1
|
Fan Z, Lin Z, Zhai H, Cao Y, Wang H, Maiga A, Frejat FOA, Ren C, Wu CL. Design, Synthesis, and Activity Evaluation of C-23-Modified 5- O-Mycaminosyltylonolide Derivatives. ACS Med Chem Lett 2024; 15:2171-2180. [PMID: 39691534 PMCID: PMC11647724 DOI: 10.1021/acsmedchemlett.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
The widespread use of tylosin family drugs in clinical practice has led to bacterial resistance and reduced therapeutic efficacy. We designed and synthesized a series of new semisynthetic derivatives of tylosin with 5-O-mycaminosyltylonolide as the mother nucleus, mainly by introducing a variety of amino groups at its C-23 position. Some of the compounds showed high antibacterial activity against Gram-negative and Gram-positive bacteria. These findings indicate that the best compound, c9, possessed significant antibacterial activity (MIC = 0.5 ug/mL), excellent bactericidal efficacy, and a low induction rate of drug resistance against Staphylococcus aureus and Escherichia coli; it also showed good antibacterial activity against drug-resistant bacteria. In addition, compound c9 has a low toxicity in vitro and in vivo. In conclusion, compound c9 could be a potential antimicrobial lead compound that could also contribute to the development of macrolide antibiotics.
Collapse
Affiliation(s)
- Zhengmin Fan
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Ziwei Lin
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Hongjin Zhai
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
- Institute
of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaquan Cao
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
- Henan University
of Science and Technology, Luoyang 471000, PR China
| | - Huanhuan Wang
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Aichata Maiga
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Firas Obald Arhema Frejat
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
| | - Changzhong Ren
- Henan
Qunbo Pharmaceutical Research Institute Co. LTD, Zhengzhou 450001, PR China
| | - Chun-Li Wu
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key
Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education of China, Zhengzhou 450001, PR China
- Key
Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, PR China
- Henan
Qunbo Pharmaceutical Research Institute Co. LTD, Zhengzhou 450001, PR China
| |
Collapse
|
2
|
Bera A, Joshi P, Patra N. Delving into Macrolide Binding Affinities and Associated Structural Modulations in Erythromycin Esterase C: Insights into the Venus Flytrap Mechanism. J Chem Inf Model 2024; 64:8892-8908. [PMID: 39565721 DOI: 10.1021/acs.jcim.4c01523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Since their inception in antibacterial therapy, macrolide-based antibiotics have significantly shaped the evolutionary pathways of pathogenic bacteria, driving them to develop diverse antimicrobial resistance (AMR) mechanisms. Among these, macrolide esterase, commonly referred to as erythromycin esterase, emerged as a critical defense mechanism, enabling bacteria to detoxify macrolides by hydrolyzing the macrolactone ring within the bacterial cell. In this study, we delve into the intricate interactions and conformational dynamics of erythromycin esterase C (EreC), a key member of the Ere enzyme family. We have focused on three FDA-approved and widely prescribed macrolides─erythromycin, clarithromycin, and azithromycin─by employing classical molecular dynamics, absolute binding free energy calculations, and 2D well-tempered metadynamics simulations to explore their interactions with EreC. To estimate the absolute binding free energies, we have used the recently developed and robust "Streamlined Alchemical Free Energy Perturbation (SAFEP)" protocol. The results from our molecular dynamics simulations and advanced analyses portrayed the crucial role of hydrophobic interactions within the macrolide binding cleft of EreC, along with the significant influence of the minor lobe in facilitating overall structural fluctuation. In silico alanine scanning identified top three hydrophobic residues, i.e., PHE248, MET333, and PHE344, responsible for macrolide binding inside that cleft. According to the free energy calculations, azithromycin and clarithromycin showed greater binding affinities toward EreC than the parent macrolide erythromycin. Moreover, 2D metadynamics simulations along with graph theory-based eigenvector centrality analyses revealed a metastable "semiopen" state during the hypothesized "active loop closure" of the EreC protein triggered by subtle conformational changes of an important histidine residue, HIS289, upon macrolide capture, drawing a fascinating parallel to the renowned "Venus flytrap" mechanism.
Collapse
Affiliation(s)
- Abhishek Bera
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Pritish Joshi
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
3
|
Aleksandrova EV, Ma CX, Klepacki D, Alizadeh F, Vázquez-Laslop N, Liang JH, Polikanov YS, Mankin AS. Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Nat Chem Biol 2024; 20:1680-1690. [PMID: 39039256 PMCID: PMC11686707 DOI: 10.1038/s41589-024-01685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Faezeh Alizadeh
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Lomakin IB, Devarkar SC, Grada A, Bunick CG. Mechanistic Basis for the Translation Inhibition of Cutibacterium acnes by Clindamycin. J Invest Dermatol 2024; 144:2553-2561.e3. [PMID: 39122144 DOI: 10.1016/j.jid.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024]
Abstract
Inflammation and the Gram-positive anaerobic bacterium Cutibacterium acnes, which is implicated in acne pathogenesis and pilosebaceous-unit inflammation, are the main targets of antibiotic-based therapy against acne vulgaris (acne). The most widely used antibiotics in acne therapy are tetracyclines, macrolides, and lincosamides. Unfortunately, C. acnes bacteria over the past several decades have demonstrated increased resistance to these antibiotics, particularly to clindamycin. The precise knowledge of how antibiotics interact with their clinical target is needed to overcome this problem. Toward this goal, we determined the structure of clindamycin in complex with the ribosome of C. acnes at 2.53 Å resolution using cryogenic electron microscopy. The galactose sugar moiety of clindamycin interacts with nucleotides of the 23S ribosomal RNA directly or through a conserved network of water-mediated interactions. Its propyl pyrrolidinyl group interacts with the 23S ribosomal RNA through van der Waals forces. Clindamycin binding to the C. acnes ribosome interferes with both: proper orientation of the aminoacyl group of the A-site bound transfer RNA that is needed for peptide bond formation and with the extension of the nascent peptide. Our data are important for advancing the understanding of antibiotic resistance and development of narrow-spectrum antibacterial drugs, which is an urgent need for contemporary antibiotic stewardship.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University, New Haven, Connecticut, USA.
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
5
|
Krawczyk SJ, Leśniczak-Staszak M, Gowin E, Szaflarski W. Mechanistic Insights into Clinically Relevant Ribosome-Targeting Antibiotics. Biomolecules 2024; 14:1263. [PMID: 39456196 PMCID: PMC11505993 DOI: 10.3390/biom14101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Antibiotics targeting the bacterial ribosome are essential to combating bacterial infections. These antibiotics bind to various sites on the ribosome, inhibiting different stages of protein synthesis. This review provides a comprehensive overview of the mechanisms of action of clinically relevant antibiotics that target the bacterial ribosome, including macrolides, lincosamides, oxazolidinones, aminoglycosides, tetracyclines, and chloramphenicol. The structural and functional details of antibiotic interactions with ribosomal RNA, including specific binding sites, interactions with rRNA nucleotides, and their effects on translation processes, are discussed. Focus is placed on the diversity of these mechanisms and their clinical implications in treating bacterial infections, particularly in the context of emerging resistance. Understanding these mechanisms is crucial for developing novel therapeutic agents capable of overcoming bacterial resistance.
Collapse
Affiliation(s)
- Szymon J. Krawczyk
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| | - Ewelina Gowin
- Department of Health Promotion, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| |
Collapse
|
6
|
Sansone NMS, Boschiero MN, Marson FAL. Efficacy of Ivermectin, Chloroquine/Hydroxychloroquine, and Azithromycin in Managing COVID-19: A Systematic Review of Phase III Clinical Trials. Biomedicines 2024; 12:2206. [PMID: 39457519 PMCID: PMC11505156 DOI: 10.3390/biomedicines12102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Background: During the coronavirus disease (COVID)-19 pandemic several drugs were used to manage the patients mainly those with a severe phenotype. Potential drugs were used off-label and major concerns arose from their applicability to managing the health crisis highlighting the importance of clinical trials. In this context, we described the mechanisms of the three repurposed drugs [Ivermectin-antiparasitic drug, Chloroquine/Hydroxychloroquine-antimalarial drugs, and Azithromycin-antimicrobial drug]; and, based on this description, the study evaluated the clinical efficacy of those drugs published in clinical trials. The use of these drugs reflects the period of uncertainty that marked the beginning of the COVID-19 pandemic, which made them a possible treatment for COVID-19. Methods: In our review, we evaluated phase III randomized controlled clinical trials (RCTs) that analyzed the efficacy of these drugs published from the COVID-19 pandemic onset to 2023. We included eight RCTs published for Ivermectin, 11 RCTs for Chloroquine/Hydroxychloroquine, and three RCTs for Azithromycin. The research question (PICOT) accounted for P-hospitalized patients with confirmed or suspected COVID-19; I-use of oral or intravenous Ivermectin OR Chloroquine/Hydroxychloroquine OR Azithromycin; C-placebo or no placebo (standard of care); O-mortality OR hospitalization OR viral clearance OR need for mechanical ventilation OR clinical improvement; and T-phase III RCTs. Results: While studying these drugs' respective mechanisms of action, the reasons for which they were thought to be useful became apparent and are as follows: Ivermectin binds to insulin-like growth factor and prevents nuclear transportation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), therefore preventing cell entrance, induces apoptosis, and osmotic cell death and disrupts viral replication. Chloroquine/Hydroxychloroquine blocks the movement of SARS-CoV-2 from early endosomes to lysosomes inside the cell, also, this drug blocks the binding between SARS-CoV-2 and Angiotensin-Converting Enzyme (ACE)-2 inhibiting the interaction between the virus spike proteins and the cell membrane and this drug can also inhibit SARS-CoV-2 viral replication causing, ultimately, the reduction in viral infection as well as the potential to progression for a higher severity phenotype culminating with a higher chance of death. Azithromycin exerts a down-regulating effect on the inflammatory cascade, attenuating the excessive production of cytokines and inducing phagocytic activity, and acts interfering with the viral replication cycle. Ivermectin, when compared to standard care or placebo, did not reduce the disease severity, need for mechanical ventilation, need for intensive care unit, or in-hospital mortality. Only one study demonstrated that Ivermectin may improve viral clearance compared to placebo. Individuals who received Chloroquine/Hydroxychloroquine did not present a lower incidence of death, improved clinical status, or higher chance of respiratory deterioration compared to those who received usual care or placebo. Also, some studies demonstrated that Chloroquine/Hydroxychloroquine resulted in worse outcomes and side-effects included severe ones. Adding Azithromycin to a standard of care did not result in clinical improvement in hospitalized COVID-19 participants. In brief, COVID-19 was one of the deadliest pandemics in modern human history. Due to the potential health catastrophe caused by SARS-CoV-2, a global effort was made to evaluate treatments for COVID-19 to attenuate its impact on the human species. Unfortunately, several countries prematurely justified the emergency use of drugs that showed only in vitro effects against SARS-CoV-2, with a dearth of evidence supporting efficacy in humans. In this context, we reviewed the mechanisms of several drugs proposed to treat COVID-19, including Ivermectin, Chloroquine/Hydroxychloroquine, and Azithromycin, as well as the phase III clinical trials that evaluated the efficacy of these drugs for treating patients with this respiratory disease. Conclusions: As the main finding, although Ivermectin, Chloroquine/Hydroxychloroquine, and Azithromycin might have mechanistic effects against SARS-CoV-2 infection, most phase III clinical trials observed no treatment benefit in patients with COVID-19, underscoring the need for robust phase III clinical trials.
Collapse
Affiliation(s)
- Nathália Mariana Santos Sansone
- Laboratory of Molecular Biology and Genetics, Laboratory of Clinical and Molecular Microbiology, LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (N.M.S.S.); (M.N.B.)
| | - Matheus Negri Boschiero
- Laboratory of Molecular Biology and Genetics, Laboratory of Clinical and Molecular Microbiology, LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (N.M.S.S.); (M.N.B.)
- São Paulo Hospital, Federal University of São Paulo, São Paulo 04023-062, SP, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Molecular Biology and Genetics, Laboratory of Clinical and Molecular Microbiology, LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (N.M.S.S.); (M.N.B.)
| |
Collapse
|
7
|
Bolikhova AK, Buyan AI, Mariasina SS, Rudenko AY, Chekh DS, Mazur AM, Prokhortchouk EB, Dontsova OA, Sergiev PV. Study of the RNA splicing kinetics via in vivo 5-EU labeling. RNA (NEW YORK, N.Y.) 2024; 30:1356-1373. [PMID: 39048310 PMCID: PMC11404452 DOI: 10.1261/rna.079937.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Splicing is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency, giving rise to alternative splicing products. At the same time, splice sites might be used at a variable rate. We used 5-ethynyl uridine labeling to sequence a nascent transcriptome of HeLa cells and deduced the rate of splicing for each donor and acceptor splice site. The following correlation analysis showed a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as a splicing rate decrease with a decreased complementarity of the donor splice site to U1 and acceptor sites to U2 snRNAs. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of the acceptor splicing site utilization, or the differences in splicing rate between long, short, and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the poly(A) site, which might be explained by the cooperativity of the splicing and polyadenylation. Additional analysis of splicing kinetics of SF3B4 knockdown cells suggested the impairment of a U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field, as they provide general splicing rate dependencies as well as help to justify the existence of slowly removed splice sites.
Collapse
Affiliation(s)
- Anastasiia K Bolikhova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey I Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofia S Mariasina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Y Rudenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daria S Chekh
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
9
|
Aleksandrova EV, Wu KJY, Tresco BIC, Syroegin EA, Killeavy EE, Balasanyants SM, Svetlov MS, Gregory ST, Atkinson GC, Myers AG, Polikanov YS. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat Chem Biol 2024; 20:867-876. [PMID: 38238495 PMCID: PMC11325235 DOI: 10.1038/s41589-023-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
The bacterial ribosome is an essential drug target as many clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent resistance mechanisms to PTC-acting drugs in Gram-positive bacteria is C8-methylation of the universally conserved A2503 nucleobase by Cfr methylase in 23S ribosomal RNA. Despite its clinical importance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. Here, we report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-transfer RNAs. These structures reveal an allosteric rearrangement of nucleotide A2062 upon Cfr-mediated methylation of A2503 that likely contributes to the reduced potency of some PTC inhibitors. Additionally, we provide the structural bases behind two distinct mechanisms of engaging the Cfr-methylated ribosome by the antibiotics iboxamycin and tylosin.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kelvin J Y Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ben I C Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erin E Killeavy
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Samson M Balasanyants
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Maxim S Svetlov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Gemma C Atkinson
- Department of Experimental Medicine, Lund University, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Song Y, Cui J, Zhu J, Kim B, Kuo ML, Potts PR. RNATACs: Multispecific small molecules targeting RNA by induced proximity. Cell Chem Biol 2024; 31:1101-1117. [PMID: 38876100 DOI: 10.1016/j.chembiol.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
RNA-targeting small molecules (rSMs) have become an attractive modality to tackle traditionally undruggable proteins and expand the druggable space. Among many innovative concepts, RNA-targeting chimeras (RNATACs) represent a new class of multispecific, induced proximity small molecules that act by chemically bringing RNA targets into proximity with an endogenous RNA effector, such as a ribonuclease (RNase). Depending on the RNA effector, RNATACs can alter the stability, localization, translation, or splicing of the target RNA. Although still in its infancy, this new modality has the potential for broad applications in the future to treat diseases with high unmet need. In this review, we discuss potential advantages of RNATACs, recent progress in the field, and challenges to this cutting-edge technology.
Collapse
Affiliation(s)
- Yan Song
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| | - Jia Cui
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Jiaqiang Zhu
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Boseon Kim
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Mei-Ling Kuo
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
11
|
Jednačak T, Mikulandra I, Smokrović K, Hloušek-Kasun A, Kapustić M, Delaš K, Piantanida I, Jurković M, Bertoša B, Zangger K, Novak P. Antimicrobial macrozones interact with biological macromolecules via two-site binding mode of action: Fluorimetric, NMR and docking studies. Bioorg Chem 2024; 147:107338. [PMID: 38583253 DOI: 10.1016/j.bioorg.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.
Collapse
Affiliation(s)
- Tomislav Jednačak
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Ivana Mikulandra
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Kristina Smokrović
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Andrea Hloušek-Kasun
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Monika Kapustić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Kristina Delaš
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Ivo Piantanida
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54 HR-10000 Zagreb, Croatia.
| | - Marta Jurković
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54 HR-10000 Zagreb, Croatia
| | - Branimir Bertoša
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Klaus Zangger
- University of Graz, Institute of Chemistry, Organic and Bioorganic Chemistry, Heinrichstraße 28 A-8010 Graz, Austria
| | - Predrag Novak
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Choudhery S, DeJesus MA, Srinivasan A, Rock J, Schnappinger D, Ioerger TR. A dose-response model for statistical analysis of chemical genetic interactions in CRISPRi screens. PLoS Comput Biol 2024; 20:e1011408. [PMID: 38768228 PMCID: PMC11104602 DOI: 10.1371/journal.pcbi.1011408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
An important application of CRISPR interference (CRISPRi) technology is for identifying chemical-genetic interactions (CGIs). Discovery of genes that interact with exposure to antibiotics can yield insights to drug targets and mechanisms of action or resistance. The objective is to identify CRISPRi mutants whose relative abundance is suppressed (or enriched) in the presence of a drug when the target protein is depleted, reflecting synergistic behavior. Different sgRNAs for a given target can induce a wide range of protein depletion and differential effects on growth rate. The effect of sgRNA strength can be partially predicted based on sequence features. However, the actual growth phenotype depends on the sensitivity of cells to depletion of the target protein. For essential genes, sgRNA efficiency can be empirically measured by quantifying effects on growth rate. We observe that the most efficient sgRNAs are not always optimal for detecting synergies with drugs. sgRNA efficiency interacts in a non-linear way with drug sensitivity, producing an effect where the concentration-dependence is maximized for sgRNAs of intermediate strength (and less so for sgRNAs that induce too much or too little target depletion). To capture this interaction, we propose a novel statistical method called CRISPRi-DR (for Dose-Response model) that incorporates both sgRNA efficiencies and drug concentrations in a modified dose-response equation. We use CRISPRi-DR to re-analyze data from a recent CGI experiment in Mycobacterium tuberculosis to identify genes that interact with antibiotics. This approach can be generalized to non-CGI datasets, which we show via an CRISPRi dataset for E. coli growth on different carbon sources. The performance is competitive with the best of several related analytical methods. However, for noisier datasets, some of these methods generate far more significant interactions, likely including many false positives, whereas CRISPRi-DR maintains higher precision, which we observed in both empirical and simulated data.
Collapse
Affiliation(s)
- Sanjeevani Choudhery
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Michael A. DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Aarthi Srinivasan
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Jeremy Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
13
|
Xiao Z, Zha J, Yang X, Huang T, Huang S, Liu Q, Wang X, Zhong J, Zheng J, Liang R, Deng Z, Zhang J, Lin S, Dai S. A three-level regulatory mechanism of the aldo-keto reductase subfamily AKR12D. Nat Commun 2024; 15:2128. [PMID: 38459030 PMCID: PMC10923870 DOI: 10.1038/s41467-024-46363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
Modulation of protein function through allosteric regulation is central in biology, but biomacromolecular systems involving multiple subunits and ligands may exhibit complex regulatory mechanisms at different levels, which remain poorly understood. Here, we discover an aldo-keto reductase termed AKRtyl and present its three-level regulatory mechanism. Specifically, by combining steady-state and transient kinetics, X-ray crystallography and molecular dynamics simulation, we demonstrate that AKRtyl exhibits a positive synergy mediated by an unusual Monod-Wyman-Changeux (MWC) paradigm of allosteric regulation at low concentrations of the cofactor NADPH, but an inhibitory effect at high concentrations is observed. While the substrate tylosin binds at a remote allosteric site with positive cooperativity. We further reveal that these regulatory mechanisms are conserved in AKR12D subfamily, and that substrate cooperativity is common in AKRs across three kingdoms of life. This work provides an intriguing example for understanding complex allosteric regulatory networks.
Collapse
Affiliation(s)
- Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyin Zha
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuxin Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jie Zhong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
14
|
Marina VI, Bidzhieva M, Tereshchenkov AG, Orekhov D, Sagitova VE, Sumbatyan NV, Tashlitsky VN, Ferberg AS, Maviza TP, Kasatsky P, Tolicheva O, Paleskava A, Polshakov VI, Osterman IA, Dontsova OA, Konevega AL, Sergiev PV. An easy tool to monitor the elemental steps of in vitro translation via gel electrophoresis of fluorescently labeled small peptides. RNA (NEW YORK, N.Y.) 2024; 30:298-307. [PMID: 38164606 PMCID: PMC10870375 DOI: 10.1261/rna.079766.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.
Collapse
Affiliation(s)
- Valeriya I Marina
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Medina Bidzhieva
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Andrey G Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry Orekhov
- R&D Department, VIC Animal Health, Severny, Belgorod Region 308519, Russia
| | | | - Nataliya V Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Artem S Ferberg
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tinashe P Maviza
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Pavel Kasatsky
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
| | - Olga Tolicheva
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
| | - Alena Paleskava
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University Moscow, Moscow 119991, Russia
| | - Ilya A Osterman
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Olga A Dontsova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Andrey L Konevega
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Petr V Sergiev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
15
|
Choudhery S, DeJesus MA, Srinivasan A, Rock J, Schnappinger D, Ioerger TR. A dose-response model for statistical analysis of chemical genetic interactions in CRISPRi screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551759. [PMID: 37577548 PMCID: PMC10418283 DOI: 10.1101/2023.08.03.551759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
An important application of CRISPR interference (CRISPRi) technology is for identifying chemical-genetic interactions (CGIs). Discovery of genes that interact with exposure to antibiotics can yield insights to drug targets and mechanisms of action or resistance. The objective is to identify CRISPRi mutants whose relative abundance is suppressed (or enriched) in the presence of a drug when the target protein is depleted, reflecting synergistic behavior. Different sgRNAs for a given target can induce a wide range of protein depletion and differential effects on growth rate. The effect of sgRNA strength can be partially predicted based on sequence features. However, the actual growth phenotype depends on the sensitivity of cells to depletion of the target protein. For essential genes, sgRNA efficiency can be empirically measured by quantifying effects on growth rate. We observe that the most efficient sgRNAs are not always optimal for detecting synergies with drugs. sgRNA efficiency interacts in a non-linear way with drug sensitivity, producing an effect where the concentration-dependence is maximized for sgRNAs of intermediate strength (and less so for sgRNAs that induce too much or too little target depletion). To capture this interaction, we propose a novel statistical method called CRISPRi-DR (for Dose-Response model) that incorporates both sgRNA efficiencies and drug concentrations in a modified dose-response equation. We use CRISPRi-DR to re-analyze data from a recent CGI experiment in Mycobacterium tuberculosis to identify genes that interact with antibiotics. This approach can be generalized to non-CGI datasets, which we show via an CRISPRi dataset for E. coli growth on different carbon sources. The performance is competitive with the best of several related analytical methods. However, for noisier datasets, some of these methods generate far more significant interactions, likely including many false positives, whereas CRISPRi-DR maintains higher precision, which we observed in both empirical and simulated data.
Collapse
Affiliation(s)
- Sanjeevani Choudhery
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Michael A. DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Aarthi Srinivasan
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Jeremy Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
16
|
Paulsel TQ, Williams GJ. Current State-of-the-Art Toward Chemoenzymatic Synthesis of Polyketide Natural Products. Chembiochem 2023; 24:e202300386. [PMID: 37615926 PMCID: PMC10964317 DOI: 10.1002/cbic.202300386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Polyketide natural products have significant promise as pharmaceutical targets for human health and as molecular tools to probe disease and complex biological systems. While the biosynthetic logic of polyketide synthases (PKS) is well-understood, biosynthesis of designer polyketides remains challenging due to several bottlenecks, including substrate specificity constraints, disrupted protein-protein interactions, and protein solubility and folding issues. Focusing on substrate specificity, PKSs are typically interrogated using synthetic thioesters. PKS assembly lines and their products offer a wealth of information when studied in a chemoenzymatic fashion. This review provides an overview of the past two decades of polyketide chemoenzymatic synthesis and their contributions to the field of chemical biology. These synthetic strategies have successfully yielded natural product derivatives while providing critical insights into enzymatic promiscuity and mechanistic activity.
Collapse
Affiliation(s)
- Thaddeus Q Paulsel
- Department of Chemistry, NC State University Dabney Hall, Room 208, Campus Box 8204, 2620 Yarbrough Dr., NC State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, NC State University, 1060 William Moore Dr., NC State University, Raleigh, NC 27607, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University Dabney Hall, Room 208, Campus Box 8204, 2620 Yarbrough Dr., NC State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, NC State University, 1060 William Moore Dr., NC State University, Raleigh, NC 27607, USA
| |
Collapse
|
17
|
Hekmat H, Rasooli A, Siami Z, Rutajengwa KA, Vahabi Z, Mirzadeh FA. A Review of Antibiotic Efficacy in COVID-19 Control. J Immunol Res 2023; 2023:6687437. [PMID: 37854054 PMCID: PMC10581857 DOI: 10.1155/2023/6687437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Severe acute respiratory disease is associated with chronic secondary infections that exacerbate symptoms and mortality. So far, many drugs have been introduced to treat this disease, none of which effectively control the coronavirus. Numerous studies have shown that mitochondria, as the center of cell biogenesis, are vulnerable to drugs, especially antibiotics. Antibiotics were widely prescribed during the early phase of the pandemic. We performed a literature review to assess the reasons, evidence, and practices on the use of antibiotics in coronavirus disease 2019 (COVID-19) in- and outpatients. The current research found widespread usage of antibiotics, mostly in an empirical context, among COVID-19 hospitalized patients. The effectiveness of this approach has not been established. Given the high death rate linked with secondary infections in COVID-19 patients and the developing antimicrobial resistance, further study is urgently needed to identify the most appropriate rationale for antibiotic therapy in these patients.
Collapse
Affiliation(s)
- Hamidreza Hekmat
- Cardiology Department, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aziz Rasooli
- Department of Emergency Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Siami
- Department of Infectious Disease, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kauthar Amir Rutajengwa
- Medical School Department, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Geriatric Department, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Division, Psychiatry Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
18
|
Hernandes IS, Da Silva HC, Dos Santos HF, Ávila EP, De Almeida MV, De Almeida WB. Quantum chemical investigation of predominant conformation of the antibiotic azithromycin in water and DMSO solutions: thermodynamic and NMR analysis. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230409. [PMID: 37830015 PMCID: PMC10565400 DOI: 10.1098/rsos.230409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Azithromycin (AZM) is a macrolide-type antibiotic used to prevent and treat serious infections (mycobacteria or MAC) that significantly inhibit bacterial growth. Knowledge of the predominant conformation in solution is of fundamental importance for advancing our understanding of the intermolecular interactions of AZM with biological targets. We report an extensive density functional theory (DFT) study of plausible AZM structures in solution considering implicit and explicit solvent effects. The best match between the experimental and theoretical nuclear magnetic resonance (NMR) profiles was used to assign the preferred conformer in solution, which was supported by the thermodynamic analysis. Among the 15 distinct AZM structures, conformer M14, having a short intramolecular C6-OH … N H-bond, is predicted to be dominant in water and dimethyl sulfoxide (DMSO) solutions. The results indicated that the X-ray structure backbone is mostly conserved in solution, showing that large flexible molecules with several possible conformations may assume a preferential spatial orientation in solution, which is the molecular structure that ultimately interacts with biological targets.
Collapse
Affiliation(s)
- Isabel S. Hernandes
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho, 24020-141, Centro, Niterói, RJ, Brazil
| | - Haroldo C. Da Silva
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho, 24020-141, Centro, Niterói, RJ, Brazil
| | - Hélio F. Dos Santos
- Núcleo de Estudos em Química Computacional, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG 36036-330, Brazil
| | - Eloah P. Ávila
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG 36036-330, Brazil
| | - Mauro V. De Almeida
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG 36036-330, Brazil
| | - Wagner B. De Almeida
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho, 24020-141, Centro, Niterói, RJ, Brazil
| |
Collapse
|
19
|
Aleksandrova EV, Wu KJY, Tresco BIC, Syroegin EA, Killeavy EE, Balasanyants SM, Svetlov MS, Gregory ST, Atkinson GC, Myers AG, Polikanov YS. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms for its evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559749. [PMID: 37808676 PMCID: PMC10557674 DOI: 10.1101/2023.09.27.559749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The ribosome is an essential drug target as many classes of clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent mechanisms of resistance to PTC-acting drugs is C8-methylation of the universally conserved adenine residue 2503 (A2503) of the 23S rRNA by the methyltransferase Cfr. Despite its clinical significance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. In this work, we developed a method to express a functionally-active Cfr-methyltransferase in the thermophilic bacterium Thermus thermophilus and report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-tRNAs. Our structures reveal that an allosteric rearrangement of nucleotide A2062 upon Cfr-methylation of A2503 is likely responsible for the inability of some PTC inhibitors to bind to the ribosome, providing additional insights into the Cfr resistance mechanism. Lastly, by determining the structures of the Cfr-methylated ribosome in complex with the antibiotics iboxamycin and tylosin, we provide the structural bases behind two distinct mechanisms of evading Cfr-mediated resistance.
Collapse
Affiliation(s)
- Elena V. Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kelvin J. Y. Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ben I. C. Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Egor A. Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Erin E. Killeavy
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Samson M. Balasanyants
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maxim S. Svetlov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Steven T. Gregory
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Gemma C. Atkinson
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
20
|
Fostier CR, Ousalem F, Leroy EC, Ngo S, Soufari H, Innis CA, Hashem Y, Boël G. Regulation of the macrolide resistance ABC-F translation factor MsrD. Nat Commun 2023; 14:3891. [PMID: 37393329 PMCID: PMC10314930 DOI: 10.1038/s41467-023-39553-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors that provide resistance against clinically important ribosome-targeting antibiotics which are proliferating among pathogens. Here, we combine genetic and structural approaches to determine the regulation of streptococcal ARE ABC-F gene msrD in response to macrolide exposure. We show that binding of cladinose-containing macrolides to the ribosome prompts insertion of the leader peptide MsrDL into a crevice of the ribosomal exit tunnel, which is conserved throughout bacteria and eukaryotes. This leads to a local rearrangement of the 23 S rRNA that prevents peptide bond formation and accommodation of release factors. The stalled ribosome obstructs the formation of a Rho-independent terminator structure that prevents msrD transcriptional attenuation. Erythromycin induction of msrD expression via MsrDL, is suppressed by ectopic expression of mrsD, but not by mutants which do not provide antibiotic resistance, showing correlation between MsrD function in antibiotic resistance and its action on this stalled complex.
Collapse
Affiliation(s)
- Corentin R Fostier
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Farès Ousalem
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Elodie C Leroy
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Heddy Soufari
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
- SPT Labtech Ltd., SG8 6HB, Melbourn, United Kingdom
| | - C Axel Innis
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
| | - Yaser Hashem
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France.
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France.
| |
Collapse
|
21
|
Nagao A, Nakanishi Y, Yamaguchi Y, Mishina Y, Karoji M, Toya T, Fujita T, Iwasaki S, Miyauchi K, Sakaguchi Y, Suzuki T. Quality control of protein synthesis in the early elongation stage. Nat Commun 2023; 14:2704. [PMID: 37198183 PMCID: PMC10192219 DOI: 10.1038/s41467-023-38077-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.
Collapse
Affiliation(s)
- Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yui Nakanishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshifumi Mishina
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minami Karoji
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Toya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
22
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
23
|
Lomakin IB, Devarkar SC, Patel S, Grada A, Bunick C. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Nucleic Acids Res 2023; 51:2915-2930. [PMID: 36864821 PMCID: PMC10085706 DOI: 10.1093/nar/gkad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Acne vulgaris is a chronic disfiguring skin disease affecting ∼1 billion people worldwide, often having persistent negative effects on physical and mental health. The Gram-positive anaerobe, Cutibacterium acnes is implicated in acne pathogenesis and is, therefore, a main target for antibiotic-based acne therapy. We determined a 2.8-Å resolution structure of the 70S ribosome of Cutibacterium acnes by cryogenic electron microscopy and discovered that sarecycline, a narrow-spectrum antibiotic against Cutibacterium acnes, may inhibit two active sites of this bacterium's ribosome in contrast to the one site detected previously on the model ribosome of Thermus thermophilus. Apart from the canonical binding site at the mRNA decoding center, the second binding site for sarecycline exists at the nascent peptide exit tunnel, reminiscent of the macrolides class of antibiotics. The structure also revealed Cutibacterium acnes-specific features of the ribosomal RNA and proteins. Unlike the ribosome of the Gram-negative bacterium Escherichia coli, Cutibacterium acnes ribosome has two additional proteins, bS22 and bL37, which are also present in the ribosomes of Mycobacterium smegmatis and Mycobacterium tuberculosis. We show that bS22 and bL37 have antimicrobial properties and may be involved in maintaining the healthy homeostasis of the human skin microbiome.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Shivali Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Formulation development and optimization of taste-masked azithromycin oral suspension with ion exchange resins: Bioanalytical method development and validation, in vivo bioequivalence study, and in-silico PBPK modeling for the paediatric population. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Screening of Novel Antimicrobial Diastereomers of Azithromycin-Thiosemicarbazone Conjugates: A Combined LC-SPE/Cryo NMR, MS/MS and Molecular Modeling Approach. Antibiotics (Basel) 2022; 11:antibiotics11121738. [PMID: 36551395 PMCID: PMC9774193 DOI: 10.3390/antibiotics11121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
A well-known class of antibacterials, 14- and 15-membered macrolides are widely prescribed to treat upper and lower respiratory tract infections. Azithromycin is a 15-membered macrolide antibiotic possessing a broad spectrum of antibacterial potency and favorable pharmacokinetics. Bacterial resistance to marketed antibiotics is growing rapidly and represents one of the major global hazards to human health. Today, there is a high need for discovery of new anti-infective agents to combat resistance. Recently discovered conjugates of azithromycin and thiosemicarbazones, the macrozones, represent one such class that exhibits promising activities against resistant pathogens. In this paper, we employed an approach which combined LC-SPE/cryo NMR, MS/MS and molecular modeling for rapid separation, identification and characterization of bioactive macrozones and their diastereomers. Multitrapping of the chromatographic peaks on SPE cartridges enabled sufficient sample quantities for structure elucidation and biological testing. Furthermore, two-dimensional NOESY NMR data and molecular dynamics simulations revealed stereogenic centers with inversion of chirality. Differences in biological activities among diastereomers were detected. These results should be considered in the process of designing new macrolide compounds with bioactivity. We have shown that this methodology can be used for a fast screening and identification of the macrolide reaction components, including stereoisomers, which can serve as a source of new antibacterials.
Collapse
|
26
|
Chen M, Li Y, Li S, Cui W, Zhou Y, Qu Q, Che R, Li L, Yuan S, Liu X. Molecular Mechanism of Staphylococcus xylosus Resistance Against Tylosin and Florfenicol. Infect Drug Resist 2022; 15:6165-6176. [PMID: 36304967 PMCID: PMC9596232 DOI: 10.2147/idr.s379264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Drug resistance presents an ever-increasing global public health threat that involves all major microbial pathogens and antimicrobial drugs. Strains that are resistant to multiple drugs pose severe clinical problems and cost lives. However, systematic studies on cross-resistance of Staphylococcus xylosus have been missing. Methods Here, we investigated various mutations in the sequence of ribosomal proteins involved in cross-resistance. To understand this effect on a molecular basis and to further elucidate the role of cross-resistance, we computationally constructed the 3D model of the large ribosomal subunit from S. xylosus as well as its complexes with both tylosin and florfenicol. Meanwhile, all-atom molecular dynamics simulations was used. In addition, the regulation of protein networks also played an essential role in the development of cross-resistance in S. xylosus. Results We discovered that the minimum inhibitory concentration against both tylosin and florfenicol of the mutant strain containing the insertion L22 97KRTSAIN98 changed dramatically. Further, we found that unique structural changes in the β-hairpin of L22 played a central role in this variant in the development of antibiotic resistance in S. xylosus. The regulation of protein networks also played an essential role in the development of cross-resistance in S. xylosus. Conclusion Our work provides insightful views into the mechanism of S. xylosus resistance that could be useful for the development of the next generation of antibiotics.
Collapse
Affiliation(s)
- Mo Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shu Li
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Wenqiang Cui
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China
| | - Yonghui Zhou
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, People’s Republic of China
| | - Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Ruixiang Che
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Lu Li
- College of Life Sciences, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shuguang Yuan
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China,Correspondence: Shuguang Yuan, Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Shenzhen, People’s Republic of China, Tel +86-150-0209-0670, Email
| | - Xin Liu
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, People’s Republic of China,Xin Liu, College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, People’s Republic of China, Tel +86-188-8605-6643, Email
| |
Collapse
|
27
|
Slay RM, Hewitt JA, Crumrine M. Determination of the Postexposure Prophylactic Benefit of Oral Azithromycin and Clarithromycin Against Inhalation Anthrax in Cynomolgus Macaques. Clin Infect Dis 2022; 75:S411-S416. [PMID: 36251550 PMCID: PMC9989359 DOI: 10.1093/cid/ciac569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Sufficient and diverse medical countermeasures against severe pathogenic infections, such as inhalation anthrax, are a critical need. Azithromycin and clarithromycin are antimicrobials commonly used for both upper and lower respiratory infections. They inhibit protein synthesis by blocking the formation of the 50S ribosomal subunit. To expand the armamentarium, these 2 antibiotics were evaluated in a postexposure prophylactic model of inhalation anthrax in cynomolgus macaques. METHODS This prophylaxis study had 4 test arms: azithromycin, clarithromycin, a levofloxacin control, and a placebo. Beginning 24 hours after exposure to a target challenge dose of 200 lethal dose 50 (LD50) of Bacillus anthracis Ames spores, animals were treated orally until 30 days postchallenge and then observed until 75 days postchallenge. RESULTS The test group that received clarithromycin had a survival rate of 67%. The test group that received azithromycin had a survival rate of 50%, but the peak azithromycin plasma levels achieved were <30 ng/mL-much lower than the expected 410 ng/mL. The levofloxacin positive control had a survival rate of 50%; all of the negative controls succumbed to infection. CONCLUSIONS The efficacy of clarithromycin prophylaxis was statistically significant compared with placebo, while azithromycin prophylaxis was indistinguishable from placebo. Given the low plasma concentrations of azithromycin achieved in the study, it is not surprising that half the animals succumbed to anthrax during the dosing period; the animals that survived beyond the time during which placebo control animals succumbed survived to the end of the observation period.
Collapse
Affiliation(s)
- Raymond M Slay
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Judith A Hewitt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin Crumrine
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Khairullina ZZ, Makarov GI, Tereshchenkov AG, Buev VS, Lukianov DA, Polshakov VI, Tashlitsky VN, Osterman IA, Sumbatyan NV. Conjugates of Desmycosin with Fragments of Antimicrobial Peptide Oncocin: Synthesis, Antibacterial Activity, Interaction with Ribosome. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:871-889. [PMID: 36180983 DOI: 10.1134/s0006297922090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
Design and synthesis of conjugates consisting of the macrolide antibiotic desmycosin and fragments of the antibacterial peptide oncocin were performed in attempt to develop new antimicrobial compounds. New compounds were shown to bind to the E. coli 70S ribosomes, to inhibit bacterial protein synthesis in vitro, as well as to suppress bacterial growth. The conjugates of N-terminal hexa- and tripeptide fragments of oncocin and 3,2',4''-triacetyldesmycosin were found to be active against some strains of macrolide-resistant bacteria. By simulating molecular dynamics of the complexes of these compounds with the wild-type bacterial ribosomes and with ribosomes, containing A2059G 23S RNA mutation, the specific structural features of their interactions were revealed.
Collapse
Affiliation(s)
| | | | - Andrey G Tereshchenkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Vitaly S Buev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitrii A Lukianov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vadim N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ilya A Osterman
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Natalia V Sumbatyan
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
29
|
The Quality Control of Midecamycin and the Predictive Demarcation between Its Impurities and Components. SEPARATIONS 2022. [DOI: 10.3390/separations9080225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Midecamycin is a 16-membered macrolide antibiotic. It can inhibit the synthesis of bacterial proteins by blocking up the activity of peptidyl transferase in the 50S ribosome. We used high-resolution mass spectrometry to analyze midecamycin, and quantitatively analyzed of each component of midecamycin produced by 18 different companies. The developed methods were validated by assessing linearity, limit of quantitation (LOQ), accuracy, precision, and robustness. Good separations were achieved for all components. Ten components of midecamycin were identified, and the contents of these components were determined in midecamycin produced by different companies. The demarcation between impurities and components of midecamycin was not clear. A ligand-docking model was used for predicting the impurities and components of midecamycin. Components and impurities were docked with the target. The results reported in this article may be important for quality control and the predictive demarcation between impurities and components of midecamycin.
Collapse
|
30
|
Hotinger JA, Gallagher AH, May AE. Phage-Related Ribosomal Proteases (Prps): Discovery, Bioinformatics, and Structural Analysis. Antibiotics (Basel) 2022; 11:antibiotics11081109. [PMID: 36009978 PMCID: PMC9405229 DOI: 10.3390/antibiotics11081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Many new antimicrobials are analogs of existing drugs, sharing the same targets and mechanisms of action. New antibiotic targets are critically needed to combat the growing threat of antimicrobial-resistant bacteria. Phage-related ribosomal proteases (Prps) are a recently structurally characterized antibiotic target found in pathogens such as Staphylococcus aureus, Clostridioides difficile, and Streptococcus pneumoniae. These bacteria encode an N-terminal extension on their ribosomal protein L27 that is not present in other bacteria. The cleavage of this N-terminal extension from L27 by Prp is necessary to create a functional ribosome. Thus, Prp inhibition may serve as an alternative to direct binding and inhibition of the ribosome. This bioinformatic and structural analysis covers the discovery, function, and structural characteristics of known Prps. This information will be helpful in future endeavors to design selective therapeutics targeting the Prps of important pathogens.
Collapse
|
31
|
Syroegin EA, Aleksandrova EV, Polikanov YS. Structural basis for the inability of chloramphenicol to inhibit peptide bond formation in the presence of A-site glycine. Nucleic Acids Res 2022; 50:7669-7679. [PMID: 35766409 PMCID: PMC9303264 DOI: 10.1093/nar/gkac548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Ribosome serves as a universal molecular machine capable of synthesis of all the proteins in a cell. Small-molecule inhibitors, such as ribosome-targeting antibiotics, can compromise the catalytic versatility of the ribosome in a context-dependent fashion, preventing transpeptidation only between particular combinations of substrates. Classic peptidyl transferase center inhibitor chloramphenicol (CHL) fails to inhibit transpeptidation reaction when the incoming A site acceptor substrate is glycine, and the molecular basis for this phenomenon is unknown. Here, we present a set of high-resolution X-ray crystal structures that explain why CHL is unable to inhibit peptide bond formation between the incoming glycyl-tRNA and a nascent peptide that otherwise is conducive to the drug action. Our structures reveal that fully accommodated glycine residue can co-exist in the A site with the ribosome-bound CHL. Moreover, binding of CHL to a ribosome complex carrying glycyl-tRNA does not affect the positions of the reacting substrates, leaving the peptide bond formation reaction unperturbed. These data exemplify how small-molecule inhibitors can reshape the A-site amino acid binding pocket rendering it permissive only for specific amino acid residues and rejective for the other substrates extending our detailed understanding of the modes of action of ribosomal antibiotics.
Collapse
Affiliation(s)
- Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
32
|
Kumura K, Umemura E, Hirai Y, Ajito K. Discovery of Novel Lincomycin Derivatives Effective against Resistant Streptococcus pneumoniae and Streptococcus pyogenes Possessing ErmB Gene. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ko Kumura
- Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd
| | | | | | | |
Collapse
|
33
|
Paranhos AGDO, Pereira AR, da Fonseca YA, de Queiroz Silva S, de Aquino SF. Tylosin in anaerobic reactors: degradation kinetics, effects on methane production and on the microbial community. Biodegradation 2022; 33:283-300. [PMID: 35482264 DOI: 10.1007/s10532-022-09980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
Tylosin eliminated in animal waste, during therapeutic treatment, can be efficiently removed in anaerobic systems. The present study investigated the influence of tylosin concentration and assessed its degradation kinetics and the microorganisms involved in each stage of its anaerobic digestion (hydrolysis/acidogenesis; acetogenesis; methanogenesis). The results showed a stimulating effect on methane production with increasing tylosin concentration in the poultry litter up to 80 mg kg-1 tylosin (232.9 NL CH4 kg SV-1). As for tylosin degradation, greater removal of antibiotics was observed in the methanogenic phase (88%), followed by acetogenic (84%) and hydrolytic/acidogenic (76%) phases. The higher rate of tylosin degradation obtained in the methanogenic step, is mainly related to the co-metabolic effect exerted by the presence of acetate and its degradation by acetoclastic methanogens. Indeed, metagenomic analyses suggested a syntrophic action between archaea of the genus Methanobacterium, and bacteria such as Clostridium and Flexilinea, which seemed decisive for tylosin degradation.
Collapse
Affiliation(s)
- Aline Gomes de Oliveira Paranhos
- Programa de Pós Graduação em Engenharia Ambiental, Escola de Minas, Universidade Federal de Ouro Preto, Campus universitário Morro do Cruzeiro, s/n, Ouro Preto, MG, Brazil
| | - Andressa Rezende Pereira
- Programa de Pós Graduação em Engenharia Ambiental, Escola de Minas, Universidade Federal de Ouro Preto, Campus universitário Morro do Cruzeiro, s/n, Ouro Preto, MG, Brazil
| | - Yasmim Arantes da Fonseca
- Programa de Pós Graduação em Engenharia Ambiental, Escola de Minas, Universidade Federal de Ouro Preto, Campus universitário Morro do Cruzeiro, s/n, Ouro Preto, MG, Brazil
| | - Silvana de Queiroz Silva
- Programa de Pós Graduação em Engenharia Ambiental, Escola de Minas, Universidade Federal de Ouro Preto, Campus universitário Morro do Cruzeiro, s/n, Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus universitário Morro do Cruzeiro, s/n, Ouro Preto, MG, Brazil
| | - Sérgio Francisco de Aquino
- Programa de Pós Graduação em Engenharia Ambiental, Escola de Minas, Universidade Federal de Ouro Preto, Campus universitário Morro do Cruzeiro, s/n, Ouro Preto, MG, Brazil.
- Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus universitário Morro do Cruzeiro, s/n, Ouro Preto, MG, Brazil.
| |
Collapse
|
34
|
Hecht SM. Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes. J Mol Biol 2022; 434:167211. [PMID: 34419431 PMCID: PMC9990327 DOI: 10.1016/j.jmb.2021.167211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Biological protein synthesis is mediated by the ribosome, and employs ~20 proteinogenic amino acids as building blocks. Through the use of misacylated tRNAs, presently accessible by any of several strategies, it is now possible to employ in vitro and in vivo protein biosynthesis to elaborate proteins containing a much larger variety of amino acid building blocks. However, the incorporation of this broader variety of amino acids is limited to those species utilized by the ribosome. As a consequence, virtually all of the substrates utilized over time have been L-α-amino acids. In recent years, a variety of structural and biochemical studies have provided important insights into those regions of the 23S ribosomal RNA that are involved in peptide bond formation. Subsequent experiments, involving the randomization of key regions of 23S rRNA required for peptide bond formation, have afforded libraries of E. coli harboring plasmids with the rrnB gene modified in the key regions. Selections based on the use of modified puromycin derivatives with altered amino acids then identified clones uniquely sensitive to individual puromycin derivatives. These clones often recognized misacylated tRNAs containing altered amino acids similar to those in the modified puromycins, and incorporated the amino acid analogues into proteins. In this fashion, it has been possible to realize the synthesis of proteins containing D-amino acids, β-amino acids, phosphorylated amino acids, as well as long chain and cyclic amino acids in which the nucleophilic amino group is not in the α-position. Of special interest have been dipeptides and dipeptidomimetics of diverse utility.
Collapse
Affiliation(s)
- Sidney M Hecht
- Center for BioEnergetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
35
|
Kragol G, Steadman VA, Marušić Ištuk Z, Čikoš A, Bosnar M, Jelić D, Ergović G, Trzun M, Bošnjak B, Bokulić A, Padovan J, Glojnarić I, Eraković Haber V. Unprecedented Epimerization of an Azithromycin Analogue: Synthesis, Structure and Biological Activity of 2'-Dehydroxy-5″-Epi-Azithromycin. Molecules 2022; 27:1034. [PMID: 35164298 PMCID: PMC8838534 DOI: 10.3390/molecules27031034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Certain macrolide antibiotics, azithromycin included, possess anti-inflammatory properties that are considered fundamental for their efficacy in the treatment of chronic inflammatory diseases, such as diffuse pan-bronchiolitis and cystic fibrosis. In this study, we disclose a novel azithromycin analog obtained via Barton-McCombie oxidation during which an unprecedented epimerization on the cladinose sugar occurs. Its structure was thoroughly investigated using NMR spectroscopy and compared to the natural epimer, revealing how the change in configuration of one single stereocenter (out of 16) profoundly diminished the antimicrobial activity through spatial manipulation of ribosome binding epitopes. At the same time, the anti-inflammatory properties of parent macrolide were retained, as demonstrated by inhibition of LPS- and cigarette-smoke-induced pulmonary inflammation. Not surprisingly, the compound has promising developable properties including good oral bioavailability and a half-life that supports once-daily dosing. This novel anti-inflammatory candidate has significant potential to fill the gap in existing anti-inflammatory agents and broaden treatment possibilities.
Collapse
Affiliation(s)
- Goran Kragol
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | | | - Zorica Marušić Ištuk
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ana Čikoš
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Martina Bosnar
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Dubravko Jelić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Gabrijela Ergović
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Marija Trzun
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Berislav Bošnjak
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ana Bokulić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Jasna Padovan
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ines Glojnarić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Vesna Eraković Haber
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| |
Collapse
|
36
|
Hernandes IS, Da Silva HC, Dos Santos HF, Pereira Ávila E, de almeida MV, Gomes MGR, Paschoal D, De Almeida WB. An Investigation of the Predominant Structure of Antibiotic Azithromycin in Chloroform Solution through NMR and Thermodynamic Analysis. Phys Chem Chem Phys 2022; 24:22845-22858. [DOI: 10.1039/d2cp02843c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azithromycin (AZM) is a well-known macrolide-type antibiotic that has been used in the treatment of infections and inflammations. Knowledge of the predominant molecular structure in solution is a prerequisite for...
Collapse
|
37
|
Abstract
Macrolides such as azithromycin are commonly prescribed antibiotics during pregnancy. The good oral bioavailability and transplacental transfer of azithromycin make this drug suitable for the treatment of sexually transmitted diseases, toxoplasmosis, and malaria. Moreover, azithromycin is useful both in the management of preterm pre-labor rupture of membranes and in the adjunctive prophylaxis for cesarean delivery. The aim of this comprehensive narrative review is to critically analyze and summarize the available literature on the main aspects of azithromycin use in pregnant women, with a special focus on adverse offspring outcomes associated with prenatal exposure to the drug. References for this review were identified through searches of MEDLINE, PubMed, and EMBASE. Fetal and neonatal outcomes following prenatal azithromycin exposure have been investigated in several studies, yielding conflicting results. Increased risks of spontaneous miscarriage, major congenital malformations, cardiovascular malformations, digestive system malformations, preterm birth, and low birth weight have been reported in some studies but not in others. Currently, there is no conclusive evidence to support that azithromycin use by pregnant women causes adverse outcomes in their offspring. Therefore, this agent should only be used during pregnancy when clinically indicated, if the benefits of treatment are expected to outweigh the potential risks.
Collapse
|
38
|
Ferreira-Cerca S. The dark side of the ribosome life cycle. RNA Biol 2022; 19:1045-1049. [PMID: 36082947 PMCID: PMC9467602 DOI: 10.1080/15476286.2022.2121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Thanks to genetics, biochemistry, and structural biology many features of the ribosome´s life cycles in models of bacteria, eukaryotes, and some organelles have been revealed to near-atomic details. Collectively, these studies have provided a very detailed understanding of what are now well-established prototypes for ribosome biogenesis and function as viewed from a 'classical' model organisms perspective. However, very important challenges remain ahead to explore the functional and structural diversity of both ribosome biogenesis and function across the biological diversity on earth. Particularly, the 'third domain of life', the archaea, and also many non-model bacterial and eukaryotic organisms have been comparatively neglected. Importantly, characterizing these additional biological systems will not only offer a yet untapped window to enlighten the evolution of ribosome biogenesis and function but will also help to unravel fundamental principles of molecular adaptation of these central cellular processes.
Collapse
Affiliation(s)
- Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Endo T, Takemae H, Sharma I, Furuya T. Multipurpose Drugs Active Against Both Plasmodium spp. and Microorganisms: Potential Application for New Drug Development. Front Cell Infect Microbiol 2021; 11:797509. [PMID: 35004357 PMCID: PMC8740689 DOI: 10.3389/fcimb.2021.797509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malaria, a disease caused by the protozoan parasites Plasmodium spp., is still causing serious problems in endemic regions in the world. Although the WHO recommends artemisinin combination therapies for the treatment of malaria patients, the emergence of artemisinin-resistant parasites has become a serious issue and underscores the need for the development of new antimalarial drugs. On the other hand, new and re-emergences of infectious diseases, such as the influenza pandemic, Ebola virus disease, and COVID-19, are urging the world to develop effective chemotherapeutic agents against the causative viruses, which are not achieved to the desired level yet. In this review article, we describe existing drugs which are active against both Plasmodium spp. and microorganisms including viruses, bacteria, and fungi. We also focus on the current knowledge about the mechanism of actions of these drugs. Our major aims of this article are to describe examples of drugs that kill both Plasmodium parasites and other microbes and to provide valuable information to help find new ideas for developing novel drugs, rather than merely augmenting already existing drug repurposing efforts.
Collapse
Affiliation(s)
- Takuro Endo
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Indu Sharma
- Department of Biological Sciences, Hampton University, Hampton, VA, United States
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
40
|
Qi Q, Angermayr SA, Bollenbach T. Uncovering Key Metabolic Determinants of the Drug Interactions Between Trimethoprim and Erythromycin in Escherichia coli. Front Microbiol 2021; 12:760017. [PMID: 34745067 PMCID: PMC8564399 DOI: 10.3389/fmicb.2021.760017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding interactions between antibiotics used in combination is an important theme in microbiology. Using the interactions between the antifolate drug trimethoprim and the ribosome-targeting antibiotic erythromycin in Escherichia coli as a model, we applied a transcriptomic approach for dissecting interactions between two antibiotics with different modes of action. When trimethoprim and erythromycin were combined, the transcriptional response of genes from the sulfate reduction pathway deviated from the dominant effect of trimethoprim on the transcriptome. We successfully altered the drug interaction from additivity to suppression by increasing the sulfate level in the growth environment and identified sulfate reduction as an important metabolic determinant that shapes the interaction between the two drugs. Our work highlights the potential of using prioritization of gene expression patterns as a tool for identifying key metabolic determinants that shape drug-drug interactions. We further demonstrated that the sigma factor-binding protein gene crl shapes the interactions between the two antibiotics, which provides a rare example of how naturally occurring variations between strains of the same bacterial species can sometimes generate very different drug interactions.
Collapse
Affiliation(s)
- Qin Qi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | | | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Rapid Structure Determination of Bioactive 4″-Tetrahydrofurfuryl Macrozone Reaction Mixture Components by LC-SPE/Cryo NMR and MS. Molecules 2021; 26:molecules26206316. [PMID: 34684905 PMCID: PMC8537197 DOI: 10.3390/molecules26206316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
LC-SPE/cryo NMR and MS methodologies have been developed and employed for a rapid structure determination of 4″-tetrahydrofurfuryl macrozone reaction mixture components. Macrozones, novel conjugates of azithromycin, and thiosemicarbazones have shown very good in vitro antibacterial activities against susceptible and some resistant bacterial strains and are promising agents for further development. The post-column multiple trapping of the chromatographically separated reaction mixture components on the SPE cartridges increased the sensitivity and together with cryogenically cooled NMR probe made it possible to identify and structurally characterize main 4″-tetrahydrofurfuryl macrozone reaction mixture compounds including those present at very low concentration level. This approach has several advantages over a classical off-line procedure, efficiency and low solvent consumption being the two most important ones. All identified components were process-related. It has been demonstrated that two different kinds of compounds with respect to structure were identified, i.e., macrolide-related and thiosemicarbazone-related ones. This methodology can serve as a platform for reliable and effective macrolides reaction components structure profiling, serving as both isolation and identification tools.
Collapse
|
42
|
Hotinger JA, Morris ST, May AE. The Case against Antibiotics and for Anti-Virulence Therapeutics. Microorganisms 2021; 9:2049. [PMID: 34683370 PMCID: PMC8537500 DOI: 10.3390/microorganisms9102049] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes.
Collapse
Affiliation(s)
| | | | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA; (J.A.H.); (S.T.M.)
| |
Collapse
|
43
|
Breiner-Goldstein E, Eyal Z, Matzov D, Halfon Y, Cimicata G, Baum M, Rokney A, Ezernitchi A, Lowell A, Schmidt J, Rozenberg H, Zimmerman E, Bashan A, Valinsky L, Anzai Y, Sherman D, Yonath A. Ribosome-binding and anti-microbial studies of the mycinamicins, 16-membered macrolide antibiotics from Micromonospora griseorubida. Nucleic Acids Res 2021; 49:9560-9573. [PMID: 34417608 PMCID: PMC8450085 DOI: 10.1093/nar/gkab684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023] Open
Abstract
Macrolides have been effective clinical antibiotics for over 70 years. They inhibit protein biosynthesis in bacterial pathogens by narrowing the nascent protein exit tunnel in the ribosome. The macrolide class of natural products consist of a macrolactone ring linked to one or more sugar molecules. Most of the macrolides used currently are semi-synthetic erythromycin derivatives, composed of a 14- or 15-membered macrolactone ring. Rapidly emerging resistance in bacterial pathogens is among the most urgent global health challenges, which render many antibiotics ineffective, including next-generation macrolides. To address this threat and advance a longer-term plan for developing new antibiotics, we demonstrate how 16-membered macrolides overcome erythromycin resistance in clinically isolated Staphylococcus aureus strains. By determining the structures of complexes of the large ribosomal subunit of Deinococcus radiodurans (D50S) with these 16-membered selected macrolides, and performing anti-microbial studies, we identified resistance mechanisms they may overcome. This new information provides important insights toward the rational design of therapeutics that are effective against drug resistant human pathogens.
Collapse
Affiliation(s)
- Elinor Breiner-Goldstein
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Zohar Eyal
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Donna Matzov
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Yehuda Halfon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Giuseppe Cimicata
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Moti Baum
- Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel
| | - Assaf Rokney
- Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel
| | - Analia V Ezernitchi
- Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel
| | - Andrew N Lowell
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Jennifer J Schmidt
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Haim Rozenberg
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| | - Lea Valinsky
- Government Central Laboratories, Ministry of Health, Jerusalem 91342, Israel
| | - Yojiro Anzai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-0072, Japan
| | - David H Sherman
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ada Yonath
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 760001, Israel
| |
Collapse
|
44
|
Konikkat S, Scribner MR, Eutsey R, Hiller NL, Cooper VS, McManus J. Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin. PLoS Genet 2021; 17:e1009634. [PMID: 34252072 PMCID: PMC8297930 DOI: 10.1371/journal.pgen.1009634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa produces serious chronic infections in hospitalized patients and immunocompromised individuals, including patients with cystic fibrosis. The molecular mechanisms by which P. aeruginosa responds to antibiotics and other stresses to promote persistent infections may provide new avenues for therapeutic intervention. Azithromycin (AZM), an antibiotic frequently used in cystic fibrosis treatment, is thought to improve clinical outcomes through a number of mechanisms including impaired biofilm growth and quorum sensing (QS). The mechanisms underlying the transcriptional response to AZM remain unclear. Here, we interrogated the P. aeruginosa transcriptional response to AZM using a fast, cost-effective genome-wide approach to quantitate RNA 3’ ends (3pMap). We also identified hundreds of P. aeruginosa genes with high incidence of premature 3’ end formation indicative of riboregulation in their transcript leaders using 3pMap. AZM treatment of planktonic and biofilm cultures alters the expression of hundreds of genes, including those involved in QS, biofilm formation, and virulence. Strikingly, most genes downregulated by AZM in biofilms had increased levels of intragenic 3’ ends indicating premature transcription termination, transcriptional pausing, or accumulation of stable intermediates resulting from the action of nucleases. Reciprocally, AZM reduced premature intragenic 3’ end termini in many upregulated genes. Most notably, reduced termination accompanied robust induction of obgE, a GTPase involved in persister formation in P. aeruginosa. Our results support a model in which AZM-induced changes in 3’ end formation alter the expression of central regulators which in turn impairs the expression of QS, biofilm formation and stress response genes, while upregulating genes associated with persistence. Pseudomonas aeruginosa is a common source of hospital-acquired infections and causes prolonged illness in patients with cystic fibrosis. P. aeruginosa infections are often treated with the macrolide antibiotic azithromycin, which changes the expression of many genes involved in infection. By examining such expression changes at nucleotide resolution, we found azithromycin treatment alters the locations of mRNA 3’ ends suggesting most downregulated genes are subject to premature 3’ end formation. We further identified candidate RNA regulatory elements that P. aeruginosa may use to control gene expression. Our work provides new insights in P. aeruginosa gene regulation and its response to antibiotics.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
46
|
Osterman IA, Dontsova OA, Sergiev PV. rRNA Methylation and Antibiotic Resistance. BIOCHEMISTRY (MOSCOW) 2021; 85:1335-1349. [PMID: 33280577 DOI: 10.1134/s000629792011005x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methylation of nucleotides in rRNA is one of the basic mechanisms of bacterial resistance to protein synthesis inhibitors. The genes for corresponding methyltransferases have been found in producer strains and clinical isolates of pathogenic bacteria. In some cases, rRNA methylation by housekeeping enzymes is, on the contrary, required for the action of antibiotics. The effects of rRNA modifications associated with antibiotic efficacy may be cooperative or mutually exclusive. Evolutionary relationships between the systems of rRNA modification by housekeeping enzymes and antibiotic resistance-related methyltransferases are of particular interest. In this review, we discuss the above topics in detail.
Collapse
Affiliation(s)
- I A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - P V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
47
|
Cryo-EM Determination of Eravacycline-Bound Structures of the Ribosome and the Multidrug Efflux Pump AdeJ of Acinetobacter baumannii. mBio 2021; 12:e0103121. [PMID: 34044590 PMCID: PMC8263017 DOI: 10.1128/mbio.01031-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant strains of the Gram-negative pathogen Acinetobacter baumannii have emerged as a significant global health threat. One successful therapeutic option to treat bacterial infections has been to target the bacterial ribosome. However, in many cases, multidrug efflux pumps within the bacterium recognize and extrude these clinically important antibiotics designed to inhibit the protein synthesis function of the bacterial ribosome. Thus, multidrug efflux within A. baumannii and other highly drug-resistant strains is a major cause of failure of drug-based treatments of infectious diseases. We here report the first structures of the Acinetobacterdrug efflux (Ade)J pump in the presence of the antibiotic eravacycline, using single-particle cryo-electron microscopy (cryo-EM). We also describe cryo-EM structures of the eravacycline-bound forms of the A. baumannii ribosome, including the 70S, 50S, and 30S forms. Our data indicate that the AdeJ pump primarily uses hydrophobic interactions to bind eravacycline, while the 70S ribosome utilizes electrostatic interactions to bind this drug. Our work here highlights how an antibiotic can bind multiple bacterial targets through different mechanisms and potentially enables drug optimization by taking advantage of these different modes of ligand binding.
Collapse
|
48
|
Kocak E, Nemutlu E, Kır S, Sagıroglu M, Özkul C. Integrative proteomics and metabolomics approach to elucidate the antimicrobial effect of simvastatin on Escherichia coli. Biomed Chromatogr 2021; 35:e5180. [PMID: 34043824 DOI: 10.1002/bmc.5180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/07/2022]
Abstract
Globally, simvastatin is one of the most commonly used statin drugs. Its antimicrobial properties have been investigated against various pathogens. However, its effect on biological processes in bacteria has been unclear. This study focused on altered biological and metabolic processes at protein and metabolite levels induced by simvastatin. MS-based proteomics and metabolomics were used to investigate the altered proteins and metabolites between experimental groups. Proteomics results showed that simvastatin induced various antimicrobial targets such as chaperon protein DnaK and cell division protein FtsZ. Metabolomics results revealed phenotypic changes in cells under simvastatin stress. Integrated proteomics and metabolomics result indicated that various metabolic processes were altered to adapt to stress conditions. Energy metabolism (glycolysis, tricarboxylic acid cycle, etc.), amino acid synthesis and ribosomal proteins, and purine and pyrimidine synthesis were induced by the effect of simvastatin. This study will contribute to the understanding of antimicrobial properties of statin drugs.
Collapse
Affiliation(s)
- Engin Kocak
- Department of Analytical Chemistry, Faculty of Gulhane Pharmacy, Health Sciences University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Meral Sagıroglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ceren Özkul
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
49
|
Context-specific action of macrolide antibiotics on the eukaryotic ribosome. Nat Commun 2021; 12:2803. [PMID: 33990576 PMCID: PMC8121947 DOI: 10.1038/s41467-021-23068-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.
Collapse
|
50
|
Cross-Elicitation to Spiramycin in a Patient With Airborne Allergic Contact Dermatitis to Tylosin. Dermatitis 2021; 32:e41-e42. [PMID: 34003620 DOI: 10.1097/der.0000000000000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|