humans. Moreover, a large discrepancy in the possibility of social stresses affecting pain perception in the two genders exists. The present study examined the effect of chronic social stress on nociceptive responses of both sexes by implementing of food deprivation, food intake inequality and unstable social status (cage-mate change every 3 days) for a period of 14 days in 96 Balb/c mice. In this regard we injected 20 µl formalin 2% into the plantar surface of hind paw at the end of stress period and scored pain behaviors of all subjects, then serum concentrations of proinflammatory cytokines were measured. Our results showed that there was significant difference in chronic phase of formalin test following implementation of food deprivation and inequality (P<0.05) as compared to control group, so that pain perception was decreased considerably and this decline in inequality exposed subjects was well above isolated ones (P<0.05); whereas unstable social situation did not affect pain perception. Moreover, IL-1 and IL-6 concentrations in serum of stressed mice of both genders were well above control group (p<0.05). Finally, despite chronic pain perception in control and unstable male subjects was larger than females; the decrease of chronic pain perception in male stressed animals (poverty and inequality experienced subjects) was much more than stressed females. These results revealed that although food deprivation and social inequality can induce hypoalgesia, some socioeconomic situations like social instability don't affect pain sensation, whereas there were similar increases of proinflammatory cytokines level in all socially stressed subjects. In addition, males display larger hypoalgesic responses to inequality as compared with females.
Collapse
Affiliation(s)
- Marjan Aghajani
- Department of Physiology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
- Equity and Health Research Department, Shahed University, Tehran, Iran
- Department of Immunology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
| | - Mohammad Reza Vaez Mahdavi
- Department of Physiology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
- Equity and Health Research Department, Shahed University, Tehran, Iran
| | | | - Tooba Ghazanfari
- Equity and Health Research Department, Shahed University, Tehran, Iran
- Department of Immunology, Faculty of Medical Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
27
|
Luszczki JJ, Kolacz A, Czuczwar M, Przesmycki K, Czuczwar SJ. Synergistic interaction of gabapentin with tiagabine in the formalin test in mice: An isobolographic analysis. Eur J Pain 2012; 13:665-72. [DOI: 10.1016/j.ejpain.2008.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/10/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
|
28
|
Mendes-Gomes J, Miguel TT, Amaral VCS, Nunes-de-Souza RL. Corticosterone does not change open elevated plus maze-induced antinociception in mice. Horm Behav 2011; 60:408-13. [PMID: 21798262 DOI: 10.1016/j.yhbeh.2011.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 11/17/2022]
Abstract
It has been demonstrated that the exposure of rodents to the standard elevated plus-maze (sEPM: 2 open and 2 enclosed arms) elicits defensive behavioral reactions and antinociception and also activates the hypothalamo-pituitary-adrenal (HPA) axis. We have recently reported that EPM-induced antinociception is particularly observed when rats and mice are exposed to a totally open EPM (oEPM: 4 open arms). Given that the oEPM seems to be a more aversive situation than the sEPM, we hypothesized that oEPM exposure would induce higher plasma levels of corticosterone than sEPM exposure in mice. In this study, we investigated the influence of exposure to eEPM (enclosed EPM: 4 enclosed arms), sEPM or oEPM on plasma corticosterone levels in mice, with or without prior nociceptive stimulation (2.5% formalin injection into the right hind paw). We also tested whether the nociceptive response in the formalin test and oEPM-induced antinociception are altered by adrenalectomy. Results showed that oEPM-exposed mice spent less time licking the injected paw than sEPM- and eEPM-exposed animals. All three types of EPM exposure increased plasma corticosterone when compared to the basal group, but sEPM- and oEPM-exposed mice showed higher corticosterone levels than eEPM-exposed mice. Prior nociceptive stimulation (formalin injection) did not enhance the plasma corticosterone response induced by the three types of EPM exposure. Indeed, formalin injection appeared to provoke a ceiling effect on plasma corticosterone concentration. Furthermore, neither the nociceptive response in the formalin test nor oEPM-induced antinociception was changed by adrenalectomy. Present results suggest that oEPM antinociception does not depend on corticosterone release in mice.
Collapse
Affiliation(s)
- Joyce Mendes-Gomes
- Programa de Pós-Graduação em Psicobiologia, FFCLRP - USP Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
29
|
Estrogen receptors beta and alpha have specific pro- and anti-nociceptive actions. Neuroscience 2011; 184:172-82. [DOI: 10.1016/j.neuroscience.2011.02.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 11/18/2022]
|
30
|
Involvement of the melanocortin-1 receptor in acute pain and pain of inflammatory but not neuropathic origin. PLoS One 2010; 5:e12498. [PMID: 20856883 PMCID: PMC2938350 DOI: 10.1371/journal.pone.0012498] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/06/2010] [Indexed: 01/22/2023] Open
Abstract
Background Response to painful stimuli is susceptible to genetic variation. Numerous loci have been identified which contribute to this variation, one of which, MC1R, is better known as a gene involved in mammalian hair colour. MC1R is a G protein-coupled receptor expressed in melanocytes and elsewhere and mice lacking MC1R have yellow hair, whilst humans with variant MC1R protein have red hair. Previous work has found differences in acute pain perception, and response to analgesia in mice and humans with mutations or variants in MC1R. Methodology and Principal Findings We have tested responses to noxious and non-noxious stimuli in mutant mice which lack MC1R, or which overexpress an endogenous antagonist of the receptor, as well as controls. We have also examined the response of these mice to inflammatory pain, assessing the hyperalgesia and allodynia associated with persistent inflammation, and their response to neuropathic pain. Finally we tested by a paired preference paradigm their aversion to oral administration of capsaicin, which activates the noxious heat receptor TRPV1. Female mice lacking MC1R showed increased tolerance to noxious heat and no alteration in their response to non-noxious mechanical stimuli. MC1R mutant females, and females overexpressing the endogenous MC1R antagonist, agouti signalling protein, had a reduced formalin-induced inflammatory pain response, and a delayed development of inflammation-induced hyperalgesia and allodynia. In addition they had a decreased aversion to capsaicin at moderate concentrations. Male mutant mice showed no difference from their respective controls. Mice of either sex did not show any effect of mutant genotype on neuropathic pain. Conclusions We demonstrate a sex-specific role for MC1R in acute noxious thermal responses and pain of inflammatory origin.
Collapse
|
31
|
Kivell B, Prisinzano TE. Kappa opioids and the modulation of pain. Psychopharmacology (Berl) 2010; 210:109-19. [PMID: 20372880 DOI: 10.1007/s00213-010-1819-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/24/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND RATIONALE Pain is a complex sensory experience, involving cognitive factors, environment (setting, society, and culture), experience, and gender and is modulated significantly by the central nervous system (CNS). The mechanisms by which opioid analgesics work are understood, but this class of drugs is not ideal as either an analgesic or anti-hyperalgesic. Accordingly, considerable effort continues to be directed at improved understanding of nociceptor function and development of selective analgesics that do not have the unwanted effects associated with opioid analgesics. OBJECTIVE The purpose of this paper is to provide a review of the role of KOP receptors in the modulation of pain and highlight several chemotypes currently being explored as peripherally restricted KOP ligands. RESULTS A growing body of literature has shown that KOP receptors are implicated in a variety of behavioral pain models. Several different classes of peripherally restricted peptidic and nonpeptidic KOP agonists have been identified and show utility in treating painful conditions. CONCLUSION The pharmacological profile of KOP agonists in visceral pain models suggest that peripherally restricted KOP agonists are potentially useful for a variety of peripheral pain states. Further, clinical investigation of peripherally restricted KOP agonists will help to clarify the painful conditions where KOP agonists will be most effective.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Disease Models, Animal
- Humans
- Mechanoreceptors/physiology
- Nociceptors/physiology
- Pain/drug therapy
- Pain/metabolism
- Pain/physiopathology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
Collapse
Affiliation(s)
- Bronwyn Kivell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | | |
Collapse
|
32
|
Asante CO, Wallace VC, Dickenson AH. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level. Mol Pain 2009; 5:27. [PMID: 19500426 PMCID: PMC2699332 DOI: 10.1186/1744-8069-5-27] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. RESULTS For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR) dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. CONCLUSION We conclude that mTOR has a role in maintaining persistent pain states via mRNA translation and thus protein synthesis. We hypothesise that mTOR may be activated by excitatory neurotransmitter release acting on sensory afferent terminals as well as dorsal horn spinal neurones, which may be further amplified by descending facilitatory systems originating from higher centres in the brain.
Collapse
Affiliation(s)
- Curtis O Asante
- Department of Neuroscience Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
33
|
A trouble shared is a trouble halved: social context and status affect pain in mouse dyads. PLoS One 2009; 4:e4143. [PMID: 19129917 PMCID: PMC2613518 DOI: 10.1371/journal.pone.0004143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 11/20/2008] [Indexed: 11/19/2022] Open
Abstract
In mice behavioral response to pain is modulated by social status. Recently, social context also has been shown to affect pain sensitivity. In our study, we aimed to investigate the effects of interaction between status and social context in dyads of outbred CD-1 male mice in which the dominance/submission relationship was stable. Mice were assessed for pain response in a formalin (1% concentration) test either alone (individually tested-IT), or in pairs of dominant and subordinate mice. In the latter condition, they could be either both injected (BI) or only one injected (OI) with formalin. We observed a remarkable influence of social context on behavioral response to painful stimuli regardless of the social status of the mice. In the absence of differences between OI and IT conditions, BI mice exhibited half as much Paw-licking behavior than OI group. As expected, subordinates were hypoalgesic in response to the early phase of the formalin effects compared to dominants. Clear cut-differences in coping strategies of dominants and subordinates appeared. The former were more active, whereas the latter were more passive. Finally, analysis of behavior of the non-injected subjects (the observers) in the OI dyads revealed that dominant observers were more often involved in Self-grooming behavior upon observation of their subordinate partner in pain. This was not the case for subordinate mice observing the pain response of their dominant partner. In contrast, subordinate observers Stared at the dominant significantly more frequently compared to observer dominants in other dyads. The observation of a cagemate in pain significantly affected the observer's behavior. Additionally, the quality of observer's response was also modulated by the dominance/submission relationship.
Collapse
|
34
|
Betourne A, Familiades J, Lacassagne L, Halley H, Cazales M, Ducommun B, Lassalle JM, Zajac JM, Frances B. Decreased motivational properties of morphine in mouse models of cancerous- or inflammatory-chronic pain: implication of supraspinal neuropeptide FF(2) receptors. Neuroscience 2008; 157:12-21. [PMID: 18804517 DOI: 10.1016/j.neuroscience.2008.08.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
Our main purpose was to evaluate the influence of cancer pain on the rewarding properties of morphine. Opioids are very addictive when used by healthy persons, conversely the occurrence of an opioid addiction seems very low when patients suffering from cancer are treated with morphine. We investigated the reinforcing properties of morphine in the place preference paradigm on a new model of mice suffering from a cancer pain induced by syngenic melanoma cells injected in the hind paw. These data were compared with mice suffering either from a short-term- or a chronic-inflammatory pain induced respectively by injection of carrageenan or complete Freund's adjuvant. Remarkably, mice suffering from cancer pain or chronic inflammatory pain did not develop any preference for the environment associated with the injection of morphine. In mice injected with melanoma cells, the specific binding of [(125)I]EYWSLAAPQRF-NH(2), an agonist of neuropeptide FF(2) receptors, was increased in several brain areas involved in the rewarding properties of opiates, including the shell of the nucleus accumbens, the major islands of Calleja, the ventral endopiriform nucleus and the amygdaloid area. Our study is the first to reveal a modification of morphine rewarding properties under cancer pain in rodents. We postulate that anti-opioid neuropeptides might contribute to the suppression of morphine rewarding effects in this murine model of cancer pain.
Collapse
Affiliation(s)
- A Betourne
- Université de Toulouse, Centre de Recherches sur la Cognition Animale, CNRS UMR 5169 Université Paul Sabatier, UFR SVT Bât 4R3b3, 118 route de Narbonne 31062 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Seo YJ, Kwon MS, Choi HW, Choi SM, Kim YW, Lee JK, Park SH, Jung JS, Suh HW. Differential expression of phosphorylated Ca2+/calmodulin-dependent protein kinase II and phosphorylated extracellular signal-regulated protein in the mouse hippocampus induced by various nociceptive stimuli. Neuroscience 2008; 156:436-49. [PMID: 18771711 DOI: 10.1016/j.neuroscience.2008.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/01/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
Abstract
In the present study, we characterized differential expressions of phosphorylated Ca(2+)/calmodulin-dependent protein kinase IIalpha (pCaMKIIalpha) and phosphorylated extracellular signal-regulated protein (pERK) in the mouse hippocampus induced by various nociceptive stimuli. In an immunoblot study, s.c. injection of formalin and intrathecal (i.t.) injections of glutamate, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1 beta) significantly increased pCaMKIIalpha expression in the hippocampus, but i.p. injections of acetic acid did not. pERK1/2 expression was also increased by i.t. injection of glutamate, TNF-alpha, and IL-1beta but not by s.c. injections of formalin or i.p. injections of acetic acid. In an immunohistochemical study, we found that increased pCaMKIIalpha and pERK expressions were mainly located at CA3 or the dentate gyrus of the hippocampus. In a behavioral study, we assessed the effects of PD98059 (a MEK 1/2 inhibitor) and KN-93 (a CaMKII inhibitor) following i.c.v. administration on the nociceptive behaviors induced by i.t. injections of glutamate, pro-inflammatory cytokines (TNF-alpha or IL-1beta), and i.p. injections of acetic acid. PD98059 as well as KN-93 significantly attenuated the nociceptive behavior induced by glutamate, pro-inflammatory cytokines, and acetic acid. Our results suggest that (1) pERKalpha and pCaMK-II located in the hippocampus are important regulators during the nociceptive processes induced by s.c. formalin, i.t. glutamate, i.t. pro-inflammatory cytokines, and i.p. acetic acid injection, respectively, and (2) the alteration of pERK and pCaMKIIalpha in nociceptive processing induced by formalin, glutamate, pro-inflammatory cytokines and acetic acid was modulated in a different manner.
Collapse
Affiliation(s)
- Y-J Seo
- Division of Recombinant Product, Biopharmaceutical Bureau, Korea Food and Drug Administration, 194 Tongilro, Eunpyeong-gu, Seoul, 122-704, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bannon AW, Malmberg AB. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.9. [PMID: 18428666 DOI: 10.1002/0471142301.ns0809s41] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Experimental models of pain include tests of response thesholds to high intensity stimuli (acute pain tests) and changes in spontaneous or evoked behavioral responses in animals with peripheral injury or inflammation (persistent pain models). Acute thermal pain is modeled by the hot-plate and tail-flick test, while persistent pain can be modeled by the formalin test. This unit presents protocols for all three of these tests, including preparation of animals (rats or mice), administration of a compound being tested for its analgesic properties and data collection.
Collapse
|
37
|
The differential effects of emotional or physical stress on pain behaviors or on c-Fos immunoreactivity in paraventricular nucleus or arcuate nucleus. Brain Res 2008; 1190:122-31. [DOI: 10.1016/j.brainres.2007.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/28/2007] [Accepted: 11/05/2007] [Indexed: 12/31/2022]
|
38
|
Gioiosa L, Chen X, Watkins R, Klanfer N, Bryant CD, Evans CJ, Arnold AP. Sex chromosome complement affects nociception in tests of acute and chronic exposure to morphine in mice. Horm Behav 2008; 53:124-30. [PMID: 17956759 PMCID: PMC2713052 DOI: 10.1016/j.yhbeh.2007.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 08/31/2007] [Accepted: 09/05/2007] [Indexed: 11/18/2022]
Abstract
We tested the role of sex chromosome complement and gonadal hormones in sex differences in several different paradigms measuring nociception and opioid analgesia using "four core genotypes" C57BL/6J mice. The genotypes include XX and XY gonadal males, and XX and XY gonadal females. Adult mice were gonadectomized and tested 3-4 weeks later, so that differences between sexes (mice with testes vs. ovaries) were attributable mainly to organizational effects of gonadal hormones, whereas differences between XX and XY mice were attributable to their complement of sex chromosomes. In Experiment 1 (hotplate test of acute morphine analgesia), XX mice of both gonadal sexes had significantly shorter hotplate baseline latencies prior to morphine than XY mice. In Experiment 2 (test of development of tolerance to morphine), mice were injected twice daily with 10 mg/kg morphine or saline for 6 days. Saline or the competitive NMDA antagonist CPP (3-(2-carboxypiperazin-4yl) propyl-1-phosphonic acid) (10 mg/kg) was co-injected. On day 7, mice were tested for hotplate latencies before and after administration of a challenge dose of morphine (10 mg/kg). XX mice showed shorter hotplate latencies than XY mice at baseline, and the XX-XY difference was greater following morphine. In Experiment 3, mice were injected with morphine (10 mg/kg) or saline, 15 min before intraplantar injection of formalin (5%/25 microl). XX mice licked their hindpaw more than XY mice within 5 min of formalin injection. The results indicate that X- or Y-linked genes have direct effects, not mediated by gonadal secretions, on sex differences in two different types of acute nociception.
Collapse
Affiliation(s)
- Laura Gioiosa
- Department of Physiological Science, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles 90095
| | - Xuqi Chen
- Department of Physiological Science, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles 90095
| | - Rebecca Watkins
- Department of Physiological Science, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles 90095
| | - Nicole Klanfer
- Department of Physiological Science, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles 90095
| | - Camron D. Bryant
- Shirley and Stefan Hatos Center for Neuropharmacology, and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 90095
| | - Christopher J. Evans
- Shirley and Stefan Hatos Center for Neuropharmacology, and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 90095
| | - Arthur P. Arnold
- Department of Physiological Science, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles 90095
| |
Collapse
|
39
|
Maione S, De Petrocellis L, de Novellis V, Moriello AS, Petrosino S, Palazzo E, Rossi FS, Woodward DF, Di Marzo V. Analgesic actions of N-arachidonoyl-serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors. Br J Pharmacol 2007; 150:766-81. [PMID: 17279090 PMCID: PMC2013858 DOI: 10.1038/sj.bjp.0707145] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE N-arachidonoyl-serotonin (AA-5-HT) is an inhibitor of fatty acid amide hydrolase (FAAH)-catalysed hydrolysis of the endocannabinoid/ endovanilloid compound, anandamide (AEA). We investigated if AA-5-HT antagonizes the transient receptor potential vanilloid-1 (TRPV1) channel and, as FAAH and TRPV1 are targets for analgesic compounds, if it exerts analgesia in rodent models of hyperalgesia. EXPERIMENTAL APPROACH AA-5-HT was tested in vitro, on HEK-293 cells overexpressing the human or the rat recombinant TRPV1 receptor, and in vivo, in rats and mice treated with formalin and in rats with chronic constriction injury of the sciatic nerve. The levels of the endocannabinoids, AEA and 2-arachidonoylglycerol, in supraspinal (periaqueductal grey, rostral ventromedial medulla), spinal or peripheral (skin) tissues were measured. KEY RESULTS AA-5-HT behaved as an antagonist at both rat and human TRPV1 receptors (IC(50)=37-40 nM against 100 nM capsaicin). It exerted strong analgesic activity in all pain models used here. This activity was partly due to FAAH inhibition, elevation of AEA tissue levels and indirect activation of cannabinoid CB(1) receptors, as it was reversed by AM251, a CB(1) antagonist. AA-5-HT also appeared to act either via activation/desensitization of TRPV1, following elevation of AEA, or as a direct TRPV1 antagonist, as suggested by the fact that its effects were either reversed by capsazepine and 5'-iodo-resiniferatoxin, two TRPV1 antagonists, or mimicked by these compounds administered alone. CONCLUSIONS AND IMPLICATIONS Possibly due to its dual activity as a FAAH inhibitor and TRPV1 antagonist, AA-5-HT was highly effective against both acute and chronic peripheral pain.
Collapse
Affiliation(s)
- S Maione
- Department of Experimental Medicine – Section of Pharmacology ‘L Donatelli', Second University of Naples Naples, Italy
| | - L De Petrocellis
- Endocannabinoid Research Group, Institute of Cybernetics ‘E Caianiello' CNR, Pozzuoli (Naples), Italy
| | - V de Novellis
- Department of Experimental Medicine – Section of Pharmacology ‘L Donatelli', Second University of Naples Naples, Italy
| | - A Schiano Moriello
- Endocannabinoid Research Group, Institute of Cybernetics ‘E Caianiello' CNR, Pozzuoli (Naples), Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry CNR, Pozzuoli (Naples), Italy
| | - S Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry CNR, Pozzuoli (Naples), Italy
- Department of Pharmaceutical Sciences, University of Salerno Fisciano, Italy
| | - E Palazzo
- Department of Experimental Medicine – Section of Pharmacology ‘L Donatelli', Second University of Naples Naples, Italy
| | - F Sca Rossi
- Department of Experimental Medicine – Section of Pharmacology ‘L Donatelli', Second University of Naples Naples, Italy
| | | | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry CNR, Pozzuoli (Naples), Italy
- Author for correspondence:
| |
Collapse
|
40
|
Seo YJ, Kwon MS, Shim EJ, Park SH, Choi OS, Suh HW. Changes in pain behavior induced by formalin, substance P, glutamate and pro-inflammatory cytokines in immobilization-induced stress mouse model. Brain Res Bull 2006; 71:279-86. [PMID: 17113957 DOI: 10.1016/j.brainresbull.2006.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/05/2006] [Accepted: 09/12/2006] [Indexed: 01/20/2023]
Abstract
In the present study, we examined the change of pain behaviors induced by formalin injected subcutaneously (s.c.) into the hind paw, or substance P (SP), glutamate, and pro-inflammatory cytokines (TNF-alpha, IL-1beta, and IFN-gamma) injected intrathecally (i.t.) in the mouse immobilization stress model. The mouse was restrained either once for 1h or five times for 5 days (once/day). In the formalin test, a single immobilization stress attenuated pain behaviors (licking, biting or scratching) in the second phase, while it had no effect on the pain behaviors revealed during the first phase. In addition, repeated immobilization stress attenuated pain behaviors revealed during the second phase but not in the first phase. A single as well as repeated immobilization stress decreased pain behaviors induced by substance P i.t. injection, but there were no significant changes in the glutamate test. In the pro-inflammatory cytokine pain model, a single immobilization stress decreased the pain behaviors induced by TNF-alpha, IL-1beta administered i.t. but not by IFN-gamma administered i.t. Moreover, a mouse applied with repeated immobilization stress did not show any changes in pain behaviors elicited by pro-inflammatory cytokines (TNF-alpha, IL-1beta and IFN-gamma) compared to the control group. These results suggest that a single and repeated immobilization stress differentially affects such nociceptive processing induced by formalin, SP, glutamate and pro-inflammatory cytokines in different manners.
Collapse
Affiliation(s)
- Young-Jun Seo
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okcheon-Dong, Chuncheon, Gangwon-Do 200-702, South Korea
| | | | | | | | | | | |
Collapse
|
41
|
Pieretti S, Dominici L, Di Giannuario A, Cesari N, Dal Piaz V. Local anti-inflammatory effect and behavioral studies on new PDE4 inhibitors. Life Sci 2006; 79:791-800. [PMID: 16546218 DOI: 10.1016/j.lfs.2006.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 01/11/2006] [Accepted: 02/23/2006] [Indexed: 10/25/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are effective anti-inflammatory drugs, although some adverse effects are observed in animals and humans. These effects have forced researchers to find new PDE4 inhibitors with less adverse effects. We recently reported the synthesis of novel heterocyclic-fused pyridazinones that inhibit PDE4. As a first step in the study of the anti-inflammatory properties of these compounds, we studied the effects of local administration of these pyridazinone derivatives in a mouse model of acute inflammation. We found that 6-Benzyl-3-methyl-4-phenylpyrazolo[3,4-d]pyridazin-7(6H)-one (CC4), ethyl 6,7-dihydro-6-ethyl-3-methyl-7-oxo-4-phenyl-thieno[2,3-d]pyridazine-2-carboxylate (CC6) and ethyl 6,7-dihydro-6-ethyl-3-methyl-4-phenyl-1H-pyrrolo[2,3-d]pyridazine-2-carboxylate (CC12) reduced the paw edema induced by zymosan in mice as rolipram (the PDE4 inhibitor prototype with anti-inflammatory activity) and indomethacin did. It is well known that rolipram locally administered induces some adverse effects such as hyperalgesia. Thus, we studied this effect after local administration of CC4, CC6 and CC12 in the formalin test. We found that CC6 induced hyperalgesic effects, whereas CC4 and CC12 did not change the nociceptive threshold. Furthermore, we found that rolipram and CC6 reduced locomotor activity, whereas CC4 and CC12 did not change locomotor performance of the mice. Since CC4 and CC12 neither affected the nociceptive threshold nor changed the locomotor performance of mice, they appear more suitable than CC6 for future studies on animals and could be developed as an anti-inflammatory drug for humans.
Collapse
Affiliation(s)
- Stefano Pieretti
- Department of Drug Research and Evaluation, Italian National Institute of Health, Rome, Italy.
| | | | | | | | | |
Collapse
|
42
|
Chanda ML, Mogil JS. Sex differences in the effects of amiloride on formalin test nociception in mice. Am J Physiol Regul Integr Comp Physiol 2006; 291:R335-42. [PMID: 16601256 DOI: 10.1152/ajpregu.00902.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amiloride is a nonspecific blocker of acid-sensing ion channels (ASICs) that have been recently implicated in the mediation of mechanical and chemical/inflammatory nociception. Preliminary data using a transgenic model are suggestive of sex differences in the role of ASICs. We report here that systemic administration of amiloride (10-70 mg/kg ip) produces a robust, dose-dependent blockade of late/tonic phase nociceptive behavior on the mouse formalin test (5%; 20 microl) in female but not male mice, completely abolishing the known sex difference in formalin test response. Adult gonadectomy produced a "switching" of sex differences in amiloride efficacy, with castrated males displaying an amiloride blockade and ovariectomized females rendered less sensitive to amiloride. Gonadectomized mice could be switched back to their intact status using chronic estrogen benzoate or testosterone propionate replacement via osmotic minipump (6 microg/day or 250 microg/day, respectively). It is unclear whether this striking sex difference is due to sex-specific involvement of ASICs in pain processing, but the present data represent one of the first demonstrations of pain-related sex differences with no obvious opioid involvement.
Collapse
Affiliation(s)
- Mona Lisa Chanda
- Department of Psychology nd Centre for Research on Pain, McGill University 1205 Dr. Penfield Ave., Montreal, QC H3A 1B1, Canada
| | | |
Collapse
|
43
|
Bon K, Wilson SG, Mogil JS, Roberts WJ. Genetic evidence for the correlation of deep dorsal horn Fos protein immunoreactivity with tonic formalin pain behavior. THE JOURNAL OF PAIN 2003; 3:181-9. [PMID: 14622771 DOI: 10.1054/jpai.2002.123710] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formalin test is commonly used as a model of persistent pain. Besides producing pain behavior, hind paw formalin injection induces the expression of the immediate-early gene, c-fos. A current controversy is whether noxious stimulus-induced Fos protein immunoreactivity can be considered a proxy (biomarker) of nociception in the spinal cord. We investigated this issue by exploiting our recent demonstration of genotype-dependent behavioral differences in response to formalin injection among inbred mouse strains. Accordingly, 6 inbred and 2 outbred strains were administered formalin (5% in 25 microL) into the ventral hind paw, monitored for licking behavior, and then sacrificed at 90 minutes after injection for Fos protein immunocytochemistry. Significant strain differences were observed in both licking behavior and Fos counts in superficial and deep laminae. We observed a significant correlation among strains between licking behavior in the late phase (10 to 60 minutes) of the formalin test and Fos expression in laminae V-VI (but not laminae I-II) of the dorsal horn (r = 0.94). These findings reinforce the use of the Fos technique to study the neuronal processing underlying pain but suggest that Fos labeling reliably reflects tonic pain behavior only in neurons located in the neck of the dorsal horn in mice.
Collapse
Affiliation(s)
- Karine Bon
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, USA
| | | | | | | |
Collapse
|
44
|
Choi SS, Han KJ, Lee HK, Han EJ, Suh HW. Possible antinociceptive mechanisms of opioid receptor antagonists in the mouse formalin test. Pharmacol Biochem Behav 2003; 75:447-57. [PMID: 12873637 DOI: 10.1016/s0091-3057(03)00144-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been reported that opioid receptor antagonist can induce antinociception in several nociceptive tests. In the intraplantar formalin pain model, however, opioid antagonist-induced antinociception, as well as its underlying mechanism, has not been well characterized. Therefore, in the mouse formalin test, we attempted to characterize the site of action and the possible opioid receptor subtypes. We found that naltrexone (a nonselective opioid antagonist) injected intraperitoneally (i.p., 1-20 mg/kg), intrathecally (i.t., 0.1-10 microg) and intracerebroventricularly (i.c.v., 0.1-10 microg) phase. Administration of beta-funaltrexamine (beta-FNA, 10-40 mg/kg i.p., 1.25-5 microg it or i.c.v.), naltrindole (1-10 mg/kg i.p., 1.25-5 microg it or i.c.v.) and nor-binaltorphimine (nor-BNI, 1-10 mg/kg i.p., 10-40 microg it or i.c.v.), which are selective mu-, delta- and kappa-opioid antagonists, respectively, also produced antinociception during the second phase. Additionally, we examined the involvement of the descending monoaminergic systems in the naltrexone-induced antinociception in the formalin test. Pretreatment with 5,7-dihydroxytryptamine (5,7-DHT, a serotonergic neurotoxin, 20 microg i.t.), but not N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4, a noradrenergic neurotoxin, 20 microg i.t.), reversed the naltrexone-induced antinociception during the second phase. Our results suggest that blockade of supraspinally or spinally located opioid receptors may play roles in the regulation of antinociception during the tonic painful stage. In addition, opioid receptors localized at the neuroterminal of the descending serotonergic, but not noradrenergic, inhibitory system in the spinal cord appear to be involved in opioid antagonist-induced antinociception during the second tonic phase of the formalin test.
Collapse
MESH Headings
- 5,7-Dihydroxytryptamine/pharmacology
- Animals
- Behavior, Animal/drug effects
- Benzylamines/pharmacology
- Formaldehyde
- Injections, Intraperitoneal
- Injections, Intraventricular
- Injections, Spinal
- Male
- Mice
- Mice, Inbred ICR
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Pain Measurement/drug effects
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/antagonists & inhibitors
Collapse
Affiliation(s)
- Seong-Soo Choi
- Department of Pharmacology, College of Medicine and Institute of Natural Medicine, Hallym University, 1 Okchundong, Chunchon, Kangwon-Do, 200-702, South Korea
| | | | | | | | | |
Collapse
|
45
|
Lariviere WR, Wilson SG, Laughlin TM, Kokayeff A, West EE, Adhikari SM, Wan Y, Mogil JS. Heritability of nociception. III. Genetic relationships among commonly used assays of nociception and hypersensitivity. Pain 2002; 97:75-86. [PMID: 12031781 DOI: 10.1016/s0304-3959(01)00492-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We and others have previously demonstrated that nociception in the mouse is heritable. A genetic correlation analysis of 12 common measures of nociception among a common set of inbred strains revealed three major clusters (or 'types') of nociception in this species. In the present study, we re-evaluated the major types of nociception and their interrelatedness using ten additional assays of nociception and hypersensitivity, including: three thermal assays (tail withdrawal from 47.5 degrees C water or -15 degrees C ethanol; tail flick from radiant heat), two chemical assays of spontaneous nociception (bee venom test; capsaicin test) and their subsequent thermal hypersensitivity states (including contralateral hypersensitivity in the bee venom test), a mechanical nociceptive assay (tail-clip test), and a mechanical hypersensitivity assay (intrathecal dynorphin). Confirming our earlier findings, the results demonstrate distinct thermal and chemical nociceptive types. It is now clear that mechanical hypersensitivity and thermal hypersensitivity are genetically dissociable phenomena. Furthermore, we now see at least two distinct types of thermal hypersensitivity: afferent-dependent, featuring a preceding significant period of spontaneous nociceptive behavior associated with afferent neural activity, and non-afferent-dependent. In conclusion, our latest analysis suggests that there are at least five fundamental types of nociception and hypersensitivity: (1) baseline thermal nociception; (2) spontaneous responses to noxious chemical stimuli; (3) thermal hypersensitivity; (4) mechanical hypersensitivity; and (5) afferent input-dependent hypersensitivity.
Collapse
Affiliation(s)
- William R Lariviere
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, IL 61820, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wilson SG, Chesler EJ, Hain H, Rankin AJ, Schwarz JZ, Call SB, Murray MR, West EE, Teuscher C, Rodriguez-Zas S, Belknap JK, Mogil JS. Identification of quantitative trait loci for chemical/inflammatory nociception in mice. Pain 2002; 96:385-391. [PMID: 11973013 DOI: 10.1016/s0304-3959(01)00489-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sensitivity to pain is widely variable, and much of this variability is genetic in origin. The specific genes responsible have begun to be identified, but only for thermal nociception. In order to facilitate the identification of polymorphic, pain-related genes with more clinical relevance, we performed quantitative trait locus (QTL) mapping studies of the most common assay of inflammatory nociception, the formalin test. QTL mapping is a technique that exploits naturally occurring variability among inbred strains for the identification of genomic locations containing genes contributing to that variability. An F2 intercross was constructed using inbred A/J and C57BL/6J mice as progenitors, strains previously shown to display resistance and sensitivity, respectively, to formalin-induced nociception. Following phenotypic testing (5% formalin, 25 microl intraplantar injection), mice were genotyped at 90 microsatellite markers spanning the genome. We provide evidence for two statistically significant formalin test QTLs - chromosomal regions whose inheritance is associated with trait variability - on distal mouse chromosomes 9 and 10. Identification of the genes underlying these QTLs may illuminate the basis of individual differences in inflammatory pain, and lead to novel analgesic treatment strategies.
Collapse
Affiliation(s)
- Sonya G Wilson
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA Department of Behavioral Neuroscience and VA Medical Center, Oregon Health Sciences University, Portland, OR 97201, USA Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The increasing popularity of the mouse as a subject in basic science studies of pain can largely be attributed to the development of transgenic "knockout" technology in this species only. To take advantage of this biological technique, many investigators are rushing to adapt to the mouse experimental protocols that were designed for the rat. However, the myriad physiological and behavioral differences between these two rodent species render such adaptations non-trivial and in many cases seriously problematic. In this article we review the basic nociceptive assays used in behavioral pain research (thermal, mechanical, electrical and chemical), and highlight how species differences affect their proper application. In addition, some of the issues specifically pertaining to the interpretation of such data in knockout studies are addressed.
Collapse
Affiliation(s)
- S G Wilson
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, USA
| | | |
Collapse
|