1
|
Kadhim AZ, Vanderkruk B, Mar S, Dan M, Zosel K, Xu EE, Spencer RJ, Sasaki S, Cheng X, Sproul SLJ, Speckmann T, Nian C, Cullen R, Shi R, Luciani DS, Hoffman BG, Taubert S, Lynn FC. Transcriptional coactivator MED15 is required for beta cell maturation. Nat Commun 2024; 15:8711. [PMID: 39379383 PMCID: PMC11461855 DOI: 10.1038/s41467-024-52801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Mediator, a co-regulator complex required for RNA Polymerase II activity, interacts with tissue-specific transcription factors to regulate development and maintain homeostasis. We observe reduced Mediator subunit MED15 expression in endocrine hormone-producing pancreatic islets isolated from people living with type 2 diabetes and sought to understand how MED15 and Mediator control gene expression programs important for the function of insulin-producing β-cells. Here we show that Med15 is expressed during mouse β-cell development and maturation. Knockout of Med15 in mouse β-cells causes defects in β-cell maturation without affecting β-cell mass or insulin expression. ChIP-seq and co-immunoprecipitation analyses found that Med15 binds β-cell transcription factors Nkx6-1 and NeuroD1 to regulate key β-cell maturation genes. In support of a conserved role during human development, human embryonic stem cell-derived β-like cells, genetically engineered to express high levels of MED15, express increased levels of maturation markers. We provide evidence of a conserved role for Mediator in β-cell maturation and demonstrate an additional layer of control that tunes β-cell transcription factor function.
Collapse
Affiliation(s)
- Alex Z Kadhim
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Ben Vanderkruk
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha Mar
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Meixia Dan
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Katarina Zosel
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Eric E Xu
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Rachel J Spencer
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shannon L J Sproul
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Thilo Speckmann
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Cuilan Nian
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Robyn Cullen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Dan S Luciani
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Bradford G Hoffman
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Stefan Taubert
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Francis C Lynn
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Kolonay DW, Sattler KM, Strawser C, Rafael-Fortney J, Mihaylova MM, Miller KE, Lepper C, Baskin KK. Temporal regulation of the Mediator complex during muscle proliferation, differentiation, regeneration, aging, and disease. Front Cell Dev Biol 2024; 12:1331563. [PMID: 38690566 PMCID: PMC11058648 DOI: 10.3389/fcell.2024.1331563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Genesis of skeletal muscle relies on the differentiation and fusion of mono-nucleated muscle progenitor cells into the multi-nucleated muscle fiber syncytium. The temporally-controlled cellular and morphogenetic changes underlying this process are initiated by a series of highly coordinated transcription programs. At the core, the myogenic differentiation cascade is driven by muscle-specific transcription factors, i.e., the Myogenic Regulatory Factors (MRFs). Despite extensive knowledge on the function of individual MRFs, very little is known about how they are coordinated. Ultimately, highly specific coordination of these transcription programs is critical for their masterfully timed transitions, which in turn facilitates the intricate generation of skeletal muscle fibers from a naïve pool of progenitor cells. The Mediator complex links basal transcriptional machinery and transcription factors to regulate transcription and could be the integral component that coordinates transcription factor function during muscle differentiation, growth, and maturation. In this study, we systematically deciphered the changes in Mediator complex subunit expression in skeletal muscle development, regeneration, aging, and disease. We incorporated our in vitro and in vivo experimental results with analysis of publicly available RNA-seq and single nuclei RNA-seq datasets and uncovered the regulation of Mediator subunits in different physiological and temporal contexts. Our experimental results revealed that Mediator subunit expression during myogenesis is highly dynamic. We also discovered unique temporal patterns of Mediator expression in muscle stem cells after injury and during the early regeneration period, suggesting that Mediator subunits may have unique contributions to directing muscle stem cell fate. Although we observed few changes in Mediator subunit expression in aging muscles compared to younger muscles, we uncovered extensive heterogeneity of Mediator subunit expression in dystrophic muscle nuclei, characteristic of chronic muscle degeneration and regeneration cycles. Taken together, our study provides a glimpse of the complex regulation of Mediator subunit expression in the skeletal muscle cell lineage and serves as a springboard for mechanistic studies into the function of individual Mediator subunits in skeletal muscle.
Collapse
Affiliation(s)
- Dominic W. Kolonay
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kristina M. Sattler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Corinne Strawser
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jill Rafael-Fortney
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Katherine E. Miller
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kedryn K. Baskin
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
3
|
Bae SY, Chen Y, Chen H, Kumar D, Karaiskos S, Xu J, Lu C, Viny AD, Giancotti FG. Noncanonical Activity of Med4 as a Gatekeeper of Metastasis through Epigenetic Control of Integrin Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.18.566087. [PMID: 38014033 PMCID: PMC10680920 DOI: 10.1101/2023.11.18.566087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer metastatic relapse after a latency period, known as metastatic dormancy. Through genetic screening in mice, we identified the mediator complex subunit 4 (Med4) as a novel tumor-cell intrinsic gatekeeper in metastatic reactivation. Med4 downregulation effectively awakened dormant breast cancer cells, prompting macroscopic metastatic outgrowth in the lungs. Med4 depletion results in profound changes in nuclear size and three-dimensional chromatin architecture from compacted to relaxed states in contrast to the canonical function of the Mediator complex. These changes rewire the expression of extracellular matrix proteins, integrins, and signaling components resulting in integrin-mediated mechano-transduction and activation of YAP and MRTF. The assembly of stress fibers pulls on the nuclear membrane and contributes to reinforcing the overall chromatin modifications by Med4 depletion. MED4 gene deletions were observed in patients with metastatic breast cancer, and reduced MED4 expression correlates with worse prognosis, highlighting its significance as a potential biomarker for recurrence.
Collapse
Affiliation(s)
- Seong-Yeon Bae
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Yi Chen
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Hong Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Dhiraj Kumar
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Spyros Karaiskos
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Jane Xu
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Chao Lu
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Aaron D. Viny
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Filippo G. Giancotti
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
4
|
Malik S, Roeder RG. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat Rev Genet 2023; 24:767-782. [PMID: 37532915 PMCID: PMC11088444 DOI: 10.1038/s41576-023-00630-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
The RNA polymerase II (Pol II) pre-initiation complex (PIC) is a critical node in eukaryotic transcription regulation, and its formation is the major rate-limiting step in transcriptional activation. Diverse cellular signals borne by transcriptional activators converge on this large, multiprotein assembly and are transduced via intermediary factors termed coactivators. Cryogenic electron microscopy, multi-omics and single-molecule approaches have recently offered unprecedented insights into both the structure and cellular functions of the PIC and two key PIC-associated coactivators, Mediator and TFIID. Here, we review advances in our understanding of how Mediator and TFIID interact with activators and affect PIC formation and function. We also discuss how their functions are influenced by their chromatin environment and selected cofactors. We consider how, through its multifarious interactions and functionalities, a Mediator-containing and TFIID-containing PIC can yield an integrated signal processing system with the flexibility to determine the unique temporal and spatial expression pattern of a given gene.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry & Molecular Biology, The Rockefeller University, New York, NY, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry & Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
5
|
Schiano C, Luongo L, Maione S, Napoli C. Mediator complex in neurological disease. Life Sci 2023; 329:121986. [PMID: 37516429 DOI: 10.1016/j.lfs.2023.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy.
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Italy
| |
Collapse
|
6
|
Nakadai T, Shimada M, Ito K, Cevher MA, Chu CS, Kumegawa K, Maruyama R, Malik S, Roeder RG. Two target gene activation pathways for orphan ERR nuclear receptors. Cell Res 2023; 33:165-183. [PMID: 36646760 PMCID: PMC9892517 DOI: 10.1038/s41422-022-00774-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2022] [Indexed: 01/18/2023] Open
Abstract
Estrogen-related receptors (ERRα/β/γ) are orphan nuclear receptors that function in energy-demanding physiological processes, as well as in development and stem cell maintenance, but mechanisms underlying target gene activation by ERRs are largely unknown. Here, reconstituted biochemical assays that manifest ERR-dependent transcription have revealed two complementary mechanisms. On DNA templates, ERRs activate transcription with just the normal complement of general initiation factors through an interaction of the ERR DNA-binding domain with the p52 subunit of initiation factor TFIIH. On chromatin templates, activation by ERRs is dependent on AF2 domain interactions with the cell-specific coactivator PGC-1α, which in turn recruits the ubiquitous p300 and MED1/Mediator coactivators. This role of PGC-1α may also be fulfilled by other AF2-interacting coactivators like NCOA3, which is shown to recruit Mediator selectively to ERRβ and ERRγ. Importantly, combined genetic and RNA-seq analyses establish that both the TFIIH and the AF2 interaction-dependent pathways are essential for ERRβ/γ-selective gene expression and pluripotency maintenance in embryonic stem cells in which NCOA3 is a critical coactivator.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Murat Alper Cevher
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 2023; 186:327-345.e28. [PMID: 36603581 PMCID: PMC9910284 DOI: 10.1016/j.cell.2022.12.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.
Collapse
Affiliation(s)
- Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christy Fornero
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Wang M, Roggero VR, Allison LA. Mediator subunit MED1 differentially modulates mutant thyroid hormone receptor intracellular dynamics in Resistance to Thyroid Hormone syndrome. Mol Cell Endocrinol 2023; 559:111781. [PMID: 36191835 PMCID: PMC9985138 DOI: 10.1016/j.mce.2022.111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023]
Abstract
Thyroid hormone receptor (TR) controls the expression of thyroid hormone (T3)-responsive genes, while undergoing rapid nucleocytoplasmic shuttling. In Resistance to Thyroid Hormone syndrome (RTH), mutant TR fails to activate T3-dependent transcription. Previously, we showed that Mediator subunit 1 (MED1) plays a role in TR nuclear retention. Here, we investigated MED1's effect on RTH mutants using nucleocytoplasmic scoring and fluorescence recovery after photobleaching in transfected cells. MED1 overexpression and knockout did not change the nucleocytoplasmic distribution or intranuclear mobility of C392X and P398R TRα1 at physiological T3 levels. At elevated T3 levels, however, overexpression increased P398R's nuclear retention and MED1 knockout decreased P398R's and A263V's intranuclear mobility, while not impacting C392X. Although A263V TRα1-transfected cells had a high percentage of aggregates, MED1 rescued A263V's impaired intranuclear mobility, suggesting that MED1 ameliorates nonfunctional aggregates. Results correlate with clinical severity, suggesting that altered interaction between MED1 and TRα1 mutants contributes to RTH pathology.
Collapse
Affiliation(s)
- Moyao Wang
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Vincent R Roggero
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Lizabeth A Allison
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA.
| |
Collapse
|
9
|
Richter WF, Nayak S, Iwasa J, Taatjes DJ. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 2022; 23:732-749. [PMID: 35725906 PMCID: PMC9207880 DOI: 10.1038/s41580-022-00498-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
The Mediator complex, which in humans is 1.4 MDa in size and includes 26 subunits, controls many aspects of RNA polymerase II (Pol II) function. Apart from its size, a defining feature of Mediator is its intrinsic disorder and conformational flexibility, which contributes to its ability to undergo phase separation and to interact with a myriad of regulatory factors. In this Review, we discuss Mediator structure and function, with emphasis on recent cryogenic electron microscopy data of the 4.0-MDa transcription preinitiation complex. We further discuss how Mediator and sequence-specific DNA-binding transcription factors enable enhancer-dependent regulation of Pol II function at distal gene promoters, through the formation of molecular condensates (or transcription hubs) and chromatin loops. Mediator regulation of Pol II reinitiation is also discussed, in the context of transcription bursting. We propose a working model for Mediator function that combines experimental results and theoretical considerations related to enhancer-promoter interactions, which reconciles contradictory data regarding whether enhancer-promoter communication is direct or indirect. We conclude with a discussion of Mediator's potential as a therapeutic target and of future research directions.
Collapse
Affiliation(s)
- William F Richter
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Shraddha Nayak
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
10
|
Pijuan-Sala B, Furlong EEM. Enhancers have more cofactor specificity than we think: A potential new way to classify enhancers based on their functional cofactor requirements. Mol Cell 2022; 82:2922-2924. [PMID: 35985301 DOI: 10.1016/j.molcel.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
Abstract
By systematically assessing the effects of depleting eight cofactors on enhancer activity, Neumayr et al. (2022) found that different enhancers have different requirements for some perceived universal cofactors. While some cofactors influence enhancer strength, others affect enhancer-promoter specificity.
Collapse
Affiliation(s)
- Blanca Pijuan-Sala
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Eileen E M Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
11
|
Microbiota and Transcriptomic Effects of an Essential Oil Blend and Its Delivery Route Compared to an Antibiotic Growth Promoter in Broiler Chickens. Microorganisms 2022; 10:microorganisms10050861. [PMID: 35630307 PMCID: PMC9147064 DOI: 10.3390/microorganisms10050861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
This study evaluated the effect of the delivery of a commercial essential oil blend containing the phytonutrients star anise, cinnamon, rosemary, and thyme oil (via different routes) on broiler chickens’ ileal and ceca microbiota and liver transcriptome compared to an antibiotic growth promoter. Eggs were incubated and allocated into three groups: non-injected, in ovo saline, and in ovo essential oil. On day 18 of incubation, 0.2 mL of essential oil in saline (dilution ratio of 2:1) or saline alone was injected into the amnion. At hatch, chicks were assigned to post-hatch treatment combinations: (A) a negative control (corn-wheat-soybean diet), (B) in-feed antibiotics, (C) in-water essential oil (250 mL/1000 L of drinking water), (D) in ovo saline, (E) in ovo essential oil, and (F) in ovo essential oil plus in-water essential oil in eight replicate cages (six birds/cage) and raised for 28 days. On days 21 and 28, one and two birds per cage were slaughtered, respectively, to collect gut content and liver tissues for further analysis. Alpha and beta diversity differed significantly between ileal and ceca samples but not between treatment groups. In-feed antibiotic treatment significantly increased the proportion of specific bacteria in the family Lachnospiraceae while reducing the proportion of bacteria in the genus Christensenellaceae in the ceca, compared to other treatments. Sex-controlled differential expression of genes related to cell signaling and tight junctions were recorded. This study provides data that could guide the use of these feed additives and a foundation for further research.
Collapse
|
12
|
Allen BL, Quach K, Jones T, Levandowski CB, Ebmeier CC, Rubin JD, Read T, Dowell RD, Schepartz A, Taatjes DJ. Suppression of p53 response by targeting p53-Mediator binding with a stapled peptide. Cell Rep 2022; 39:110630. [PMID: 35385747 PMCID: PMC9044438 DOI: 10.1016/j.celrep.2022.110630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 01/11/2023] Open
Abstract
DNA-binding transcription factors (TFs) remain challenging to target with molecular probes. Many TFs function in part through interaction with Mediator, a 26-subunit complex that controls RNA polymerase II activity genome-wide. We sought to block p53 function by disrupting the p53-Mediator interaction. Through rational design and activity-based screening, we characterize a stapled peptide, with functional mimics of both p53 activation domains, that blocks p53-Mediator binding and selectively inhibits p53-dependent transcription in human cells; importantly, this "bivalent" peptide has negligible impact, genome-wide, on non-p53 target genes. Our proof-of-concept strategy circumvents the TF entirely and targets the TF-Mediator interface instead, with desired functional outcomes (i.e., selective inhibition of p53 activation). Furthermore, these results demonstrate that TF activation domains represent viable starting points for Mediator-targeting molecular probes, as an alternative to large compound libraries. Different TFs bind Mediator through different subunits, suggesting this strategy could be broadly applied to selectively alter gene expression programs.
Collapse
Affiliation(s)
- Benjamin L. Allen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,These authors contributed equally
| | - Kim Quach
- Department of Chemistry, Yale University, New Haven, CT 06520, USA,These authors contributed equally
| | - Taylor Jones
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,These authors contributed equally
| | | | | | - Jonathan D. Rubin
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Timothy Read
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,Department of Medicine, Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robin D. Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA,Department of Chemistry, University of California, Berkeley, CA 94720, USA,Correspondence: (A.S.), (D.J.T.)
| | - Dylan J. Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA,Lead contact,Correspondence: (A.S.), (D.J.T.)
| |
Collapse
|
13
|
Mediator subunit MED1 is required for E2A-PBX1-mediated oncogenic transcription and leukemic cell growth. Proc Natl Acad Sci U S A 2021; 118:1922864118. [PMID: 33542097 DOI: 10.1073/pnas.1922864118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The chimeric transcription factor E2A-PBX1, containing the N-terminal activation domains of E2A fused to the C-terminal DNA-binding domain of PBX1, results in 5% of pediatric acute lymphoblastic leukemias (ALL). We recently have reported a mechanism for RUNX1-dependent recruitment of E2A-PBX1 to chromatin in pre-B leukemic cells; but the subsequent E2A-PBX1 functions through various coactivators and the general transcriptional machinery remain unclear. The Mediator complex plays a critical role in cell-specific gene activation by serving as a key coactivator for gene-specific transcription factors that facilitates their function through the RNA polymerase II transcriptional machinery, but whether Mediator contributes to aberrant expression of E2A-PBX1 target genes remains largely unexplored. Here we show that Mediator interacts directly with E2A-PBX1 through an interaction of the MED1 subunit with an E2A activation domain. Results of MED1 depletion by CRISPR/Cas9 further indicate that MED1 is specifically required for E2A-PBX1-dependent gene activation and leukemic cell growth. Integrated transcriptome and cistrome analyses identify pre-B cell receptor and cell cycle regulatory genes as direct cotargets of MED1 and E2A-PBX1. Notably, complementary biochemical analyses also demonstrate that recruitment of E2A-PBX1 to a target DNA template involves a direct interaction with DNA-bound RUNX1 that can be further stabilized by EBF1. These findings suggest that E2A-PBX1 interactions with RUNX1 and MED1/Mediator are of functional importance for both gene-specific transcriptional activation and maintenance of E2A-PBX1-driven leukemia. The MED1 dependency for E2A-PBX1-mediated gene activation and leukemogenesis may provide a potential therapeutic opportunity by targeting MED1 in E2A-PBX1+ pre-B leukemia.
Collapse
|
14
|
Jang Y, Park YK, Lee JE, Wan D, Tran N, Gavrilova O, Ge K. MED1 is a lipogenesis coactivator required for postnatal adipose expansion. Genes Dev 2021; 35:713-728. [PMID: 33888555 PMCID: PMC8091974 DOI: 10.1101/gad.347583.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
In this study, Jang et al. investigated the role of MED1 in adipose development and expansion in vivo, and they show that MED1 is not generally required for transcription during adipogenesisin culture and that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of fatty acid and triglyceride synthesis genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. Their findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion. MED1 often serves as a surrogate of the general transcription coactivator complex Mediator for identifying active enhancers. MED1 is required for phenotypic conversion of fibroblasts to adipocytes in vitro, but its role in adipose development and expansion in vivo has not been reported. Here, we show that MED1 is not generally required for transcription during adipogenesis in culture and that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of fatty acid and triglyceride synthesis genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. During adipogenesis, MED1 is dispensable for induction of lineage-determining transcription factors (TFs) PPARγ and C/EBPα but is required for lipid accumulation in the late phase of differentiation. Mechanistically, MED1 controls the induction of lipogenesis genes by facilitating lipogenic TF ChREBP- and SREBP1a-dependent recruitment of Mediator to active enhancers. Together, our findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion.
Collapse
Affiliation(s)
- Younghoon Jang
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea
| | - Young-Kwon Park
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Danyang Wan
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nhien Tran
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Ito K, Schneeberger M, Gerber A, Jishage M, Marchildon F, Maganti AV, Cohen P, Friedman JM, Roeder RG. Critical roles of transcriptional coactivator MED1 in the formation and function of mouse adipose tissues. Genes Dev 2021; 35:729-748. [PMID: 33888560 PMCID: PMC8091968 DOI: 10.1101/gad.346791.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
In this study, Ito et al. sought to understand the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue. Using multiple genetic approaches to assess requirements for MED1 in adipocyte formation and function in mice, they show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. The MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice. We show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. This work establishes MED1 as an essential transcriptional coactivator that ensures homeostatic functions of adipocytes.
Collapse
Affiliation(s)
- Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Alan Gerber
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Francois Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Aarthi V Maganti
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
16
|
Lei L, Yang X, Su Y, Zheng H, Liu J, Liu H, Zou Y, Jiao A, Wang X, Zhang C, Zhang X, Zhang J, Zhang D, Zhou X, Shi L, Liu E, Bai L, Sun C, Zhang B. Med1 controls CD8 T cell maintenance through IL-7R-mediated cell survival signalling. J Cell Mol Med 2021; 25:4870-4876. [PMID: 33733611 PMCID: PMC8107092 DOI: 10.1111/jcmm.16465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Under steady‐state conditions, the pool size of peripheral CD8+ T cells is maintained through turnover and survival. Beyond TCR and IL‐7R signals, the underlying mechanisms are less well understood. In the present study, we found a significant reduction of CD8+ T cell proportion in spleens but not in thymi of mice with T cell‐specific deletion of Mediator Subunit 1 (Med1). A competitive transfer of wild‐type (WT) and Med1‐deficient CD8+ T cells reproduced the phenotype in the same recipients and confirmed intrinsic role of Med1. Furthermore, we observed a comparable degree of migration and proliferation but a significant increase of cell death in Med1‐deficient CD8+ T cells compared with WT counterparts. Finally, Med1‐deficient CD8+ T cells exhibited a decreased expression of interleukin‐7 receptor α (IL‐7Rα), down‐regulation of phosphorylated‐STAT5 (pSTAT5) and Bim up‐regulation. Collectively, our study reveals a novel role of Med1 in the maintenance of CD8+ T cells through IL‐7Rα/STAT5 pathway‐mediated cell survival.
Collapse
Affiliation(s)
- Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujing Zou
- Duke University Medical Center, Durham, NC, USA
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiahui Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liang Bai
- Institute of Cardiovascular Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| |
Collapse
|
17
|
Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM. Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. J Biol Chem 2021; 296:100240. [PMID: 33384381 PMCID: PMC7949100 DOI: 10.1074/jbc.rev120.012411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Castration resistant prostate cancer (CRPC) continues to be androgen receptor (AR) driven. Inhibition of AR signaling in CRPC could be advanced using state-of-the-art biophysical and biochemical techniques. Structural characterization of AR and its complexes by cryo-electron microscopy would advance the development of N-terminal domain (NTD) and ligand-binding domain (LBD) antagonists. The structural basis of AR function is unlikely to be determined by any single structure due to the intrinsic disorder of its NTD, which not only interacts with coregulators but likely accounts for the constitutive activity of AR-splice variants (SV), which lack the LBD and emerge in CRPC. Using different AR constructs lacking the LBD, their effects on protein folding, DNA binding, and transcriptional activity could reveal how interdomain coupling explains the activity of AR-SVs. The AR also interacts with coregulators that promote chromatin looping. Elucidating the mechanisms involved can identify vulnerabilities to treat CRPC, which do not involve targeting the AR. Phosphorylation of the AR coactivator MED-1 by CDK7 is one mechanism that can be blocked by the use of CDK7 inhibitors. CRPC gains resistance to AR signaling inhibitors (ARSI). Drug resistance may involve AR-SVs, but their role requires their reliable quantification by SILAC-mass spectrometry during disease progression. ARSI drug resistance also occurs by intratumoral androgen biosynthesis catalyzed by AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase), which is unique in that its acts as a coactivator of AR. Novel bifunctional inhibitors that competitively inhibit AKR1C3 and block its coactivator function could be developed using reverse-micelle NMR and fragment-based drug discovery.
Collapse
Affiliation(s)
- Irfan Asangani
- Department Cancer Biology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian A Blair
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vera Moiseenkova-Bell
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, and GRECC, Seattle, Washington, USA
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, and GRECC, Seattle, Washington, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, USA
| | - Trevor M Penning
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
18
|
Chu CS, Hellmuth JC, Singh R, Ying HY, Skrabanek L, Teater MR, Doane AS, Elemento O, Melnick AM, Roeder RG. Unique Immune Cell Coactivators Specify Locus Control Region Function and Cell Stage. Mol Cell 2020; 80:845-861.e10. [PMID: 33232656 DOI: 10.1016/j.molcel.2020.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
Locus control region (LCR) functions define cellular identity and have critical roles in diseases such as cancer, although the hierarchy of structural components and associated factors that drive functionality are incompletely understood. Here we show that OCA-B, a B cell-specific coactivator essential for germinal center (GC) formation, forms a ternary complex with the lymphoid-enriched OCT2 and GC-specific MEF2B transcription factors and that this complex occupies and activates an LCR that regulates the BCL6 proto-oncogene and is uniquely required by normal and malignant GC B cells. Mechanistically, through OCA-B-MED1 interactions, this complex is required for Mediator association with the BCL6 promoter. Densely tiled CRISPRi screening indicates that only LCR segments heavily bound by this ternary complex are essential for its function. Our results demonstrate how an intimately linked complex of lineage- and stage-specific factors converges on specific and highly essential enhancer elements to drive the function of a cell-type-defining LCR.
Collapse
Affiliation(s)
- Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Johannes C Hellmuth
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rajat Singh
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hsia-Yuan Ying
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucy Skrabanek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew R Teater
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashley S Doane
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
19
|
Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. PLoS Genet 2020; 16:e1008770. [PMID: 32453730 PMCID: PMC7274477 DOI: 10.1371/journal.pgen.1008770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/05/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023] Open
Abstract
Hormone-dependent activation of enhancers includes histone hyperacetylation and mediator recruitment. Histone hyperacetylation is mostly explained by a bimodal switch model, where histone deacetylases (HDACs) disassociate from chromatin, and histone acetyl transferases (HATs) are recruited. This model builds on decades of research on steroid receptor regulation of transcription. Yet, the general concept of the bimodal switch model has not been rigorously tested genome wide. We have used a genomics approach to study enhancer hyperacetylation by the thyroid hormone receptor (TR), described to operate as a bimodal switch. H3 acetylation, HAT and HDAC ChIP-seq analyses of livers from hypo- and hyperthyroid wildtype, TR deficient and NCOR1 disrupted mice reveal three types of thyroid hormone (T3)-regulated enhancers. One subset of enhancers is bound by HDAC3-NCOR1 in the absence of hormone and constitutively occupy TR and HATs irrespective of T3 levels, suggesting a poised enhancer state in absence of hormone. In presence of T3, HDAC3-NCOR1 dissociates from these enhancers leading to histone hyperacetylation, suggesting a histone acetylation rheostat function of HDACs at poised enhancers. Another subset of enhancers, not occupied by HDACs, is hyperacetylated in a T3-dependent manner, where TR is recruited to chromatin together with HATs. Lastly, a subset of enhancers, is not occupied directly by TR yet requires TR for histone hyperacetylation. This indirect enhancer activation involves co-association with TR bound enhancers within super-enhancers or topological associated domains. Collectively, this demonstrates various mechanisms controlling hormone-dependent transcription and adds significant details to the otherwise simple bimodal switch model. Thyroid hormone (T3) is a central regulator of growth, thermogenesis, heart rate and metabolism. In the liver T3 binds thyroid hormone receptor beta (TRβ) controlling expression of genes involved in processes such as lipid and cholesterol metabolism. The molecular mechanisms controlling TR-dependent gene regulation are centred on a bimodal switch model. In the absence of T3 co-repressors bind TR reducing gene expression. When hormone binds TR, co-repressors dissociate, and co-activators are recruited inducing gene expression. This model predominates the current understanding of T3-regulated gene expression. However, only a few studies have tested this model by genome-wide approaches. We have quantified histone3 acetylation genome-wide in the liver of hypo- and hyperthyroid mice and identified gene regulatory regions regulated by T3. Probing TR and co-regulators at these regulatory regions, and analysing histone3 acetylation in mouse models for disrupted co-repressor and TR activity, reveal additional insights to the mechanisms regulating T3-dependent gene expression. We suggest a revision of the prevailing bimodal switch model which helps understanding T3-regulated gene expression in tissues such as liver. We hope that this study, together with future studies, will add new perspectives on nuclear receptor-mediated transcriptional regulation to reveal general principles.
Collapse
|
20
|
Matsubara L, Fukuoka T, Sudo K, Fukunaga T, Imanishi A, Kuronuma K, Matsuo M, Kamoshida S, Hasegawa N, Asano S, Ito M. Translin restricts the growth of pubertal mammary epithelial cells estrogen-independently in mice. Biochem Biophys Res Commun 2020; 521:562-568. [PMID: 31677798 DOI: 10.1016/j.bbrc.2019.10.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022]
Abstract
Translin, a ubiquitous RNA/DNA-binding protein that forms a hetero-octamer together with Translin-associated factor X (TRAX), possesses endoribonuclease activity and plays a physiological role in restricting the size and differentiation of mesenchymal precursor cells. However, the precise role of Translin in epithelial cells remains unclear. Here, we show evidence that Translin restricts the growth of pubertal mammary epithelial cells. The mammary epithelia of Translin-null females exhibited retarded growth before puberty, but highly enhanced growth and DNA synthesis with increased ramification after the onset of puberty. Primary cultures of Translin-null mammary epithelial cells showed augmented DNA synthesis in a ligand-independent and ligand-enhanced manner. Translin-null ovariectomized mice implanted with slow-release estrogen pellets showed enhanced length and ramification of the mammary glands. Mammary epithelial growth was also observed in ovariectomized Translin-null mice implanted with placebo pellets. Luciferase reporter assays using embryonic fibroblasts from Translin-null mice showed unaltered estrogen receptor α function. These results indicate that Translin plays a physiological role in restricting intrinsic growth, beyond mesenchymal cells, of pubertal mammary epithelial cells.
Collapse
Affiliation(s)
- Leo Matsubara
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Tomoya Fukuoka
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Katsuko Sudo
- Pre-clinical Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan; Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 159-8555, Japan
| | - Takako Fukunaga
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Azusa Imanishi
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Kana Kuronuma
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Miki Matsuo
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Shingo Kamoshida
- Laboratory of Pathology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Natsumi Hasegawa
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Shigetaka Asano
- Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 159-8555, Japan
| | - Mitsuhiro Ito
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan; Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 159-8555, Japan.
| |
Collapse
|
21
|
Wang Y, Liang H, Chen G, Liao C, Wang Y, Hu Z, Xie Q. Molecular and Phylogenetic Analyses of the Mediator Subunit Genes in Solanum lycopersicum. Front Genet 2019; 10:1222. [PMID: 31827491 PMCID: PMC6892441 DOI: 10.3389/fgene.2019.01222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
The Mediator complex is a multi-subunit protein assembly that serves as a central scaffold to help regulate DNA-binding transcription factors (TFs) and RNA polymerase II (Pol II) activity controlled gene expression programmed in response to developmental or environmental factors. However, litter information about Mediator complex subunit (MED) genes in tomato is available, although it is an essential model plant. In this study, we retrieved 46 candidate SlMED genes from the genome of tomato, and a comprehensive analysis was conducted, including their phylogenetic relationship, chromosomal locations, gene structure, cis-regulatory elements prediction, as well as gene expression. The expression profiling of 46 SlMED genes was analyzed using publicly available RNA-seq data. Furthermore, we selected some SlMED genes to evaluate their expression patterns in various tissues and under different abiotic stress treatments by quantitative reverse transcription PCR experiments. This is the first detailed report to elucidate the molecular and phylogenetic features of the MED genes in tomato, and it provides valuable clues for further functional analysis in order to clarify the role of the SlMED genes in diverse plant growth, development and abiotic stress response.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Honglian Liang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yicong Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
22
|
Femia MR, Evans RM, Zhang J, Sun X, Lebegue CJ, Roggero VR, Allison LA. Mediator subunit MED1 modulates intranuclear dynamics of the thyroid hormone receptor. J Cell Biochem 2019; 121:2909-2926. [PMID: 31692077 DOI: 10.1002/jcb.29532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
Abstract
The thyroid hormone receptors (TRs) mediate thyroid hormone (T3 )-dependent gene expression. The nuclear import and export signals that direct TR shuttling are well characterized, but little is known about factors modulating nuclear retention. We used fluorescence-based nucleocytoplasmic scoring and fluorescence recovery after photobleaching in transfected cells to investigate whether Mediator subunits MED1 and MED13 play a role in nuclear retention of TR. When MED1 was overexpressed, there was a striking shift towards a greater nuclear localization of TRβ1 and the oncoprotein v-ErbA, subtypes with cytosolic populations at steady-state, and TRβ1 intranuclear mobility was reduced. For TRα1, there was no observable change in its predominantly nuclear distribution pattern or mobility. Consistent with a role for MED1 in nuclear retention, the cytosolic TRα1 and TRβ1 population were significantly greater in MED1-/- cells, compared with MED1+/+ cells. Exposure to T3 and epidermal growth factor, which induces MED1 phosphorylation, also altered TR intranuclear dynamics. Overexpression of miR-208a, which downregulates MED13, led to a more cytosolic distribution of nuclear-localized TRα1; however, overexpression of MED13 had no effect on TRβ1 localization. The known binding site of MED1 overlaps with a transactivation domain and nuclear export signal in helix 12 of TR's ligand-binding domain (LBD). Coimmunoprecipitation assays demonstrated that TR's LBD interacts directly with exportins 5 and 7, suggesting that binding of exportins and MED1 to TR may be mutually exclusive. Collectively, our data provide evidence that MED1 promotes nuclear retention of TR, and highlight the dual functionality of helix 12 in TR transactivation and nuclear export.
Collapse
Affiliation(s)
- Matthew R Femia
- Department of Biology, William and Mary, Williamsburg, Viginia
| | | | - Jibo Zhang
- Department of Biology, William and Mary, Williamsburg, Viginia
| | - Xiaopeng Sun
- Department of Biology, William and Mary, Williamsburg, Viginia
| | | | | | | |
Collapse
|
23
|
Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature 2019; 575:355-360. [PMID: 31695196 DOI: 10.1038/s41586-019-1732-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/03/2019] [Indexed: 11/08/2022]
Abstract
Central to understanding cellular behaviour in multi-cellular organisms is the question of how a cell exits one transcriptional state to adopt and eventually become committed to another. Fibroblast growth factor-extracellular signal-regulated kinase (FGF -ERK) signalling drives differentiation of mouse embryonic stem cells (ES cells) and pre-implantation embryos towards primitive endoderm, and inhibiting ERK supports ES cell self-renewal1. Paracrine FGF-ERK signalling induces heterogeneity, whereby cells reversibly progress from pluripotency towards primitive endoderm while retaining their capacity to re-enter self-renewal2. Here we find that ERK reversibly regulates transcription in ES cells by directly affecting enhancer activity without requiring a change in transcription factor binding. ERK triggers the reversible association and disassociation of RNA polymerase II and associated co-factors from genes and enhancers with the mediator component MED24 having an essential role in ERK-dependent transcriptional regulation. Though the binding of mediator components responds directly to signalling, the persistent binding of pluripotency factors to both induced and repressed genes marks them for activation and/or reactivation in response to fluctuations in ERK activity. Among the repressed genes are several core components of the pluripotency network that act to drive their own expression and maintain the ES cell state; if their binding is lost, the ability to reactivate transcription is compromised. Thus, as long as transcription factor occupancy is maintained, so is plasticity, enabling cells to distinguish between transient and sustained signals. If ERK signalling persists, pluripotency transcription factor levels are reduced by protein turnover and irreversible gene silencing and commitment can occur.
Collapse
|
24
|
Krieger TG, Moran CM, Frangini A, Visser WE, Schoenmakers E, Muntoni F, Clark CA, Gadian D, Chong WK, Kuczynski A, Dattani M, Lyons G, Efthymiadou A, Varga-Khadem F, Simons BD, Chatterjee K, Livesey FJ. Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development. Proc Natl Acad Sci U S A 2019; 116:22754-22763. [PMID: 31628250 PMCID: PMC6842615 DOI: 10.1073/pnas.1908762116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the thyroid hormone receptor α 1 gene (THRA) have recently been identified as a cause of intellectual deficit in humans. Patients present with structural abnormalities including microencephaly, reduced cerebellar volume and decreased axonal density. Here, we show that directed differentiation of THRA mutant patient-derived induced pluripotent stem cells to forebrain neural progenitors is markedly reduced, but mutant progenitor cells can generate deep and upper cortical layer neurons and form functional neuronal networks. Quantitative lineage tracing shows that THRA mutation-containing progenitor cells exit the cell cycle prematurely, resulting in reduced clonal output. Using a micropatterned chip assay, we find that spatial self-organization of mutation-containing progenitor cells in vitro is impaired, consistent with down-regulated expression of cell-cell adhesion genes. These results reveal that thyroid hormone receptor α1 is required for normal neural progenitor cell proliferation in human cerebral cortical development. They also exemplify quantitative approaches for studying neurodevelopmental disorders using patient-derived cells in vitro.
Collapse
Affiliation(s)
- Teresa G Krieger
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Carla M Moran
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Alberto Frangini
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - W Edward Visser
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Erik Schoenmakers
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and National Institute for Health Research (NIHR) Great Ormond Street (GOS) Hospital Biomedical Research Centre, London WC1N 1EH, United Kingdom
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, University College London (UCL) GOS Institute of Child Health, London WC1N 1EH, United Kingdom
| | - David Gadian
- Developmental Imaging and Biophysics Section, University College London (UCL) GOS Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Wui K Chong
- Department of Radiology, Great Ormond Street Children's Hospital, London WC1N 3JH, United Kingdom
| | - Adam Kuczynski
- Department of Neuropsychology, Great Ormond Street Children's Hospital, London WC1N 1EH, United Kingdom
| | - Mehul Dattani
- Department of Endocrinology, Great Ormond Street Children's Hospital and Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Greta Lyons
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | - Faraneh Varga-Khadem
- Department of Neuropsychology, Great Ormond Street Children's Hospital, London WC1N 1EH, United Kingdom
- Cognitive Neuroscience and Neuropsychiatry Section, UCL GOS Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Benjamin D Simons
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Krishna Chatterjee
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Frederick J Livesey
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom;
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| |
Collapse
|
25
|
Sainath SB, André A, Castro LFC, Santos MM. The evolutionary road to invertebrate thyroid hormone signaling: Perspectives for endocrine disruption processes. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:124-138. [PMID: 31136851 DOI: 10.1016/j.cbpc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (THs) are the only iodine-containing hormones that play fundamental roles in chordates and non-chordates. The chemical nature, mode of action and the synthesis of THs are well established in mammals and other vertebrates. Although thyroid-like hormones have been detected in protostomes and non-chordate deuterostomes, TH signaling is poorly understood as compared to vertebrates, particularly in protostomes. Therefore, the central objective of this article is to review TH system components and TH-induced effects in non-vertebrate chordates, non-chordate deuterostomes and protostomes based on available genomes and functional information. To accomplish this task, we integrate here the available knowledge on the THs signaling across non-vertebrate chordates, non-chordate deuterostomes and protostomes by considering studies encompassing TH system components and physiological actions of THs. We also address the possible interactions of thyroid disrupting chemicals and their effects in protostomes and non-chordate deuterostomes. Finally, the perspectives on current and future challenges are discussed.
Collapse
Affiliation(s)
- S B Sainath
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Department of Biotechnology, Vikrama Simhapuri University, Nellore 524 003, AP, India.
| | - A André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
26
|
Fukuoka T, Kawai A, Takahara T, Mori M, Roeder RG, Hasegawa N, Ito M. PML-RARα induces all-trans retinoic acid-dependent transcriptional activation through interaction with MED1. Transcription 2019; 10:147-156. [PMID: 31135261 DOI: 10.1080/21541264.2019.1624467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Transcriptional activation by PML-RARα, an acute promyelocytic leukemia-related oncofusion protein, requires pharmacological concentrations of all-trans retinoic acid (ATRA). However, the mechanism by which the liganded PML-RARα complex leads to the formation of the preinitiation complex has been unidentified. Here we demonstrate that the Mediator subunit MED1 plays an important role in the ATRA-dependent activation of the PML-RARα-bound promoter. Luciferase reporter assays showed that PML-RARα induced significant transcription at pharmacological doses (1 μM) of ATRA; however, this was submaximal and equivalent to the level of transcription driven by intact RARα at physiological doses (1 nM) of ATRA. Transcription depended upon the interaction of PML-RARα with the two LxxLL nuclear receptor recognition motifs of MED1, and LxxLL→LxxAA mutations led to minimal transcription. Mechanistically, MED1 interacted ATRA-dependently with the RARα portion of PML-RARα through the two LxxLL motifs of MED1. These results suggest that PML-RARα initiates ATRA-induced transcription through its interaction with MED1.
Collapse
Affiliation(s)
- Tomoya Fukuoka
- a Laboratory of Hematology, Division of Medical Biophysics , Kobe University Graduate School of Health Sciences , Kobe , Japan
| | - Asami Kawai
- a Laboratory of Hematology, Division of Medical Biophysics , Kobe University Graduate School of Health Sciences , Kobe , Japan
| | - Taku Takahara
- a Laboratory of Hematology, Division of Medical Biophysics , Kobe University Graduate School of Health Sciences , Kobe , Japan
| | - Mahiro Mori
- a Laboratory of Hematology, Division of Medical Biophysics , Kobe University Graduate School of Health Sciences , Kobe , Japan
| | - Robert G Roeder
- b Laboratory of Biochemistry and Molecular Biology , the Rockefeller University , New York , NY , USA
| | - Natsumi Hasegawa
- a Laboratory of Hematology, Division of Medical Biophysics , Kobe University Graduate School of Health Sciences , Kobe , Japan
| | - Mitsuhiro Ito
- a Laboratory of Hematology, Division of Medical Biophysics , Kobe University Graduate School of Health Sciences , Kobe , Japan.,b Laboratory of Biochemistry and Molecular Biology , the Rockefeller University , New York , NY , USA
| |
Collapse
|
27
|
Drosophila Mediator Subunit Med1 Is Required for GATA-Dependent Developmental Processes: Divergent Binding Interfaces for Conserved Coactivator Functions. Mol Cell Biol 2019; 39:MCB.00477-18. [PMID: 30670567 DOI: 10.1128/mcb.00477-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/13/2019] [Indexed: 01/26/2023] Open
Abstract
DNA-bound transcription factors (TFs) governing developmental gene regulation have been proposed to recruit polymerase II machinery at gene promoters through specific interactions with dedicated subunits of the evolutionarily conserved Mediator (MED) complex. However, whether such MED subunit-specific functions and partnerships have been conserved during evolution has been poorly investigated. To address this issue, we generated the first Drosophila melanogaster loss-of-function mutants for Med1, known as a specific cofactor for GATA TFs and hormone nuclear receptors in mammals. We show that Med1 is required for cell proliferation and hematopoietic differentiation depending on the GATA TF Serpent (Srp). Med1 physically binds Srp in cultured cells and in vitro through its conserved GATA zinc finger DNA-binding domain and the divergent Med1 C terminus. Interestingly, GATA-Srp interaction occurs through the longest Med1 isoform, suggesting a functional diversity of MED complex populations. Furthermore, we show that Med1 acts as a coactivator for the GATA factor Pannier during thoracic development. In conclusion, the Med1 requirement for GATA-dependent regulatory processes is a common feature in insects and mammals, although binding interfaces have diverged. Further work in Drosophila should bring valuable insights to fully understand GATA-MED functional partnerships, which probably involve other MED subunits depending on the cellular context.
Collapse
|
28
|
Segert J, Schneider I, Berger IM, Rottbauer W, Just S. Mediator complex subunit Med12 regulates cardiac jelly development and AV valve formation in zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:20-31. [PMID: 30036562 DOI: 10.1016/j.pbiomolbio.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022]
Abstract
The molecular mechanism essential for the formation of heart valves involves complex interactions of signaling molecules and transcription factors. The Mediator Complex (MC) functions as multi-subunit machinery to orchestrate gene transcription, especially for tissue-specific fine-tuning of transcriptional processes during development, also in the heart. Here, we analyzed the role of the MC subunit Med12 during atrioventricular canal (AVC) development and endocardial cushion formation, using the Med12-deficient zebrafish mutant trapped (tpd). Whereas primary heart formation was only slightly affected in tpd, we identified defects in AVC development and cardiac jelly formation. We found that although misexpression of bmp4 and versican in tpd hearts can be restored by overexpression of a modified version of the Sox9b transcription factor (harboring VP16 transactivation domain) that functions independent of its co-activator Med12, endocardial cushion development in tpd was not reconstituted. Interestingly, expression of tbx2b and its target hyaluronan synthase 2 (has2) - the synthase of hyaluronan (HA) in the heart - was absent in both uninjected and Sox9b-VP16 overexpressing tpd hearts. HA is a major ECM component of the cardiac jelly and required for endocardial cushion formation. Furthermore, we found secreted phosphoprotein 1 (spp1), an endocardial marker of activated AV endocardial cells, completely absent in tpd hearts, suggesting that crucial steps of the transformation of AV endocardial cells into endocardial cushions is blocked. We demonstrate that Med12 controls cardiac jelly formation Sox9-independently by regulating tbx2b and has2 expression and therefore the production of the glycosaminoglycan HA at the AVC to guarantee proper endocardial cushion development.
Collapse
Affiliation(s)
- Julia Segert
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Isabelle Schneider
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Ina M Berger
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.
| |
Collapse
|
29
|
Tan CSH, Go KD, Bisteau X, Dai L, Yong CH, Prabhu N, Ozturk MB, Lim YT, Sreekumar L, Lengqvist J, Tergaonkar V, Kaldis P, Sobota RM, Nordlund P. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 2018; 359:1170-1177. [DOI: 10.1126/science.aan0346] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/28/2017] [Accepted: 01/27/2018] [Indexed: 01/20/2023]
|
30
|
Abstract
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.
Collapse
Affiliation(s)
- Julie Soutourina
- Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, Commissariat à l'énergie Atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), University Paris Sud, University Paris Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
31
|
Ranjan A, Ansari SA. Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 2017; 144:41-49. [PMID: 29061530 DOI: 10.1016/j.biochi.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO, 64110, USA
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, AlAin, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
32
|
Baskin KK, Makarewich CA, DeLeon SM, Ye W, Chen B, Beetz N, Schrewe H, Bassel-Duby R, Olson EN. MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight 2017; 2:91920. [PMID: 28724790 DOI: 10.1172/jci.insight.91920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is composed of 4 proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function, such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium-handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and we found that MED12 localizes to transcription factor consensus sequences within calcium-handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes and that MED12 and MEF2 co-occupy promoters of calcium-handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and that overexpression of both increases expression of calcium-handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium-handling genes, consequently mediating contractility in the mammalian heart.
Collapse
Affiliation(s)
| | | | | | | | - Beibei Chen
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and.,Hamon Center for Regenerative Science and Medicine and.,Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Eric N Olson
- Department of Molecular Biology and.,Hamon Center for Regenerative Science and Medicine and.,Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
Spitler KM, Ponce JM, Oudit GY, Hall DD, Grueter CE. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming. Am J Physiol Heart Circ Physiol 2017; 312:H768-H780. [PMID: 28159809 PMCID: PMC5407164 DOI: 10.1152/ajpheart.00728.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/18/2022]
Abstract
The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function.NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns.
Collapse
Affiliation(s)
- Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Jessica M Ponce
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Gavin Y Oudit
- Mazankowski Alberta Heart Institute Canada Research Chair in Heart Failure, Division of Cardiology, Walter Mackenzie Health Sciences Centre, Edmonton, Alberta, Canada
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| |
Collapse
|
34
|
Mansouri S, Naghavi-Al-Hosseini F, Farahmand L, Majidzadeh-A K. MED1 may explain the interaction between receptor tyrosine kinases and ERα66 in the complicated network of Tamoxifen resistance. Eur J Pharmacol 2017; 804:78-81. [PMID: 28322840 DOI: 10.1016/j.ejphar.2017.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
According to the American Society of Clinical Oncology or ASCO's clinical practice guidelines, administration of Tamoxifen for hormone receptor positive patients improved outcomes. However, many studies have been conducted in this issue, with the rise of Tamoxifen resistance in recent decades. There are many alternative growth cascades that are activated in Tamoxifen resistant cells. The most common and well characterized components of such a resistant network are receptor tyrosine kinases, or RTKs, which can influence many other cellular processes. The interactions between estrogen dependent and independent pathways further complicate the networking. MED1, as a member of a mediator complex, which is activated by RTK growth pathways, plays role in co-activating ERα66 to transcribe genes and enhance cellular proliferation. Herein, we will discuss MED1, a novel biomarker which can explain how RTKs interact with ERα66 which results in Tamoxifen resistance.
Collapse
Affiliation(s)
- Sepideh Mansouri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fateme Naghavi-Al-Hosseini
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Cancer Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
35
|
De novo mutations in genes of mediator complex causing syndromic intellectual disability: mediatorpathy or transcriptomopathy? Pediatr Res 2016; 80:809-815. [PMID: 27500536 DOI: 10.1038/pr.2016.162] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/13/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. METHODS Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. RESULTS Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. CONCLUSION The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.
Collapse
|
36
|
Erkina TY, Erkine AM. Nucleosome distortion as a possible mechanism of transcription activation domain function. Epigenetics Chromatin 2016; 9:40. [PMID: 27679670 PMCID: PMC5029090 DOI: 10.1186/s13072-016-0092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
After more than three decades since the discovery of transcription activation domains (ADs) in gene-specific activators, the mechanism of their function remains enigmatic. The widely accepted model of direct recruitment by ADs of co-activators and basal transcriptional machinery components, however, is not always compatible with the short size yet very high degree of sequence randomness and intrinsic structural disorder of natural and synthetic ADs. In this review, we formulate the basis for an alternative and complementary model, whereby sequence randomness and intrinsic structural disorder of ADs are necessary for transient distorting interactions with promoter nucleosomes, triggering promoter nucleosome translocation and subsequently gene activation.
Collapse
Affiliation(s)
- Tamara Y Erkina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Alexandre M Erkine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| |
Collapse
|
37
|
Jia Y, Chang HC, Schipma MJ, Liu J, Shete V, Liu N, Sato T, Thorp EB, Barger PM, Zhu YJ, Viswakarma N, Kanwar YS, Ardehali H, Thimmapaya B, Reddy JK. Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice. PLoS One 2016; 11:e0160755. [PMID: 27548259 PMCID: PMC4993490 DOI: 10.1371/journal.pone.0160755] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cadherins/genetics
- Cadherins/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cyclic Nucleotide Phosphodiesterases, Type 1/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism
- Embryo, Mammalian
- Energy Metabolism
- Female
- Gene Deletion
- Gene Expression Profiling
- Gene Expression Regulation
- Genes, Lethal
- Gestational Age
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Mediator Complex Subunit 1/deficiency
- Mediator Complex Subunit 1/genetics
- Mice
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/pathology
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Peroxisome Proliferator-Activated Receptors/genetics
- Peroxisome Proliferator-Activated Receptors/metabolism
- Pregnancy
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hsiang-Chun Chang
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Matthew J. Schipma
- Next Generation Sequencing Core Facility, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jing Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Varsha Shete
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ning Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatsuya Sato
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Philip M. Barger
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yi-Jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Navin Viswakarma
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yashpal S. Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hossein Ardehali
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (JKR); (BT)
| | - Janardan K. Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (JKR); (BT)
| |
Collapse
|
38
|
Buendía-Monreal M, Gillmor CS. Mediator: A key regulator of plant development. Dev Biol 2016; 419:7-18. [PMID: 27287881 DOI: 10.1016/j.ydbio.2016.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
39
|
Eukaryotic Transcription Regulation: Getting to the Heart of the Matter: Commentary on Mediator Architecture and RNA Polymerase II Function by Plaschka et al. J Mol Biol 2016; 428:2575-2580. [DOI: 10.1016/j.jmb.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022]
|
40
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
42
|
Thomas-Claudepierre AS, Robert I, Rocha PP, Raviram R, Schiavo E, Heyer V, Bonneau R, Luo VM, Reddy JK, Borggrefe T, Skok JA, Reina-San-Martin B. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination. J Exp Med 2016; 213:303-12. [PMID: 26903242 PMCID: PMC4813673 DOI: 10.1084/jem.20141967] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/15/2016] [Indexed: 12/21/2022] Open
Abstract
Thomas-Claudepierre et al. report that mediator facilitates the long-range contacts between acceptor switch regions and the IgH locus enhancers during class switch recombination and their transcriptional activation. Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation.
Collapse
Affiliation(s)
- Anne-Sophie Thomas-Claudepierre
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France Institut National de la Santé et de la Recherche Médicale, Unité 964, 67404 Illkirch, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, 67404 Illkirch, France Université de Strasbourg, 67400 Illkirch, France
| | - Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France Institut National de la Santé et de la Recherche Médicale, Unité 964, 67404 Illkirch, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, 67404 Illkirch, France Université de Strasbourg, 67400 Illkirch, France
| | - Pedro P Rocha
- Department of Pathology, School of Medicine, New York University, New York, NY 10003
| | - Ramya Raviram
- Department of Pathology, School of Medicine, New York University, New York, NY 10003 Department of Biology, New York University, New York, NY 10003
| | - Ebe Schiavo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France Institut National de la Santé et de la Recherche Médicale, Unité 964, 67404 Illkirch, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, 67404 Illkirch, France Université de Strasbourg, 67400 Illkirch, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France Institut National de la Santé et de la Recherche Médicale, Unité 964, 67404 Illkirch, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, 67404 Illkirch, France Université de Strasbourg, 67400 Illkirch, France
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003 Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY 10003 Simons Center for Data Analysis, New York, NY 10010
| | - Vincent M Luo
- Department of Pathology, School of Medicine, New York University, New York, NY 10003 Department of Biology, New York University, New York, NY 10003
| | - Janardan K Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208
| | | | - Jane A Skok
- Department of Pathology, School of Medicine, New York University, New York, NY 10003 New York University Cancer Institute, New York University, New York, NY 10003
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France Institut National de la Santé et de la Recherche Médicale, Unité 964, 67404 Illkirch, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, 67404 Illkirch, France Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
43
|
Lu C, Fuller MT. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage. PLoS Genet 2015; 11:e1005701. [PMID: 26624996 PMCID: PMC4666660 DOI: 10.1371/journal.pgen.1005701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. Selective gene expression is crucial to making different cell types over the course of the development of an organism. In stem cell lineages, precursor cells terminally differentiate into defined cell types, with onset of terminal differentiation associated with activation of stage- and cell type-specific transcriptional programs. When spermatogonia initiate differentiation and become spermatocytes in the Drosophila male germ line, they undergo the most dramatic transcriptional changes that occur in the fly, as over 1000 new transcripts turn on in preparation for meiosis and the striking morphological changes that produce sperm. This robust spermatocyte transcription program requires cooperative action of a testis-specific protein complex, tMAC and the testis-specific basal transcription machinery TFIID. Here we show that the transcriptional co-activator complex, Mediator is key in connecting the two classes of players. We found that Mediator is recruited to spermatocyte chromatin through the interaction of its subunit, Med22 and a putative transcription activator in tMAC. Recruitment of Mediator is then required for proper localization and function of the testis-specific TFIID complex to initiate gene transcription for spermatid differentiation, illuminating how transcription factors and cell type-specific versions of the general transcription machinery cooperate to drive gene activation during differentiation in adult stem cell lineages.
Collapse
Affiliation(s)
- Chenggang Lu
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Margaret T. Fuller
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Nagulapalli M, Maji S, Dwivedi N, Dahiya P, Thakur JK. Evolution of disorder in Mediator complex and its functional relevance. Nucleic Acids Res 2015; 44:1591-612. [PMID: 26590257 PMCID: PMC4770211 DOI: 10.1093/nar/gkv1135] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/18/2015] [Indexed: 12/27/2022] Open
Abstract
Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of ‘junction-MoRF’ has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein–protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Malini Nagulapalli
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pradeep Dahiya
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
45
|
McCleland ML, Soukup TM, Liu SD, Esensten JH, de Sousa e Melo F, Yaylaoglu M, Warming S, Roose-Girma M, Firestein R. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. J Pathol 2015; 237:508-19. [PMID: 26235356 DOI: 10.1002/path.4596] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 01/29/2023]
Abstract
CDK8 is a dissociable kinase module of the Mediator complex and has been shown to play an important role in transcriptional regulation in organisms as diverse as yeast and humans. Recent studies suggest that CDK8 functions as an oncoprotein in melanoma and colon cancer. Importantly, these studies were conducted using in vitro cell line models and the role of CDK8 in tumourigenesis in vivo has not been explored. We have generated a mouse with a Cdk8 conditional knockout allele and examined the consequences of Cdk8 loss on normal tissue homeostasis and tumour development in vivo. Cdk8 deletion in the young adult mouse did not induce any gross or histopathological abnormalities, implying that Cdk8 is largely dispensable for somatic cellular homeostasis. In contrast, Cdk8 deletion in the Apc(Min) intestinal tumour model shortened the animals' survival and increased tumour burden. Although Cdk8 deletion did not affect tumour initiation, intestinal tumour size and growth rate were significantly increased in Cdk8-null animals. Transcriptome analysis performed on Cdk8-null intestinal cells revealed up-regulation of genes that are governed by the Polycomb group (PcG) complex. In support of these findings, Cdk8-null intestinal cells and tumours displayed a reduction in histone H3K27 trimethylation, both globally and at the promoters of a number of PcG-regulated genes involved in oncogenic signalling. Together, our findings uncover a tumour suppressor function for CDK8 in vivo and suggest that the role of CDK8 activity in driving oncogenesis is context-specific. Sequencing data were deposited at GEO (Accession No. GSE71385).
Collapse
Affiliation(s)
- Mark L McCleland
- Department of Pathology, Genentech Inc, South San Francisco, CA, USA
| | - Tim M Soukup
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA, USA
| | - Scot D Liu
- Department of Pathology, Genentech Inc, South San Francisco, CA, USA
| | | | | | - Murat Yaylaoglu
- Department of Pathology, Genentech Inc, South San Francisco, CA, USA
| | - Soren Warming
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA, USA
| | - Ron Firestein
- Department of Pathology, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
46
|
Locke MEO, Milojevic M, Eitutis ST, Patel N, Wishart AE, Daley M, Hill KA. Genomic copy number variation in Mus musculus. BMC Genomics 2015; 16:497. [PMID: 26141061 PMCID: PMC4490682 DOI: 10.1186/s12864-015-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. RESULTS We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR). CONCLUSION The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Collapse
Affiliation(s)
- M Elizabeth O Locke
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Susan T Eitutis
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Nisha Patel
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Andrea E Wishart
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Mark Daley
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Kathleen A Hill
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
47
|
Huszar JM, Jia Y, Reddy JK, Payne CJ. Med1 regulates meiotic progression during spermatogenesis in mice. Reproduction 2015; 149:597-604. [PMID: 25778538 PMCID: PMC4417004 DOI: 10.1530/rep-14-0483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/16/2015] [Indexed: 12/30/2022]
Abstract
Spermatogenesis is a highly coordinated process. Signaling from nuclear hormone receptors, like those for retinoic acid (RA), is important for normal spermatogenesis. However, the mechanisms regulating these signals are poorly understood. Mediator complex subunit 1 (MED1) is a transcriptional enhancer that directly modulates transcription from nuclear hormone receptors. MED1 is present in male germ cells throughout mammalian development, but its function during spermatogenesis is unknown. To determine its role, we generated mice lacking Med1 specifically in their germ cells beginning just before birth. Conditional Med1 knockout males are fertile, exhibiting normal testis weights and siring ordinary numbers of offspring. RA-responsive gene products stimulated by RA gene 8 (Stra8) and synaptonemal complex protein 3 (Sycp3) are first detected in knockout spermatogonia at the expected time points during the first wave of spermatogenesis, and persist with normal patterns of cellular distribution in adult knockout testes. Meiotic progression, however, is altered in the absence of Med1. At postnatal day 7 (P7), zygotene-stage knockout spermatocytes are already detected, unlike in control testes, with fewer pre-leptotene-stage cells and more leptotene spermatocytes observed in the knockouts. At P9, Med1 knockout spermatocytes prematurely enter pachynema. Once formed, greater numbers of knockout spermatocytes remain in pachynema relative to the other stages of meiosis throughout testis development and its maintenance in the adult. Meiotic exit is not inhibited. We conclude that MED1 regulates the temporal progression of primary spermatocytes through meiosis, with its absence resulting in abbreviated pre-leptotene, leptotene, and zygotene stages, and a prolonged pachytene stage.
Collapse
Affiliation(s)
- Jessica M Huszar
- Driskill Graduate ProgramDepartment of PathologyDepartments of Pediatrics and Obstetrics and GynecologyNorthwestern University Feinberg School of Medicine and Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, PO Box 211, Chicago, Illinois 60611, USA
| | - Yuzhi Jia
- Driskill Graduate ProgramDepartment of PathologyDepartments of Pediatrics and Obstetrics and GynecologyNorthwestern University Feinberg School of Medicine and Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, PO Box 211, Chicago, Illinois 60611, USA
| | - Janardan K Reddy
- Driskill Graduate ProgramDepartment of PathologyDepartments of Pediatrics and Obstetrics and GynecologyNorthwestern University Feinberg School of Medicine and Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, PO Box 211, Chicago, Illinois 60611, USA
| | - Christopher J Payne
- Driskill Graduate ProgramDepartment of PathologyDepartments of Pediatrics and Obstetrics and GynecologyNorthwestern University Feinberg School of Medicine and Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, PO Box 211, Chicago, Illinois 60611, USA Driskill Graduate ProgramDepartment of PathologyDepartments of Pediatrics and Obstetrics and GynecologyNorthwestern University Feinberg School of Medicine and Human Molecular Genetics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, PO Box 211, Chicago, Illinois 60611, USA
| |
Collapse
|
48
|
Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-66. [PMID: 25693131 DOI: 10.1038/nrm3951] [Citation(s) in RCA: 616] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
Collapse
Affiliation(s)
- Benjamin L Allen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
49
|
Samanta S, Thakur JK. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:757. [PMID: 26442070 PMCID: PMC4584954 DOI: 10.3389/fpls.2015.00757] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.
Collapse
Affiliation(s)
| | - Jitendra K. Thakur
- *Correspondence: Jitendra K. Thakur, Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
50
|
Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014; 141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Collapse
Affiliation(s)
- Jing-wen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|