1
|
Yang M, Lin X, Segers F, Suganthan R, Hildrestrand GA, Rinholm JE, Aas PA, Sousa MML, Holm S, Bolstad N, Warren D, Berge RK, Johansen RF, Yndestad A, Kristiansen E, Klungland A, Luna L, Eide L, Halvorsen B, Aukrust P, Bjørås M. OXR1A, a Coactivator of PRMT5 Regulating Histone Arginine Methylation. Cell Rep 2021; 30:4165-4178.e7. [PMID: 32209476 DOI: 10.1016/j.celrep.2020.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) protects cells against oxidative stress. We find that male mice with brain-specific isoform A knockout (Oxr1A-/-) develop fatty liver. RNA sequencing of male Oxr1A-/- liver indicates decreased growth hormone (GH) signaling, which is known to affect liver metabolism. Indeed, Gh expression is reduced in male mice Oxr1A-/- pituitary gland and in rat Oxr1A-/- pituitary adenoma cell-line GH3. Oxr1A-/- male mice show reduced fasting-blood GH levels. Pull-down and proximity ligation assays reveal that OXR1A is associated with arginine methyl transferase PRMT5. OXR1A-depleted GH3 cells show reduced symmetrical dimethylation of histone H3 arginine 2 (H3R2me2s), a product of PRMT5 catalyzed methylation, and chromatin immunoprecipitation (ChIP) of H3R2me2s shows reduced Gh promoter enrichment. Finally, we demonstrate with purified proteins that OXR1A stimulates PRMT5/MEP50-catalyzed H3R2me2s. Our data suggest that OXR1A is a coactivator of PRMT5, regulating histone arginine methylation and thereby GH production within the pituitary gland.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Filip Segers
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | | | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway; Proteomics and Metabolomics Core Facility-PROMEC, Norwegian University of Science and Technology, the Central Norway Regional Health Authority, Trondheim, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - David Warren
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rune F Johansen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
2
|
Lyu X, Wang G, Pi Z, Wu L. Circadian clock disruption attenuated growth hormone(GH)-mediated signalling. Gen Comp Endocrinol 2021; 302:113670. [PMID: 33245935 DOI: 10.1016/j.ygcen.2020.113670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
The circadian molecular clock is an internal time-keeping system, which regulates various physiological processes through the generation of approximately 24-hour circadian rhythms. BMAL1 (brain and muscle arnt-like 1) is a core component of the circadian clock. Previous studies have shown that the circadian clock correlates with rhythmic secretion of endocrine hormone (such as growth hormone, GH). Currently, the effect of circadian clock on the GH-mediated biological activities is not fully understood. In this work, we used BMAL1 gene knockout mice (BMAL-/- mice) model to explore the effect of circadian clock dysfunction on GH's activities, and the results from in vivo and in vitro experiments showed that GH-induced signaling is down-regulated. In vivo, GH/GHR-mediated tyrosine phosphorylation of signaling molecules (such as the Janus kinase-signal transducer and activator of transcription, JAK-STAT) in BMAL-/- mice was significantly lower compared to control mice. In vitro, GH/GHR-mediated signaling in the hepatocytes from BMAL-/- mice is decreased compared to hepatocytes from control mice. Furthermore, we explore the mechanism by which GH/GHR-mediated signalling is down-regulated in BMAL-/- mice, and results indicated that the expression levels of negative regulators of cytokine signaling (such as the suppressor of cytokine signaling (SOCS) and protein phosphatase) were increased, which may be one of the factors that cause the GH signaling downregulation. In summary, our results show that the circadian clock affects the biological activities of GH. This finding lays the foundation for future investigations into the relationship between the circadian clock and biological activities of GH.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Guohua Wang
- Department of Neonatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhuang Pi
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Lan Wu
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
3
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Ishikawa M, Toyomura J, Yagi T, Kuboki K, Morita T, Sugihara H, Hirose T, Minami S, Yoshino G. Role of growth hormone signaling pathways in the development of atherosclerosis. Growth Horm IGF Res 2020; 53-54:101334. [PMID: 32721858 DOI: 10.1016/j.ghir.2020.101334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The direct actions of growth hormone (GH) in the development of atherosclerosis are unclear. The goal of this study was to characterize GH-induced changes in expression of signaling pathway elements and other proteins that may be related to atherosclerosis. METHODS Human umbilical vein endothelial cells (HUVEC) and THP-1, a human acute monocytic leukemia cell line, were stimulated by exposure to 10-9 M or 10-8 M human GH with or without pretreatment with a mitogen-activated protein kinase kinase (MEK) 1 inhibitor. Levels of transcripts encoding vascular cell adhesion molecule (VCAM) -1, E-selectin, monocyte chemotactic protein (MCP-1), interleukin (IL) -6, and IL-8 were investigated by reverse transcription (RT) -PCR. For the quantitative adhesion assay, THP-1 cells or human primary monocytes were fluorescently labeled with 3'-O-acetyl-2',7'-bis(carboxyethyl) -4 diacetoxymethyl ester (BCECF/AM). HUVEC treated with human GH were co-incubated with BCECF-labeled THP-1 cells. One hour later, the number of BCECF-labeled THP-1 cells was assessed. An equivalent experiment was performed using BCECF-labeled primary monocytes, and the number of monocytes adhering to HUVEC was counted. RESULTS Treatment with hGH increased the levels of E-selectin- and VCAM-1-encoding mRNAs in HUVEC. This effect was attenuated by pretreatment with a MEK1 inhibitor. Furthermore, hGH treatment increased adhesion of BCECF-labeled THP-1 cells or primary monocytes to HUVEC, and this effect was attenuated by pretreatment with a MEK1 inhibitor. CONCLUSIONS VCAM-1 and E-selectin expression was stimulated by GH via the mitogen-activated protein kinase pathway, resulting in augmented adhesion of THP-1 cells and monocytes to HUVEC. These data suggested that GH directly stimulates the development of atherosclerosis.
Collapse
Affiliation(s)
- Mayumi Ishikawa
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Junko Toyomura
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba-City, Ibaraki 305-8575, Japan
| | - Takashi Yagi
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan
| | - Koji Kuboki
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Takahisa Hirose
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| | - Shiro Minami
- Center of Endocrinology, Diabetes and Arteriosclerosis, Nippon Medical School Musashikosugi Hospital, 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan
| | - Gen Yoshino
- The Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan
| |
Collapse
|
5
|
Kot M, Daujat-Chavanieu M. Altered cytokine profile under control of the serotonergic system determines the regulation of CYP2C11 and CYP3A isoforms. Food Chem Toxicol 2018; 116:369-378. [PMID: 29698782 DOI: 10.1016/j.fct.2018.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023]
Abstract
The aim of this study is to assess a potential mechanism by which the serotonergic system can control the expression and activity of cytochrome (CYP) 2C11 and CYP3A isoforms during liver insufficiency. A rat model of diethylnitrosamine (DEN)-induced liver insufficiency was developed by administering 50 mg/kg of DEN twice a week for 7 weeks. Dysfunction of the serotonergic system was evoked by feeding the rats with a tryptophan-free diet for three weeks. Dysfunction of the serotonergic system during liver insufficiency decreased the level of proinflammatory cytokines (TGF-β and IL-1β) and increased the level of an anti-inflammatory cytokine (IL-4). Simultaneously, activation of the repressive mechanism IL-4/JAK1/STAT6/SOCS1 of the JAK2/STAT5b-mediated signal transduction pathway and the pERK1/2/GR/STAT6 signal transduction pathway resulted in the suppression of the CYP2C11 and CYP3A isoforms. Moreover, dysfunction of the serotonergic system during liver insufficiency equalized the level of testosterone to the basal level, did not change the steady state of the corticosterone level and significantly enhanced the reduced level of growth hormone. An altered cytokine profile under control of the serotonergic system determines the regulation of CYP2C11 and CYP3A isoforms during liver insufficiency through mechanisms based on posttranscriptional and posttranslational processes.
Collapse
Affiliation(s)
- Marta Kot
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland.
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy, Univ Montpellier, Inserm U1183, CHU Montpellier, Montpellier, France
| |
Collapse
|
6
|
Kumar R, Mota LC, Litoff EJ, Rooney JP, Boswell WT, Courter E, Henderson CM, Hernandez JP, Corton JC, Moore DD, Baldwin WS. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice. PLoS One 2017; 12:e0174355. [PMID: 28350814 PMCID: PMC5370058 DOI: 10.1371/journal.pone.0174355] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and regulatory CYP changes followed the order CAR-null > Cyp3a-null > Cyp2b-null mice.
Collapse
Affiliation(s)
- Ramiya Kumar
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Linda C. Mota
- Environmental Toxicology, Clemson University, Pendleton, SC, United States of America
| | - Elizabeth J. Litoff
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - John P. Rooney
- NHEERL, US-EPA, Research Triangle Park, NC, United States of America
| | - W. Tyler Boswell
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Elliott Courter
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | | | - Juan P. Hernandez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | | | - David D. Moore
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, SC, United States of America
- Environmental Toxicology, Clemson University, Pendleton, SC, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Growth hormone (GH) is a peptide hormone released from pituitary somatotrope cells that promotes growth, cell division and regeneration by acting directly through the GH receptor (GHR), or indirectly via hepatic insulin-like growth factor 1 (IGF1) production. GH deficiency (GHD) can cause severe consequences, such as growth failure, changes in body composition and altered insulin sensitivity, depending of the origin, time of onset (childhood or adulthood) or duration of GHD. The highly variable clinical phenotypes of GHD can now be better understood through research on transgenic and naturally-occurring animal models, which are widely employed to investigate the origin, phenotype, and consequences of GHD, and particularly the underlying mechanisms of metabolic disorders associated to GHD. Here, we reviewed the most salient aspects of GH biology, from somatotrope development to GH actions, linked to certain GHD types, as well as the animal models employed to reproduce these GHD-associated alterations.
Collapse
Affiliation(s)
- Manuel D Gahete
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain.
| | - Raul M Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain.
| | - Justo P Castaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain.
| |
Collapse
|
8
|
Jiang X, Xiao J, He M, Ma A, Wong AOL. Type II SOCS as a feedback repressor for GH-induced Igf1 expression in carp hepatocytes. J Endocrinol 2016; 229:171-86. [PMID: 27271287 DOI: 10.1530/joe-15-0423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/14/2016] [Indexed: 01/16/2023]
Abstract
Type II suppressor of cytokine signaling (SOCS) serve as feedback repressors for cytokines and are known to inhibit growth hormone (GH) actions. However, direct evidence for SOCS modulation of GH-induced insulin-like growth factor 1 (Igf1) expression is lacking, and the post-receptor signaling for SOCS expression at the hepatic level is still unclear. To shed light on the comparative aspects of SOCS in GH functions, grass carp was used as a model to study the role of type II SOCS in GH-induced Igf1 expression. Structural identity of type II SOCS, Socs1-3 and cytokine-inducible SH2-containing protein (Cish), was established in grass carp by 5'/3'-RACE, and their expression at both transcript and protein levels were confirmed in the liver by RT-PCR and LC/MS/MS respectively. In carp hepatocytes, GH treatment induced rapid phosphorylation of JAK2, STATs, MAPK, PI3K, and protein kinase B (Akt) with parallel rises in socs1-3 and cish mRNA levels, and these stimulatory effects on type II SOCS were shown to occur before the gradual loss of igf1 gene expression caused by prolonged exposure of GH. Furthermore, GH-induced type II SOCS gene expression could be negated by inhibiting JAK2, STATs, MEK1/2, P38 (MAPK), PI3K, and/or Akt respectively. In CHO cells transfected with carp GH receptor, over-expression of these newly cloned type II SOCS not only suppressed JAK2/STAT5 signaling with GH treatment but also inhibited GH-induced grass carp Igf1 promoter activity. These results, taken together, suggest that type II SOCS could be induced by GH in the carp liver via JAK2/STATs, MAPK, and PI3K/Akt cascades and serve as feedback repressors for GH signaling and induction of igf1 gene expression.
Collapse
Affiliation(s)
- Xue Jiang
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| | - Jia Xiao
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| | - Mulan He
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| | - Ani Ma
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| | - Anderson O L Wong
- School of Biological SciencesUniversity of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
9
|
Oshida K, Vasani N, Waxman DJ, Corton JC. Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome by Diverse Factors Is a Common Event. PLoS One 2016; 11:e0148308. [PMID: 26959975 PMCID: PMC4784905 DOI: 10.1371/journal.pone.0148308] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Signal transducer and activator of transcription 5b (STAT5b) is a growth hormone (GH)-activated transcription factor and a master regulator of sexually dimorphic gene expression in the liver. Disruption of the GH hypothalamo-pituitary-liver axis controlling STAT5b activation can lead to metabolic dysregulation, steatosis, and liver cancer. Computational approaches were developed to identify factors that disrupt STAT5b function in a mouse liver gene expression compendium. A biomarker comprised of 144 STAT5b-dependent genes was derived using comparisons between wild-type male and wild-type female mice and between STAT5b-null and wild-type mice. Correlations between the STAT5b biomarker gene set and a test set comprised of expression datasets (biosets) with known effects on STAT5b function were evaluated using a rank-based test (the Running Fisher algorithm). Using a similarity p-value ≤ 10(-4), the test achieved a balanced accuracy of 99% and 97% for detection of STAT5b activation or STAT5b suppression, respectively. The STAT5b biomarker gene set was then used to identify factors that activate (masculinize) or suppress (feminize) STAT5b function in an annotated mouse liver and primary hepatocyte gene expression compendium of ~1,850 datasets. Disruption of GH-regulated STAT5b is a common phenomenon in liver in vivo, with 5% and 29% of the male datasets, and 11% and 13% of the female datasets, associated with masculinization or feminization, respectively. As expected, liver STAT5b activation/masculinization occurred at puberty and suppression/feminization occurred during aging and in mutant mice with defects in GH signaling. A total of 70 genes were identified that have effects on STAT5b activation in genetic models in which the gene was inactivated or overexpressed. Other factors that affected liver STAT5b function were shown to include fasting, caloric restriction and infections. Together, these findings identify diverse factors that perturb the hypothalamo-pituitary-liver GH axis and disrupt GH-dependent STAT5b activation in mouse liver.
Collapse
Affiliation(s)
- Keiyu Oshida
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| | - Naresh Vasani
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| | - David J. Waxman
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, United States of America
| | - J. Christopher Corton
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| |
Collapse
|
10
|
Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome. PLoS One 2016; 11:e0150284. [PMID: 26959237 PMCID: PMC4784907 DOI: 10.1371/journal.pone.0150284] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
The growth hormone (GH)-activated transcription factor signal transducer and activator of transcription 5b (STAT5b) is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97%) accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize) or suppress (feminize) STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93%) of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR) or peroxisome proliferator-activated receptor alpha (PPARα). Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg) but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene expression associated with adverse effects on the liver.
Collapse
|
11
|
Dietary aflatoxin-induced stunting in a novel rat model: evidence for toxin-induced liver injury and hepatic growth hormone resistance. Pediatr Res 2015; 78:120-7. [PMID: 25938735 PMCID: PMC4506701 DOI: 10.1038/pr.2015.84] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/31/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite a strong statistical correlation between dietary aflatoxin B1 (AFB1)-exposure and childhood stunting, the causal mechanism remains speculative. This issue is important because of emerging interest in reduction of human aflatoxin exposure to diminish the prevalence and complications of stunting. Pediatric liver diseases cause growth impairment, and AFB1 is hepatotoxic. Thus, liver injury might mediate AFB1-associated growth impairment. We have developed a rat model of dietary AFB1-induced stunting to investigate these questions. METHODS Newly-weaned rats were given AFB1-supplemented- or control-diets from age 3-9 wk, and then euthanized for serum- and tissue-collection. Food intake and weight were serially assessed, with tibial-length determined at the experimental endpoint. Serum AFB1-adducts, hepatic gene and protein expression, and liver injury markers were quantified using established methodologies. RESULTS AFB1-albumin adducts correlated with dietary toxin contamination, but such contamination did not affect food consumption. AFB1-exposed animals exhibited dose-dependent wasting and stunting, liver pathology, and suppression of hepatic targets of growth hormone (GH) signaling, but did not display increased mortality. CONCLUSION These data establish toxin-dependent liver injury and hepatic GH-resistance as candidate mechanisms by which AFB1-exposure causes growth impairment in this mammalian model. Interrogation of modifiers of stunting using this model could guide interventions in at-risk and affected children.
Collapse
|
12
|
Singhal V, Goh BC, Bouxsein ML, Faugere MC, DiGirolamo DJ. Osteoblast-restricted Disruption of the Growth Hormone Receptor in Mice Results in Sexually Dimorphic Skeletal Phenotypes. Bone Res 2013; 1:85-97. [PMID: 26273494 DOI: 10.4248/br201301006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/26/2013] [Indexed: 11/10/2022] Open
Abstract
Growth hormone (GH) exerts profound anabolic actions during postnatal skeletal development, in part, through stimulating the production of insulin-like growth factor-1 (IGF-1) in liver and skeletal tissues. To examine the requirement for the GH receptor (GHR) in osteoblast function in bone, we used Cre-LoxP methods to disrupt the GHR from osteoblasts, both in vitro and in vivo. Disruption of GHR from primary calvarial osteoblasts in vitro abolished GH-induced signaling, as assessed by JAK2/STAT5 phosphorylation, and abrogated GH-induced proliferative and anti-apoptotic actions. Osteoblasts lacking GHR exhibited reduced IGF-1-induced Erk and Akt phosphorylation and attenuated IGF-1-induced proliferation and anti-apoptotic action. In addition, differentiation was modestly impaired in osteoblasts lacking GHR, as demonstrated by reduced alkaline phosphatase staining and calcium deposition. In order to determine the requirement for the GHR in bone in vivo, we generated mice lacking the GHR specifically in osteoblasts (ΔGHR), which were born at the expected Mendelian frequency, had a normal life span and were of normal size. Three week-old, female ΔGHR mice had significantly reduced osteoblast numbers, consistent with the in vitro data. By six weeks of age however, female ΔGHR mice demonstrated a marked increase in osteoblasts, although mineralization was impaired; a phenotype similar to that observed previously in mice lacking IGF-1R specifically in osteoblasts. The most striking phenotype occurred in male mice however, where disruption of the GHR from osteoblasts resulted in a "feminization" of bone geometry in 16 week-old mice, as observed by μCT. These results demonstrate that the GHR is required for normal postnatal bone development in both sexes. GH appears to serve a primary function in modulating local IGF-1 action. However, the changes in bone geometry observed in male ΔGHR mice suggest that, in addition to facilitating IGF-1 action, GH may function to a greater extent than previously appreciated in establishing the sexual dimorphism of the skeleton.
Collapse
Affiliation(s)
- Vandana Singhal
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Brian C Goh
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, MA, USA
| | | | - Douglas J DiGirolamo
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
13
|
Das RK, Banerjee S, Shapiro BH. Noncanonical suppression of GH-dependent isoforms of cytochrome P450 by the somatostatin analog octreotide. J Endocrinol 2013; 216:87-97. [PMID: 23077183 PMCID: PMC3539820 DOI: 10.1530/joe-12-0255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Octreotide is a potent somatostatin analog therapeutically used to treat several conditions including hyper GH secretion in patients with acromegaly. We infused, over 30 s, octreotide into male rats every 12 h for 6 days at levels considerably greater than typical human therapeutic doses. Unexpectedly, resulting circulating GH profile was characterized by pulses of higher amplitudes, longer durations, and greater total content than normal, but still contained an otherwise male-like episodic secretory profiles. In apparent disaccord, the normally elevated masculine expression levels (protein and/or mRNA) of CYP2C11 (accounting for >50% of the total hepatic cytochrome P450 content), CYP3A2, CYP2C7, and IGF1, dependent on the episodic GH profile, were considerably downregulated. We explain this contradiction by proposing that the requisite minimal GH-devoid interpulse durations in the masculine profile that solely regulate expression of at least CYP2C11 and IGF1 may be sufficiently reduced to suppress transcription of the hepatic genes. Alternatively, we observed that octreotide infusion may have acted directly on the hepatocytes to induce expression of immune response factors postulated to suppress CYP transcription and/or upregulate expression of several negative regulators (e.g. phosphatases and SOCS proteins) of the JAK2/STAT5B signaling pathway that normally mediates the upregulation of CYP2C11 and IGF1 by the masculine episodic GH profile.
Collapse
Affiliation(s)
- Rajat Kumar Das
- Laboratories of Biochemistry, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | | | | |
Collapse
|
14
|
The KRAB zinc finger protein RSL1 regulates sex- and tissue-specific promoter methylation and dynamic hormone-responsive chromatin configuration. Mol Cell Biol 2012; 32:3732-42. [PMID: 22801370 DOI: 10.1128/mcb.00615-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over 400 Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are encoded in mammalian genomes. While KRAB-ZFPs strongly repress transcription in vitro, little is known about their biological function or gene targets in vivo. Regulator of sex limitation 1 (Rsl1), one of the first KRAB-Zfp genes assigned a physiological role, accentuates sex-biased liver gene expression, most dramatically for mouse sex-limited protein (Slp), which provides an in vivo reporter of KRAB-ZFP function. Slp is induced in males in the liver and kidney by growth hormone (GH) and androgen, respectively. In the liver but not kidney, the Rsl1 genotype correlates with methylation of a CpG dinucleotide in the Slp promoter that is demethylated at puberty. RSL1 binds 2 kb upstream of the Slp promoter, both in vitro and in vivo, within an enhancer containing response elements for STAT5b. Chromatin immunoprecipitation (ChIP) assays demonstrate that RSL1 recruits KAP1/TRIM28, the corepressor for KRAB action in vitro, to this enhancer. Slp induction requires rapid cycling of STAT5b in chromatin. Remarkably, RSL1 simultaneously binds adjacent to STAT5b with a reciprocal binding pattern that limits hormonal response. These experiments demonstrate a surprisingly dynamic interplay between a hormonal activator, STAT5b, and a KRAB-ZFP repressor and provide unique insights into KRAB-ZFP epigenetic mechanisms.
Collapse
|
15
|
Wu S, Morrison A, Sun H, De Luca F. Nuclear factor-kappaB (NF-kappaB) p65 interacts with Stat5b in growth plate chondrocytes and mediates the effects of growth hormone on chondrogenesis and on the expression of insulin-like growth factor-1 and bone morphogenetic protein-2. J Biol Chem 2011; 286:24726-34. [PMID: 21592969 DOI: 10.1074/jbc.m110.175364] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) stimulates growth plate chondrogenesis and longitudinal bone growth with its stimulatory effects primarily mediated by insulin-like growth factor-1 (IGF-1) both systemically and locally in the growth plate. It has been shown that the transcription factor Stat5b mediates the GH promoting effect on IGF-1 expression and on chondrogenesis, yet it is not known whether other signaling molecules are activated by GH in growth plate chondrocytes. We have previously demonstrated that nuclear factor-κB p65 is a transcription factor expressed in growth plate chondrocytes where it facilitates chondrogenesis. We have also shown that fibroblasts isolated from a patient with growth failure and a heterozygous mutation of inhibitor-κBα (IκB; component of the nuclear factor-κB (NF-κB) signaling pathway) exhibit GH insensitivity. In this study, we cultured rat metatarsal bones in the presence of GH and/or pyrrolidine dithiocarbamate (PDTC), a known NF-κB inhibitor. The GH-mediated stimulation of metatarsal longitudinal growth and growth plate chondrogenesis was neutralized by PDTC. In cultured chondrocytes isolated from rat metatarsal growth plates, GH induced NF-κB-DNA binding and chondrocyte proliferation and differentiation and prevented chondrocyte apoptosis. The inhibition of NF-κB p65 expression and activity (by NF-κB p65 siRNA and PDTC, respectively) in chondrocytes reversed the GH-mediated effects on chondrocyte proliferation, differentiation, and apoptosis. Lastly, the inhibition of Stat5b expression in chondrocytes prevented the GH promoting effects on NF-κB-DNA binding, whereas the inhibition of NF-κB p65 expression or activity prevented the GH-dependent activation of IGF-1 and bone morphogenetic protein-2 expression.
Collapse
Affiliation(s)
- Shufang Wu
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134, USA
| | | | | | | |
Collapse
|
16
|
Ersoy B, Ozbilgin K, Kasirga E, Inan S, Coskun S, Tuglu I. Effect of growth hormone on small intestinal homeostasis relation to cellular mediators IGF-I and IGFBP-3. World J Gastroenterol 2009; 15:5418-24. [PMID: 19916171 PMCID: PMC2778097 DOI: 10.3748/wjg.15.5418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/16/2009] [Accepted: 09/23/2009] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effects of growth hormone (GH) on the histology of small intestines which might be related to the role of insulin like growth factor (IGF)-I, IGF-binding protein 3 (IGFBP-3) and its receptors. METHODS Twelve week-old adult male Wistar albino rats were divided into two groups. The study group (n = 10), received recombinant human growth hormone (rGH) at a dose of 2 mg/kg per day subcutaneously for 14 d and the control group (n = 10) received physiologic serum. Paraffin sections of jejunum were stained with periodic acid shift (PAS) and hematoxylin and eosin (HE) for light microscopy. They were also examined for IGF-I, IGFBP-3 and IGF-receptor immunoreactivities. Staining intensity was graded semi-quantitatively using the HSCORE. RESULTS Goblet cells and the cells in crypt epithelia were significantly increased in the study group compared to that of the control group. We have demonstrated an increase of IGF-I and IGFBP-3 immunoreactivities in surface epithelium of the small intestine by GH application. IGF-I receptor immunoreactivities of crypt, villous columnar cells, enteroendocrine cells and muscularis mucosae were also more strongly positive in the study group compared to those of in the control group. CONCLUSION These findings confirm the important trophic and protective role of GH in the homeostasis of the small intestine. The trophic effect is mediated by an increase in IGF-I synthesis in the small intestine, but the protective effect is not related to IGF-I.
Collapse
|
17
|
Surya S, Horowitz JF, Goldenberg N, Sakharova A, Harber M, Cornford AS, Symons K, Barkan AL. The pattern of growth hormone delivery to peripheral tissues determines insulin-like growth factor-1 and lipolytic responses in obese subjects. J Clin Endocrinol Metab 2009; 94:2828-34. [PMID: 19470622 PMCID: PMC2730877 DOI: 10.1210/jc.2009-0638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT It is unclear whether the pattern of GH delivery to peripheral tissues has important effects. OBJECTIVE The aim of the study was to compare the effects of pulsatile vs. continuous administration of GH upon metabolic and IGF-I parameters in obese subjects. SETTING The study was conducted at the General Clinical Research Center at the University of Michigan Medical Center. PARTICIPANTS Four men and five women with abdominal obesity (body mass index, 33 +/- 3 kg/m(2); body fat, 40 +/- 3%) participated in the study. INTERVENTION GH (0.5 mg/m(2) . d) was given iv for 3 d as: 1) continuous infusion (C); and 2) pulsatile boluses (P) (15% of the dose at 0700, 1300, and 1800 h and 55% at 2400 h). These trials were preceded by a basal period (B) when subjects received normal saline. MAIN OUTCOME MEASURES Rate of lipolysis and hepatic glucose production were evaluated using stable isotope tracer techniques. The composite index of insulin sensitivity (Matsuda index) was assessed using oral glucose tolerance test. RESULTS The increase in plasma IGF-I concentrations was greater (P < 0.05) with continuous GH infusion (211 +/- 31, 423 +/- 38, and 309 +/- 34 microg/liter for B, C, and P, respectively). Muscle IGF-I mRNA was significantly increased (P < 0.05) only after the continuous GH infusion (1.2 +/- 0.4, 4.4 +/- 1.3, and 2.3 +/- 0.6 arbitrary units, for B, C, and P, respectively). Only pulsatile GH augmented the rate of lipolysis (4.1 +/- 0.3, 4.8 +/- 0.7, and 7.1 +/- 1.1 mumol/kg . min for B, C, and P, respectively). GH had no effect on hepatic glucose production, but both modes of GH administration were equally effective in impairing insulin sensitivity. CONCLUSION These findings indicate that, in obese subjects, discrete components of GH secretory pattern may differentially affect IGF-I generation and lipolytic responses.
Collapse
Affiliation(s)
- Sowmya Surya
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 3920 Taubman Center, Ann Arbor, MI 48109-5354, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Vergani L, Lanza C, Scarabelli L, Canesi L, Gallo G. Heavy metal and growth hormone pathways in metallothionein regulation in fish RTH-149 cell line. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:572-80. [PMID: 19154796 DOI: 10.1016/j.cbpc.2008.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
Interference between heavy metals and growth hormone (GH) on cell signaling has been previously demonstrated in fish cells. This study was aimed at assessing their effects on expression of the metallothionein isoforms MT-A and MT-B. The results indicate that all heavy metals induce MT-A more markedly than MT-B, but differences appeared when metals were combined with GH. For MT-B induction, a positive interference between metals and GH was observed for Zn(2+)/GH and Cd(2+)/GH, a negative interference for Hg(2+)/GH. With regards to MT-A, no interference was observed for Zn(2+)/GH and Hg(2+)/GH, while a negative interference occurred with Cu(2+)/GH and a positive interference with Cd(2+)/GH. The possible mechanisms underlying the differential regulation of metallothioneins include different signaling pathways. The results show that STAT5 and ERKs responded differently to different combinations, and Zn(2+)/GH and Cd(2+)/GH exerted a slight positive interference on ERK activation. On the other hand, a synergic rise in [Ca(2+)](i) occurred for all combinations except for Cu(2+)/GH. Our data suggest that the cross-talk between heavy metals and GH resulting in MT transcription modulation does not strictly depend on Ca(2+) signalling; (ii)ERK activation may represent the point of cross-talk between Zn(2+) or Cd(2+) and GH, converging on MT-B transcription, probably through a differential recruitment of transcription factors.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Biology, University of Genova, Genova, Italy.
| | | | | | | | | |
Collapse
|
19
|
Krebs CJ, Khan S, MacDonald JW, Sorenson M, Robins DM. Regulator of sex-limitation KRAB zinc finger proteins modulate sex-dependent and -independent liver metabolism. Physiol Genomics 2009; 38:16-28. [PMID: 19351907 DOI: 10.1152/physiolgenomics.90391.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Krüppel-related zinc finger proteins (KRAB-zfps) comprise the largest mammalian transcription factor family, but their specific functions are largely unknown. Two KRAB-zfps, regulator of sex-limitation (Rsl) 1 and Rsl2, repress expression of the mouse sex-limited protein (Slp) gene, the hallmark of Rsl activity, as well as some other male-predominant liver genes. This phenotype suggests Rsl modifies sex-specific transcription. The scope of Rsl control was determined by expression profiling of liver RNA from wild-type (wt), rsl, and transgenic mice with hepatic overexpression of Rsl1 or Rsl2. About 7.5% of the liver transcriptome was Rsl-responsive. More genes in males than females were affected by the loss of Rsl (e.g., in rsl mice), whereas Rsl overexpression altered more transcripts in females than males. Rsl dramatically repressed some female-predominant genes, but most were modestly (1.25- to 2-fold) influenced. In males, most Rsl-responsive genes unexpectedly expressed at lower levels in rsl than wt, suggesting not all are direct targets of Rsl repression. Gene Ontology analysis showed Rsl targets enriched in pathways of cholesterol, steroid, and lipid metabolism, linking Rsl to energy balance. In accord with this, blood glucose levels were less in male rsl than wt mice, and less responsive to fasting and refeeding. rsl mice were also leaner than wt, consistent with their hepatic regulation of phosphoenolpyruvate carboxykinase 1 and stearoyl-Coenzyme A desaturase 1. Altogether, Rsl's effect on sexually dimorphic and metabolically sensitive liver gene expression suggests a role for KRAB-zfps as broad genetic modulators of individual adaptation.
Collapse
Affiliation(s)
- Christopher J Krebs
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Metabolism of steroids and drugs in rodents is sexually differentiated. The reason for this turned out to be the sexually differentiated growth hormone (GH) secretory pattern regulating the expression of a number of hepatic cytochrome P-450 genes. Although not fully resolved, it is clear that several signaling pathways and transcription factors are involved in mediating the effects of GH. It may be argued that such a well-controlled physiological system should have an important biological role and we speculate that the demands of a robust hepatic steroid metabolism during pregnancy has led to the development of this sexually differentiated hypothalamo-pituitary-liver axis.
Collapse
Affiliation(s)
- Agneta Mode
- Department of Medical Nutrition, Karolinska Institute, Novum, Huddinge, Sweden.
| | | |
Collapse
|
21
|
DiGirolamo DJ, Mukherjee A, Fulzele K, Gan Y, Cao X, Frank SJ, Clemens TL. Mode of Growth Hormone Action in Osteoblasts. J Biol Chem 2007; 282:31666-74. [PMID: 17698843 DOI: 10.1074/jbc.m705219200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) affects bone size and mass in part through stimulating insulin-like growth factor type 1 (IGF-1) production in liver and bone. Whether GH acts independent of IGF-1 in bone remains unclear. To define the mode of GH action in bone, we have used a Cre/loxP system in which the type 1 IGF-1 receptor (Igf1r) has been disrupted specifically in osteoblasts in vitro and in vivo. Calvarial osteoblasts from mice homozygous for the floxed IGF-1R allele (IGF-1R(flox/flox)) were infected with adenoviral vectors expressing Cre. Disruption of IGF-1R mRNA (>90%) was accompanied by near elimination of IGF-1R protein but retention of GHR protein. GH-induced STAT5 activation was consistently greater in osteoblasts with an intact IGF-1R. Osteoblasts lacking IGF-1R retained GH-induced ERK and Akt phosphorylation and GH-stimulated IGF-1 and IGFBP-3 mRNA expression. GH-induced osteoblast proliferation was abolished by Cre-mediated disruption of the IGF-1R or co-incubation of cells with an IGF-1-neutralizing antibody. By contrast, GH inhibited apoptosis in osteoblasts lacking the IGF-1R. To examine the effects of GH on osteoblasts in vivo, mice wild type for the IGF-1R treated with GH subcutaneously for 7 days showed a doubling in the number of osteoblasts lining trabecular bone, whereas osteoblast numbers in similarly treated mice lacking the IGF-1R in osteoblasts were not significantly affected. These results indicate that although direct IGF-1R-independent actions of GH on osteoblast apoptosis can be demonstrated in vitro, IGF-1R is required for anabolic effects of GH in osteoblasts in vivo.
Collapse
Affiliation(s)
- Douglas J DiGirolamo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Vergani L, Lanza C, Borghi C, Scarabelli L, Panfoli I, Burlando B, Dondero F, Viarengo A, Gallo G. Efects of growth hormone and cadmium on the transcription regulation of two metallothionein isoforms. Mol Cell Endocrinol 2007; 263:29-37. [PMID: 17027146 DOI: 10.1016/j.mce.2006.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/16/2006] [Accepted: 08/16/2006] [Indexed: 11/17/2022]
Abstract
The effect of growth hormone (GH) and cadmium (Cd) on metallothionein (MT) expression was investigated in hepatoma cells. In fish the constitutive isoform MT-B and the metal-responsive MT-A are expressed. Real-time RT-PCR revealed that: Cd up-regulates mostly MT-A, GH slightly induces MT-B and the GH/Cd combination induces synergistically both MTs. Perturbations in Ca2+ levels suppressed or reduced the Cd-induction of MTs and abolished the GH/Cd synergy. Similar results were obtained by inhibition of tyrosine kinases. Also the signaling molecules recruited by the GH receptor responded differently to GH and Cd, with ERKs showing a synergistic activation upon GH/Cd. The following conclusions can be drawn: (1) cytosolic Ca2+ is mainly involved in MT-A regulation; (2) both Ca2+ and tyrosine phosphorylation are essential for Cd-induction and GH/Cd synergy on MTs. The synergy could depend on interactions in different signaling pathways, leading to a differential recruitment of MTF-1 and AP-1 transcription factors.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Biophysical Sciences and Technologies M. & O (DISTBIMO), University of Genoa, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Savage MO, Attie KM, David A, Metherell LA, Clark AJL, Camacho-Hübner C. Endocrine assessment, molecular characterization and treatment of growth hormone insensitivity disorders. ACTA ACUST UNITED AC 2006; 2:395-407. [PMID: 16932322 DOI: 10.1038/ncpendmet0195] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/08/2006] [Indexed: 02/06/2023]
Abstract
Advances in the diagnosis and treatment of growth hormone insensitivity disorders have occurred in the past 15 years. We discuss the current status of endocrine and molecular evaluation, focusing on the pediatric age range. All the identified mutations of the growth hormone receptor are included. Treatment with recombinant human insulin-like growth factor (rhIGF) 1 in classical cases is summarized and new targets for treatment are discussed, together with therapy using the complex formed between rhIGF1 and rhIGF-binding protein 3.
Collapse
Affiliation(s)
- Martin O Savage
- Paediatric Endocrinology Unit, William Harvey Research Institute, St Bartholomew's Hospital and the London School of Medicine & Dentistry, London, UK.
| | | | | | | | | | | |
Collapse
|
24
|
David A, Metherell LA, Clark AJL, Camacho-Hübner C, Savage MO. Diagnostic and therapeutic advances in growth hormone insensitivity. Endocrinol Metab Clin North Am 2005; 34:581-95, viii. [PMID: 16085161 DOI: 10.1016/j.ecl.2005.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diagnostic and therapeutic advances in growth hormone insensitivity (GHI) have occurred principally in two areas: the molecular characterization of patients with GHI and treatment with recombinant human insulin like growth factor-I (IGF-I). This article discusses the current status of molecular diagnosis across the spectrum of the disorder. Treatment with recombinant human IGF-I in classical cases is summarized, and potential new targets for treatment are discussed together with the potential for therapy using the newly developed compound recombinant human IGF-I/IGF binding protein-3.
Collapse
Affiliation(s)
- Alessia David
- Molecular Endocrinology Centre, William Harvey Research Institute, St. Bartholomew's Hospital, London, UK
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Torben Laursen
- Department of Pharmacology, The Bartholin Building, University of Aarhus, and Medical Department M (Endocrinology & Diabetes), Aarhus University Hospital, Kommunehospitalet, Aarhus 8000, Denmark.
| |
Collapse
|
26
|
Jaffe CA, Turgeon DK, Lown K, Demott-Friberg R, Watkins PB. Growth hormone secretion pattern is an independent regulator of growth hormone actions in humans. Am J Physiol Endocrinol Metab 2002; 283:E1008-15. [PMID: 12376329 DOI: 10.1152/ajpendo.00513.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The importance of gender-specific growth hormone (GH) secretion pattern in the regulation of growth and metabolism has been demonstrated clearly in rodents. We recently showed that GH secretion in humans is also sexually dimorphic. Whether GH secretion pattern regulates the metabolic effects of GH in humans is largely unknown. To address this question, we administered the same daily intravenous dose of GH (0.5 mg. m(-2). day(-1)) for 8 days in different patterns to nine GH-deficient adults. Each subject was studied on four occasions: protocol 1 (no treatment), protocol 2 (80% daily dose at 0100 and 10% daily dose at 0900 and 1700), protocol 3 (8 equal boluses every 3 h), and protocol 4 (continuous GH infusion). The effects of GH pattern on serum IGF-I, IGF-binding protein (IGFBP)-3, osteocalcin, and urine deoxypyridinoline were measured. Hepatic CYP1A2 and CYP3A4 activities were assessed by the caffeine and erythromycin breath tests, respectively. Protocols 3 and 4 were the most effective in increasing serum IGF-I and IGFBP-3, whereas protocols administering pulsatile GH had the greatest effects on markers of bone formation and resorption. All GH treatments decreased CYP1A2 activity, and the effect was greatest for pulsatile GH. Pulsatile GH decreased, whereas continuous GH infusion increased, CYP3A4 activity. These data demonstrate that GH pulse pattern is an independent parameter of GH action in humans. Gender differences in drug metabolism and, potentially, gender differences in growth rate may be explained by sex-specific GH secretion patterns.
Collapse
Affiliation(s)
- Craig A Jaffe
- Divisions of Endocrinology and Metabolism, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
27
|
Pritchard CC, Hsu L, Delrow J, Nelson PS. Project normal: defining normal variance in mouse gene expression. Proc Natl Acad Sci U S A 2001; 98:13266-71. [PMID: 11698685 PMCID: PMC60859 DOI: 10.1073/pnas.221465998] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mouse has become an indispensable and versatile model organism for the study of development, genetics, behavior, and disease. The application of comprehensive gene expression profiling technologies to compare normal and diseased tissues or to assess molecular alterations resulting from various experimental interventions has the potential to provide highly detailed qualitative and quantitative descriptions of these processes. Ideally, to interpret experimental data, the magnitude and diversity of gene expression for the system under study should be well characterized, yet little is known about the normal variation of mouse gene expression in vivo. To assess natural differences in murine gene expression, we used a 5406-clone spotted cDNA microarray to quantitate transcript levels in the kidney, liver, and testis from each of 6 normal male C57BL6 mice. We used ANOVA to compare the variance across the six mice to the variance among four replicate experiments performed for each mouse tissue. For the 6 kidney samples, 102 of 3,088 genes (3.3%) exhibited a statistically significant mouse variance at a level of 0.05. In the testis, 62 of 3,252 genes (1.9%) showed statistically significant variance, and in the liver, there were 21 of 2,514 (0.8%) genes with significantly variable expression. Immune-modulated, stress-induced, and hormonally regulated genes were highly represented among the transcripts that were most variable. The expression levels of several genes varied significantly in more than one tissue. These studies help to define the baseline level of variability in mouse gene expression and emphasize the importance of replicate microarray experiments.
Collapse
Affiliation(s)
- C C Pritchard
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Rapid progress has been made recently in the definition of growth hormone (GH) receptor signal transduction pathways. It is now apparent that many cytokines, including GH, share identical or similar signalling components to exert their cellular effects. This review provides a brief discourse on the signal transduction pathways, which have been demonstrated to be utilized by GH. The identification of such pathways provides a basis for understanding the pleiotropic actions of GH. The mechanisms by which the specific cellular effects of GH are achieved remain to be elucidated.
Collapse
Affiliation(s)
- T Zhu
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | | | |
Collapse
|