1
|
Liu Y, Joy ST, Henley MJ, Croskey A, Yates JA, Merajver SD, Mapp AK. Inhibition of CREB Binding and Function with a Dual-Targeting Ligand. Biochemistry 2024; 63:1-8. [PMID: 38086054 PMCID: PMC10836052 DOI: 10.1021/acs.biochem.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
CBP/p300 is a master transcriptional coactivator that regulates gene activation by interacting with multiple transcriptional activators. Dysregulation of protein-protein interactions (PPIs) between the CBP/p300 KIX domain and its activators is implicated in a number of cancers, including breast, leukemia, and colorectal cancer. However, KIX is typically considered "undruggable" because of its shallow binding surfaces lacking both significant topology and promiscuous binding profiles. We previously reported a dual-targeting peptide (MybLL-tide) that inhibits the KIX-Myb interaction with excellent specificity and potency. Here, we demonstrate a branched, second-generation analogue, CREBLL-tide, that inhibits the KIX-CREB PPI with higher potency and selectivity. Additionally, the best of these CREBLL-tide analogues shows excellent and selective antiproliferation activity in breast cancer cells. These results indicate that CREBLL-tide is an effective tool for assessing the role of KIX-activator interactions in breast cancer and expanding the dual-targeting strategy for inhibiting KIX and other coactivators that contain multiple binding surfaces.
Collapse
Affiliation(s)
- Yejun Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayza Croskey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joel A Yates
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sofia D Merajver
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Liu Y, Cui J, Kang J, Wang Z, Xu X, Wu F. Bovine herpesvirus-1 gE protein inhibits IFN-β production to enhance replication by promoting MAVS ubiquitination and interfering with the interaction between IRF3 and CBP/p300. Vet Microbiol 2023; 287:109899. [PMID: 37931576 DOI: 10.1016/j.vetmic.2023.109899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause respiratory and genital tract diseases. In the process of viral infection, viruses can use their own proteins to suppress the innate immunity of the host and promote its replication; however, the mechanism by which BoHV-1 evades the innate immune response is not fully understood. In this study, we found that rabbits inoculated with the live gene deletion vaccine BoHV-1-△gI/gE/TK generated higher interferon-β (IFN-β) production in the serum, liver, lung and kidney than rabbits inoculated with wt BoHV-1, which led to milder lesions in the lung and kidney. We performed gene deletion and ectopic expression experiments on viral proteins and found that gE was the major protein that inhibited IFN-β expression. Further studies showed that MAVS and IRF3 were the targets of gE, and the specific mechanism was that gE inhibited IFN-β production by promoting MAVS ubiquitination and interfering with the interaction between IRF3 and CBP/p300. These results suggest a new way of BoHV-1 inhibition of IFN-β production to evade the host innate immunity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Cui
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| |
Collapse
|
3
|
Zhang K, Ge H, Zhou P, Li LF, Dai J, Cao H, Luo Y, Sun Y, Wang Y, Li J, Yu S, Li S, Qiu HJ. The D129L protein of African swine fever virus interferes with the binding of transcriptional coactivator p300 and IRF3 to prevent beta interferon induction. J Virol 2023; 97:e0082423. [PMID: 37724880 PMCID: PMC10617517 DOI: 10.1128/jvi.00824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE African swine fever (ASF) is an acute, hemorrhagic, and severe porcine infectious disease caused by African swine fever virus (ASFV). ASF outbreaks severely threaten the global pig industries and result in serious economic losses. No safe and efficacious commercial vaccine is currently available except in Vietnam. To date, large gaps in the knowledge concerning viral biological characteristics and immunoevasion strategies have hindered the ASF vaccine design. In this study, we demonstrate that pD129L negatively regulates the type I interferon (IFN) signaling pathway by interfering with the interaction of the transcriptional coactivator p300 and IRF3, thereby inhibiting the induction of type I IFNs. This study reveals a novel immunoevasion strategy employed by ASFV, shedding new light on the intricate mechanisms for ASFV to evade the host immune responses.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hailiang Ge
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pingping Zhou
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Harbin Medical University, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jingwen Dai
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongwei Cao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiaqi Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shaoxiong Yu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Shimada MK. Splicing Modulators Are Involved in Human Polyglutamine Diversification via Protein Complexes Shuttling between Nucleus and Cytoplasm. Int J Mol Sci 2023; 24:ijms24119622. [PMID: 37298574 DOI: 10.3390/ijms24119622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Length polymorphisms of polyglutamine (polyQs) in triplet-repeat-disease-causing genes have diversified during primate evolution despite them conferring a risk of human-specific diseases. To explain the evolutionary process of this diversification, there is a need to focus on mechanisms by which rapid evolutionary changes can occur, such as alternative splicing. Proteins that can bind polyQs are known to act as splicing factors and may provide clues about the rapid evolutionary process. PolyQs are also characterized by the formation of intrinsically disordered (ID) regions, so I hypothesized that polyQs are involved in the transportation of various molecules between the nucleus and cytoplasm to regulate mechanisms characteristic of humans such as neural development. To determine target molecules for empirical research to understand the evolutionary change, I explored protein-protein interactions (PPIs) involving the relevant proteins. This study identified pathways related to polyQ binding as hub proteins scattered across various regulatory systems, including regulation via PQBP1, VCP, or CREBBP. Nine ID hub proteins with both nuclear and cytoplasmic localization were found. Functional annotations suggested that ID proteins containing polyQs are involved in regulating transcription and ubiquitination by flexibly changing PPI formation. These findings explain the relationships among splicing complex, polyQ length variations, and modifications in neural development.
Collapse
Affiliation(s)
- Makoto K Shimada
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
5
|
Liu M, Zhang K, Li Q, Pang H, Pan Z, Huang X, Wang L, Wu F, He G. Recent Advances on Small-Molecule Bromodomain-Containing Histone Acetyltransferase Inhibitors. J Med Chem 2023; 66:1678-1699. [PMID: 36695774 DOI: 10.1021/acs.jmedchem.2c01638] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In recent years, substantial research has been conducted on molecular mechanisms and inhibitors targeting bromodomains (BRDs) and extra-terminal (BET) family proteins. On this basis, non-BET BRD is gradually becoming a research hot spot. BRDs are abundant in histone acetyltransferase (HAT)-associated activating transcription factors, and BRD-containing HATs have been linked to cancer, inflammation, and viral replication. Therefore, the development of BRD-containing HATs as chemical probes is useful for understanding the specific biological roles of BRDs in diseases and drug discovery. Several types of BRD-containing HATs, including CBP/P300, PCAF/GCN5, and TAF1, are discussed in this context in terms of their structures, functions, and small-molecule inhibitors. Additionally, progress in BRD inhibitors/chemical probes and proteolysis targeting chimeras in terms of drug design, biological activity, and disease application are summarized. These findings provide insights into the development of BRD inhibitors as potential drug candidates for various diseases.
Collapse
Affiliation(s)
- Mingxia Liu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaiyao Zhang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qinjue Li
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Haiying Pang
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaowei Huang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Lian Wang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Fengbo Wu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gu He
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
6
|
Buholzer KJ, McIvor J, Zosel F, Teppich C, Nettels D, Mercadante D, Schuler B. Multilayered allosteric modulation of coupled folding and binding by phosphorylation, peptidyl-prolyl cis/trans isomerization, and diversity of interaction partners. J Chem Phys 2022; 157:235102. [PMID: 36550025 DOI: 10.1063/5.0128273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) play key roles in cellular regulation, including signal transduction, transcription, and cell-cycle control. Accordingly, IDPs can commonly interact with numerous different target proteins, and their interaction networks are expected to be highly regulated. However, many of the underlying regulatory mechanisms have remained unclear. Here, we examine the representative case of the nuclear coactivator binding domain (NCBD) of the large multidomain protein CBP, a hub in transcriptional regulation, and the interaction with several of its binding partners. Single-molecule Förster resonance energy transfer measurements show that phosphorylation of NCBD reduces its binding affinity, with effects that vary depending on the binding partner and the site and number of modifications. The complexity of the interaction is further increased by the dependence of the affinities on peptidyl-prolyl cis/trans isomerization in NCBD. Overall, our results reveal the potential for allosteric regulation on at least three levels: the different affinities of NCBD for its different binding partners, the differential modulation of these affinities by phosphorylation, and the effect of peptidyl-prolyl cis/trans isomerization on binding.
Collapse
Affiliation(s)
- Karin J Buholzer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jordan McIvor
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Franziska Zosel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Christian Teppich
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Davide Mercadante
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Corrigan AN, Lemkul JA. Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. J Phys Chem B 2022; 126:4814-4827. [PMID: 35749260 PMCID: PMC9267131 DOI: 10.1021/acs.jpcb.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are an abundant class of highly charged proteins that participate in numerous crucial biological processes, often in regulatory roles. IDPs do not have one major free energy minimum with a dominant structure, instead existing as conformational ensembles of multiple semistable conformations. p53 is a prototypical protein with disordered regions and binds to many structurally diverse partners, making it a useful model for exploring the role of electrostatic interactions at IDP binding interfaces. In this study, we used the Drude-2019 force field to simulate the p53 transactivation domain with two protein partners to probe the role of electrostatic interactions in IDP protein-protein interactions. We found that the Drude-2019 polarizable force field reasonably reproduced experimental chemical shifts of the p53 transactivation domain (TAD) in one complex for which these data are available. We also found that the proteins in these complexes displayed dipole response at specific residues of each protein and that residues primarily involved in binding showed a large percent change in dipole moment between the unbound and complexed states. Probing the role of electrostatic interactions in IDP binding can allow us greater fundamental understanding of these interactions and may help with targeting p53 or its partners for drug design.
Collapse
Affiliation(s)
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 20461, United States,Center for Drug Discovery, Virginia Tech, Blacksburg, VA 20461, United States,Corresponding Author: , Address: 111 Engel Hall, 340 West Campus Dr., Blacksburg, VA 24061, Phone: +1 (540) 231-3129
| |
Collapse
|
8
|
Poirson J, Suarez IP, Straub ML, Cousido-Siah A, Peixoto P, Hervouet E, Foster A, Mitschler A, Mukobo N, Chebaro Y, Garcin D, Recberlik S, Gaiddon C, Altschuh D, Nominé Y, Podjarny A, Trave G, Masson M. High-Risk Mucosal Human Papillomavirus 16 (HPV16) E6 Protein and Cutaneous HPV5 and HPV8 E6 Proteins Employ Distinct Strategies To Interfere with Interferon Regulatory Factor 3-Mediated Beta Interferon Expression. J Virol 2022; 96:e0187521. [PMID: 35475668 PMCID: PMC9131866 DOI: 10.1128/jvi.01875-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous β-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and β-genus to inhibit the interferon-β (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-β expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.
Collapse
Affiliation(s)
- Juline Poirson
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Irina Paula Suarez
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marie-Laure Straub
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Alexandra Cousido-Siah
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Paul Peixoto
- Equipe TIM-C, groupe “Autophagy, EMT and antitumor T-cell immunity,” INSERM UMR1098, Laboratoire de Biochimie, Besançon, France
| | - Eric Hervouet
- Equipe TIM-C, groupe “Autophagy, EMT and antitumor T-cell immunity,” INSERM UMR1098, Laboratoire de Biochimie, Besançon, France
| | - Anne Foster
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - André Mitschler
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Noella Mukobo
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Yassmine Chebaro
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | - Danièle Altschuh
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Alberto Podjarny
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Gilles Trave
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Murielle Masson
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| |
Collapse
|
9
|
Karlsson E, Sorgenfrei FA, Andersson E, Dogan J, Jemth P, Chi CN. The dynamic properties of a nuclear coactivator binding domain are evolutionarily conserved. Commun Biol 2022; 5:286. [PMID: 35354917 PMCID: PMC8967867 DOI: 10.1038/s42003-022-03217-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Evolution of proteins is constrained by their structure and function. While there is a consensus that the plasticity of intrinsically disordered proteins relaxes the structural constraints on evolution there is a paucity of data on the molecular details of these processes. The Nuclear Coactivator Binding Domain (NCBD) from CREB-binding protein is a protein interaction domain, which contains a hydrophobic core but is not behaving as a typical globular domain, and has been described as 'molten-globule like'. The highly dynamic properties of NCBD makes it an interesting model system for evolutionary structure-function investigation of intrinsically disordered proteins. We have here compared the structure and biophysical properties of an ancient version of NCBD present in a bilaterian animal ancestor living around 600 million years ago with extant human NCBD. Using a combination of NMR spectroscopy, circular dichroism and kinetics we show that although NCBD has increased its thermodynamic stability, it has retained its dynamic biophysical properties in the ligand-free state in the evolutionary lineage leading from the last common bilaterian ancestor to humans. Our findings suggest that the dynamic properties of NCBD have been maintained by purifying selection and thus are important for its function, which includes mediating several distinct protein-protein interactions.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden
| | - Frieda A Sorgenfrei
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden.,acib GmbH, Krenngasse 37, 8010 Graz c/o University of Graz, Institute of Chemistry, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden
| | - Jakob Dogan
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden.
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden. .,Department of Pharmaceutical Biosciences, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden.
| |
Collapse
|
10
|
Gong L, Ou X, Hu L, Zhong J, Li J, Deng S, Li B, Pan L, Wang L, Hong X, Luo W, Zeng Q, Zan J, Peng T, Cai M, Li M. The Molecular Mechanism of Herpes Simplex Virus 1 UL31 in Antagonizing the Activity of IFN-β. Microbiol Spectr 2022; 10:e0188321. [PMID: 35196784 PMCID: PMC8865407 DOI: 10.1128/spectrum.01883-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Virus infection triggers intricate signal cascade reactions to activate the host innate immunity, which leads to the production of type I interferon (IFN-I). Herpes simplex virus 1 (HSV-1), a human-restricted pathogen, is capable of encoding over 80 viral proteins, and several of them are involved in immune evasion to resist the host antiviral response through the IFN-I signaling pathway. Here, we determined that HSV-1 UL31, which is associated with nuclear matrix and is essential for the formation of viral nuclear egress complex, could inhibit retinoic acid-inducible gene I (RIG-I)-like receptor pathway-mediated interferon beta (IFN-β)-luciferase (Luc) and (PRDIII-I)4-Luc (an expression plasmid of IFN-β positive regulatory elements III and I) promoter activation, as well as the mRNA transcription of IFN-β and downstream interferon-stimulated genes (ISGs), such as ISG15, ISG54, ISG56, etc., to promote viral infection. UL31 was shown to restrain IFN-β activation at the interferon regulatory factor 3 (IRF3)/IRF7 level. Mechanically, UL31 was demonstrated to interact with TANK binding kinase 1 (TBK1), inducible IκB kinase (IKKi), and IRF3 to impede the formation of the IKKi-IRF3 complex but not the formation of the IRF7-related complex. UL31 could constrain the dimerization and nuclear translocation of IRF3. Although UL31 was associated with the CREB binding protein (CBP)/p300 coactivators, it could not efficiently hamper the formation of the CBP/p300-IRF3 complex. In addition, UL31 could facilitate the degradation of IKKi and IRF3 by mediating their K48-linked polyubiquitination. Taken together, these results illustrated that UL31 was able to suppress IFN-β activity by inhibiting the activation of IKKi and IRF3, which may contribute to the knowledge of a new immune evasion mechanism during HSV-1 infection. IMPORTANCE The innate immune system is the first line of host defense against the invasion of pathogens. Among its mechanisms, IFN-I is an essential cytokine in the antiviral response, which can help the host eliminate a virus. HSV-1 is a double-stranded DNA virus that can cause herpes and establish a lifelong latent infection, due to its possession of multiple mechanisms to escape host innate immunity. In this study, we illustrate for the first time that the HSV-1-encoded UL31 protein has a negative regulatory effect on IFN-β production by blocking the dimerization and nuclear translocation of IRF3, as well as promoting the K48-linked polyubiquitination and degradation of both IKKi and IRF3. This study may be helpful for fully understanding the pathogenesis of HSV-1.
Collapse
Affiliation(s)
- Lan Gong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowen Ou
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Hu
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayi Zhong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingjing Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shenyu Deng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bolin Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingxia Pan
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liding Wang
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Hong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenqi Luo
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiyuan Zeng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meili Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
SOX9 negatively regulates the RLR antiviral signaling by targeting MAVS. Virus Genes 2022; 58:122-132. [PMID: 35103914 DOI: 10.1007/s11262-022-01886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Mitochondrial virus-induced signal adaptor (MAVS), also known as VISA, IPS-1, and Cardif, is a crucial adaptor protein in the RIG-I-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes viral dsRNA and further transfers it to mitochondria, where it binds to MAVS through its CARD domain, generating a series of signal cascades. Transduction through this signaling cascade leads to phosphorylation and nuclear translocation of interferon regulatory factor 3/7 (IRF3/IRF7) and activation of NF-κB, which ultimately produces type I interferon (IFN) and proinflammatory cytokines. Here, our experiments demonstrated that overexpression of SRY-related high-mobility group protein 9 (SOX9) significantly inhibited Sendai virus (SeV)-induced and MAVS-mediated activation of the IFN-β promoter and ISRE. However, knocking out the expression of SOX9 in cells promoted SeV-induced IFN-β promoter and ISRE activation. Further studies have shown that SOX9 interacts with MAVS and targets MAVS to inhibit the association of MAVS-TRAF2, thereby inhibiting MAVS-mediated TRAF2 ubiquitination. Taken together, these results indicate that SOX9 downregulates IFN-β expression and antiviral signal transduction by targeting MAVS.
Collapse
|
12
|
Joy ST, Henley MJ, De Salle SN, Beyersdorf MS, Vock IW, Huldin AJL, Mapp AK. A Dual-Site Inhibitor of CBP/p300 KIX is a Selective and Effective Modulator of Myb. J Am Chem Soc 2021; 143:15056-15062. [PMID: 34491719 DOI: 10.1021/jacs.1c04432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein-protein interaction between the KIX motif of the transcriptional coactivator CBP/p300 and the transcriptional activator Myb is a high-value target due to its established role in certain acute myeloid leukemias (AML) and potential contributions to other cancers. However, the CBP/p300 KIX domain has multiple binding sites, several structural homologues, many binding partners, and substantial conformational plasticity, making it challenging to specifically target using small-molecule inhibitors. Here, we report a picomolar dual-site inhibitor (MybLL-tide) of the Myb-CBP/p300 KIX interaction. MybLL-tide has higher affinity for CBP/p300 KIX than any previously reported compounds while also possessing 5600-fold selectivity for the CBP/p300 KIX domain over other coactivator domains. MybLL-tide blocks the association of CBP and p300 with Myb in the context of the proteome, leading to inhibition of key Myb·KIX-dependent genes in AML cells. These results show that MybLL-tide is an effective, modifiable tool to selectively target the KIX domain and assess transcriptional effects in AML cells and potentially other cancers featuring aberrant Myb behavior. Additionally, the dual-site design has applicability to the other challenging coactivators that bear multiple binding surfaces.
Collapse
Affiliation(s)
- Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samantha N De Salle
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew S Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isaac W Vock
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdisciplinary Research Experiences for Undergraduates Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allison J L Huldin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Yusenko MV, Biyanee A, Andersson MK, Radetzki S, von Kries JP, Stenman G, Klempnauer KH. Proteasome inhibitors suppress MYB oncogenic activity in a p300-dependent manner. Cancer Lett 2021; 520:132-142. [PMID: 34256093 DOI: 10.1016/j.canlet.2021.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
Studies of the role of MYB in human malignancies have highlighted MYB as a potential drug target for acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Although transcription factors are often considered un-druggable, recent work has demonstrated successful targeting of MYB by low molecular weight compounds. This has fueled the notion that inhibition of MYB has potential as a therapeutic approach against MYB-driven malignancies. Here, we have used a MYB reporter cell line to screen a library of FDA-approved drugs for novel MYB inhibitors. We demonstrate that proteasome inhibitors have significant MYB-inhibitory activity, prompting us to characterize the proteasome inhibitor oprozomib in more detail. Oprozomib was shown to interfere with the ability of the co-activator p300 to stimulate MYB activity and to exert anti-proliferative effects on human AML and ACC cells. Overall, our work demonstrated suppression of oncogenic MYB activity as a novel result of proteasome inhibition.
Collapse
Affiliation(s)
- Maria V Yusenko
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Mattias K Andersson
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jens P von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Göran Stenman
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
14
|
Bugge K, Staby L, Salladini E, Falbe-Hansen RG, Kragelund BB, Skriver K. αα-Hub domains and intrinsically disordered proteins: A decisive combo. J Biol Chem 2021; 296:100226. [PMID: 33361159 PMCID: PMC7948954 DOI: 10.1074/jbc.rev120.012928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023] Open
Abstract
Hub proteins are central nodes in protein-protein interaction networks with critical importance to all living organisms. Recently, a new group of folded hub domains, the αα-hubs, was defined based on a shared αα-hairpin supersecondary structural foundation. The members PAH, RST, TAFH, NCBD, and HHD are found in large proteins such as Sin3, RCD1, TAF4, CBP, and harmonin, which organize disordered transcriptional regulators and membrane scaffolds in interactomes of importance to human diseases and plant quality. In this review, studies of structures, functions, and complexes across the αα-hubs are described and compared to provide a unified description of the group. This analysis expands the associated molecular concepts of "one domain-one binding site", motif-based ligand binding, and coupled folding and binding of intrinsically disordered ligands to additional concepts of importance to signal fidelity. These include context, motif reversibility, multivalency, complex heterogeneity, synergistic αα-hub:ligand folding, accessory binding sites, and supramodules. We propose that these multifaceted protein-protein interaction properties are made possible by the characteristics of the αα-hub fold, including supersite properties, dynamics, variable topologies, accessory helices, and malleability and abetted by adaptability of the disordered ligands. Critically, these features provide additional filters for specificity. With the presentations of new concepts, this review opens for new research questions addressing properties across the group, which are driven from concepts discovered in studies of the individual members. Combined, the members of the αα-hubs are ideal models for deconvoluting signal fidelity maintained by folded hubs and their interactions with intrinsically disordered ligands.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Staby
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Edoardo Salladini
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus G Falbe-Hansen
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Gil Pineda LI, Milko LN, He Y. Performance of CHARMM36m with modified water model in simulating intrinsically disordered proteins: a case study. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00107-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Sun C, Guo Y, Zhou W, Xia C, Xing X, Chen J, Li X, Zhu H, Lu J. p300 promotes cell proliferation through suppressing Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation in the infected B-lymphoma cells. Virus Res 2020; 286:198066. [PMID: 32553609 DOI: 10.1016/j.virusres.2020.198066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/14/2023]
Abstract
Primary Effusion Lymphoma (PEL) is a B-cell lymphoma associated with Kaposi's sarcoma herpesvirus (KSHV) infection. However, the mechanism of oncogenesis of PEL is still unclear. Studies have shown that the cellular transcriptional coactivator p300 regulates the interaction between host and virus, which plays a vital role in viral replication. In this study, we investigated the role of p300 in BCBL1 cells during the KSHV life cycle. We found that p300 knockout resulted in an overall increase for the early lytic genes and changed the expression of genes associated with tumor development, proliferation, and the immune response in the KSHV infected B cells. However, knockout of p300 significantly inhibited the expression of the immediate-early gene RTA and the late lytic gene K8 after KSHV lytic activation. Additionally, the intracellular KSHV genome copy number and the virion production were reduced. These results demonstrated that p300 plays a crucial role in suppressing KSHV viral replication in BCBL1. Furthermore, we observed that the growth of BCBL1 was inhibited by knockout of p300, which confirmed our findings that p300 promotes cell proliferation. This study further provided evidence that p300 plays an important role in the pathogenesis of BCBL1, which might lead to the oncogenesis of PEL caused by KSHV infection.
Collapse
Affiliation(s)
- Chuankai Sun
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, 510632, China
| | - Yizhen Guo
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, 510632, China
| | - Wei Zhou
- The Biomedical Translational Research Institute, Jinan University Guangzhou, 510632, China
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, 510632, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, 510632, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, 510632, China
| | - Xin Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, 510632, China
| | - Hua Zhu
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, 510632, China
| | - Jie Lu
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, 510632, China.
| |
Collapse
|
17
|
Zhao Y, Cortes-Huerto R, Kremer K, Rudzinski JF. Investigating the Conformational Ensembles of Intrinsically Disordered Proteins with a Simple Physics-Based Model. J Phys Chem B 2020; 124:4097-4113. [PMID: 32345021 PMCID: PMC7246978 DOI: 10.1021/acs.jpcb.0c01949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Intrinsically
disordered proteins (IDPs) play an important role
in an array of biological processes but present a number of fundamental
challenges for computational modeling. Recently, simple polymer models
have regained popularity for interpreting the experimental characterization
of IDPs. Homopolymer theory provides a strong foundation for understanding
generic features of phenomena ranging from single-chain conformational
dynamics to the properties of entangled polymer melts, but is difficult
to extend to the copolymer context. This challenge is magnified for
proteins due to the variety of competing interactions and large deviations
in side-chain properties. In this work, we apply a simple physics-based
coarse-grained model for describing largely disordered conformational
ensembles of peptides, based on the premise that sampling sterically
forbidden conformations can compromise the faithful description of
both static and dynamical properties. The Hamiltonian of the employed
model can be easily adjusted to investigate the impact of distinct
interactions and sequence specificity on the randomness of the resulting
conformational ensemble. In particular, starting with a bead–spring-like
model and then adding more detailed interactions one by one, we construct
a hierarchical set of models and perform a detailed comparison of
their properties. Our analysis clarifies the role of generic attractions,
electrostatics, and side-chain sterics, while providing a foundation
for developing efficient models for IDPs that retain an accurate description
of the hierarchy of conformational dynamics, which is nontrivially
influenced by interactions with surrounding proteins and solvent molecules.
Collapse
Affiliation(s)
- Yani Zhao
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Joseph F Rudzinski
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
18
|
Ling T, Li SN, Weng GX, Wang W, Li C, Cao L, Rao H, Shu HB, Xu LG. TARBP2 negatively regulates IFN-β production and innate antiviral response by targeting MAVS. Mol Immunol 2018; 104:1-10. [DOI: 10.1016/j.molimm.2018.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
|
19
|
Zosel F, Mercadante D, Nettels D, Schuler B. A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nat Commun 2018; 9:3332. [PMID: 30127362 PMCID: PMC6102232 DOI: 10.1038/s41467-018-05725-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022] Open
Abstract
The interactions of intrinsically disordered proteins (IDPs) with their molecular targets are essential for the regulation of many cellular processes. IDPs can perform their functions while disordered, and they may fold to structured conformations on binding. Here we show that the cis/trans isomerization of peptidyl−prolyl bonds can have a pronounced effect on the interactions of IDPs. By single-molecule spectroscopy, we identify a conserved proline residue in NCBD (the nuclear-coactivator binding domain of CBP) whose cis/trans isomerization in the unbound state modulates the association and dissociation rates with its binding partner, ACTR. As a result, NCBD switches on a time scale of tens of seconds between two populations that differ in their affinities to ACTR by about an order of magnitude. Molecular dynamics simulations indicate as a cause reduced packing of the complex for the cis isomer. Peptidyl-prolyl cis/trans isomerization may be an important previously unidentified mechanism for regulating IDP interactions. How intrinsically disordered proteins (IDPs) undergo a coupled folding and binding reaction with their molecular targets remains to be understood. Here authors use single-molecule FRET to assess the contribution of cis/trans isomerization of peptidyl-prolyl bonds in regulating IDP interactions.
Collapse
Affiliation(s)
- Franziska Zosel
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Davide Mercadante
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
20
|
Zhang Z, Zheng F, Yu Z, Hao J, Chen M, Yu W, Guo W, Chen Y, Huang W, Duan Z, Deng W. XRCC5 cooperates with p300 to promote cyclooxygenase-2 expression and tumor growth in colon cancers. PLoS One 2017; 12:e0186900. [PMID: 29049411 PMCID: PMC5648251 DOI: 10.1371/journal.pone.0186900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/09/2017] [Indexed: 01/20/2023] Open
Abstract
Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandins (PGs) biosynthesis. Previous studies indicate that COX-2, one of the isoforms of COX, is highly expressed in colon cancers and plays a key role in colon cancer carcinogenesis. Thus, searching for novel transcription factors regulating COX-2 expression will facilitate drug development for colon cancer. In this study, we identified XRCC5 as a binding protein of the COX-2 gene promoter in colon cancer cells with streptavidin-agarose pulldown assay and mass spectrometry analysis, and found that XRCC5 promoted colon cancer growth through modulation of COX-2 signaling. Knockdown of XRCC5 by siRNAs inhibited the growth of colon cancer cells in vitro and of tumor xenografts in a mouse model in vivo by suppressing COX-2 promoter activity and COX-2 protein expression. Conversely, overexpression of XRCC5 promoted the growth of colon cancer cells by activating COX-2 promoter and increasing COX-2 protein expression. Moreover, the role of p300 (a transcription co-activator) in acetylating XRCC5 to co-regulate COX-2 expression was also evaluated. Immunofluorescence assay and confocal microscopy showed that XRCC5 and p300 proteins were co-located in the nucleus of colon cancer cells. Co-immunoprecipitation assay also proved the interaction between XRCC5 and p300 in nuclear proteins of colon cancer cells. Cell viability assay indicated that the overexpression of wild-type p300, but not its histone acetyltransferase (HAT) domain deletion mutant, increased XRCC5 acetylation, thereby up-regulated COX-2 expression and promoted the growth of colon cancer cells. In contrast, suppression of p300 by a p300 HAT-specific inhibitor (C646) inhibited colon cancer cell growth by suppressing COX-2 expression. Taken together, our results demonstrated that XRCC5 promoted colon cancer growth by cooperating with p300 to regulate COX-2 expression, and suggested that the XRCC5/p300/COX-2 signaling pathway was a potential target in the treatment of colon cancers.
Collapse
Affiliation(s)
- Zhifeng Zhang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fufu Zheng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenlong Yu
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jiajiao Hao
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Miao Chen
- SunYat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wendan Yu
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Guo
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yiming Chen
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenlin Huang
- SunYat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Zhijun Duan
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- * E-mail: (ZD); (WD)
| | - Wuguo Deng
- SunYat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
- * E-mail: (ZD); (WD)
| |
Collapse
|
21
|
Wang S, Sun X, Yi C, Zhang D, Lin X, Sun X, Chen H, Jin M. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300. Front Cell Infect Microbiol 2017; 7:195. [PMID: 28589097 PMCID: PMC5438986 DOI: 10.3389/fcimb.2017.00195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viral infection triggers a series of signaling cascades and host innate immune responses, including interferon (IFN) production, which depends on coordinated activity of multiple transcription factors. IFN regulatory factor 3 (IRF3) and transcriptional coactivator CREB binding protein (CBP) and/or p300 are core factors that participate in transcriptional complex formation in the nucleus. In general, cells balance the production of IFNs through suppressive and stimulative mechanisms, but viral infections can disrupt such equilibrium. This study determined that H5N1 viral infection reduced the distribution of human argonaute 2 (AGO2) in A549 cell nucleus. AGO2 did not block phosphorylation, nuclear translocation, and DNA binding ability of IRF3 but inhibited its association with CBP. Therefore, this newly revealed mechanism shows that cellular response leads to transfer of AGO2 from cell nucleus and promotes IFN-β expression to increase host survival during viral infection.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiaomei Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| |
Collapse
|
22
|
Hultqvist G, Åberg E, Camilloni C, Sundell GN, Andersson E, Dogan J, Chi CN, Vendruscolo M, Jemth P. Emergence and evolution of an interaction between intrinsically disordered proteins. eLife 2017; 6:e16059. [PMID: 28398197 PMCID: PMC5419745 DOI: 10.7554/elife.16059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/28/2017] [Indexed: 12/25/2022] Open
Abstract
Protein-protein interactions involving intrinsically disordered proteins are important for cellular function and common in all organisms. However, it is not clear how such interactions emerge and evolve on a molecular level. We performed phylogenetic reconstruction, resurrection and biophysical characterization of two interacting disordered protein domains, CID and NCBD. CID appeared after the divergence of protostomes and deuterostomes 450-600 million years ago, while NCBD was present in the protostome/deuterostome ancestor. The most ancient CID/NCBD formed a relatively weak complex (Kd∼5 µM). At the time of the first vertebrate-specific whole genome duplication, the affinity had increased (Kd∼200 nM) and was maintained in further speciation. Experiments together with molecular modeling using NMR chemical shifts suggest that new interactions involving intrinsically disordered proteins may evolve via a low-affinity complex which is optimized by modulating direct interactions as well as dynamics, while tolerating several potentially disruptive mutations.
Collapse
Affiliation(s)
- Greta Hultqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Emma Åberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry, Technische Universität München, München, Germany
- Institute for Advanced Study, Technische Universität München, München, Germany
| | - Gustav N Sundell
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jakob Dogan
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Celestine N Chi
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Haberz P, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping the interactions of adenoviral E1A proteins with the p160 nuclear receptor coactivator binding domain of CBP. Protein Sci 2016; 25:2256-2267. [PMID: 27699893 DOI: 10.1002/pro.3059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/03/2023]
Abstract
Many viruses deregulate the cell and force transcription of viral genes by competing with cellular proteins for binding to the transcriptional co-activators CREB-binding protein (CBP) and p300. Through its interactions with CBP/p300 and the retinoblastoma protein, the adenovirus (AdV) early region 1A (E1A) oncoprotein hijacks the cell cycle and, in rodents, transforms the cell; the mechanistic and structural basis for these effects remain unclear. In this study we compare the affinity of protein constructs from the E1A proteins from two adenovirus serotypes, non-oncogenic AdV5 and highly oncogenic AdV12, for binding to the nuclear receptor coactivator binding domain (NCBD) of CBP. NMR spectra show that the E1A constructs from both serotypes are intrinsically disordered in the free state and that each contains three homologous binding sites for the NCBD, one in the N-terminal region and two within conserved region 1 (CR1) of E1A. The binding sites in CR1 correspond to the motifs that bind the retinoblastoma protein and the TAZ2 domain of CBP/p300. The E1A and NCBD peptides fold synergistically upon complex formation. Binding affinities determined from NMR titrations show that, although the overall affinities for AdV5 and AdV12 E1A are comparable, there are significant differences between the two E1A serotypes in the relative strength with which their constituent interaction motifs bind to the NCBD. The individual E1A interaction motifs were unable to compete effectively with p53 for binding to the NCBD and both the N-terminal region and CR1 region of E1A are required for efficient competition with p53.
Collapse
Affiliation(s)
- Peter Haberz
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
24
|
Dutta R, Tiu B, Sakamoto KM. CBP/p300 acetyltransferase activity in hematologic malignancies. Mol Genet Metab 2016; 119:37-43. [PMID: 27380996 DOI: 10.1016/j.ymgme.2016.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 02/08/2023]
Abstract
CREB binding protein (CBP) and p300 are critical regulators of hematopoiesis through both their transcriptional coactivator and acetyltransferase activities. Loss or mutation of CBP/p300 results in hematologic deficiencies in proliferation and differentiation as well as disruption of hematopoietic stem cell renewal and the microenvironment. Aberrant lysine acetylation mediated by CBP/p300 has recently been implicated in the genesis of multiple hematologic cancers. Understanding the effects of disrupting the acetyltransferase activity of CBP/p300 could pave the way for new therapeutic approaches to treat patients with these diseases.
Collapse
Affiliation(s)
- Ritika Dutta
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Bruce Tiu
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer. J Virol 2016; 90:7740-7. [PMID: 27334592 DOI: 10.1128/jvi.00318-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/β) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein N(pro) that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant N(pro) and IRF3 proteins and show that N(pro) interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between N(pro) and IRF3 is not dependent on the activation state of IRF3, since N(pro) binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the N(pro)-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE The pestivirus N-terminal protease, N(pro), is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the N(pro) interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that N(pro) targets for degradation, is largely unknown. We show that classical swine fever virus N(pro) and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with N(pro) Additionally, N(pro) interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that N(pro) is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation.
Collapse
|
26
|
Pifer PM, Farris JC, Thomas AL, Stoilov P, Denvir J, Smith DM, Frisch SM. Grainyhead-like 2 inhibits the coactivator p300, suppressing tubulogenesis and the epithelial-mesenchymal transition. Mol Biol Cell 2016; 27:2479-92. [PMID: 27251061 PMCID: PMC4966987 DOI: 10.1091/mbc.e16-04-0249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/27/2016] [Indexed: 11/17/2022] Open
Abstract
GRHL2 suppresses EMT to give a default epithelial phenotype. GRHL2 inhibits this process through the histone acetyltransferase coactivator p300, repressing the partial EMT and preventing induction of MMPs. The results demonstrate novel roles for p300 and GRHL2 in promoting or suppressing EMT in morphogenesis and tumor progression. Developmental morphogenesis and tumor progression require a transient or stable breakdown of epithelial junctional complexes to permit programmed migration, invasion, and anoikis resistance, characteristics endowed by the epithelial–mesenchymal transition (EMT). The epithelial master-regulatory transcription factor Grainyhead-like 2 (GRHL2) suppresses and reverses EMT, causing a mesenchymal–epithelial transition to the default epithelial phenotype. Here we investigated the role of GRHL2 in tubulogenesis of Madin–Darby canine kidney cells, a process requiring transient, partial EMT. GRHL2 was required for cystogenesis, but it suppressed tubulogenesis in response to hepatocyte growth factor. Surprisingly, GRHL2 suppressed this process by inhibiting the histone acetyltransferase coactivator p300, preventing the induction of matrix metalloproteases and other p300-dependent genes required for tubulogenesis. A 13–amino acid region of GRHL2 was necessary for inhibition of p300, suppression of tubulogenesis, and interference with EMT. The results demonstrate that p300 is required for partial or complete EMT occurring in tubulogenesis or tumor progression and that GRHL2 suppresses EMT in both contexts through inhibition of p300.
Collapse
Affiliation(s)
- Phillip M Pifer
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Joshua C Farris
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Alyssa L Thomas
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - James Denvir
- Department of Biochemistry and Microbiology, Marshall University, Huntington, WV 25755
| | - David M Smith
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Steven M Frisch
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
27
|
Burger VM, Nolasco DO, Stultz CM. Expanding the Range of Protein Function at the Far End of the Order-Structure Continuum. J Biol Chem 2016; 291:6706-13. [PMID: 26851282 PMCID: PMC4807258 DOI: 10.1074/jbc.r115.692590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The traditional view of the structure-function paradigm is that a protein's function is inextricably linked to a well defined, three-dimensional structure, which is determined by the protein's primary amino acid sequence. However, it is now accepted that a number of proteins do not adopt a unique tertiary structure in solution and that some degree of disorder is required for many proteins to perform their prescribed functions. In this review, we highlight how a number of protein functions are facilitated by intrinsic disorder and introduce a new protein structure taxonomy that is based on quantifiable metrics of a protein's disorder.
Collapse
Affiliation(s)
- Virginia M Burger
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and
| | - Diego O Nolasco
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and
| | - Collin M Stultz
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and the Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138
| |
Collapse
|
28
|
Odoux A, Jindal D, Tamas TC, Lim BWH, Pollard D, Xu W. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex. Comput Biol Chem 2016; 62:47-59. [PMID: 27082784 DOI: 10.1016/j.compbiolchem.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen bonds of the E665:R294 pair exhibited a fast decreasing trend over time during MD simulations. In addition, our data showed that the KIX mutations attenuate CBP's hydrophobic interaction with Leu302 of c-Myb. Furthermore, our 500-ns MD simulations showed that CBP KIX with the mutations has a slightly lower potential energy than wild-type CBP. The CBP KIX structures with or without its interacting protein c-Myb are different for both wild-type and mutant CBP KIX, and this is likewise the case for c-Myb with or without CBP, suggesting that the presence of an interacting protein influences the structure of a protein. Taken together, these analyses will improve our understanding of the exact functions of CBP and its interaction with c-Myb.
Collapse
Affiliation(s)
- Anne Odoux
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Darren Jindal
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Tamara C Tamas
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Benjamin W H Lim
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Drake Pollard
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.
| |
Collapse
|
29
|
Dyson HJ, Wright PE. Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J Biol Chem 2016; 291:6714-22. [PMID: 26851278 DOI: 10.1074/jbc.r115.692020] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transcriptional coactivators CREB-binding protein (CBP) and p300 undergo a particularly rich set of interactions with disordered and partly ordered partners, as a part of their ubiquitous role in facilitating transcription of genes. CBP and p300 contain a number of small structured domains that provide scaffolds for the interaction of disordered transactivation domains from a wide variety of partners, including p53, hypoxia-inducible factor 1α (HIF-1α), NF-κB, and STAT proteins, and are the targets for the interactions of disordered viral proteins that compete with cellular factors to disrupt signaling and subvert the cell cycle. The functional diversity of the CBP/p300 interactome provides an excellent example of the power of intrinsic disorder to facilitate the complexity of living systems.
Collapse
Affiliation(s)
- H Jane Dyson
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| | - Peter E Wright
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| |
Collapse
|
30
|
Banerjee S, Rakshit T, Sett S, Mukhopadhyay R. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy. J Phys Chem B 2015; 119:13278-87. [PMID: 26419288 DOI: 10.1021/acs.jpcb.5b07795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.
Collapse
Affiliation(s)
- S Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - T Rakshit
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - S Sett
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - R Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
31
|
Dogan J, Jonasson J, Andersson E, Jemth P. Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains. Biochemistry 2015; 54:4741-50. [DOI: 10.1021/acs.biochem.5b00520] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jakob Dogan
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Josefin Jonasson
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Eva Andersson
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Per Jemth
- Department
of Medical Biochemistry
and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
32
|
Xu P, Bailey-Bucktrout S, Xi Y, Xu D, Du D, Zhang Q, Xiang W, Liu J, Melton A, Sheppard D, Chapman HA, Bluestone JA, Derynck R. Innate antiviral host defense attenuates TGF-β function through IRF3-mediated suppression of Smad signaling. Mol Cell 2014; 56:723-37. [PMID: 25526531 PMCID: PMC4273650 DOI: 10.1016/j.molcel.2014.11.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/02/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
Abstract
TGF-β signaling is essential in many processes, including immune surveillance, and its dysregulation controls various diseases, including cancer, fibrosis, and inflammation. Studying the innate host defense, which functions in most cell types, we found that RLR signaling represses TGF-β responses. This regulation is mediated by activated IRF3, using a dual mechanism of IRF3-directed suppression. Activated IRF3 interacts with Smad3, thus inhibiting TGF-β-induced Smad3 activation and, in the nucleus, disrupts functional Smad3 transcription complexes by competing with coregulators. Consequently, IRF3 activation by innate antiviral signaling represses TGF-β-induced growth inhibition, gene regulation and epithelial-mesenchymal transition, and the generation of Treg effector lymphocytes from naive CD4(+) lymphocytes. Conversely, silencing IRF3 expression enhances epithelial-mesenchymal transition, TGF-β-induced Treg cell differentiation upon virus infection, and Treg cell generation in vivo. We present a mechanism of regulation of TGF-β signaling by the antiviral defense, with evidence for its role in immune tolerance and cancer cell behavior.
Collapse
Affiliation(s)
- Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA.
| | - Samantha Bailey-Bucktrout
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Ying Xi
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, CA 94143, USA
| | - Daqi Xu
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Dan Du
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weiwen Xiang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Liu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA
| | - Andrew Melton
- Lung Biology Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Dean Sheppard
- Lung Biology Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Harold A Chapman
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and the Department of Medicine, University of California at San Francisco, CA 94143, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California at San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics Chromatin 2014; 7:14. [PMID: 25097667 PMCID: PMC4115480 DOI: 10.1186/1756-8935-7-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022] Open
Abstract
Background Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. Results Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets, demonstrating the specificity of the method. Conclusions Viable FRAP assays were established for 11 representative bromodomain-containing proteins that broadly cover the bromodomain phylogenetic tree. Addition of SAHA can overcome weak binding to chromatin, and the use of tandem bromodomain constructs can eliminate masking effects of other chromatin binding domains. Together, these results demonstrate that FRAP assays offer a potentially pan-bromodomain method for generating cell-based assays, allowing the testing of compounds with respect to cell permeability, on-target efficacy and selectivity.
Collapse
|
34
|
Jemth P, Mu X, Engström Å, Dogan J. A frustrated binding interface for intrinsically disordered proteins. J Biol Chem 2014; 289:5528-33. [PMID: 24421312 DOI: 10.1074/jbc.m113.537068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intrinsically disordered proteins are very common in the eukaryotic proteome, and many of them are associated with diseases. Disordered proteins usually undergo a coupled binding and folding reaction and often interact with many different binding partners. Using double mutant cycles, we mapped the energy landscape of the binding interface for two interacting disordered domains and found it to be largely suboptimal in terms of interaction free energies, despite relatively high affinity. These data depict a frustrated energy landscape for interactions involving intrinsically disordered proteins, which is likely a result of their functional promiscuity.
Collapse
Affiliation(s)
- Per Jemth
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
35
|
Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 2013; 70:3989-4008. [PMID: 23307074 PMCID: PMC11113169 DOI: 10.1007/s00018-012-1254-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 01/19/2023]
Abstract
In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to 'relax' its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
- Present Address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Christopher B. Marshall
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
36
|
Global conformational selection and local induced fit for the recognition between intrinsic disordered p53 and CBP. PLoS One 2013; 8:e59627. [PMID: 23555731 PMCID: PMC3608666 DOI: 10.1371/journal.pone.0059627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/15/2013] [Indexed: 11/26/2022] Open
Abstract
The transactivation domain (TAD) of tumor suppressor p53 can bind with the nuclear coactivator binding domain (NCBD) of cyclic-AMP response element binding protein (CBP) and activate transcription. NMR experiments demonstrate that both apo-NCBD and TAD are intrinsic disordered and bound NCBD/TAD undergoes a transition to well folded. The recognition mechanism between intrinsic disordered proteins is still hotly debated. Molecular dynamics (MD) simulations in explicit solvent are used to study the recognition mechanism between intrinsic disordered TAD and NCBD. The average RMSD values between bound and corresponding apo states and Kolmogorov-Smirnov P test analysis indicate that TAD and NCBD may follow an induced fit mechanism. Quantitative analysis indicates there is also a global conformational selection. In summary, the recognition of TAD and NCBD might obey a local induced fit and global conformational selection. These conclusions are further supported by high-temperature unbinding kinetics and room temperature landscape analysis. These methods can be used to study the recognition mechanism of other intrinsic disordered proteins.
Collapse
|
37
|
Knott M, Best RB. A preformed binding interface in the unbound ensemble of an intrinsically disordered protein: evidence from molecular simulations. PLoS Comput Biol 2012; 8:e1002605. [PMID: 22829760 PMCID: PMC3400577 DOI: 10.1371/journal.pcbi.1002605] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 05/28/2012] [Indexed: 11/19/2022] Open
Abstract
Intrinsically disordered proteins play an important role in cellular signalling, mediated by their interactions with other biomolecules. A key question concerns the nature of their binding mechanism, and whether the bound structure is induced only by proximity to the binding partner. This is difficult to answer through experiment alone because of the very heterogeneous nature of the unbound ensemble, and the probable rapid interconversion of the various unbound structures. Here we report the most extensive set of simulations on NCBD to date: we use large-scale replica exchange molecular dynamics to explore the unbound state. An important feature of the study is the use of an atomistic force field that has been parametrised against experimental data for weakly structured peptides, together with an accurate explicit water model. Neither the force field nor the starting conformations are biased towards a particular structure. The regions of NCBD that have high helical propensity in the simulations correspond closely to helices in the 'core' unbound conformation determined by NMR, although no single member of the simulated unbound ensemble closely resembles the core conformation, or either of the two known bound conformations. We have validated the results against NMR spectroscopy and SAXS measurements, obtaining reasonable agreement. The two helices which most stabilise the binding of NCBD with ACTR are formed readily; the third helix, which is less important for binding but is involved in most of the intraprotein contacts of NCBD in the bound conformation, is formed more rarely, and tends not to coexist with the other helices. These results support a mechanism by which NCBD gains the advantages of disorder, while forming binding-competent structures in the unbound state. We obtain support for this mechanism from coarse-grained simulations of NCBD with, and without, its binding partner.
Collapse
Affiliation(s)
| | - Robert B. Best
- University of Cambridge, Department of Chemistry, Cambridge, United Kingdom
| |
Collapse
|
38
|
Génin P, Lin R, Hiscott J, Civas A. Recruitment of histone deacetylase 3 to the interferon-A gene promoters attenuates interferon expression. PLoS One 2012; 7:e38336. [PMID: 22685561 PMCID: PMC3369917 DOI: 10.1371/journal.pone.0038336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Induction of Type I Interferon (IFN) genes constitutes an essential step leading to innate immune responses during virus infection. Sendai virus (SeV) infection of B lymphoid Namalwa cells transiently induces the transcriptional expression of multiple IFN-A genes. Although transcriptional activation of IFN-A genes has been extensively studied, the mechanism responsible for the attenuation of their expression remains to be determined. PRINCIPAL FINDINGS In this study, we demonstrate that virus infection of Namalwa cells induces transient recruitment of HDAC3 (histone deacetylase 3) to IFN-A promoters. Analysis of chromatin-protein association by Chip-QPCR demonstrated that recruitment of interferon regulatory factor (IRF)3 and IRF7, as well as TBP correlated with enhanced histone H3K9 and H3K14 acetylation, whereas recruitment of HDAC3 correlated with inhibition of histone H3K9/K14 acetylation, removal of IRF7 and TATA-binding protein (TBP) from IFN-A promoters and inhibition of virus-induced IFN-A gene transcription. Additionally, HDAC3 overexpression reduced, and HDAC3 depletion by siRNA enhanced IFN-A gene expression. Furthermore, activation of IRF7 enhanced histone H3K9/K14 acetylation and IFN-A gene expression, whereas activation of both IRF7 and IRF3 led to recruitment of HDAC3 to the IFN-A gene promoters, resulting in impaired histone H3K9 acetylation and attenuation of IFN-A gene transcription. CONCLUSION Altogether these data indicate that reversal of histone H3K9/K14 acetylation by HDAC3 is required for attenuation of IFN-A gene transcription during viral infection.
Collapse
Affiliation(s)
- Pierre Génin
- Centre National de la Recherche Scientifique - FRE3235, Paris Descartes University, Paris, France
| | - Rongtuan Lin
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - John Hiscott
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Ahmet Civas
- Centre National de la Recherche Scientifique - FRE3235, Paris Descartes University, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Zhang W, Ganguly D, Chen J. Residual structures, conformational fluctuations, and electrostatic interactions in the synergistic folding of two intrinsically disordered proteins. PLoS Comput Biol 2012; 8:e1002353. [PMID: 22253588 PMCID: PMC3257294 DOI: 10.1371/journal.pcbi.1002353] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/30/2011] [Indexed: 01/08/2023] Open
Abstract
To understand the interplay of residual structures and conformational fluctuations in the interaction of intrinsically disordered proteins (IDPs), we first combined implicit solvent and replica exchange sampling to calculate atomistic disordered ensembles of the nuclear co-activator binding domain (NCBD) of transcription coactivator CBP and the activation domain of the p160 steroid receptor coactivator ACTR. The calculated ensembles are in quantitative agreement with NMR-derived residue helicity and recapitulate the experimental observation that, while free ACTR largely lacks residual secondary structures, free NCBD is a molten globule with a helical content similar to that in the folded complex. Detailed conformational analysis reveals that free NCBD has an inherent ability to substantially sample all the helix configurations that have been previously observed either unbound or in complexes. Intriguingly, further high-temperature unbinding and unfolding simulations in implicit and explicit solvents emphasize the importance of conformational fluctuations in synergistic folding of NCBD with ACTR. A balance between preformed elements and conformational fluctuations appears necessary to allow NCBD to interact with different targets and fold into alternative conformations. Together with previous topology-based modeling and existing experimental data, the current simulations strongly support an “extended conformational selection” synergistic folding mechanism that involves a key intermediate state stabilized by interaction between the C-terminal helices of NCBD and ACTR. In addition, the atomistic simulations reveal the role of long-range as well as short-range electrostatic interactions in cooperating with readily fluctuating residual structures, which might enhance the encounter rate and promote efficient folding upon encounter for facile binding and folding interactions of IDPs. Thus, the current study not only provides a consistent mechanistic understanding of the NCBD/ACTR interaction, but also helps establish a multi-scale molecular modeling framework for understanding the structure, interaction, and regulation of IDPs in general. Intrinsically disordered proteins (IDPs) are now widely recognized to play fundamental roles in biology and to be frequently associated with human diseases. Although the potential advantages of intrinsic disorder in cellular signaling and regulation have been widely discussed, the physical basis for these proposed phenomena remains sketchy at best. An integration of multi-scale molecular modeling and experimental characterization is necessary to uncover the molecular principles that govern the structure, interaction, and regulation of IDPs. In this work, we characterize the conformational properties of two IDPs involved in transcription regulation at the atomistic level and further examine the roles of these properties in their coupled binding and folding interactions. Our simulations suggest interplay among residual structures, conformational fluctuations, and electrostatic interactions that allows efficient synergistic folding of these two IDPs. In particular, we propose that electrostatic interactions might play an important role in facilitating rapid folding and binding recognition of IDPs, by enhancing the encounter rate and promoting efficient folding upon encounter.
Collapse
Affiliation(s)
- Weihong Zhang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Debabani Ganguly
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Balachandran S, Beg AA. Defining emerging roles for NF-κB in antivirus responses: revisiting the interferon-β enhanceosome paradigm. PLoS Pathog 2011; 7:e1002165. [PMID: 22022260 PMCID: PMC3192840 DOI: 10.1371/journal.ppat.1002165] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SB); (AAB)
| | - Amer A. Beg
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- * E-mail: (SB); (AAB)
| |
Collapse
|
41
|
Keppel TR, Howard BA, Weis DD. Mapping Unstructured Regions and Synergistic Folding in Intrinsically Disordered Proteins with Amide H/D Exchange Mass Spectrometry. Biochemistry 2011; 50:8722-32. [DOI: 10.1021/bi200875p] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Theodore R. Keppel
- Department
of Chemistry and ‡Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 1251 Wescoe Hall
Drive, Lawrence, Kansas 66045, United States
| | - Brent A. Howard
- Department
of Chemistry and ‡Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 1251 Wescoe Hall
Drive, Lawrence, Kansas 66045, United States
| | - David D. Weis
- Department
of Chemistry and ‡Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 1251 Wescoe Hall
Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
42
|
Ganguly D, Zhang W, Chen J. Synergistic folding of two intrinsically disordered proteins: searching for conformational selection. MOLECULAR BIOSYSTEMS 2011; 8:198-209. [PMID: 21766125 DOI: 10.1039/c1mb05156c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack stable structures under physiological conditions but often fold into stable structures upon specific binding. These coupled binding and folding processes underlie the organization of cellular regulatory networks, and a mechanistic understanding is thus of fundamental importance. Here, we investigated the synergistic folding of two IDPs, namely, the NCBD domain of transcription coactivator CBP and the p160 steroid receptor coactivator ACTR, using a topology-based model that was carefully calibrated to balance intrinsic folding propensities and intermolecular interactions. As one of the most structured IDPs, NCBD is a plausible candidate that interacts through conformational selection-like mechanisms, where binding is mainly initiated by pre-existing folded-like conformations. Indeed, the simulations demonstrate that, even though binding and folding of both NCBD and ACTR is highly cooperative on the baseline level, the tertiary folding of NCBD is best described by the "extended conformational selection" model that involves multiple stages of selection and induced folding. The simulations further predict that the NCBD/ACTR recognition is mainly initiated by forming a mini folded core that includes the second and third helices of NCBD and ACTR. These predictions are fully consistent with independent physics-based atomistic simulations as well as a recent experimental mapping of the H/D exchange protection factors. The current work thus adds to the limited number of existing mechanistic studies of coupled binding and folding of IDPs, and provides a first direct demonstration of how conformational selection might contribute to efficient recognition of IDPs. Interestingly, even for highly structured IDPs like NCBD, the recognition is initiated by the more disordered C-terminal segment and with substantial contribution from induced folding. Together with existing studies of IDP interaction mechanisms, this argues that induced folding is likely prevalent in IDP-protein interaction, and emphasizes the importance of understanding how IDPs manage to fold efficiently upon (nonspecific) binding. Success of the current study also further supports the notion that, with careful calibration, topology-based models can be effective tools for mechanistic study of IDP interaction and regulation, especially when combined with physics-based atomistic simulations and experiments.
Collapse
Affiliation(s)
- Debabani Ganguly
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
43
|
Naganathan AN, Orozco M. The native ensemble and folding of a protein molten-globule: functional consequence of downhill folding. J Am Chem Soc 2011; 133:12154-61. [PMID: 21732676 DOI: 10.1021/ja204053n] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continually emerging functional significance of intrinsic disorder and conformational flexibility in proteins has challenged the long-standing dogma of a well-defined structure contributing to a specific function. Molten-globular states, a class of proteins with significant secondary-structure but a fluid hydrophobic core, is one such example. They have however been difficult to characterize due to the complexity of experimental data and lack of computational avenues. Here, we dissect the folding mechanism of the α-helical molten-globular protein NCBD from three fundamentally different approaches: statistical-mechanical variable barrier model, C(α)-based Gō-model and explicit water all-atom molecular dynamics (MD) simulations. We find that NCBD displays the characteristics of a one-state globally downhill folder but is significantly destabilized. Using simulation techniques, we generate a highly constrained but a heterogeneous native ensemble of the molten-globule for the first time that is consistent with experimental data including small angle X-ray scattering (SAXS), circular dichroism (CD), and nuclear magnetic resonance (NMR). The resulting native ensemble populates conformations reported in other bound-forms providing direct evidence to the mechanism of conformational selection for binding multiple partners in this domain. Importantly, our simulations reveal a connection between downhill folding and large conformational flexibility in this domain that has been evolutionarily selected and functionally exploited resulting in large binding promiscuity. Finally, the multimodel approach we employ here serves as a powerful methodology to study mechanisms and suggests that the thermodynamic features of molten-globules fall within the array of folding mechanisms available to small single-domain proteins.
Collapse
Affiliation(s)
- Athi N Naganathan
- IRB-BSC Joint Research Program in Computational Biology, Barcelona Supercomputing Center, Torre Girona, C/Jordi Girona 31, Barcelona 08034, Spain.
| | | |
Collapse
|
44
|
Innate antiviral response: role in HIV-1 infection. Viruses 2011; 3:1179-203. [PMID: 21994776 PMCID: PMC3185785 DOI: 10.3390/v3071179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/14/2022] Open
Abstract
As an early response to infection, cells induce a profile of the early inflammatory proteins including antiviral cytokines and chemokines. Two families of transcriptional factors play a major role in the transcriptional activation of the early inflammatory genes: The well-characterized family of NFkB factors and the family of interferon regulatory factors (IRF). The IRFs play a critical role in the induction of type I interferon (IFN) and chemokine genes, as well as genes mediating antiviral, antibacterial, and inflammatory responses. Type I IFNs represent critical components of innate antiviral immunity. These proteins not only exert direct antiviral effects, but also induce maturation of dendritic cells (DC), and enhance functions of NK, T and B cells, and macrophages. This review will summarize the current knowledge of the mechanisms leading to the innate antiviral response with a focus on its role in the regulation of HIV-1 infection and pathogenicity. We would like this review to be both historical and a future perspective.
Collapse
|
45
|
Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry 2010; 49:9964-71. [PMID: 20961098 DOI: 10.1021/bi1012996] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity and stability of the tumor suppressor p53 are regulated by interactions with key cellular proteins such as MDM2 and CBP/p300. The transactivation domain (TAD) of p53 contains two subdomains (AD1 and AD2) and interacts directly with the N-terminal domain of MDM2 and with several domains of CBP/p300. Here we report the NMR structure of the full-length p53 TAD in complex with the nuclear coactivator binding domain (NCBD) of CBP. Both the p53 TAD and NCBD are intrinsically disordered and fold synergistically upon binding, as evidenced by the observed increase in helicity and increased level of dispersion of the amide proton resonances. The p53 TAD folds to form a pair of helices (denoted Pα1 and Pα2), which extend from Phe19 to Leu25 and from Pro47 to Trp53, respectively. In the complex, the NCBD forms a bundle of three helices (Cα1, residues 2066-2075; Cα2, residues 2081-2092; and Cα3, residues 2095-2105) with a hydrophobic groove into which p53 helices Pα1 and Pα2 dock. The polypeptide chain between the p53 helices remains flexible and makes no detectable intermolecular contacts with the NCBD. Complex formation is driven largely by hydrophobic contacts that form a stable intermolecular hydrophobic core. A salt bridge between D49 of p53 and R2105 of NCBD may contribute to the binding specificity. The structure provides the first insights into simultaneous binding of the AD1 and AD2 motifs to a target protein.
Collapse
Affiliation(s)
- Chul Won Lee
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
46
|
Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proc Natl Acad Sci U S A 2010; 107:12535-40. [PMID: 20616042 DOI: 10.1073/pnas.1001693107] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Native molten globules are the most folded kind of intrinsically disordered proteins. Little is known about the mechanism by which native molten globules bind to their cognate ligands to form fully folded complexes. The nuclear coactivator binding domain (NCBD) of CREB binding protein is particularly interesting in this respect as structural studies of its complexes have shown that NCBD folds into two remarkably different states depending on the ligand being ACTR or IRF-3. The ligand-free state of NCBD was characterized in order to understand the mechanism of folding upon ligand binding. Biophysical studies show that despite the molten globule nature of the domain, it contains a small cooperatively folded core. By NMR spectroscopy, we have demonstrated that the folded core of NCBD has a well ordered conformer with specific side chain packing. This conformer resembles the structure of the NCBD in complex with the protein ligand, ACTR, suggesting that ACTR binds to prefolded NCBD molecules from the ensemble of interconverting structures.
Collapse
|
47
|
Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, Ragoussis J, Natoli G. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 2010; 32:317-28. [PMID: 20206554 DOI: 10.1016/j.immuni.2010.02.008] [Citation(s) in RCA: 512] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 01/29/2023]
Abstract
Enhancers determine tissue-specific gene expression programs. Enhancers are marked by high histone H3 lysine 4 mono-methylation (H3K4me1) and by the acetyl-transferase p300, which has allowed genome-wide enhancer identification. However, the regulatory principles by which subsets of enhancers become active in specific developmental and/or environmental contexts are unknown. We exploited inducible p300 binding to chromatin to identify, and then mechanistically dissect, enhancers controlling endotoxin-stimulated gene expression in macrophages. In these enhancers, binding sites for the lineage-restricted and constitutive Ets protein PU.1 coexisted with those for ubiquitous stress-inducible transcription factors such as NF-kappaB, IRF, and AP-1. PU.1 was required for maintaining H3K4me1 at macrophage-specific enhancers. Reciprocally, ectopic expression of PU.1 reactivated these enhancers in fibroblasts. Thus, the combinatorial assembly of tissue- and signal-specific transcription factors determines the activity of a distinct group of enhancers. We suggest that this may represent a general paradigm in tissue-restricted and stimulus-responsive gene regulation.
Collapse
Affiliation(s)
- Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Via Adamello 16, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Alterations in various developmental pathways are common themes in cancer. The early B-cell factors (EBF) are a family of four highly conserved DNA-binding transcription factors with an atypical zinc-finger and helix-loop-helix motif. They are involved in the differentiation and maturation of several cell lineages including B-progenitor lymphoblasts, neuronal precursors, and osteoblast progenitors. During B-cell development, EBF1 is required for the expression of Pax5, an essential factor for the production of antibody-secreting cells. Accumulating evidence indicates that genomic deletion of the EBF1 gene contributes to the pathogenesis, drug resistance, and relapse of B-progenitor acute lymphoblastic leukemia (ALL). Epigenetic silencing and genomic deletion of the EBF3 locus in chromosome 10q are very frequent in glioblastoma (GBM). Strikingly, the frequency of EBF3 loss in GBM is similar to that of the loss of Pten, a key suppressor of gliomagenesis. Cancer-specific somatic mutations were detected in EBF3 in GBM and in both EBF1 and EBF3 in pancreatic ductal adenocarcinoma. These missense mutations occur in the DNA-binding domain or the conserved IPT/TIG domain, suggesting that they might disrupt the functions of these two proteins. Functional studies revealed that EBF3 represses the expression of genes required for cell proliferation [e.g., cyclins and cyclin-dependent kinases (CDK)] and survival (e.g., Mcl-1 and Daxx) but activates those involved in cell cycle arrest (e.g., p21 and p27), leading to growth suppression and apoptosis. Therefore, EBFs represent new tumor suppressors whose inactivation blocks normal development and contributes to tumorigenesis of diverse types of human cancer.
Collapse
Affiliation(s)
- Daiqing Liao
- Department of Anatomy and Cell Biology, UF Shands Cancer Center, University of Florida, Gainesville, FL 32611-3633, USA.
| |
Collapse
|
49
|
von Mikecz A. PolyQ fibrillation in the cell nucleus: who's bad? Trends Cell Biol 2009; 19:685-91. [PMID: 19796946 DOI: 10.1016/j.tcb.2009.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/17/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Nuclear inclusions that contain proteins with expanded polyglutamine (polyQ) repeats are observed in neurodegenerative aggregation diseases and are, therefore, viewed as a pathologic feature. However, a summary of research indicates that polyQ repeats are inherently both toxic and functional at the same time. PolyQ motifs occur in proteins involved in gene expression and promote nuclear assemblies such as the transcription initiation complex. Transition of these functional complexes to insoluble protein aggregates is constitutively prevented by proteasomal proteolysis. Thus, conditions that exhaust the ubiquitin-proteasome system, such as the extensive production of expanded polyQ proteins, aging and xenobiotic stress, induce a congested state in which nuclear proteins, including those with polyQ stretches, form amyloid-like aggregates. Because protein aggregation is preceded by a series of protein misfolding steps termed polyQ fibrillation, the characterization of distinct fibrillation steps correlating with nuclear function and identification of the respective genetic modifiers is essential for understanding both the biology and pathology of polyQ. Thus, the comprehension of the physiological role of polyQ repeats is a prerequisite for uncovering the underlying mechanisms of neurodegenerative aggregation diseases.
Collapse
Affiliation(s)
- Anna von Mikecz
- Institut für umweltmedizinische Forschung (IUF) at Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
50
|
Génin P, Vaccaro A, Civas A. The role of differential expression of human interferon-A genes in antiviral immunity. Cytokine Growth Factor Rev 2009; 20:283-95. [DOI: 10.1016/j.cytogfr.2009.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|