1
|
Macabenta F, Sun HT, Stathopoulos A. BMP-gated cell-cycle progression drives anoikis during mesenchymal collective migration. Dev Cell 2022; 57:1683-1693.e3. [PMID: 35709766 PMCID: PMC9339487 DOI: 10.1016/j.devcel.2022.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Tissue homeostasis involves the elimination of abnormal cells to avoid compromised patterning and function. Although quality control through cell competition is well studied in epithelial tissues, it is unknown if and how homeostasis is regulated in mesenchymal collectives. Here, we demonstrate that collectively migrating Drosophila muscle precursors utilize both fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signaling to promote homeostasis via anoikis, a form of cell death in response to substrate de-adhesion. Cell-cycle-regulated expression of the cell death gene head involution defective is responsible for caudal visceral mesoderm (CVM) anoikis. The secreted BMP ligand drives cell-cycle progression via a visceral mesoderm-specific cdc25/string enhancer to synchronize collective proliferation, as well as apoptosis of cells that have lost access to substrate-derived FGF. Perturbation of BMP-dependent cell-cycle progression is sufficient to confer anoikis resistance to mismigrating cells and thus facilitate invasion of other tissues. This BMP-gated cell-cycle checkpoint defines a quality control mechanism during mesenchymal collective migration.
Collapse
Affiliation(s)
- Frank Macabenta
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Hsuan-Te Sun
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Shweta K, Basargekar A, Ratnaparkhi A. FGFR/Heartless and Smog interact synergistically to negatively regulate Fog mediated G-protein coupled receptor signaling in the Drosophila nervous system. G3-GENES GENOMES GENETICS 2021; 11:6174503. [PMID: 33729500 PMCID: PMC8022937 DOI: 10.1093/g3journal/jkaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022]
Abstract
Folded gastrulation (Fog) is a secreted ligand that signals through the G-protein-coupled receptors Mist and Smog and the G-protein Concertina to activate downstream effectors to elicit cell-shape change during gastrulation. In the embryonic central nervous system (CNS), Fog has roles in axon guidance and glial morphogenesis. However, the elements of the pathway as well as mechanisms required for transducing the signal in this context have not been determined. We find that while Concertina is essential for Fog signaling, Mist is dispensable and Smog, surprisingly, functions as a negative regulator of the pathway in the CNS. Interestingly Heartless, a fibroblast growth factor receptor, also functions as a negative regulator. Furthermore, both Heartless and Smog interact in a synergistic manner to regulate Fog signaling. Our results thus identify Heartless and Smog as part of a common regulatory pathway that functions to restrict Fog signaling in the embryonic CNS and highlights the context-specific role for Fog receptors during development.
Collapse
Affiliation(s)
- Kumari Shweta
- MACS-Agharkar Research Institute (affiliated to SPPU, Pune), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, India
| | - Anagha Basargekar
- MACS-Agharkar Research Institute (affiliated to SPPU, Pune), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, India
| | - Anuradha Ratnaparkhi
- MACS-Agharkar Research Institute (affiliated to SPPU, Pune), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, India
| |
Collapse
|
3
|
Gu L, Weng M. Live Imaging of Epithelial-Mesenchymal Transition in Mesoderm Cells of Gastrulating Drosophila Embryos. Methods Mol Biol 2021; 2179:65-77. [PMID: 32939714 PMCID: PMC9870095 DOI: 10.1007/978-1-0716-0779-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Epithelial-mesenchymal transitions (EMTs) drive the generation of cell diversity during both evolution and development. More and more evidence has pointed to a model where EMT is not a binary switch but a reversible process that can be stabilized at intermediate states. Despite our vast knowledge on the signaling pathways that trigger EMT, we know very little about how EMT happens in a step-wise manner. Live imaging of cells that are undergoing EMT in intact, living, animals will provide us valuable insights into how EMT is executed at both the cellular and molecular levels and help us identify and understand the intermediate states. Here, we describe how to image early stages of EMT in the mesoderm cells of live Drosophila melanogaster embryos and how to image contractile myosin that suspends EMT progression.
Collapse
Affiliation(s)
- Lingkun Gu
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Mo Weng
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
4
|
Mathew R, Rios-Barrera LD, Machado P, Schwab Y, Leptin M. Transcytosis via the late endocytic pathway as a cell morphogenetic mechanism. EMBO J 2020; 39:e105332. [PMID: 32657472 PMCID: PMC7429744 DOI: 10.15252/embj.2020105332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Plasma membranes fulfil many physiological functions. In polarized cells, different membrane compartments take on specialized roles, each being allocated correct amounts of membrane. The Drosophila tracheal system, an established tubulogenesis model, contains branched terminal cells with subcellular tubes formed by apical plasma membrane invagination. We show that apical endocytosis and late endosome‐mediated trafficking are required for membrane allocation to the apical and basal membrane domains. Basal plasma membrane growth stops if endocytosis is blocked, whereas the apical membrane grows excessively. Plasma membrane is initially delivered apically and then continuously endocytosed, together with apical and basal cargo. We describe an organelle carrying markers of late endosomes and multivesicular bodies (MVBs) that is abolished by inhibiting endocytosis and which we suggest acts as transit station for membrane destined to be redistributed both apically and basally. This is based on the observation that disrupting MVB formation prevents growth of both compartments.
Collapse
Affiliation(s)
- Renjith Mathew
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - L Daniel Rios-Barrera
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Institute of Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Gheisari E, Aakhte M, Müller HAJ. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mech Dev 2020; 163:103629. [PMID: 32615151 DOI: 10.1016/j.mod.2020.103629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023]
Abstract
Gastrulation is generally understood as the morphogenetic processes that result in the spatial organization of the blastomere into the three germ layers, ectoderm, mesoderm and endoderm. This review summarizes our current knowledge of the morphogenetic mechanisms in Drosophila gastrulation. In addition to the events that drive mesoderm invagination and germband elongation, we pay particular attention to other, less well-known mechanisms including midgut invagination, cephalic furrow formation, dorsal fold formation, and mesoderm layer formation. This review covers topics ranging from the identification and functional characterization of developmental and morphogenetic control genes to the analysis of the physical properties of cells and tissues and the control of cell and tissue mechanics of the morphogenetic movements in the gastrula.
Collapse
Affiliation(s)
- Elham Gheisari
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - Mostafa Aakhte
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - H-Arno J Müller
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany.
| |
Collapse
|
6
|
Sun J, Macabenta F, Akos Z, Stathopoulos A. Collective Migrations of Drosophila Embryonic Trunk and Caudal Mesoderm-Derived Muscle Precursor Cells. Genetics 2020; 215:297-322. [PMID: 32487692 PMCID: PMC7268997 DOI: 10.1534/genetics.120.303258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
Mesoderm migration in the Drosophila embryo is a highly conserved, complex process that is required for the formation of specialized tissues and organs, including the somatic and visceral musculature. In this FlyBook chapter, we will compare and contrast the specification and migration of cells originating from the trunk and caudal mesoderm. Both cell types engage in collective migrations that enable cells to achieve new positions within developing embryos and form distinct tissues. To start, we will discuss specification and early morphogenetic movements of the presumptive mesoderm, then focus on the coordinate movements of the two subtypes trunk mesoderm and caudal visceral mesoderm, ending with a comparison of these processes including general insights gained through study.
Collapse
Affiliation(s)
- Jingjing Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Frank Macabenta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Zsuzsa Akos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
7
|
Vishal K, Lovato TL, Bragg C, Chechenova MB, Cripps RM. FGF signaling promotes myoblast proliferation through activation of wingless signaling. Dev Biol 2020; 464:1-10. [PMID: 32445643 PMCID: PMC7648665 DOI: 10.1016/j.ydbio.2020.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022]
Abstract
Indirect flight muscles (IFMs) are the largest muscles in Drosophila and are made up of hundreds of myonuclei. The generation of these giant muscles requires a large pool of wing disc associated adult muscle precursors (AMPs), however the factors that control proliferation to form this myoblast pool are incompletely known. Here, we examine the role of fibroblast growth factor (FGF) signaling in the proliferation of wing disc associated myoblasts. We find that the components of FGF signaling are expressed in myoblasts and surrounding epithelial cells of the wing disc. Next, we show that attenuation of FGF signaling results in a diminished myoblast pool. This reduction in the pool size is due to decreased myoblast proliferation. By contrast, activating the FGF signaling pathway increases the myoblast pool size and restores the proliferative capacity of FGF knockdown flies. Finally, our results demonstrate that the FGF receptor Heartless acts through up-regulating β-catenin/Armadillo signaling to promote myoblast proliferation. Our studies identify a novel role for FGF signaling during IFM formation and uncover the mechanism through which FGF coordinates with Wingless signaling to promote myoblast proliferation.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - TyAnna L Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Chandler Bragg
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Maria B Chechenova
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Richard M Cripps
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Catinozzi M, Mallik M, Frickenhaus M, Been M, Sijlmans C, Kulshrestha D, Alexopoulos I, Weitkunat M, Schnorrer F, Storkebaum E. The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling. PLoS Genet 2020; 16:e1008731. [PMID: 32302304 PMCID: PMC7190187 DOI: 10.1371/journal.pgen.1008731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/29/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
The number of adult myofibers in Drosophila is determined by the number of founder myoblasts selected from a myoblast pool, a process governed by fibroblast growth factor (FGF) signaling. Here, we show that loss of cabeza (caz) function results in a reduced number of adult founder myoblasts, leading to a reduced number and misorientation of adult dorsal abdominal muscles. Genetic experiments revealed that loss of caz function in both adult myoblasts and neurons contributes to caz mutant muscle phenotypes. Selective overexpression of the FGF receptor Htl or the FGF receptor-specific signaling molecule Stumps in adult myoblasts partially rescued caz mutant muscle phenotypes, and Stumps levels were reduced in caz mutant founder myoblasts, indicating FGF pathway deregulation. In both adult myoblasts and neurons, caz mutant muscle phenotypes were mediated by increased expression levels of Xrp1, a DNA-binding protein involved in gene expression regulation. Xrp1-induced phenotypes were dependent on the DNA-binding capacity of its AT-hook motif, and increased Xrp1 levels in founder myoblasts reduced Stumps expression. Thus, control of Xrp1 expression by Caz is required for regulation of Stumps expression in founder myoblasts, resulting in correct founder myoblast selection.
Collapse
Affiliation(s)
- Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marie Frickenhaus
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Ioannis Alexopoulos
- General Instruments Department, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Manuela Weitkunat
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aix Marseille University, CNRS, IBDM, Marseille, France
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| |
Collapse
|
9
|
What lies beneath: Hydra provides cnidarian perspectives into the evolution of FGFR docking proteins. Dev Genes Evol 2020; 230:227-238. [PMID: 32198667 PMCID: PMC7260276 DOI: 10.1007/s00427-020-00659-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/27/2020] [Indexed: 12/03/2022]
Abstract
Across the Bilateria, FGF/FGFR signaling is critical for normal development, and in both Drosophila and vertebrates, docking proteins are required to connect activated FGFRs with downstream pathways. While vertebrates use Frs2 to dock FGFR to the RAS/MAPK or PI3K pathways, the unrelated protein, downstream of FGFR (Dof/stumps/heartbroken), fulfills the corresponding function in Drosophila. To better understand the evolution of the signaling pathway downstream of FGFR, the available sequence databases were screened to identify Frs2, Dof, and other key pathway components in phyla that diverged early in animal evolution. While Frs2 homologues were detected only in members of the Bilateria, canonical Dof sequences (containing Dof, ankyrin, and SH2/SH3 domains) were present in cnidarians as well as bilaterians (but not in other animals or holozoans), correlating with the appearance of FGFR. Although these data suggested that Dof coupling might be ancestral, gene expression analysis in the cnidarian Hydra revealed that Dof is not upregulated in the zone of strong FGFRa and FGFRb expression at the bud base, where FGFR signaling controls detachment. In contrast, transcripts encoding other, known elements of FGFR signaling in Bilateria, namely the FGFR adaptors Grb2 and Crkl, which are acting downstream of Dof (and Frs2), as well as the guanyl nucleotide exchange factor Sos, and the tyrosine phosphatase Csw/Shp2, were strongly upregulated at the bud base. Our expression analysis, thus, identified transcriptional upregulation of known elements of FGFR signaling at the Hydra bud base indicating a highly conserved toolkit. Lack of transcriptional Dof upregulation raises the interesting question, whether Hydra FGFR signaling requires either of the docking proteins known from Bilateria.
Collapse
|
10
|
de Miguel C, Cruz J, Martín D, Franch-Marro X. Dual role of FGF in proliferation and endoreplication of Drosophila tracheal adult progenitor cells. J Mol Cell Biol 2020; 12:32-41. [PMID: 31237953 PMCID: PMC7050688 DOI: 10.1093/jmcb/mjz055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Adult progenitor cells activation is a key event in the formation of adult organs. In Drosophila, formation of abdominal adult trachea depends on the specific activation of tracheal adult progenitors (tracheoblasts) at the Tr4 and Tr5 spiracular branches. Proliferation of these tracheoblasts generates a pool of tracheal cells that migrate toward the posterior part of the trachea by the activation of the branchless/fibroblast growth factor (Bnl/FGF) signaling to form the abdominal adult trachea. Here, we show that, in addition to migration, Bnl/FGF signaling, mediated by the transcription factor Pointed, is also required for tracheoblast proliferation. This tracheoblast activation relies on the expression of the FGF ligand bnl in their nearby branches. Finally, we show that, in the absence of the transcription factor Cut (Ct), Bnl/FGF signaling induces endoreplication of tracheoblasts partially by promoting fizzy-related expression. Altogether, our results suggest a dual role of Bnl/FGF signaling in tracheoblasts, inducing both proliferation and endoreplication, depending on the presence or absence of the transcription factor Ct, respectively.
Collapse
Affiliation(s)
- Cristina de Miguel
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Josefa Cruz
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| | - David Martín
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| |
Collapse
|
11
|
The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation. Curr Top Dev Biol 2020; 136:141-165. [DOI: 10.1016/bs.ctdb.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Lauenstein JU, Udgata A, Bartram A, De Sutter D, Fisher DI, Halabi S, Eyckerman S, Gay NJ. Phosphorylation of the multifunctional signal transducer B-cell adaptor protein (BCAP) promotes recruitment of multiple SH2/SH3 proteins including GRB2. J Biol Chem 2019; 294:19852-19861. [PMID: 31527084 PMCID: PMC6937578 DOI: 10.1074/jbc.ra119.009931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Indexed: 12/21/2022] Open
Abstract
B-cell adaptor protein (BCAP) is a multimodular, multifunctional signal transducer that regulates signal transduction pathways in leukocytes, including macrophages, B-cells, and T-cells. In particular, BCAP suppresses inflammatory signaling by Toll-like receptors (TLRs). However, how BCAP itself is regulated and what its interaction partners are is unclear. Here, using human immune cell lines, including THP-1 cells, we characterized the complex phosphorylation patterns of BCAP and used a novel protein complex trapping strategy, called virotrap, to identify its interaction partners. This analysis identified known interactions of BCAP with phosphoinositide 3-kinase (PI3K) p85 subunit and NCK adaptor protein (NCK), together with previously unknown interactions of BCAP with Src homology 2 (SH2) and SH3 domain-containing adaptor proteins, notably growth factor receptor-bound protein 2 (GRB2) and CRK-like proto-oncogene, adaptor protein (CRKL). We show that the SH3 domain of GRB2 can bind to BCAP independently of BCAP phosphorylation status, suggesting that the SH2 domains mediate interactions with activated receptor tyrosine kinase complexes including the CD19 subunit of the B-cell receptor. Our results also suggested that the PI3K p85 subunit binds to BCAP via SH3 domains forming an inactive complex that is then activated by sequential binding with the SH2 domains. Taken together, our results indicate that BCAP is a complex hub that processes signals from multiple pathways in diverse cell types of the immune system.
Collapse
Affiliation(s)
- Johannes U Lauenstein
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Atul Udgata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Alex Bartram
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Delphine De Sutter
- Department of Biomolecular Medicine, Ghent University, VIB Center for Medical Biotechnology, VIB, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - David I Fisher
- Discovery Sciences, Discovery Biology, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Samer Halabi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Sven Eyckerman
- Department of Biomolecular Medicine, Ghent University, VIB Center for Medical Biotechnology, VIB, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
13
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
14
|
Rothenbusch-Fender S, Fritzen K, Bischoff MC, Buttgereit D, Oenel SF, Renkawitz-Pohl R. Myotube migration to cover and shape the testis of Drosophila depends on Heartless, Cadherin/Catenin, and myosin II. Biol Open 2017; 6:1876-1888. [PMID: 29122742 PMCID: PMC5769643 DOI: 10.1242/bio.025940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During Drosophila metamorphosis, nascent testis myotubes migrate from the prospective seminal vesicle of the genital disc onto pupal testes and then further to cover the testes with multinucleated smooth-like muscles. Here we show that DWnt2 is likely required for determination of testis-relevant myoblasts on the genital disc. Knock down of fibroblast growth factor receptor (FGFR) heartless by RNAi and a dominant-negative version revealed multiple functions of Heartless, namely regulation of the amount of myoblasts on the genital disc, connection of seminal vesicles and testes, and migration of muscles along the testes. Live imaging indicated that the downstream effector Stumps is required for migration of testis myotubes on the testis towards the apical tip. After myoblast fusion, myosin II is needed for migration of nascent testis myotubes, in which Thisbe-dependent fibroblast growth factor (FGF) signaling is activated. Cadherin-N is essential for connecting these single myofibers and for creating a firm testis muscle sheath that shapes and stabilizes the testis tubule. Based on these results, we propose a model for the migration of testis myotubes in which nascent testis myotubes migrate as a collective onto and along the testis, dependent on FGF-regulated expression of myosin II. Summary:Drosophila testes and mammalian seminiferous tubules are surrounded by a muscle layer. Drosophila myotubes migrate towards testes in dependence of the FGF receptor Heartless, myosin II and Cadherin-N.
Collapse
Affiliation(s)
- Silke Rothenbusch-Fender
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Straße 8, 35043 Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Katharina Fritzen
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Straße 8, 35043 Marburg, Germany
| | - Maik C Bischoff
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Straße 8, 35043 Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Detlev Buttgereit
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Straße 8, 35043 Marburg, Germany
| | - Susanne F Oenel
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Straße 8, 35043 Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Renate Renkawitz-Pohl
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Straße 8, 35043 Marburg, Germany .,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
15
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
16
|
Halabi S, Sekine E, Verstak B, Gay NJ, Moncrieffe MC. Structure of the Toll/Interleukin-1 Receptor (TIR) Domain of the B-cell Adaptor That Links Phosphoinositide Metabolism with the Negative Regulation of the Toll-like Receptor (TLR) Signalosome. J Biol Chem 2017; 292:652-660. [PMID: 27909057 PMCID: PMC5241739 DOI: 10.1074/jbc.m116.761528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/15/2016] [Indexed: 02/02/2023] Open
Abstract
Ligand binding to Toll-like receptors (TLRs) results in dimerization of their cytosolic Toll/interleukin-1 receptor (TIR) domains and recruitment of post-receptor signal transducers into a complex signalosome. TLR activation leads to the production of transcription factors and pro-inflammatory molecules and the activation of phosphoinositide 3-kinases (PI3K) in a process that requires the multimodular B-cell adaptor for phosphoinositide 3-kinase (BCAP). BCAP has a sequence previously proposed as a "cryptic" TIR domain. Here, we present the structure of the N-terminal region of human BCAP and show that it possesses a canonical TIR fold. Dimeric BCAP associates with the TIR domains of TLR2/4 and MAL/TIRAP, suggesting that it is recruited to the TLR signalosome by multitypic TIR-TIR interactions. BCAP also interacts with the p85 subunit of PI3K and phospholipase Cγ, enzymes that deplete plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), and these interactions provide a molecular explanation for BCAP-mediated down-regulation of inflammatory signaling.
Collapse
Affiliation(s)
- Samer Halabi
- From the Department of Biochemistry, Cambridge University, Cambridge CB2 1GA, United Kingdom
| | - Eiki Sekine
- From the Department of Biochemistry, Cambridge University, Cambridge CB2 1GA, United Kingdom
| | - Brett Verstak
- From the Department of Biochemistry, Cambridge University, Cambridge CB2 1GA, United Kingdom
| | - Nicholas J. Gay
- From the Department of Biochemistry, Cambridge University, Cambridge CB2 1GA, United Kingdom, To whom correspondence may be addressed: Dept. of Biochemistry, Cambridge University, Sanger Bldg., 80 Tennis Court Rd., Cambridge CB2 1GA, UK. Tel.: 44-1223-333-626; E-mail:
| | - Martin C. Moncrieffe
- From the Department of Biochemistry, Cambridge University, Cambridge CB2 1GA, United Kingdom, To whom correspondence may be addressed: Dept. of Biochemistry, Cambridge University, Sanger Bldg., 80 Tennis Court Rd., Cambridge CB2 1GA, UK. Tel.: 44-1223-333-626; E-mail:
| |
Collapse
|
17
|
Miao G, Hayashi S. Escargot controls the sequential specification of two tracheal tip cell types by suppressing FGF signaling in Drosophila. Development 2016; 143:4261-4271. [PMID: 27742749 PMCID: PMC5117212 DOI: 10.1242/dev.133322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
Extrinsic branching factors promote the elongation and migration of tubular organs. In the Drosophila tracheal system, Branchless (Drosophila FGF) stimulates the branching program by specifying tip cells that acquire motility and lead branch migration to a specific destination. Tip cells have two alternative cell fates: the terminal cell (TC), which produces long cytoplasmic extensions with intracellular lumen, and the fusion cell (FC), which mediates branch connections to form tubular networks. How Branchless controls this specification of cells with distinct shapes and behaviors is unknown. Here we report that this cell type diversification involves the modulation of FGF signaling by the zinc-finger protein Escargot (Esg), which is expressed in the FC and is essential for its specification. The dorsal branch begins elongation with a pair of tip cells with high FGF signaling. When the branch tip reaches its final destination, one of the tip cells becomes an FC and expresses Esg. FCs and TCs differ in their response to FGF: TCs are attracted by FGF, whereas FCs are repelled. Esg suppresses ERK signaling in FCs to control this differential migratory behavior. Summary: The migratory behavior of tracheal fusion cells is controlled by the FGF-induced expression of the transcription factor Escargot, which subsequently suppresses ERK signaling.
Collapse
Affiliation(s)
- Guangxia Miao
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan .,Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| |
Collapse
|
18
|
Stappert D, Frey N, von Levetzow C, Roth S. Genome-wide identification of Tribolium dorsoventral patterning genes. Development 2016; 143:2443-54. [PMID: 27287803 DOI: 10.1242/dev.130641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 01/24/2023]
Abstract
The gene regulatory network controlling dorsoventral axis formation in insects has undergone drastic evolutionary changes. In Drosophila, a stable long-range gradient of Toll signalling specifies ventral cell fates and restricts BMP signalling to the dorsal half of the embryo. In Tribolium, however, Toll signalling is transient and only indirectly controls BMP signalling. In order to gain unbiased insights into the Tribolium network, we performed comparative transcriptome analyses of embryos with various dorsoventral pattering defects produced by parental RNAi for Toll and BMP signalling components. We also included embryos lacking the mesoderm (produced by Tc-twist RNAi) and characterized similarities and differences between Drosophila and Tribolium twist loss-of-function phenotypes. Using stringent conditions, we identified over 750 differentially expressed genes and analysed a subset with altered expression in more than one knockdown condition. We found new genes with localized expression and showed that conserved genes frequently possess earlier and stronger phenotypes than their Drosophila orthologues. For example, the leucine-rich repeat (LRR) protein Tartan, which has only a minor influence on nervous system development in Drosophila, is essential for early neurogenesis in Tribolium and the Tc-zinc-finger homeodomain protein 1 (Tc-zfh1), the orthologue of which plays a minor role in Drosophila muscle development, is essential for maintaining early Tc-twist expression, indicating an important function for mesoderm specification.
Collapse
Affiliation(s)
- Dominik Stappert
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| | - Nadine Frey
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| | - Cornelia von Levetzow
- Centrum für Integrierte Onkologie (CIO) Köln Bonn, Universitätsklinikum Köln, Kerpener Str. 62, Köln 50937, Germany
| | - Siegfried Roth
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| |
Collapse
|
19
|
Weng M, Wieschaus E. Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly. J Cell Biol 2016; 212:219-29. [PMID: 26754645 PMCID: PMC4738385 DOI: 10.1083/jcb.201508056] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
Although Snail is essential for disassembly of adherens junctions during epithelial-mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin-rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell-cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT.
Collapse
Affiliation(s)
- Mo Weng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540 Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540
| | - Eric Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540 Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08540
| |
Collapse
|
20
|
Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 2016; 17:97-109. [PMID: 26726037 DOI: 10.1038/nrm.2015.14] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.
Collapse
Affiliation(s)
- Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sandrine Etienne-Manneville
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
21
|
Ahmad SM, Bhattacharyya P, Jeffries N, Gisselbrecht SS, Michelson AM. Two Forkhead transcription factors regulate cardiac progenitor specification by controlling the expression of receptors of the fibroblast growth factor and Wnt signaling pathways. Development 2015; 143:306-17. [PMID: 26657774 PMCID: PMC4725337 DOI: 10.1242/dev.122952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/26/2015] [Indexed: 11/20/2022]
Abstract
Cardiogenesis involves the coordinated regulation of multiple biological processes by a finite set of transcription factors (TFs). Here, we show that the Forkhead TFs Checkpoint suppressor homologue (CHES-1-like) and Jumeau (Jumu), which govern cardiac progenitor cell divisions by regulating Polo kinase activity, play an additional, mutually redundant role in specifying the cardiac mesoderm (CM) as eliminating the functions of both Forkhead genes in the same Drosophila embryo results in defective hearts with missing hemisegments. This process is mediated by the Forkhead TFs regulating the fibroblast growth factor receptor Heartless (Htl) and the Wnt receptor Frizzled (Fz): CHES-1-like and jumu exhibit synergistic genetic interactions with htl and fz in CM specification, thereby implying that they function through the same genetic pathways, and transcriptionally activate the expression of both receptor-encoding genes. Furthermore, ectopic overexpression of either htl or fz in the mesoderm partially rescues the defective CM specification phenotype in embryos lacking both Forkhead genes. Together, these data emphasize the functional redundancy that leads to robustness in the cardiac progenitor specification process, and illustrate the pleiotropic functions of Forkhead TFs in different aspects of cardiogenesis. Summary: Checkpoint suppressor homologue and Jumeau, which are known to govern cardiac progenitor cell divisions, play additional, mutually redundant roles in specifying cardiac mesoderm in Drosophila.
Collapse
Affiliation(s)
- Shaad M Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pritha Bhattacharyya
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neal Jeffries
- Office of Biostatistics Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alan M Michelson
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Cruz J, Bota-Rabassedas N, Franch-Marro X. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2. Sci Rep 2015; 5:17806. [PMID: 26632449 PMCID: PMC4668582 DOI: 10.1038/srep17806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/05/2015] [Indexed: 01/25/2023] Open
Abstract
How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult. The ASP emerges from the tracheal branch that connects to the wing disc by the activation of both Bnl-FGF/Btl and EGFR signaling pathways. Together, these pathways promote cell migration and proliferation. In this study we demonstrate that Vein (vn) is the EGF ligand responsible for the activation of the EGFR pathway in the ASP. We also find that the Bnl-FGF/Btl pathway regulates the expression of vn through the transcription factor PointedP2 (PntP2). Furthermore, we show that the FGF target gene escargot (esg) attenuates EGFR signaling at the tip cells of the developing ASP, reducing their mitotic rate to allow proper migration. Altogether, our results reveal a link between Bnl-FGF/Btl and EGFR signaling and provide novel insight into how the crosstalk of these pathways regulates migration and growth.
Collapse
Affiliation(s)
- Josefa Cruz
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| | - Neus Bota-Rabassedas
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Matsuda R, Hosono C, Samakovlis C, Saigo K. Multipotent versus differentiated cell fate selection in the developing Drosophila airways. eLife 2015; 4. [PMID: 26633813 PMCID: PMC4775228 DOI: 10.7554/elife.09646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 12/03/2022] Open
Abstract
Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI:http://dx.doi.org/10.7554/eLife.09646.001 Many organs are composed of tubes of different sizes, shapes and patterns that transport vital substances from one site to another. In the fruit fly species Drosophila melanogaster, oxygen is transported by a tubular network, which divides into finer tubes that allow the oxygen to reach every part of the body. Different parts of the fruit fly’s airways develop from different groups of tracheal precursor cells. P-fate cells form the most 'proximal' tubes (which are found next to the outer layer of the fly). These cells are 'multipotent' stem cells, and have the ability to specialize into many different types of cells during metamorphosis. The more 'distal' branches that emerge from the proximal tubes develop from D-fate cells. These are cells that generally acquire a narrower range of cell identities. By performing a genetic analysis of fruit fly embryos, Matsuda et al. have now identified several proteins and signaling molecules that control whether tracheal precursor cells become D-fate or P-fate cells. For example, several signaling pathways work with a protein called Ventral veinless to cause D-fate cells to develop instead of P-fate cells. However, molecules that prevent signaling occurring via these pathways help P-fate cells to form. Different amounts of the molecules that either promote or hinder these signaling processes are present in different parts of the fly embryo; this helps the airways of the fly to develop in the correct pattern. This work provides a comprehensive view of how cell types with different developmental potentials are positioned in a complex tubular network. This sets a basis for future studies addressing how the respiratory organs – and indeed the entire organism – are sustained. DOI:http://dx.doi.org/10.7554/eLife.09646.002
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden.,ECCPS, Justus Liebig University of Giessen, Giessen, Germany
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Guidance of subcellular tubulogenesis by actin under the control of a synaptotagmin-like protein and Moesin. Nat Commun 2015; 5:3036. [PMID: 24413568 PMCID: PMC3945880 DOI: 10.1038/ncomms4036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/29/2013] [Indexed: 02/05/2023] Open
Abstract
Apical membranes in many polarized epithelial cells show specialized morphological adaptations that fulfil distinct physiological functions. The air-transporting tubules of Drosophila tracheal terminal cells represent an extreme case of membrane specialization. Here we show that Bitesize (Btsz), a synaptotagmin-like protein family member, is needed for luminal membrane morphogenesis. Unlike in multicellular tubes and other epithelia, where it influences apical integrity by affecting adherens junctions, Btsz here acts at a distance from junctions. Localized at the luminal membrane through its tandem C2 domain, it recruits activated Moesin. Both proteins are needed for the integrity of the actin cytoskeleton at the luminal membrane, but not for other pools of F-actin in the cell, nor do actin-dependent processes at the outer membrane, such as filopodial activity or membrane growth depend on Btsz. Btsz and Moesin guide luminal membrane morphogenesis through organizing actin and allowing the incorporation of membrane containing the apical determinant Crumbs. The terminal branches of the Drosophila tracheal network have intracellular tubules that grow through elongation of membrane invaginations. Here, the authors identify the synaptotagmin-like protein Bitesize as a regulator of actin-dependent luminal membrane morphogenesis.
Collapse
|
25
|
Lebreton G, Casanova J. Ligand-binding and constitutive FGF receptors in single Drosophila tracheal cells: Implications for the role of FGF in collective migration. Dev Dyn 2015; 245:372-8. [PMID: 26342211 DOI: 10.1002/dvdy.24345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The migration of individual cells relies on their capacity to evaluate differences across their bodies and to move either toward or against a chemoattractant or a chemorepellent signal respectively. However, the direction of collective migration is believed to depend on the internal organization of the cell cluster while the role of the external signal is limited to single out some cells in the cluster, conferring them with motility properties. RESULTS Here we analyzed the role of Fibroblast Growth Factor (FGF) signaling in collective migration in the Drosophila trachea. While ligand-binding FGF receptor (FGFR) activity in a single cell can drive migration of a tracheal cluster, we show that activity from a constitutively activated FGFR cannot-an observation that contrasts with previously analyzed cases. CONCLUSIONS Our results indicate that individual cells in the tracheal cluster can "read" differences in the distribution of FGFR activity and lead migration of the cluster accordingly. Thus, FGF can act as a chemoattractant rather than as a motogen in collective cell migration. This finding has many implications in both development and pathology.
Collapse
Affiliation(s)
- Gaëlle Lebreton
- Institut de Biologia Molecular de Barcelona (CSIC) and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC) and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Pocha SM, Montell DJ. Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations. Annu Rev Genet 2015; 48:295-318. [PMID: 25421599 DOI: 10.1146/annurev-genet-120213-092218] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The process of cell migration is essential throughout life, driving embryonic morphogenesis and ensuring homeostasis in adults. Defects in cell migration are a major cause of human disease, with excessive migration causing autoimmune diseases and cancer metastasis, whereas reduced capacity for migration leads to birth defects and immunodeficiencies. Myriad studies in vitro have established a consensus view that cell migrations require cell polarization, Rho GTPase-mediated cytoskeletal rearrangements, and myosin-mediated contractility. However, in vivo studies later revealed a more complex picture, including the discovery that cells migrate not only as single units but also as clusters, strands, and sheets. In particular, the role of E-Cadherin in cell motility appears to be more complex than previously appreciated. Here, we discuss recent advances achieved by combining the plethora of genetic tools available to the Drosophila geneticist with live imaging and biophysical techniques. Finally, we discuss the emerging themes such studies have revealed and ponder the puzzles that remain to be solved.
Collapse
Affiliation(s)
- Shirin M Pocha
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California; 93106-9625; ,
| | | |
Collapse
|
27
|
Irizarry J, Stathopoulos A. FGF signaling supports Drosophila fertility by regulating development of ovarian muscle tissues. Dev Biol 2015; 404:1-13. [PMID: 25958090 DOI: 10.1016/j.ydbio.2015.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/29/2022]
Abstract
The thisbe (ths) gene encodes a Drosophila fibroblast growth factor (FGF), and mutant females are viable but sterile suggesting a link between FGF signaling and fertility. Ovaries exhibit abnormal morphology including lack of epithelial sheaths and muscle tissues that surround ovarioles. Here we investigated how FGF influences Drosophila ovary morphogenesis and identified several roles. Heartless (Htl) FGF receptor was found to be expressed within somatic cells at the larval and pupal stages, and phenotypes were uncovered using RNAi. Differentiation of terminal filament cells was affected, but this effect did not alter the ovariole number. In addition, proliferation of epithelial sheath progenitors, the apical cells, was decreased in both htl and ths mutants, while ectopic expression of the Ths ligand led to these cells' over-proliferation suggesting that FGF signaling supports ovarian muscle sheath formation by controlling apical cell number in the developing gonad. Additionally, live imaging of adult ovaries was used to show that htl RNAi mutants, hypomorphic mutants in which epithelial sheaths are present, exhibit abnormal muscle contractions. Collectively, our results demonstrate that proper formation of ovarian muscle tissues is regulated by FGF signaling in the larval and pupal stages through control of apical cell proliferation and is required to support fertility.
Collapse
Affiliation(s)
- Jihyun Irizarry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
28
|
Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron 2014; 83:388-403. [PMID: 25033182 DOI: 10.1016/j.neuron.2014.06.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 11/24/2022]
Abstract
Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.
Collapse
|
29
|
Ukken FP, Aprill I, JayaNandanan N, Leptin M. Slik and the receptor tyrosine kinase Breathless mediate localized activation of Moesin in terminal tracheal cells. PLoS One 2014; 9:e103323. [PMID: 25061859 PMCID: PMC4111555 DOI: 10.1371/journal.pone.0103323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/01/2014] [Indexed: 11/21/2022] Open
Abstract
A key element in the regulation of subcellular branching and tube morphogenesis of the Drosophila tracheal system is the organization of the actin cytoskeleton by the ERM protein Moesin. Activation of Moesin within specific subdomains of cells, critical for its interaction with actin, is a tightly controlled process and involves regulatory inputs from membrane proteins, kinases and phosphatases. The kinases that activate Moesin in tracheal cells are not known. Here we show that the Sterile-20 like kinase Slik, enriched at the luminal membrane, is necessary for the activation of Moesin at the luminal membrane and regulates branching and subcellular tube morphogenesis of terminal cells. Our results reveal the FGF-receptor Breathless as an additional necessary cue for the activation of Moesin in terminal cells. Breathless-mediated activation of Moesin is independent of the canonical MAP kinase pathway.
Collapse
Affiliation(s)
| | - Imola Aprill
- Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - N. JayaNandanan
- Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (NJ); (ML)
| | - Maria Leptin
- Institute of Genetics, University of Cologne, Cologne, Germany
- Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (NJ); (ML)
| |
Collapse
|
30
|
Butí E, Mesquita D, Araújo SJ. Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration. PLoS One 2014; 9:e92682. [PMID: 24651658 PMCID: PMC3961400 DOI: 10.1371/journal.pone.0092682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration.
Collapse
Affiliation(s)
- Elisenda Butí
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Duarte Mesquita
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Sofia J. Araújo
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- * E-mail:
| |
Collapse
|
31
|
Abstract
Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
32
|
Muha V, Müller HAJ. Functions and Mechanisms of Fibroblast Growth Factor (FGF) Signalling in Drosophila melanogaster. Int J Mol Sci 2013; 14:5920-37. [PMID: 23493057 PMCID: PMC3634451 DOI: 10.3390/ijms14035920] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 01/19/2023] Open
Abstract
Intercellular signalling via growth factors plays an important role in controlling cell differentiation and cell movements during the development of multicellular animals. Fibroblast Growth Factor (FGF) signalling induces changes in cellular behaviour allowing cells in the embryo to move, to survive, to divide or to differentiate. Several examples argue that FGF signalling is used in multi-step morphogenetic processes to achieve and maintain a transitional state of the cells required for the control of cell fate. In the genetic model Drosophila melanogaster, FGF signalling via the receptor tyrosine kinases Heartless (Htl) and Breathless (Btl) is particularly well studied. These FGF receptors affect gene expression, cell shape and cell–cell interactions during mesoderm layer formation, caudal visceral muscle (CVM) formation, tracheal morphogenesis and glia differentiation. Here, we will address the current knowledge of the biological functions of FGF signalling in the fly on the tissue, at a cellular and molecular level.
Collapse
Affiliation(s)
- Villö Muha
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD15EH, Scotland, UK.
| | | |
Collapse
|
33
|
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial, evolutionarily conserved process that occurs during development and is essential for shaping embryos. Also implicated in cancer, this morphological transition is executed through multiple mechanisms in different contexts, and studies suggest that the molecular programs governing EMT, albeit still enigmatic, are embedded within developmental programs that regulate specification and differentiation. As we review here, knowledge garnered from studies of EMT during gastrulation, neural crest delamination and heart formation have furthered our understanding of tumor progression and metastasis.
Collapse
Affiliation(s)
- Jormay Lim
- Institute of Molecular Cell Biology, ASTAR, 61 Biopolis Drive, Singapore
| | | |
Collapse
|
34
|
Rudolf A, Hübinger C, Hüsken K, Vogt A, Rebscher N, Önel SF, Renkawitz-Pohl R, Hassel M. The Hydra FGFR, Kringelchen, partially replaces the Drosophila Heartless FGFR. Dev Genes Evol 2012; 223:159-69. [DOI: 10.1007/s00427-012-0424-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
35
|
Avet-Rochex A, Kaul AK, Gatt AP, McNeill H, Bateman JM. Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain. Development 2012; 139:2763-72. [PMID: 22745312 PMCID: PMC3392704 DOI: 10.1242/dev.074179] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
Abstract
Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis. In summary, we have identified two major pathways that control perineural and cortex gliogenesis in the post-embryonic brain and have shown that the molecular circuitry required is lineage specific.
Collapse
Affiliation(s)
- Amélie Avet-Rochex
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Aamna K. Kaul
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Ariana P. Gatt
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Toronto, Ontario M5G 1X5, Canada
| | - Joseph M. Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
36
|
Abstract
The hexosamine biosynthetic pathway, whose end product is UDP-N acetylglucosamine (UDP-GlcNAc), lies at the base of cellular glycosylation pathways, including glycosylation of lipids, formation of heparin sulfated proteoglycans, and N- and O-linked glycosylation of proteins. Forward genetic studies in Drosophila have revealed that mutations in genes encoding different enzymes of the hexosamine biosynthetic pathway result in reduction of UDP-GlcNAc to different extents, with a consequent disruption of distinct glycosylation pathways and developmental processes. A maternal and zygotic loss-of-function screen has identified mutations in nesthocker (nst), which encodes an enzyme in the hexosamine biosynthetic pathway. Embryos lacking maternal and zygotic nst gene products show defective O-GlcNAcylation of a fibroblast growth factor receptor (FGFR)-specific adaptor protein, which impairs FGFR-dependent migration of mesodermal and tracheal cells.
Collapse
Affiliation(s)
- Amin S Ghabrial
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Mariappa D, Sauert K, Mariño K, Turnock D, Webster R, van Aalten DMF, Ferguson MAJ, Müller HAJ. Protein O-GlcNAcylation is required for fibroblast growth factor signaling in Drosophila. Sci Signal 2011; 4:ra89. [PMID: 22375049 DOI: 10.1126/scisignal.2002335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glycosylation is essential for growth factor signaling through N-glycosylation of ligands and receptors and the biosynthesis of proteoglycans as co-receptors. Here, we show that protein O-GlcNAcylation is crucial for fibroblast growth factor (FGF) signaling in Drosophila. We found that nesthocker (nst) encodes a phosphoacetylglucosamine mutase and that nst mutant embryos exhibited low amounts of intracellular uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc), which disrupted protein O-GlcNAcylation. Nst was required for mitogen-activated protein kinase (MAPK) signaling downstream of FGF but not MAPK signaling activated by epidermal growth factor. nst was dispensable for the function of the FGF ligands and the FGF receptor's extracellular domain but was essential in the signal-receiving cells downstream of the FGF receptor. We identified the adaptor protein Downstream of FGF receptor (Dof), which interacts with the FGF receptor, as the relevant target for O-GlcNAcylation in the FGF pathway, suggesting that protein O-GlcNAcylation of the activated receptor complex is essential for FGF signal transduction.
Collapse
Affiliation(s)
- Daniel Mariappa
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Maruyama R, Andrew DJ. Drosophila as a model for epithelial tube formation. Dev Dyn 2011; 241:119-35. [PMID: 22083894 DOI: 10.1002/dvdy.22775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function.
Collapse
Affiliation(s)
- Rika Maruyama
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
39
|
A genetic in vivo system to detect asymmetrically distributed RNA. EMBO Rep 2011; 12:1167-74. [PMID: 21921935 DOI: 10.1038/embor.2011.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 11/08/2022] Open
Abstract
Many RNAs show polarized or otherwise non-random subcellular distributions. To create a method for genome-wide genetic screens for RNAs with asymmetric subcellular distributions, we have combined methods for gene tagging and live imaging of messenger RNA (mRNA). A pilot screen in a highly polarized, differentiated cell in the Drosophila larva, the branched terminal cell of the tracheal system, demonstrates the feasibility of the method for identifying new asymmetrically localized mRNAs in vivo.
Collapse
|
40
|
Moses C, Helman A, Paroush Z, Von Ohlen T. Phosphorylation of Ind by MAP kinase enhances Ind-dependent transcriptional repression. Dev Biol 2011; 360:208-15. [PMID: 21983201 DOI: 10.1016/j.ydbio.2011.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
The Drosophila neuroectoderm is initially subdivided into three longitudinal domains that give rise to columns of neuroblasts. This subdivision is coordinately accomplished by the action of the signaling pathways, Dorsal and Epidermal Growth Factor Receptor (EGFR), in conjunction with the homeodomain proteins, Ventral nervous system defective, Intermediate neuroblasts defective (Ind) and Muscle Segment Homeobox. We previously demonstrated that Ind expression is activated in response to the EGFR pathway. Here we show that EGF signaling subsequently mediates the direct phosphorylation of Ind by MAP kinase, which enhances the capacity of Ind to repress target genes, such as achaete. Specifically, we show that reduced EGF signaling results in diminished repression of achaete in the intermediate column, despite the presence of high levels of Ind protein. We also demonstrate that ectopic activation of MAP kinase results in the lateral expansion of the Ind expression domain with a corresponding reduction in achaete expression. This regulation is also dependent on the co-repressor, Dichaete. Our data indicate that EGF signaling, acting through MAP kinase, impinges on multiple aspects of Ind regulatory activity. While it has been often demonstrated that MAP kinase phosphorylation of transcriptional repressors attenuates their repressor activity, here we provide an example of phosphorylation enhancing repressor activity.
Collapse
Affiliation(s)
- Cade Moses
- Kansas State University, College of Veterinary Medicine, Diagnostic Medicine and Pathobiology, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
41
|
Sen A, Yokokura T, Kankel MW, Dimlich DN, Manent J, Sanyal S, Artavanis-Tsakonas S. Modeling spinal muscular atrophy in Drosophila links Smn to FGF signaling. ACTA ACUST UNITED AC 2011; 192:481-95. [PMID: 21300852 PMCID: PMC3101100 DOI: 10.1083/jcb.201004016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FGF signaling in neurons is regulated by Survival Motor Neuron, a component of a complex that regulates snRNP biogenesis and FGF receptor expression. Spinal muscular atrophy (SMA), a devastating neurodegenerative disorder characterized by motor neuron loss and muscle atrophy, has been linked to mutations in the Survival Motor Neuron (SMN) gene. Based on an SMA model we developed in Drosophila, which displays features that are analogous to the human pathology and vertebrate SMA models, we functionally linked the fibroblast growth factor (FGF) signaling pathway to the Drosophila homologue of SMN, Smn. Here, we characterize this relationship and demonstrate that Smn activity regulates the expression of FGF signaling components and thus FGF signaling. Furthermore, we show that alterations in FGF signaling activity are able to modify the neuromuscular junction defects caused by loss of Smn function and that muscle-specific activation of FGF is sufficient to rescue Smn-associated abnormalities.
Collapse
Affiliation(s)
- Anindya Sen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Clark IBN, Muha V, Klingseisen A, Leptin M, Müller HAJ. Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila. Development 2011; 138:2705-15. [PMID: 21613323 DOI: 10.1242/dev.060277] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms.
Collapse
Affiliation(s)
- Ivan B N Clark
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
43
|
Gervais L, Casanova J. The Drosophila homologue of SRF acts as a boosting mechanism to sustain FGF-induced terminal branching in the tracheal system. Development 2011; 138:1269-74. [PMID: 21385762 DOI: 10.1242/dev.059188] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent data have demonstrated a crucial role for the transcription factor SRF (serum response factor) downstream of VEGF and FGF signalling during branching morphogenesis. This is the case for sprouting angiogenesis in vertebrates, axonal branching in mammals and terminal branching of the Drosophila tracheal system. However, the specific functions of SRF in these processes remain unclear. Here, we establish the relative contributions of the Drosophila homologues of FGF [Branchless (BNL)] and SRF [Blistered (BS)] in terminal tracheal branching. Conversely to an extended view, we show that BNL triggers terminal branching initiation in a DSRF-independent mechanism and that DSRF transcription induced by BNL signalling is required to maintain terminal branch elongation. Moreover, we report that increased and continuous FGF signalling can trigger tracheal cells to develop full-length terminal branches in the absence of DSRF transcription. Our results indicate that DSRF acts as an amplifying step to sustain the progression of terminal branch elongation even in the wild-type conditions of FGF signalling.
Collapse
Affiliation(s)
- Louis Gervais
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, c/ Baldiri Reixac, 10-12, 08028 Barcelona, Spain.
| | | |
Collapse
|
44
|
Drosophila von Hippel-Lindau tumor suppressor gene function in epithelial tubule morphogenesis. Mol Cell Biol 2010; 30:3779-94. [PMID: 20516215 DOI: 10.1128/mcb.01578-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mutations in the human von Hippel-Lindau (VHL) gene are the cause of VHL disease that displays multiple benign and malignant tumors. The VHL gene has been shown to regulate angiogenic potential and glycolic metabolism via its E3 ubiquitin ligase function against the alpha subunit of hypoxia-inducible factor (HIF-alpha). However, many HIF-independent functions of VHL have been identified. Recent evidence also indicates that the canonical function cannot fully explain the VHL mutant cell phenotypes, although it is still unclear how many of these noncanonical functions relate to the pathophysiological processes because of a lack of tractable genetic systems. Here, we report the first genomic mutant phenotype of Drosophila melanogaster VHL (dVHL) in the epithelial tubule network, the trachea, and show that dVHL regulates branch migration and lumen formation via its endocytic function. The endocytic function regulates the surface level of the chemotactic signaling receptor Breathless and promotes clearing of the lumen matrix during maturation of the tracheal tubes. Importantly, the regulatory function in tubular morphogenesis is conserved in the mammalian system, as conditional knockout of Vhl in mouse kidney also resulted in similar cell motility and lumen phenotypes.
Collapse
|
45
|
Caenorhabditis elegans fibroblast growth factor receptor signaling can occur independently of the multi-substrate adaptor FRS2. Genetics 2010; 185:537-47. [PMID: 20308281 DOI: 10.1534/genetics.109.113373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The components of receptor tyrosine kinase signaling complexes help to define the specificity of the effects of their activation. The Caenorhabditis elegans fibroblast growth factor receptor (FGFR), EGL-15, regulates a number of processes, including sex myoblast (SM) migration guidance and fluid homeostasis, both of which require a Grb2/Sos/Ras cassette of signaling components. Here we show that SEM-5/Grb2 can bind directly to EGL-15 to mediate SM chemoattraction. A yeast two-hybrid screen identified SEM-5 as able to interact with the carboxy-terminal domain (CTD) of EGL-15, a domain that is specifically required for SM chemoattraction. This interaction requires the SEM-5 SH2-binding motifs present in the CTD (Y(1009) and Y(1087)), and these sites are required for the CTD role of EGL-15 in SM chemoattraction. SEM-5, but not the SEM-5 binding sites located in the CTD, is required for the fluid homeostasis function of EGL-15, indicating that SEM-5 can link to EGL-15 through an alternative mechanism. The multi-substrate adaptor protein FRS2 serves to link vertebrate FGFRs to Grb2. In C. elegans, an FRS2-like gene, rog-1, functions upstream of a Ras/MAPK pathway for oocyte maturation but is not required for EGL-15 function. Thus, unlike the vertebrate FGFRs, which require the multi-substrate adaptor FRS2 to recruit Grb2, EGL-15 can recruit SEM-5/Grb2 directly.
Collapse
|
46
|
A novel conserved phosphotyrosine motif in the Drosophila fibroblast growth factor signaling adaptor Dof with a redundant role in signal transmission. Mol Cell Biol 2010; 30:2017-27. [PMID: 20154139 DOI: 10.1128/mcb.01436-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The fibroblast growth factor receptor (FGFR) signals through adaptors constitutively associated with the receptor. In Drosophila melanogaster, the FGFR-specific adaptor protein Downstream-of-FGFR (Dof) becomes phosphorylated upon receptor activation at several tyrosine residues, one of which recruits Corkscrew (Csw), the Drosophila homolog of SHP2, which provides a molecular link to mitogen-activated protein kinase (MAPK) activation. However, the Csw pathway is not the only link from Dof to MAPK. In this study, we identify a novel phosphotyrosine motif present in four copies in Dof and also found in other insect and vertebrate signaling molecules. We show that these motifs are phosphorylated and contribute to FGF signal transduction. They constitute one of three sets of phosphotyrosines that act redundantly in signal transmission: (i) a Csw binding site, (ii) four consensus Grb2 recognition sites, and (iii) four novel tyrosine motifs. We show that Src64B binds to Dof and that Src kinases contribute to FGFR-dependent MAPK activation. Phosphorylation of the novel tyrosine motifs is required for the interaction of Dof with Src64B. Thus, Src64B recruitment to Dof through the novel phosphosites can provide a new link to MAPK activation and other cellular responses. This may give a molecular explanation for the involvement of Src kinases in FGF-dependent developmental events.
Collapse
|
47
|
Affiliation(s)
- Antoine A Khalil
- Department of Dermatology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
48
|
Miyamoto M, Iwashita S, Yamaguchi S, Ono Y. Role of nm23 in the regulation of cell shape and migration via Rho family GTPase signals. Mol Cell Biochem 2009; 329:175-9. [PMID: 19381785 DOI: 10.1007/s11010-009-0106-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 04/02/2009] [Indexed: 12/13/2022]
Abstract
Rho family small GTPase plays a key role in the regulation of cell shape and migration in mammalian cells. Constitutive activation of Rho GTPase leads to the aberrant cell morphology and migration. We identified nm23-H2 as a binding partner of Lbc proto-oncogene product, which specifically activates RhoA, and revealed that nm23-H2 could act as a negative regulator of Rho activity. Furthermore, we found that Lbc, nm23-H2 and ICAP1-alpha could form tertial complex in cells, and this complex formation was thought to be critical for cell migration stimulated by integrin. It is reported that nm23-H1 bound to Tiam1 and Dbl, which activates Rac and Cdc42 small GTPase, respectively. We discuss the role of nm23 in the regulation of cell morphology and cell migration via Rho family GTPases.
Collapse
Affiliation(s)
- Masaaki Miyamoto
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan.
| | | | | | | |
Collapse
|
49
|
van Impel A, Schumacher S, Draga M, Herz HM, Grosshans J, Müller HAJ. Regulation of the Rac GTPase pathway by the multifunctional Rho GEF Pebble is essential for mesoderm migration in the Drosophila gastrula. Development 2009; 136:813-22. [PMID: 19176590 PMCID: PMC2685947 DOI: 10.1242/dev.026203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2009] [Indexed: 01/09/2023]
Abstract
The Drosophila guanine nucleotide exchange factor Pebble (Pbl) is essential for cytokinesis and cell migration during gastrulation. In dividing cells, Pbl promotes Rho1 activation at the cell cortex, leading to formation of the contractile actin-myosin ring. The role of Pbl in fibroblast growth factor-triggered mesoderm spreading during gastrulation is less well understood and its targets and subcellular localization are unknown. To address these issues we performed a domain-function study in the embryo. We show that Pbl is localized to the nucleus and the cell cortex in migrating mesoderm cells and found that, in addition to the PH domain, the conserved C-terminal tail of the protein is crucial for cortical localization. Moreover, we show that the Rac pathway plays an essential role during mesoderm migration. Genetic and biochemical interactions indicate that during mesoderm migration, Pbl functions by activating a Rac-dependent pathway. Furthermore, gain-of-function and rescue experiments suggest an important regulatory role of the C-terminal tail of Pbl for the selective activation of Rho1-versus Rac-dependent pathways.
Collapse
Affiliation(s)
- Andreas van Impel
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | |
Collapse
|
50
|
|