1
|
Warfield L, Donczew R, Mahendrawada L, Hahn S. Yeast Mediator facilitates transcription initiation at most promoters via a Tail-independent mechanism. Mol Cell 2022; 82:4033-4048.e7. [PMID: 36208626 PMCID: PMC9637718 DOI: 10.1016/j.molcel.2022.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Mediator (MED) is a conserved factor with important roles in basal and activated transcription. Here, we investigate the genome-wide roles of yeast MED by rapid depletion of its activator-binding domain (Tail) and monitoring changes in nascent transcription. Rapid Tail depletion surprisingly reduces transcription from only a small subset of genes. At most of these Tail-dependent genes, in unperturbed conditions, MED is detected at both the UASs and promoters. In contrast, at most Tail-independent genes, we find MED primarily at promoters but not at the UASs. These results suggest that MED Tail and activator-mediated MED recruitment regulates only a small subset of genes. Furthermore, we define three classes of genes that differ in PIC assembly pathways and the requirements for MED Tail, SAGA, TFIID, and BET factors Bdf1/2. Our combined results have broad implications for the roles of MED, other coactivators, and mechanisms of transcriptional regulation at different gene classes.
Collapse
Affiliation(s)
- Linda Warfield
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Rafal Donczew
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Lakshmi Mahendrawada
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA
| | - Steven Hahn
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Mailstop A1-162, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Morse RH. Function and dynamics of the Mediator complex: novel insights and new frontiers. Transcription 2022; 13:39-52. [PMID: 35708525 PMCID: PMC9467533 DOI: 10.1080/21541264.2022.2085502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Mediator complex was discovered in the early 1990s as a biochemically fractionated factor from yeast extracts that was necessary for activator-stimulated transcriptional activation to be observed in in vitro transcription assays. The structure of this large, multi-protein complex is now understood in great detail, and novel genetic approaches have provided rich insights into its dynamics during transcriptional activation and the mechanism by which it facilitates activated transcription. Here I review recent findings and unanswered questions regarding Mediator dynamics, the roles of individual subunits, and differences between its function in yeast and metazoan cells.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States
| |
Collapse
|
3
|
Deshpande N, Jordan R, Henderson Pozzi M, Bryk M. Histone 3 lysine 4 monomethylation supports activation of transcription in S. cerevisiae during nutrient stress. Curr Genet 2022; 68:181-194. [PMID: 35041077 PMCID: PMC8976815 DOI: 10.1007/s00294-022-01226-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Mono-methylation of the fourth lysine on the N-terminal tail of histone H3 was found to support the induction of RNA polymerase II transcription in S. cerevisiae during nutrient stress. In S. cerevisiae, the mono-, di- and tri-methylation of lysine 4 on histone H3 (H3K4) is catalyzed by the protein methyltransferase, Set1. The three distinct methyl marks on H3K4 act in discrete ways to regulate transcription. Nucleosomes enriched with tri-methylated H3K4 are usually associated with active transcription whereas di-methylated H3K4 is associated with gene repression. Mono-methylated H3K4 has been shown to repress gene expression in S. cerevisiae and is detected at enhancers and promoters in eukaryotes. S. cerevisiae set1Δ mutants unable to methylate H3K4 exhibit growth defects during histidine starvation. The growth defects are rescued by either a wild-type allele of SET1 or partial-function alleles of set1, including a mutant that predominantly generates H3K4me1 and not H3K4me3. Rescue of the growth defect is associated with induction of the HIS3 gene. Growth defects observed when set1Δ cultures were starved for isoleucine and valine were also rescued by wild-type SET1 or partial-function set1 alleles. The results show that H3K4me1, in the absence of H3K4me3, supports transcription of the HIS3 gene and expression of one or more of the genes required for biosynthesis of isoleucine and valine during nutrient stress. Set1-like methyltransferases are evolutionarily conserved, and research has linked their functions to developmental gene regulation and several cancers in higher eukaryotes. Identification of mechanisms of H3K4me1-mediated activation of transcription in budding yeast will provide insight into gene regulation in all eukaryotes.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Rachel Jordan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
- iBio, 8800 HSC Blvd, Bryan, TX, 77807, USA
| | - Michelle Henderson Pozzi
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Wolff MR, Schmid A, Korber P, Gerland U. Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. eLife 2021; 10:58394. [PMID: 33666171 PMCID: PMC8004102 DOI: 10.7554/elife.58394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chromatin dynamics are mediated by remodeling enzymes and play crucial roles in gene regulation, as established in a paradigmatic model, the Saccharomyces cerevisiae PHO5 promoter. However, effective nucleosome dynamics, that is, trajectories of promoter nucleosome configurations, remain elusive. Here, we infer such dynamics from the integration of published single-molecule data capturing multi-nucleosome configurations for repressed to fully active PHO5 promoter states with other existing histone turnover and new chromatin accessibility data. We devised and systematically investigated a new class of 'regulated on-off-slide' models simulating global and local nucleosome (dis)assembly and sliding. Only seven of 68,145 models agreed well with all data. All seven models involve sliding and the known central role of the N-2 nucleosome, but regulate promoter state transitions by modulating just one assembly rather than disassembly process. This is consistent with but challenges common interpretations of previous observations at the PHO5 promoter and suggests chromatin opening by binding competition.
Collapse
Affiliation(s)
| | - Andrea Schmid
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Philipp Korber
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ulrich Gerland
- Department of Physics, Technical University of Munich, Garching, Germany
| |
Collapse
|
6
|
Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II. PLoS Genet 2020; 16:e1008979. [PMID: 32877410 PMCID: PMC7467262 DOI: 10.1371/journal.pgen.1008979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
The ascomycete Trichoderma reesei is a highly prolific cellulase producer. While XYR1 (Xylanase regulator 1) has been firmly established to be the master activator of cellulase gene expression in T. reesei, its precise transcriptional activation mechanism remains poorly understood. In the present study, TrGAL11, a component of the Mediator tail module, was identified as a putative interacting partner of XYR1. Deletion of Trgal11 markedly impaired the induced expression of most (hemi)cellulase genes, but not that of the major β-glucosidase encoding genes. This differential involvement of TrGAL11 in the full induction of cellulase genes was reflected by the RNA polymerase II (Pol II) recruitment on their core promoters, indicating that TrGAL11 was required for the efficient transcriptional initiation of the majority of cellulase genes. In addition, we found that TrGAL11 recruitment to cellulase gene promoters largely occurred in an XYR1-dependent manner. Although xyr1 expression was significantly tuned down without TrGAL11, the binding of XYR1 to cellulase gene promoters did not entail TrGAL11. These results indicate that TrGAL11 represents a direct in vivo target of XYR1 and may play a critical role in contributing to Mediator and the following RNA Pol II recruitment to ensure the induced cellulase gene expression. As a model cellulolytic fungus, T. reesei is capable of rapidly producing a large quantity of (hemi)cellulases when appropriate substrates are present. This outstanding characteristic has made T. reesei a prominent producer of cellulase in industry and also a model organism for studying eukaryotic gene expression. The expression of these hydrolytic enzymes encoding genes in T. reesei is precisely regulated at a transcriptional level and controlled by a suite of transcription factors. Among others, the transcription activator XYR1 has been firmly established to be absolutely necessary for activating the expression of almost all cellulase genes. However, the precise mechanism it acts remains largely unknown. In eukaryotes, the multisubunit Mediator complex has been shown to be critical for expression of most, if not all, protein-coding genes by conveying regulatory information to the basal transcription machinery. Here, we find that XYR1 interacts with the Mediator tail module subunit, TrGAL11, which contributes to cellobiohydrolase (cbh) and endoglucanase (eg) genes but not β-glucosidase (bgl) genes expression. Thus, the induced XYR1 binding to cellulase gene promoters led to TrGAL11 and RNA Pol II recruitment to these promoters. These results show that TrGAL11 represents a direct in vivo target of XYR1 and provide evidence for not only the evolutionarily conserved function of Mediator, but also for the existence of some subtle difference in its action to mediate gene expression in different eukaryotes.
Collapse
|
7
|
Interplay among ATP-Dependent Chromatin Remodelers Determines Chromatin Organisation in Yeast. BIOLOGY 2020; 9:biology9080190. [PMID: 32722483 PMCID: PMC7466152 DOI: 10.3390/biology9080190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cellular DNA is packaged into chromatin, which is composed of regularly-spaced nucleosomes with occasional gaps corresponding to active regulatory elements, such as promoters and enhancers, called nucleosome-depleted regions (NDRs). This chromatin organisation is primarily determined by the activities of a set of ATP-dependent remodeling enzymes that are capable of moving nucleosomes along DNA, or of evicting nucleosomes altogether. In yeast, the nucleosome-spacing enzymes are ISW1 (Imitation SWitch protein 1), Chromodomain-Helicase-DNA-binding (CHD)1, ISW2 (Imitation SWitch protein 2) and INOsitol-requiring 80 (INO80); the nucleosome eviction enzymes are the SWItching/Sucrose Non-Fermenting (SWI/SNF) family, the Remodeling the Structure of Chromatin (RSC) complexes and INO80. We discuss the contributions of each set of enzymes to chromatin organisation. ISW1 and CHD1 are the major spacing enzymes; loss of both enzymes results in major chromatin disruption, partly due to the appearance of close-packed di-nucleosomes. ISW1 and CHD1 compete to set nucleosome spacing on most genes. ISW1 is dominant, setting wild type spacing, whereas CHD1 sets short spacing and may dominate on highly-transcribed genes. We propose that the competing remodelers regulate spacing, which in turn controls the binding of linker histone (H1) and therefore the degree of chromatin folding. Thus, genes with long spacing bind more H1, resulting in increased chromatin compaction. RSC, SWI/SNF and INO80 are involved in NDR formation, either directly by nucleosome eviction or repositioning, or indirectly by affecting the size of the complex that resides in the NDR. The nature of this complex is controversial: some suggest that it is a RSC-bound “fragile nucleosome”, whereas we propose that it is a non-histone transcription complex. In either case, this complex appears to serve as a barrier to nucleosome formation, resulting in the formation of phased nucleosomal arrays on both sides.
Collapse
|
8
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Yu X, Meng X, Liu Y, Li N, Zhang A, Wang TJ, Jiang L, Pang J, Zhao X, Qi X, Zhang M, Wang S, Liu B, Xu ZY. The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize. PLANT MOLECULAR BIOLOGY 2018; 97:451-465. [PMID: 29956114 DOI: 10.1007/s11103-018-0751-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 05/16/2023]
Abstract
The maize chromatin remodeler ZmCHB101 plays an essential role in the osmotic stress response. ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Drought and osmotic stresses are recurring conditions that severely constrain crop production. Evidence accumulated in the model plant Arabidopsis thaliana suggests that core components of SWI/SNF chromatin remodeling complexes play essential roles in abiotic stress responses. However, how maize SWI/SNF chromatin remodeling complexes function in osmotic and drought stress responses remains unknown. Here we show that ZmCHB101, a homolog of A. thaliana SWI3D in maize, plays essential roles in osmotic and dehydration stress responses. ZmCHB101-RNA interference (RNAi) transgenic plants displayed osmotic, salt and drought stress-sensitive phenotypes. Genome-wide RNA-sequencing analysis revealed that ZmCHB101 impacts the transcriptional expression landscape of osmotic stress-responsive genes. Intriguingly, ZmCHB101 controls nucleosome densities around transcription start sites of essential stress-responsive genes. Furthermore, we identified that ZmCHB101 associates with RNA polymerase II (RNAPII) in vivo and is a prerequisite for the proper occupancy of RNAPII on the proximal regions of transcription start sites of stress-response genes. Taken together, our findings suggest that ZmCHB101 affects gene expression by remodeling chromatin states and controls RNAPII occupancies in maize under osmotic stress.
Collapse
Affiliation(s)
- Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
- Department of Bioengineering, Jilin Agricultural Science and Technology College, Jilin, People's Republic of China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Xinxin Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Xin Qi
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, People's Republic of China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, People's Republic of China.
| |
Collapse
|
10
|
Jeronimo C, Langelier MF, Bataille AR, Pascal JM, Pugh BF, Robert F. Tail and Kinase Modules Differently Regulate Core Mediator Recruitment and Function In Vivo. Mol Cell 2016; 64:455-466. [PMID: 27773677 DOI: 10.1016/j.molcel.2016.09.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Marie-France Langelier
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 456A North Frear Laboratory, University Park, PA 16802, USA
| | - John M Pascal
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 456A North Frear Laboratory, University Park, PA 16802, USA
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
11
|
Recruitment of Saccharomyces cerevisiae Cmr1/Ydl156w to Coding Regions Promotes Transcription Genome Wide. PLoS One 2016; 11:e0148897. [PMID: 26848854 PMCID: PMC4744024 DOI: 10.1371/journal.pone.0148897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/25/2016] [Indexed: 12/03/2022] Open
Abstract
Cmr1 (changed mutation rate 1) is a largely uncharacterized nuclear protein that has recently emerged in several global genetic interaction and protein localization studies. It clusters with proteins involved in DNA damage and replication stress response, suggesting a role in maintaining genome integrity. Under conditions of proteasome inhibition or replication stress, this protein localizes to distinct sub-nuclear foci termed as intranuclear quality control (INQ) compartments, which sequester proteins for their subsequent degradation. Interestingly, it also interacts with histones, chromatin remodelers and modifiers, as well as with proteins involved in transcription including subunits of RNA Pol I and Pol III, but not with those of Pol II. It is not known whether Cmr1 plays a role in regulating transcription of Pol II target genes. Here, we show that Cmr1 is recruited to the coding regions of transcribed genes of S. cerevisiae. Cmr1 occupancy correlates with the Pol II occupancy genome-wide, indicating that it is recruited to coding sequences in a transcription-dependent manner. Cmr1-enriched genes include Gcn4 targets and ribosomal protein genes. Furthermore, our results show that Cmr1 recruitment to coding sequences is stimulated by Pol II CTD kinase, Kin28, and the histone deacetylases, Rpd3 and Hos2. Finally, our genome-wide analyses implicate Cmr1 in regulating Pol II occupancy at transcribed coding sequences. However, it is dispensable for maintaining co-transcriptional histone occupancy and histone modification (acetylation and methylation). Collectively, our results show that Cmr1 facilitates transcription by directly engaging with transcribed coding regions.
Collapse
|
12
|
Qiu H, Chereji RV, Hu C, Cole HA, Rawal Y, Clark DJ, Hinnebusch AG. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation. Genome Res 2015; 26:211-25. [PMID: 26602697 PMCID: PMC4728374 DOI: 10.1101/gr.196337.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022]
Abstract
Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cuihua Hu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yashpal Rawal
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
14
|
Cole HA, Ocampo J, Iben JR, Chereji RV, Clark DJ. Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases. Nucleic Acids Res 2014; 42:12512-22. [PMID: 25348398 PMCID: PMC4227747 DOI: 10.1093/nar/gku1013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic chromatin is composed of nucleosomes, which contain nearly two coils of DNA wrapped around a central histone octamer. The octamer contains an H3-H4 tetramer and two H2A-H2B dimers. Gene activation is associated with chromatin disruption: a wider nucleosome-depleted region (NDR) at the promoter and reduced nucleosome occupancy over the coding region. Here, we examine the nature of disrupted chromatin after induction, using MNase-seq to map nucleosomes and subnucleosomes, and a refined high-resolution ChIP-seq method to map H4, H2B and RNA polymerase II (Pol II) genome-wide. Over coding regions, induced genes show a differential loss of H2B relative to H4, which correlates with Pol II density and the appearance of subnucleosomes. After induction, Pol II is surprisingly low at the promoter, but accumulates on the gene and downstream of the termination site, implying that dissociation is very slow. Thus, induction-dependent chromatin disruption reflects both eviction of H2A-H2B dimers and the presence of queued Pol II elongation complexes. We propose that slow Pol II dissociation after transcription is a major factor in chromatin disruption and that it may be of critical importance in gene regulation.
Collapse
Affiliation(s)
- Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - Josefina Ocampo
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - James R Iben
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - Răzvan V Chereji
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| |
Collapse
|
15
|
Wang B, Kettenbach AN, Gerber SA, Loros JJ, Dunlap JC. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet 2014; 10:e1004599. [PMID: 25254987 PMCID: PMC4177678 DOI: 10.1371/journal.pgen.1004599] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/13/2014] [Indexed: 12/23/2022] Open
Abstract
In the negative feedback loop comprising the Neurospora circadian oscillator, the White Collar Complex (WCC) formed from White Collar-1 (WC-1) and White Collar-2 (WC-2) drives transcription of the circadian pacemaker gene frequency (frq). Although FRQ-dependent repression of WCC has been extensively studied, the mechanism by which the WCC initiates a circadian cycle remains elusive. Structure/function analysis of WC-1 eliminated domains previously thought to transactivate frq expression but instead identified amino acids 100–200 as essential for frq circadian expression. A proteomics-based search for coactivators with WCC uncovered the SWI/SNF (SWItch/Sucrose NonFermentable) complex: SWI/SNF interacts with WCC in vivo and in vitro, binds to the Clock box in the frq promoter, and is required both for circadian remodeling of nucleosomes at frq and for rhythmic frq expression; interestingly, SWI/SNF is not required for light-induced frq expression. These data suggest a model in which WC-1 recruits SWI/SNF to remodel and loop chromatin at frq, thereby activating frq expression to initiate the circadian cycle. Circadian clocks govern behavior in a wide variety of organisms. These clocks are assembled in such a way that proteins encoded by a few dedicated “clock genes” form a complex that acts to reduce their own expression. That is, the genes and proteins participate in a negative feedback loop, and so long as the feedback has delays built in, this system will oscillate. The feedback loops that underlie circadian rhythms in fungi and animals are quite similar in many ways, and while much is known about the proteins themselves, both those that activate the dedicated clock genes and the clock proteins that repress their own expression, relatively little is known about how the initial expression of the clock genes is activated. In Neurospora, a fungal model for these clocks, the proteins that activate expression of the clock gene “frequency” bind to DNA far away from where the coding part of the gene begins, and a mystery has been how this action-at-a-distance works. The answer revealed here is that the activating proteins recruit other proteins to unwrap the DNA and bring the distal site close to the place where the coding part of the gene begins.
Collapse
Affiliation(s)
- Bin Wang
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Arminja N. Kettenbach
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
16
|
Swygert SG, Peterson CL. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:728-36. [PMID: 24583555 DOI: 10.1016/j.bbagrm.2014.02.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 01/08/2023]
Abstract
Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Sarah G Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Mol Cell Biol 2014; 34:1547-63. [PMID: 24550006 DOI: 10.1128/mcb.01060-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A common function of the TFIID and SAGA complexes, which are recruited by transcriptional activators, is to deliver TBP to promoters to stimulate transcription. Neither the relative contributions of the five shared TBP-associated factor (TAF) subunits in TFIID and SAGA nor the requirement for different domains in shared TAFs for transcriptional activation is well understood. In this study, we uncovered the essential requirement for the highly conserved C-terminal region (CRD) of Taf9, a shared TAF, for transcriptional activation in yeast. Transcriptome profiling performed under Gcn4-activating conditions showed that the Taf9 CRD is required for induced expression of ∼9% of the yeast genome. The CRD was not essential for the Taf9-Taf6 interaction, TFIID or SAGA integrity, or Gcn4 interaction with SAGA in cell extracts. Microarray profiling of a SAGA mutant (spt20Δ) yielded a common set of genes induced by Spt20 and the Taf9 CRD. Chromatin immunoprecipitation (ChIP) assays showed that, although the Taf9 CRD mutation did not impair Gcn4 occupancy, the occupancies of TFIID, SAGA, and the preinitiation complex were severely impaired at several promoters. These results suggest a crucial role for the Taf9 CRD in genome-wide transcription and highlight the importance of conserved domains, other than histone fold domains, as a common determinant for TFIID and SAGA functions.
Collapse
|
18
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
19
|
Dynamic changes in genomic histone association and modification during activation of the ASNS and ATF3 genes by amino acid limitation. Biochem J 2013; 449:219-29. [PMID: 22978410 DOI: 10.1042/bj20120958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amino acid deprivation of mammalian cells triggers several signalling pathways, the AAR (amino acid response), that results in transcriptional activation. For the ASNS (asparagine synthetase) and ATF3 (activating transcription factor 3) genes, increased transcription occurs in conjunction with recruitment of ATF4 to the gene. In HepG2 cells, analysis of the ASNS and ATF3 genes during AAR activation revealed increases in histone H3K4me3 (histone 3 trimethylated Lys4) and H4Ac (acetylated histone 4) levels, marks associated with active transcription, but a concurrent loss of total H3 protein near the promoter. The dynamic nature of AAR-regulated transcription was illustrated by a decline in ASNS transcription activity within minutes after removal of the AAR stress and a return to basal levels by 2 h. Reversal of ASNS transcription occurred in parallel with decreased promoter-associated H4Ac and ATF4 binding. However, the reduction in histone H3 and increase in H3K4me3 were not reversed. In yeast, persistence of H3K4me3 has been proposed to be a 'memory' mark of gene activity that alters the responsiveness of the gene, but the time course and magnitude of ASNS induction was unaffected when cells were challenged with a second round of AAR activation. The results of the present study document changes in gene-associated nucleosome abundance and histone modifications in response to amino-acid-dependent transcription.
Collapse
|
20
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
21
|
Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J 2011; 31:44-57. [PMID: 21971086 DOI: 10.1038/emboj.2011.362] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 09/07/2011] [Indexed: 11/08/2022] Open
Abstract
The evolutionarily conserved Mediator complex is required for transcription of nearly all RNA Pol II-dependent promoters, with the tail module serving to recruit Mediator to active promoters in current models. However, transcriptional dependence on tail module subunits varies in a gene-specific manner, and the generality of the tail module requirement for transcriptional activation has not been explored. Here, we show that tail module subunits function redundantly to recruit Mediator to promoters in yeast, and transcriptome analysis shows stronger effects on genome-wide expression in a double-tail subunit deletion mutant than in single-subunit deletion mutants. Unexpectedly, TATA-containing and SAGA-dependent genes were much more affected by impairment of tail module function than were TFIID-dependent genes. Consistent with this finding, Mediator and preinitiation complex association with SAGA-dependent promoters is substantially reduced in gal11/med15Δ med3Δ yeast, whereas association of TBP, Pol II, and other Mediator modules with TFIID-dependent genes is largely independent of the tail module. Thus, we have identified a connection between the Mediator tail module and the division of promoter dependence between TFIID and SAGA.
Collapse
|
22
|
Abstract
How is specificity transmitted over long distances at the molecular level? REs (regulatory elements) are often far from transcription start sites. In the present review we discuss possible mechanisms to explain how information from specific REs is conveyed to the basal transcription machinery through TFs (transcription factors) and the Mediator complex. We hypothesize that this occurs through allosteric pathways: binding of a TF to a RE results in changes in the AD (activation domain) of the TF, which binds to Mediator and alters the distribution of the Mediator conformations, thereby affecting transcription initiation/activation. We argue that Mediator is formed by highly disordered proteins with large densely packed interfaces that make efficient long-range signal propagation possible. We suggest two possible general mechanisms for Mediator action: one in which Mediator influences PIC (pre-initiation complex) assembly and transcription initiation, and another in which Mediator exerts its effect on the already assembled but stalled transcription complex. We summarize (i) relevant information from the literature about Mediator composition, organization and structure; (ii) Mediator interaction partners and their effect on Mediator conformation, function and correlation to the RNA Pol II (polymerase II) CTD (C-terminal domain) phosphorylation; and (iii) propose that different allosteric signal propagation pathways in Mediator relate to PIC assembly and polymerase activation of the stalled transcription complex. The emerging picture provides for the first time a mechanistic view of allosteric signalling from the RE sequence to transcription activation, and an insight into how gene specificity and signal transmission can take place in transcription initiation.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702, U.S.A
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Conaway RC, Conaway JW. Origins and activity of the Mediator complex. Semin Cell Dev Biol 2011; 22:729-34. [PMID: 21821140 DOI: 10.1016/j.semcdb.2011.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022]
Abstract
The Mediator is a large, multisubunit RNA polymerase II transcriptional regulator that was first identified in Saccharomyces cerevisiae as a factor required for responsiveness of Pol II and the general initiation factors to DNA binding transactivators. Since its discovery in yeast, Mediator has been shown to be an integral and highly evolutionarily conserved component of the Pol II transcriptional machinery with critical roles in multiple stages of transcription, from regulation of assembly of the Pol II initiation complex to regulation of Pol II elongation. Here we provide a brief overview of the evolutionary origins of Mediator, its subunit composition, and its remarkably diverse collection of activities in Pol II transcription.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | | |
Collapse
|
24
|
Ma B, Tsai CJ, Haliloğlu T, Nussinov R. Dynamic allostery: linkers are not merely flexible. Structure 2011; 19:907-17. [PMID: 21742258 PMCID: PMC6361528 DOI: 10.1016/j.str.2011.06.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/05/2011] [Accepted: 06/07/2011] [Indexed: 12/19/2022]
Abstract
Most proteins consist of multiple domains. How do linkers efficiently transfer information between sites that are on different domains to activate the protein? Mere flexibility only implies that the conformations would be sampled. For fast timescales between triggering events and cellular response, which often involves large conformational change, flexibility on its own may not constitute a good solution. We posit that successive conformational states along major allosteric propagation pathways are pre-encoded in linker sequences where each state is encoded by the previous one. The barriers between these states that are hierarchically populated are lower, achieving faster timescales even for large conformational changes. We further propose that evolution has optimized the linker sequences and lengths for efficiency, which explains why mutations in linkers may affect protein function and review the literature in this light.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Türkan Haliloğlu
- Polymer Research Center and Chemical Engineering Department, Bogazici University, Bebek-Istanbul 34342, Turkey
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
25
|
Weider M, Schröder A, Klebl F, Sauer N. A novel mechanism for target gene-specific SWI/SNF recruitment via the Snf2p N-terminus. Nucleic Acids Res 2011; 39:4088-98. [PMID: 21278159 PMCID: PMC3105400 DOI: 10.1093/nar/gkr004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chromatin-remodeling complexes regulate the expression of genes in all eukaryotic genomes. The SWI/SNF complex of Saccharomyces cerevisiae is recruited to its target promoters via interactions with selected transcription factors. Here, we show that the N-terminus of Snf2p, the chromatin remodeling core unit of the SWI/SNF complex, is essential for the expression of VHT1, the gene of the plasma membrane H+/biotin symporter, and of BIO5, the gene of a 7-keto-8-aminopelargonic acid transporter, biotin biosynthetic precursor. chromatin immunoprecipitation (ChIP) analyses demonstrate that Vhr1p, the transcriptional regulator of VHT1 and BIO5 expression, is responsible for the targeting of Snf2p to the VHT1 promoter at low biotin. We identified an Snf2p mutant, Snf2p-R15C, that specifically abolishes the induction of VHT1 and BIO5 but not of other Snf2p-regulated genes, such as GAL1, SUC2 or INO1. We present a novel mechanism of target gene-specific SWI/SNF recruitment via Vhr1p and a conserved N-terminal Snf2p domain.
Collapse
Affiliation(s)
| | | | | | - N. Sauer
- *To whom correspondence should be addressed. Tel: + 49 9131 85 28212; Fax: + 49 9131 85 28751;
| |
Collapse
|
26
|
Du Z, Crow ET, Kang HS, Li L. Distinct subregions of Swi1 manifest striking differences in prion transmission and SWI/SNF function. Mol Cell Biol 2010; 30:4644-55. [PMID: 20679490 PMCID: PMC2950522 DOI: 10.1128/mcb.00225-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/18/2010] [Accepted: 07/18/2010] [Indexed: 11/20/2022] Open
Abstract
We have recently reported that the yeast chromatin-remodeling factor Swi1 can exist as a prion, [SWI(+)], demonstrating a link between prionogenesis and global transcriptional regulation. To shed light on how the Swi1 conformational switch influences Swi1 function and to define the sequence and structural requirements for [SWI(+)] formation and propagation, we functionally dissected the Swi1 molecule. We show here that the [SWI(+)] prion features are solely attributable to the first 327 amino acid residues (N), a region that is asparagine rich. N was aggregated in [SWI(+)] cells but diffuse in [swi(-)] cells; chromosomal deletion of the N-coding region resulted in [SWI(+)] loss, and recombinant N peptide was able to form infectious amyloid fibers in vitro, enabling [SWI(+)] de novo formation through a simple transformation. Although the glutamine-rich middle region (Q) was not sufficient to aggregate in [SWI(+)] cells or essential for SWI/SNF function, it significantly modified the Swi1 aggregation pattern and Swi1 function. We also show that excessive Swi1 incurred Li(+)/Na(+) sensitivity and that the N/Q regions are important for this gain of sensitivity. Taken together, our results provide the final proof of "protein-only" transmission of [SWI(+)] and demonstrate that the widely distributed "dispensable" glutamine/asparagine-rich regions/motifs might have important and divergent biological functions.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Molecular Pharmacology and Biological Chemistry, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Emily T. Crow
- Department of Molecular Pharmacology and Biological Chemistry, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hyun Seok Kang
- Department of Molecular Pharmacology and Biological Chemistry, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
27
|
Krajewski WA, Vassiliev OL. The Saccharomyces cerevisiae Swi/Snf Complex Can Catalyze Formation of Dimeric Nucleosome Structures in Vitro. Biochemistry 2010; 49:6531-40. [DOI: 10.1021/bi1006157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Oleg L. Vassiliev
- Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Abstract
Regulation of eukaryotic gene expression is far more complex than one might have imagined 30 years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: (1) a well-defined organization of nucleosomes and modification states at most genes; (2) regulatory networks of sequence-specific transcription factors; (3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II; and (4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
29
|
Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 2009; 20:436-43. [PMID: 19800252 PMCID: PMC3587693 DOI: 10.1016/j.tem.2009.05.008] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 01/28/2023]
Abstract
Mammals respond to dietary nutrient fluctuations; for example, deficiency of dietary protein or an imbalance of essential amino acids activates an amino acid response (AAR) signal transduction pathway, consisting of detection of uncharged tRNA by the GCN2 kinase, eIF2alpha phosphorylation and ATF4 expression. In concert with heterodimerization partners, ATF4 activates specific genes via a CCAAT-enhancer binding protein-activating transcription factor response element (CARE). This review outlines the ATF4-dependent transcriptional mechanisms associated with the AAR, focusing on progress during the past 5 years. Recent evidence suggests that maternal nutrient deprivation not only has immediate metabolic effects on the fetus, but also triggers gene expression changes in adulthood, possibly through epigenetic mechanisms. Therefore, understanding the transcriptional programs initiated by amino acid limitation is crucial and timely.
Collapse
Affiliation(s)
- Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Box 100245, University of Florida, Gainesville, Florida 32610-0245, USA.
| | | | | |
Collapse
|
30
|
Mediator complex association with constitutively transcribed genes in yeast. Proc Natl Acad Sci U S A 2009; 106:16734-9. [PMID: 19805365 DOI: 10.1073/pnas.0905103106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mediator is a large, multisubunit complex that is essential for transcription of mRNA by RNA Pol II in eukaryotes and is believed to bridge transcriptional activators and the general transcription machinery. However, several recent studies suggest that the requirement for Mediator during transcriptional activation is not universal, but rather activator dependent, and may be indirect for some genes. Here we have investigated Mediator association with several constitutively transcribed genes in yeast by comparing a yeast strain that harbors a temperature-sensitive mutation in an essential Mediator subunit, Srb4, with its wild-type (WT) counterpart. We find modest association of Mediator with constitutively active genes and show that this association is strongly decreased in srb4 ts yeast, whereas association with a nontranscribed region or repressed gene promoters is lower and unaffected in the mutant yeast. The tail module of Mediator remains associated with ribosomal protein (RP) gene promoters in srb4 ts yeast, while subunits from the head and middle modules are lost. Tail module association at Rap1-dependent gene promoters is lost in rap1 ts yeast, indicating that Rap1 is required for Mediator recruitment at these gene promoters and that its recruitment occurs via the tail module. Pol II association is also rapidly and severely affected in srb4 ts yeast, indicating that Mediator is directly required for pol II association at constitutively transcribed genes. Our results are consistent with Mediator functioning as a general transcription factor in yeast.
Collapse
|
31
|
Abstract
The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
Collapse
Affiliation(s)
- Cedric R Clapier
- Howard Hughes Medical Institute, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
32
|
Ferreira ME, Prochasson P, Berndt KD, Workman JL, Wright APH. Activator-binding domains of the SWI/SNF chromatin remodeling complex characterizedin vitroare required for its recruitment to promotersin vivo. FEBS J 2009; 276:2557-65. [DOI: 10.1111/j.1742-4658.2009.06979.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Venters BJ, Pugh BF. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genes Dev 2009; 19:360-71. [PMID: 19124666 PMCID: PMC2661807 DOI: 10.1101/gr.084970.108] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 12/18/2008] [Indexed: 12/11/2022]
Abstract
The predominant organizational theme by which the transcription machinery and chromatin regulators are positioned within promoter regions or throughout genes in a genome is largely unknown. We mapped the genomic location of diverse representative components of the gene regulatory machinery in Saccharomyces cerevisiae to an experimental resolution of <40 bp. Sequence-specific gene regulators, chromatin regulators, mediator, and RNA polymerase (Pol) II were found primarily near the downstream border from the "-1" nucleosome, which abuts against the approximately 140-bp nucleosome-free promoter region (NFR). General transcription factors TFIIA, -B, -D, -E, -F, -H were located near the downstream edge from the NFR. The -1 nucleosome dissociated upon Pol II recruitment, but not upon recruitment of only TBP and TFIIB. The position of many sequence-specific regulators in promoter regions correlated with the position of specific remodeling complexes, potentially reflecting functional interactions. Taken together the findings suggest that the combined action of activators and chromatin remodeling complexes remove the -1 nucleosome after the preinitiation complex (PIC) has partially assembled, but before or concomitant with Pol II recruitment. We find PIC assembly, which includes Pol II recruitment, to be a significant rate-limiting step during transcription, but that additional gene-specific rate-limiting steps associated with Pol II occur after recruitment.
Collapse
Affiliation(s)
- Bryan J. Venters
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B. Franklin Pugh
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
34
|
Awad S, Hassan AH. The Swi2/Snf2 bromodomain is important for the full binding and remodeling activity of the SWI/SNF complex on H3- and H4-acetylated nucleosomes. Ann N Y Acad Sci 2008; 1138:366-75. [PMID: 18837912 DOI: 10.1196/annals.1414.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The SWI/SNF chromatin-remodeling complex contains a bromodomain in its Swi2/Snf2 subunit that helps tether it to acetylated promoter nucleosomes. To study the importance of this bromodomain in the SWI/SNF complex, we have compared the nucleosome-binding and the chromatin-remodeling activities of the SWI/SNF to a mutant complex that lacks the Swi2/Snf2 bromodomain. Here we show that the SWI/SNF complex deleted of the Swi2/Snf2 bromodomain cannot bind to SAGA- or NuA4-acetylated nucleosomes as well as the wild-type complex. Moreover, we show that this reduced binding leads to partial remodeling of these acetylated nucleosome templates by the Deltabromodomain SWI/SNF complex. These results demonstrate that the Swi2/Snf2 bromodomain is required for the full binding and functional activity of the SWI/SNF complex on H3- and H4-acetylated nucleosomes.
Collapse
Affiliation(s)
- Salma Awad
- Faculty of Medicine and Health Sciences, Department of Biochemistry, UAE University, Al Ain, United Arab Emirates
| | | |
Collapse
|
35
|
Abstract
The SWI/SNF complex disrupts and mobilizes chromatin in an ATP-dependent manner. SWI/SNF interactions with nucleosomes were mapped by DNA footprinting and site-directed DNA and protein cross-linking when SWI/SNF was recruited by a transcription activator. SWI/SNF was found by DNA footprinting to contact tightly around one gyre of DNA spanning approximately 50 bp from the nucleosomal entry site to near the dyad axis. The DNA footprint is consistent with nucleosomes binding to an asymmetric trough of SWI/SNF that was revealed by the improved imaging of free SWI/SNF. The DNA site-directed cross-linking revealed that the catalytic subunit Swi2/Snf2 is associated with nucleosomes two helical turns from the dyad axis and that the Snf6 subunit is proximal to the transcription factor recruiting SWI/SNF. The highly conserved Snf5 subunit associates with the histone octamer and not with nucleosomal DNA. The model of the binding trough of SWI/SNF illustrates how nucleosomal DNA can be mobilized while SWI/SNF remains bound.
Collapse
|
36
|
He Q, Battistella L, Morse RH. Mediator requirement downstream of chromatin remodeling during transcriptional activation of CHA1 in yeast. J Biol Chem 2007; 283:5276-86. [PMID: 18093974 DOI: 10.1074/jbc.m708266200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator complex is essential for transcription by RNA polymerase II in eukaryotes. Although chromatin remodeling is an integral part of transcriptional activation at many promoters, whether Mediator is required for this function has not been determined. Here we have used the yeast CHA1 gene to study the role of Mediator in chromatin remodeling and recruitment of the transcription machinery. We show by chromatin immunoprecipitation that Mediator subunits are recruited to the induced CHA1 promoter. Inactivation of Mediator at 37 degrees C in yeast harboring the srb4-138 (med17) ts mutation severely reduces CHA1 activation and prevents recruitment to the induced CHA1 promoter of Med18/Srb5, from the head module of Mediator, and Med14/Rgr1, which bridges the middle and tail modules. In contrast, recruitment of Med15/Gal11 from the tail module is unaffected in med17 ts yeast at 37 degrees C. Recruitment of TATA-binding protein (TBP) is severely compromised in the absence of functional Mediator, whereas Kin28 and polymerase II recruitment are reduced but to a lesser extent. Induced levels of histone H3K4me3 at the CHA1 promoter are not diminished by inactivation of Mediator, whereas recruitment of Paf1 and of Ser2- and Ser5-phosphorylated forms of Rbp1 are reduced but not eliminated. Loss of histone H3 from the induced CHA1 promoter is seen in wild type yeast but is greatly reduced by loss of intact Mediator. In contrast, Swi/Snf recruitment and nucleosome remodeling are unaffected by loss of Mediator function. Thus, Mediator is required for recruitment of the transcription machinery subsequent to chromatin remodeling during CHA1 induction.
Collapse
Affiliation(s)
- Qiye He
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
37
|
Lim MK, Tang V, Le Saux A, Schüller J, Bongards C, Lehming N. Gal11p dosage-compensates transcriptional activator deletions via Taf14p. J Mol Biol 2007; 374:9-23. [PMID: 17919657 DOI: 10.1016/j.jmb.2007.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/04/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
Transcriptional activators work by recruiting transcription factors that are required for the process of transcription to their target genes. We have used the Split-Ubiquitin system to identify eight transcription factors that interacted with both the transcriptional activators Gal4p and Gcn4p in living cells. The over-expression of one of the activator-interacting proteins, Gal11p, partially suppressed GAL4 and GCN4 deletions. We have isolated two point mutants in Gal11p, F848L and F869S that were defective for the dosage compensation. We have identified 35 transcription factors that interacted with Gal11p in living cells, and the only protein-protein interaction affected by the Gal11p mutations was the one between Gal11p and Taf14p. We have further shown that the suppression of a GAL4 deletion by high levels of Gal11p required Taf14p, and that over-expression of Gal11p recruited Taf14p to the GAL1 promoter together with Tbp1p, Swi2p and Srb7p. Gal11p interacted with Mig1p, indicating that Mig1/2p could have recruited Gal11p to the GAL1 promoter in the absence of Gal4p. Our results suggest that transcriptional activators work by raising the local concentration of the limiting factor Gal11p, and that Gal11p works by recruiting Mediator and Taf14p-containing transcription factors like TFIID and SWI/SNF and by competing general repressors like Ssn6p-Tup1p off the target promoters.
Collapse
Affiliation(s)
- Mei Kee Lim
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | | | | | | | | | | |
Collapse
|
38
|
Schwabish MA, Struhl K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 2007; 27:6987-95. [PMID: 17709398 PMCID: PMC2168902 DOI: 10.1128/mcb.00717-07] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Swi/Snf nucleosome-remodeling complex is recruited by DNA-binding activator proteins, whereupon it alters chromatin structure to increase preinitiation complex formation and transcription. At the SUC2 promoter, the Swi/Snf complex is required for histone eviction in a manner that is independent of transcriptional activity. Swi/Snf travels through coding regions with elongating RNA polymerase (Pol) II, and swi2 mutants exhibit sensitivity to drugs affecting Pol elongation. In FACT-depleted cells, Swi/Snf is important for internal initiation within coding regions, suggesting that Swi/Snf is important for histone eviction that occurs during Pol II elongation. Taken together, these observations suggest that Swi/Snf is important for histone eviction at enhancers and that it also functions as a Pol II elongation factor.
Collapse
Affiliation(s)
- Marc A Schwabish
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Hassan AH, Awad S, Al-Natour Z, Othman S, Mustafa F, Rizvi TA. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators. Biochem J 2007; 402:125-33. [PMID: 17049045 PMCID: PMC1783998 DOI: 10.1042/bj20060907] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bromodomains are present in many chromatin-associated proteins such as the SWI/SNF and RSC chromatin remodelling and the SAGA HAT (histone acetyltransferase) complexes, and can bind to acetylated lysine residues in the N-terminal tails of the histones. Lysine acetylation is a histone modification that forms a stable epigenetic mark on chromatin for bromodomain-containing proteins to dock and in turn regulate gene expression. In order to better understand how bromodomains read the 'histone code' and interact with acetylated histones, we have tested the interactions of several bromodomains within transcriptional co-activators with differentially acetylated histone tail peptides and HAT-acetylated histones. Using GST (glutathione S-transferase) pull-down assays, we show specificity of binding of some bromodomains to differentially acetylated H3 and H4 peptides as well as HAT-acetylated histones. Our results reveal that the Swi2/Snf2 bromodomain interacts with various acetylated H3 and H4 peptides, whereas the Gcn5 bromodomain interacts only with acetylated H3 peptides and tetra-acetylated H4 peptides. Additionally we show that the Spt7 bromodomain interacts with acetylated H3 peptides weakly, but not with acetylated H4 peptides. Some bromodomains such as the Bdf1-2 do not interact with most of the acetylated peptides tested. Results of the peptide experiments are confirmed with tests of interactions between these bromodomains and HAT-acetylated histones. Furthermore, we demonstrate that the Swi2/Snf2 bromodomain is important for the binding and the remodelling activity of the SWI/SNF complex on hyperacetylated nucleosomes. The selective recognition of the bromodomains observed in the present study accounts for the broad effects of bromodomain-containing proteins observed on binding to histones.
Collapse
Affiliation(s)
- Ahmed H Hassan
- Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al-Ain, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|
40
|
Steinfeld I, Shamir R, Kupiec M. A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription. Nat Genet 2007; 39:303-9. [PMID: 17325681 DOI: 10.1038/ng1965] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chromatin structure is important in transcription regulation. Many factors influencing chromatin structure have been identified, but the transcriptional programs in which they participate are still poorly understood. Chromatin modifiers participate in transcriptional control together with DNA-bound transcription factors. High-throughput experimental methods allow the genome-wide identification of binding sites for transcription factors as well as quantification of gene expression under various environmental and genetic conditions. We have developed a new methodology that uses the vast amount of available data to dissect the contribution of chromatin structure to transcription. We measure and characterize the dependence of transcription factor function on specific chromatin modifiers. We apply our methodology to S. cerevisiae, using a compendium of 170 gene expression profiles of strains defective for chromatin modifiers, taken from 26 different studies. Our method succeeds in identifying known intricate genetic interactions between chromatin modifiers and transcription factors and uncovers many previously unknown genetic interactions, giving the first genome-wide picture of the contribution of chromatin structure to transcription in a eukaryote.
Collapse
Affiliation(s)
- Israel Steinfeld
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
41
|
Chandy M, Gutiérrez JL, Prochasson P, Workman JL. SWI/SNF displaces SAGA-acetylated nucleosomes. EUKARYOTIC CELL 2006; 5:1738-47. [PMID: 17030999 PMCID: PMC1595347 DOI: 10.1128/ec.00165-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex.
Collapse
Affiliation(s)
- Mark Chandy
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
42
|
Kraemer SM, Goldstrohm DA, Berger A, Hankey S, Rovinsky SA, Scott Moye-Rowley W, Stargell LA. TFIIA plays a role in the response to oxidative stress. EUKARYOTIC CELL 2006; 5:1081-90. [PMID: 16835452 PMCID: PMC1489289 DOI: 10.1128/ec.00071-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To characterize the role of the general transcription factor TFIIA in the regulation of gene expression by RNA polymerase II, we examined the transcriptional profiles of TFIIA mutants of Saccharomyces cerevisiae using DNA microarrays. Whole-genome expression profiles were determined for three different mutants with mutations in the gene coding for the small subunit of TFIIA, TOA2. Depending on the particular mutant strain, approximately 11 to 27% of the expressed genes exhibit altered message levels. A search for common motifs in the upstream regions of the pool of genes decreased in all three mutants yielded the binding site for Yap1, the transcription factor that regulates the response to oxidative stress. Consistent with a TFIIA-Yap1 connection, the TFIIA mutants are unable to grow under conditions that require the oxidative stress response. Underexpression of Yap1-regulated genes in the TFIIA mutant strains is not the result of decreased expression of Yap1 protein, since immunoblot analysis indicates similar amounts of Yap1 in the wild-type and mutant strains. In addition, intracellular localization studies indicate that both the wild-type and mutant strains localize Yap1 indistinguishably in response to oxidative stress. As such, the decrease in transcription of Yap1-dependent genes in the TFIIA mutant strains appears to reflect a compromised interaction between Yap1 and TFIIA. This hypothesis is supported by the observations that Yap1 and TFIIA interact both in vivo and in vitro. Taken together, these studies demonstrate a dependence of Yap1 on TFIIA function and highlight a new role for TFIIA in the cellular mechanism of defense against reactive oxygen species.
Collapse
Affiliation(s)
- Susan M Kraemer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim Y, McLaughlin N, Lindstrom K, Tsukiyama T, Clark DJ. Activation of Saccharomyces cerevisiae HIS3 results in Gcn4p-dependent, SWI/SNF-dependent mobilization of nucleosomes over the entire gene. Mol Cell Biol 2006; 26:8607-22. [PMID: 16982689 PMCID: PMC1636772 DOI: 10.1128/mcb.00678-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The effects of transcriptional activation on the chromatin structure of the Saccharomyces cerevisiae HIS3 gene were addressed by mapping the precise positions of nucleosomes in uninduced and induced chromatin. In the absence of the Gcn4p activator, the HIS3 gene is organized into a predominant nucleosomal array. In wild-type chromatin, this array is disrupted, and several alternative overlapping nucleosomal arrays are formed. The disruption of the predominant array also requires the SWI/SNF remodeling machine, indicating that the SWI/SNF complex plays an important role in nucleosome mobilization over the entire HIS3 gene. The Isw1 remodeling complex plays a more subtle role in determining nucleosome positions on HIS3, favoring positions different from those preferred by the SWI/SNF complex. Both the SWI/SNF and Isw1 complexes are constitutively present in HIS3 chromatin, although Isw1 tends to be excluded from the HIS3 promoter. Despite the apparent disorder of HIS3 chromatin generated by the formation of multiple nucleosomal arrays, nucleosome density profiles indicate that some long-range order is always present. We propose that Gcn4p stimulates nucleosome mobilization over the entire HIS3 gene by the SWI/SNF complex. We suggest that the net effect of interplay among remodeling machines at HIS3 is to create a highly dynamic chromatin structure.
Collapse
Affiliation(s)
- Yeonjung Kim
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
44
|
Hassan AH, Awad S, Prochasson P. The Swi2/Snf2 Bromodomain Is Required for the Displacement of SAGA and the Octamer Transfer of SAGA-acetylated Nucleosomes. J Biol Chem 2006; 281:18126-34. [PMID: 16648632 DOI: 10.1074/jbc.m602851200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SWI/SNF and SAGA chromatin-modifying complexes contain bromodomains that help anchor these complexes to acetylated promoter nucleosomes. To study the importance of bromodomains in these complexes, we have compared the chromatin-remodeling and octamer-transfer activity of the SWI/SNF complex to a mutant complex that lacks the Swi2/Snf2 bromodomain. Here we show that the SWI/SNF complex can remodel or transfer SAGA-acetylated nucleosomes more efficiently than the Swi2/Snf2 bromodomain-deleted complex. These results demonstrate that the Swi2/Snf2 bromodomain is important for the remodeling as well as for the octamer-transfer activity of the complex on H3-acetylated nucleosomes. Moreover, we show that, although the wild-type SWI/SNF complex displaces SAGA that is bound to acetylated nucleosomes, the bromodomain mutant SWI/SNF complex is less efficient in SAGA displacement. Thus, the Swi2/Snf2 bromodomain is required for the full functional activity of SWI/SNF on acetylated nucleosomes and is important for the displacement of SAGA from acetylated promoter nucleosomes.
Collapse
Affiliation(s)
- Ahmed H Hassan
- Faculty of Medicine and Health Sciences, Department of Biochemistry, United Arab Emirates University, P. O. Box 17666, Al-Ain, United Arab Emirates.
| | | | | |
Collapse
|
45
|
Yu C, Palumbo MJ, Lawrence CE, Morse RH. Contribution of the histone H3 and H4 amino termini to Gcn4p- and Gcn5p-mediated transcription in yeast. J Biol Chem 2006; 281:9755-64. [PMID: 16461773 DOI: 10.1074/jbc.m513178200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Histone amino termini are post-translationally modified by both transcriptional coactivators and corepressors, but the extent to which the relevant histone modifications contribute to gene expression, and the mechanisms by which they do so, are incompletely understood. To address this issue, we have examined the contributions of the histone H3 and H4 amino termini, and of the coactivator and histone acetyltransferase Gcn5p, to activation of a small group of Gcn4p-activated genes. The histone H3 tail exerts a modest (about 2-fold) but significant effect on activation that correlates with a requirement for Gcn5p and is distributed over multiple lysine residues. The H4 tail also plays a positive role in activation of some of those genes tested, but this does not correlate as closely with Gcn5p coactivation. Microarray experiments did not reveal a close correspondence between those genes activated by Gcn4p and genes requiring the H3 or H4 tail, and analysis of published microarray data indicates that Gcn4p-regulated genes are not in general strongly dependent on Gcn5p. However, a large fraction of genes activated by Gcn4p were found to be repressed by the H3 and H4 amino termini under non-inducing conditions, indicating that one role for Gcn4p is to overcome repression mediated by the histone tails.
Collapse
Affiliation(s)
- Cailin Yu
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12201-2002, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
47
|
Lee D, Ezhkova E, Li B, Pattenden SG, Tansey WP, Workman JL. The Proteasome Regulatory Particle Alters the SAGA Coactivator to Enhance Its Interactions with Transcriptional Activators. Cell 2005; 123:423-36. [PMID: 16269334 DOI: 10.1016/j.cell.2005.08.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/13/2005] [Accepted: 08/03/2005] [Indexed: 11/28/2022]
Abstract
Promoter recruitment of the Saccharomyces cerevisiae SAGA histone acetyltransferase complex is required for RNA polymerase II-dependent transcription of several genes. SAGA is targeted to promoters through interactions with sequence-specific DNA binding transcriptional activators and facilitates preinitiation-complex assembly and transcription. Here, we show that the 19S proteasome regulatory particle (19S RP) alters SAGA to stimulate its interaction with transcriptional activators. The ATPase components of the 19S RP are required for stimulation of SAGA/activator interactions and enhance SAGA recruitment to promoters. Proteasomal ATPases genetically interact with SAGA, and their inhibition reduces global histone H3 acetylation levels and SAGA recruitment to target promoters in vivo. These results indicate that the 19S RP modulates SAGA complex using its ATPase components, thereby facilitating subsequent transcription events at promoters.
Collapse
Affiliation(s)
- Daeyoup Lee
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
48
|
Magazinnik T, Anand M, Sattlegger E, Hinnebusch AG, Kinzy TG. Interplay between GCN2 and GCN4 expression, translation elongation factor 1 mutations and translational fidelity in yeast. Nucleic Acids Res 2005; 33:4584-92. [PMID: 16100380 PMCID: PMC1185573 DOI: 10.1093/nar/gki765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Genetic screens in Saccharomyces cerevisiae have identified the roles of ribosome components, tRNAs and translation factors in translational fidelity. These screens rely on the suppression of altered start codons, nonsense codons or frameshift mutations in genes involved in amino acid or nucleotide metabolism. Many of these genes are regulated by the General Amino Acid Control (GAAC) pathway. Upon amino acid starvation, the kinase GCN2 induces the GAAC cascade via increased translation of the transcriptional activator GCN4 controlled by upstream open reading frames (uORFs). Overexpression of the GCN2 or GCN4 genes enhances the sensitivity of translation fidelity assays that utilize genes regulated by GCN4, such as the suppression of a +1 insertion by S.cerevisiae translation elongation factor 1A (eEF1A) mutants. Paromomycin and the prion [PSI+], which reduce translational fidelity, do not increase GCN4 expression to induce the suppression phenotype and in fact reduce derepression. eEF1A mutations that reduce translation, however, reduce expression of GCN4 under non-starvation conditions. These eEF1A mutants also reduce HIS4 mRNA expression. Taken together, this system improves in vivo strategies for the analysis of translational fidelity and further provides new information on the interplay among translation fidelity, altered elongation and translational control via uORFs.
Collapse
Affiliation(s)
- Tanya Magazinnik
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Monika Anand
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Evelyn Sattlegger
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of HealthBethesda, MD 20892, USA
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of HealthBethesda, MD 20892, USA
| | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
- The Cancer Institute of New Jersey, NICHD, National Institutes of HealthBethesda, MD 20892, USA
- To whom correspondence should be addressed. Tel: +1 732 235 5450; Fax: +1 732 235 5223;
| |
Collapse
|
49
|
Govind CK, Yoon S, Qiu H, Govind S, Hinnebusch AG. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo. Mol Cell Biol 2005; 25:5626-38. [PMID: 15964818 PMCID: PMC1156971 DOI: 10.1128/mcb.25.13.5626-5638.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation by Gcn4p is dependent on the coactivators SWI/SNF, SAGA, and Srb Mediator, which are recruited by Gcn4p and stimulate assembly of the pre-initiation complex (PIC) at the ARG1 promoter in vivo. We show that recruitment of all three coactivators is nearly simultaneous with binding of Gcn4p at ARG1 and is followed quickly by PIC formation and elongation by RNA polymerase II (Pol II) through the open reading frame. Despite the simultaneous recruitment of coactivators, rapid recruitment of SWI/SNF depends on the histone acetyltransferase (HAT) subunit of SAGA (Gcn5p), a non-HAT function of SAGA, and on Mediator. SAGA recruitment in turn is strongly stimulated by Mediator and the RSC complex. Recruitment of Mediator, by contrast, occurs independently of the other coactivators at ARG1. We confirm the roles of Mediator and SAGA in TATA binding protein (TBP) recruitment and demonstrate that all four coactivators under study enhance Pol II recruitment or promoter clearance following TBP binding. We also present evidence that SWI/SNF and SAGA stimulate transcription elongation downstream from the promoter. These functions can be limited to discrete time intervals, providing evidence for multiple stages in the induction process. Our findings reveal a program of coactivator recruitment and PIC assembly that distinguishes Gcn4p from other yeast activators studied thus far.
Collapse
Affiliation(s)
- Chhabi K Govind
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
50
|
Qiu H, Hu C, Zhang F, Hwang GJ, Swanson MJ, Boonchird C, Hinnebusch AG. Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p. Mol Cell Biol 2005; 25:3461-74. [PMID: 15831453 PMCID: PMC1084306 DOI: 10.1128/mcb.25.9.3461-3474.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation by Gcn4p is enhanced by the coactivators SWI/SNF, SAGA, and Srb mediator, which stimulate recruitment of TATA binding protein (TBP) and polymerase II to target promoters. We show that wild-type recruitment of SAGA by Gcn4p is dependent on mediator but independent of SWI/SNF function at three different promoters. Recruitment of mediator is also independent of SWI/SNF but is enhanced by SAGA at a subset of Gcn4p target genes. Recruitment of all three coactivators to ARG1 is independent of the TATA element and preinitiation complex formation, whereas efficient recruitment of the general transcription factors requires the TATA box. We propose an activation pathway involving interdependent recruitment of SAGA and Srb mediator to the upstream activation sequence, enabling SWI/SNF recruitment and the binding of TBP and other general factors to the promoter. We also found that high-level recruitment of Tra1p and other SAGA subunits is independent of the Ada2p/Ada3p/Gcn5p histone acetyltransferase module but requires Spt3p in addition to subunits required for SAGA integrity. Thus, while Tra1p can bind directly to Gcn4p in vitro, it requires other SAGA subunits for efficient recruitment in vivo.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health & Human Development/NIH, Building 6A, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|