1
|
Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Arch Biochem Biophys 2021; 700:108768. [PMID: 33485848 DOI: 10.1016/j.abb.2021.108768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023]
Abstract
Numerous neurological and non-neurological disorders are associated with dysfunction of epigenetic modulators, and methyl CpG binding protein 2 (MeCP2) is one of such proteins. Initially identified as a transcriptional repressor, MeCP2 specifically binds to methylated DNA, and mutations of MeCP2 have been shown to cause Rett syndrome (RTT), a severe neurological disorder. Recently, accumulating evidence suggests that ubiquitously expressed MeCP2 also plays a central role in non-neurological disorders including cardiac dysfunction, liver injury, respiratory disorders, urological dysfunction, adipose tissue metabolism disorders, movement abnormality and inflammatory responses in a DNA methylation dependent or independent manner. Despite significant progresses in our understanding of MeCP2 over the last few decades, there is still a considerable knowledge gap to translate the in vitro and in vivo experimental findings into therapeutic interventions. In this review, we provide a synopsis of the role of MeCP2 in the pathophysiology of non-neurological disorders, MeCP2-based research directions and therapeutic strategies for non-neurological disorders are also discussed.
Collapse
|
2
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). Almost two decades of research into RTT have greatly advanced our understanding of the function and regulation of the multifunctional protein MeCP2. Here, we review recent advances in understanding how loss of MeCP2 impacts different stages of brain development, discuss recent findings demonstrating the molecular role of MeCP2 as a transcriptional repressor, assess primary and secondary effects of MeCP2 loss and examine how loss of MeCP2 can result in an imbalance of neuronal excitation and inhibition at the circuit level along with dysregulation of activity-dependent mechanisms. These factors present challenges to the search for mechanism-based therapeutics for RTT and suggest specific approaches that may be more effective than others.
Collapse
|
3
|
Luo X, Li C, Wang X, Yu X, Jiang J. Tapping-lips aggravated interictal bilateral discharges in EEG in the patients with Rett syndrome: a case report. BMC Neurol 2019; 19:77. [PMID: 31043160 PMCID: PMC6495538 DOI: 10.1186/s12883-019-1296-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
Background Rett syndrome (RTT) is a severe neurodevelopmental disorder mainly affecting females. One of the main clinical manifestations is hand stereotypies, which is presumed to based on dysfunction rather than on structural impairment. Reflex interictal discharge precipitated by tapping-lips in electroencephalogram (EEG) is a rare phenomenon among RTT. Case presentation We firstly reported a case of RTT concerning interictal reflex discharge precipitated by tapping- lips. The child, female, 5 years old, presented with a significant regression in motor development and language skills. She almost always tapped the lips with the right hand and stopped only when was interrupted. Her EEG results displayed extensive low amplitude fast wave could be elicited by lightly and slowly- rhythm tapping lips and multifocal bilateral discharges could be precipitated by relatively stronger and quicker rhythm action. It was when the movement stopped that corresponding discharges immediately disappeared. Besides, the reflex discharges were not precipitated by tapping- lips using observer’s hand at the certain tempo and intensity. The hand stereotypies did not respond to antiepileptic drugs. Conclusions Tapping- lips may be a somatosensory stimulation to precipitate interictal discharges in RTT, which may provide another idea to enrich the insight on hand stereotypies of RTT.
Collapse
Affiliation(s)
- Xiaoqing Luo
- Department of electrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical college, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Cheng Li
- Department of electrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical college, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Xiaolu Wang
- Department of electrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical college, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Xiaoli Yu
- Department of electrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical college, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Jun Jiang
- Department of electrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical college, Huazhong University of Science&Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
MicroRNA-197 controls ADAM10 expression to mediate MeCP2's role in the differentiation of neuronal progenitors. Cell Death Differ 2018; 26:1863-1879. [PMID: 30560934 PMCID: PMC6748079 DOI: 10.1038/s41418-018-0257-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 01/17/2023] Open
Abstract
Duplication of MECP2 (Methyl-CpG-binding protein 2) causes severe mental illness called MECP2 duplication syndrome (MDS), yet the underlying mechanism remains elusive. Here we show, in Tg(MECP2) transgenic mouse brain or cultured neural progenitor cells (NPCs), that elevated MeCP2 expression promotes NPC differentiation into neurons. Ectopic expression of MeCP2 inhibits ADAM10 and thus the NOTCH pathway during NPC differentiation. In human cells, this downregulation on ADAM10 was mediated by miRNA-197, which is upregulated by MeCP2. Surprisingly, miR-197 binds to the ADAM10 3′-UTR via its 3′ side, not the canonical seed sequence on the 5′ side. In mouse cells, a noncoding RNA Gm28836 is used to replace the function of miR-197 between MeCP2 and ADAM10. Similar to MeCP2, overexpressing miR-197 also promotes NPCs differentiation into neurons. Interestingly, three rare missense mutations (H371R, E394K, and G428S) in MECP2, which we identified in a Han Chinese autism spectrum disorders (ASD) cohort showed loss-of-function effects in NPC differentiation assay. These mutations cannot upregulate miR-197. Overexpressing miR-197 together with these MeCP2 mutations could rescue the downregulation on ADAM10. Not only the inhibitor of miR-197 could reverse the effect of overexpressed MeCP2 on NPCs differentiation, but also overexpression of miR-197 could reverse the NPCs differentiation defects caused by MECP2 mutations. Our results revealed that a regulatory axis involving MeCP2, miR-197, ADAM10, and NOTCH signaling is critical for NPC differentiation, which is affected by both MeCP2 duplication and mutation.
Collapse
|
5
|
First report of an unusual novel double mutation affecting the transcription repression domain of MeCP2 and causing a severe phenotype of Rett syndrome: Molecular analyses and computational investigation. Biochem Biophys Res Commun 2018; 497:93-101. [PMID: 29421650 DOI: 10.1016/j.bbrc.2018.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder that develops a profound intellectual and motor disability and affects 1 from 10 000 to 15 000 live female births. This disease is characterized by a period of apparently normal development until 6-18 months of age when motor and communication abilities regress which is caused by mutations occurred in the X-linked MECP2 gene, encoding the methyl-CpG binding protein 2. This research study reports a molecular analysis via an exhaustive gene sequencing which reveals an unusual novel double mutation (c.695 G > T; c.880C > T) located in a highly conserved region in MECP2 gene affecting the transcription repression domain (TRD) of MeCP2 protein and leading for the first time to a severe phenotype of Rett syndrome. Moreover, a computational investigation of MECP2 mutations demonstrates that the novel mutation c.695 G > T is highly deleterious which affects the MeCP2 protein showing also an adverse impact on MECP2 gene expression and resulting in an affected folding and decreased stability of MECP2 structures. Thus, the altered TRD domain engenders a disrupted process of MECP2 functions. Therefore, this is the first study which highlights a novel double mutation among the transcription repression domain (TRD) of MeCP2 protein in Rett patient with a severe clinical phenotype in North Africa region.
Collapse
|
6
|
van der Vaart M, Svoboda O, Weijts BG, Espín-Palazón R, Sapp V, Pietri T, Bagnat M, Muotri AR, Traver D. Mecp2 regulates tnfa during zebrafish embryonic development and acute inflammation. Dis Model Mech 2017; 10:1439-1451. [PMID: 28993314 PMCID: PMC5769600 DOI: 10.1242/dmm.026922] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/05/2017] [Indexed: 12/15/2022] Open
Abstract
Mutations in MECP2 cause Rett syndrome, a severe neurological disorder with autism-like features. Duplication of MECP2 also causes severe neuropathology. Both diseases display immunological abnormalities that suggest a role for MECP2 in controlling immune and inflammatory responses. Here, we used mecp2-null zebrafish to study the potential function of Mecp2 as an immunological regulator. Mecp2 deficiency resulted in an increase in neutrophil infiltration and upregulated expression of the pro- and anti-inflammatory cytokines Il1b and Il10 as a secondary response to disturbances in tissue homeostasis. By contrast, expression of the proinflammatory cytokine tumor necrosis factor alpha (Tnfa) was consistently downregulated in mecp2-null animals during development, representing the earliest developmental phenotype described for MECP2 deficiency to date. Expression of tnfa was unresponsive to inflammatory stimulation, and was partially restored by re-expression of functional mecp2 Thus, Mecp2 is required for tnfa expression during zebrafish development and inflammation. Finally, RNA sequencing of mecp2-null embryos revealed dysregulated processes predictive for Rett syndrome phenotypes.
Collapse
Affiliation(s)
- M van der Vaart
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - O Svoboda
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - B G Weijts
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - R Espín-Palazón
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - V Sapp
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - T Pietri
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, 07102 NJ, USA
| | - M Bagnat
- Department of Cell Biology, Duke University, Durham, 27708 NC, USA
| | - A R Muotri
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, La Jolla, 92093 CA, USA
| | - D Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
| |
Collapse
|
7
|
Jin XR, Chen XS, Xiao L. MeCP2 Deficiency in Neuroglia: New Progress in the Pathogenesis of Rett Syndrome. Front Mol Neurosci 2017; 10:316. [PMID: 29046627 PMCID: PMC5632713 DOI: 10.3389/fnmol.2017.00316] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disease predominantly caused by mutations of the methyl-CpG-binding protein 2 (MeCP2) gene. Generally, RTT has been attributed to neuron-centric dysfunction. However, increasing evidence has shown that glial abnormalities are also involved in the pathogenesis of RTT. Mice that are MeCP2-null specifically in glial cells showed similar behavioral and/or neuronal abnormalities as those found in MeCP2-null mice, a mouse model of RTT. MeCP2 deficiency in astrocytes impacts the expression of glial intermediate filament proteins such as fibrillary acidic protein (GFAP) and S100 and induces neuron toxicity by disturbing glutamate metabolism or enhancing microtubule instability. MeCP2 deficiency in oligodendrocytes (OLs) results in down-regulation of myelin gene expression and impacts myelination. While MeCP2-deficient microglia cells fail in response to environmental stimuli, release excessive glutamate, and aggravate impairment of the neuronal circuit. In this review, we mainly focus on the progress in determining the role of MeCP2 in glial cells involved in RTT, which may provide further insight into a therapeutic intervention for RTT.
Collapse
Affiliation(s)
- Xu-Rui Jin
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China.,The Cadet Brigade of Clinic Medicine, Third Military Medical University, Chongqing, China
| | - Xing-Shu Chen
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
The Crucial Role of DNA Methylation and MeCP2 in Neuronal Function. Genes (Basel) 2017; 8:genes8050141. [PMID: 28505093 PMCID: PMC5448015 DOI: 10.3390/genes8050141] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
A neuron is unique in its ability to dynamically modify its transcriptional output in response to synaptic activity while maintaining a core gene expression program that preserves cellular identity throughout a lifetime that is longer than almost every other cell type in the body. A contributing factor to the immense adaptability of a neuron is its unique epigenetic landscape that elicits locus-specific alterations in chromatin architecture, which in turn influences gene expression. One such epigenetic modification that is sensitive to changes in synaptic activity, as well as essential for maintaining cellular identity, is DNA methylation. The focus of this article is on the importance of DNA methylation in neuronal function, summarizing recent studies on critical players in the establishment of (the “writing”), the modification or erasure of (the “editing”), and the mediation of (the “reading”) DNA methylation in neurodevelopment and neuroplasticity. One “reader” of DNA methylation in particular, methyl-CpG-binding protein 2 (MeCP2), is highlighted, given its undisputed importance in neuronal function.
Collapse
|
9
|
Lamonica JM, Kwon DY, Goffin D, Fenik P, Johnson BS, Cui Y, Guo H, Veasey S, Zhou Z. Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. J Clin Invest 2017; 127:1889-1904. [PMID: 28394263 DOI: 10.1172/jci90967] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/09/2017] [Indexed: 12/27/2022] Open
Abstract
Mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome (RTT), a neurological disorder affecting cognitive development, respiration, and motor function. Genetic restoration of MeCP2 expression reverses RTT-like phenotypes in mice, highlighting the need to search for therapeutic approaches. Here, we have developed knockin mice recapitulating the most common RTT-associated missense mutation, MeCP2 T158M. We found that the T158M mutation impaired MECP2 binding to methylated DNA and destabilized MeCP2 protein in an age-dependent manner, leading to the development of RTT-like phenotypes in these mice. Genetic elevation of MeCP2 T158M expression ameliorated multiple RTT-like features, including motor dysfunction and breathing irregularities, in both male and female mice. These improvements were accompanied by increased binding of MeCP2 T158M to DNA. Further, we found that the ubiquitin/proteasome pathway was responsible for MeCP2 T158M degradation and that proteasome inhibition increased MeCP2 T158M levels. Together, these findings demonstrate that increasing MeCP2 T158M protein expression is sufficient to mitigate RTT-like phenotypes and support the targeting of MeCP2 T158M expression or stability as an alternative therapeutic approach.
Collapse
|
10
|
Structure of the MeCP2-TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc Natl Acad Sci U S A 2017; 114:E3243-E3250. [PMID: 28348241 DOI: 10.1073/pnas.1700731114] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. The majority of RTT missense mutations disrupt the interaction of the MeCP2 with DNA or the nuclear receptor corepressor (NCoR)/silencing mediator of retinoic acid and thyroid receptors (SMRT) corepressor complex. Here, we show that the "NCoR/SMRT interaction domain" (NID) of MeCP2 directly contacts transducin beta-like 1 (TBL1) and TBL1 related (TBLR1), two paralogs that are core components of NCoR/SMRT. We determine the cocrystal structure of the MeCP2 NID in complex with the WD40 domain of TBLR1 and confirm by in vitro and ex vivo assays that mutation of interacting residues of TBLR1 and TBL1 disrupts binding to MeCP2. Strikingly, the four MeCP2-NID residues mutated in RTT are those residues that make the most extensive contacts with TBLR1. Moreover, missense mutations in the gene for TBLR1 that are associated with intellectual disability also prevent MeCP2 binding. Our study therefore reveals the molecular basis of an interaction that is crucial for optimal brain function.
Collapse
|
11
|
Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2016; 13:37-51. [PMID: 27934853 DOI: 10.1038/nrneurol.2016.186] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Jenny Downs
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| |
Collapse
|
12
|
Johnson CM, Zhong W, Cui N, Wu Y, Xing H, Zhang S, Jiang C. Defects in brainstem neurons associated with breathing and motor function in the Mecp2R168X/Y mouse model of Rett syndrome. Am J Physiol Cell Physiol 2016; 311:C895-C909. [PMID: 27653984 DOI: 10.1152/ajpcell.00132.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022]
Abstract
Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mostly by disruption of the MECP2 gene. Among several RTT-like mouse models, one of them is a strain of mice that carries an R168X point mutation in Mecp2 and resembles one of the most common RTT-causing mutations in humans. Although several behavioral defects have previously been found in the Mecp2R168X/Y mice, alterations in nerve cells remain unknown. Here we compare several behavioral and cellular outcomes between this Mecp2R168X/Y model and a widely used Mecp2Bird/Y mouse model. With lower body weight and shorter lifespan than their wild-type littermates, the Mecp2R168X/Y mice showed impairments of breathing and motor function. Thus we studied brainstem CO2-chemosensitive neurons and propriosensory cells that are associated with these two functions, respectively. Neurons in the locus coeruleus (LC) of both mutant strains showed defects in their intrinsic membrane properties, including changes in action potential morphology and excessive firing activity. Neurons in the mesencephalic trigeminal nucleus (Me5) of both strains displayed a higher firing response to depolarization than their wild-type littermates, likely attributable to a lower firing threshold. Because the increased excitability in LC and Me5 neurons tends to impact the excitation-inhibition balances in brainstem neuronal networks as well as their associated functions, it is likely that the defects in the intrinsic membrane properties of these brainstem neurons contribute to the breathing abnormalities and motor dysfunction. Furthermore, our results showing comparable phenotypical outcomes of Mecp2R168X/Y mice with Mecp2Bird/Y mice suggest that both strains are valid animal models for RTT research.
Collapse
Affiliation(s)
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Yang Wu
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Hao Xing
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shuang Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
13
|
Li R, Dong Q, Yuan X, Zeng X, Gao Y, Chiao C, Li H, Zhao X, Keles S, Wang Z, Chang Q. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome. PLoS Genet 2016; 12:e1006129. [PMID: 27352031 PMCID: PMC4924826 DOI: 10.1371/journal.pgen.1006129] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies. Rett syndrome (RTT) is a debilitating neurodevelopmental disorder with no cure or effective treatment. To fully understand the disease mechanism and develop therapies, it is necessary to study all aspects of the molecular function of methyl-CpG binding protein 2 (MeCP2), mutations in which have been identified as the genetic cause of RTT. Over the years, MeCP2 has been shown to maintain DNA methylation, regulate transcription and chromatin structure, control microRNA processing, and modulate RNA splicing. Among these known functions, the role of MeCP2 in modulating RNA splicing is less well understood. We took several unbiased approaches to investigate the how MeCP2 may regulate splicing, what splicing changes are caused by the loss of MeCP2, and what functional consequences are caused by altered splicing. We discovered that MeCP2 interacts with splicing factors to regulated the splicing of glutamate receptor genes, which mediate the vast majority of excitatory synaptic transmission in the brain; and linked the altered splicing of glutamate receptor genes to specific synaptic changes in a RTT mouse model. Our findings not only advance the understanding of RTT disease mechanism, but also reveal a potential drug target for future development of therapies.
Collapse
Affiliation(s)
- Ronghui Li
- CMB Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xinni Yuan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xin Zeng
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cassandra Chiao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hongda Li
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zefeng Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
| | - Qiang Chang
- CMB Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Medical Genetics and Neurology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ludwig AK, Zhang P, Cardoso MC. Modifiers and Readers of DNA Modifications and Their Impact on Genome Structure, Expression, and Stability in Disease. Front Genet 2016; 7:115. [PMID: 27446199 PMCID: PMC4914596 DOI: 10.3389/fgene.2016.00115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cytosine base modifications in mammals underwent a recent expansion with the addition of several naturally occurring further modifications of methylcytosine in the last years. This expansion was accompanied by the identification of the respective enzymes and proteins reading and translating the different modifications into chromatin higher order organization as well as genome activity and stability, leading to the hypothesis of a cytosine code. Here, we summarize the current state-of-the-art on DNA modifications, the enzyme families setting the cytosine modifications and the protein families reading and translating the different modifications with emphasis on the mouse protein homologs. Throughout this review, we focus on functional and mechanistic studies performed on mammalian cells, corresponding mouse models and associated human diseases.
Collapse
Affiliation(s)
- Anne K Ludwig
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - M C Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| |
Collapse
|
15
|
Della Ragione F, Vacca M, Fioriniello S, Pepe G, D'Esposito M. MECP2, a multi-talented modulator of chromatin architecture. Brief Funct Genomics 2016; 15:420-431. [PMID: 27296483 DOI: 10.1093/bfgp/elw023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been a long trip from 1992, the year of the discovery of MECP2, to the present day. What is surprising is that some of the pivotal roles of MeCP2 were already postulated at that time, such as repression of inappropriate expression from repetitive elements and the regulation of pericentric heterochromatin condensation. However, MeCP2 performs many more functions. MeCP2 is a reader of epigenetic information contained in methylated (and hydroxymethylated) DNA, moving from the 'classical' CpG doublet to the more complex view addressed by the non-CpG methylation, which is a feature of the postnatal brain. MECP2 is a transcriptional repressor, although when it forms complexes with the appropriate molecules, it can become a transcriptional activator. For all of these aspects, Rett syndrome, which is caused by MECP2 mutations, is considered a paradigmatic example of a 'chromatin disorder'. Even if the hunt for bona-fide MECP2 target genes is far from concluded today, the role of MeCP2 in the maintenance of chromatin architecture appears to be clearly established. Taking a cue from the non-scientific literature, we can firmly attest that MeCP2 is a player with 'a great future behind it'*.*V. Gassmann 'Un grande avvenire dietro le spalle'. TEA Eds.
Collapse
|
16
|
Kyle SM, Saha PK, Brown HM, Chan LC, Justice MJ. MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Hum Mol Genet 2016; 25:3029-3041. [PMID: 27288453 PMCID: PMC5181597 DOI: 10.1093/hmg/ddw156] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 01/11/2023] Open
Abstract
Rett syndrome (RTT; OMIM 312750), a progressive neurological disorder, is caused by mutations in methyl-CpG-binding protein 2 (MECP2; OMIM 300005), a ubiquitously expressed factor. A genetic suppressor screen designed to identify therapeutic targets surprisingly revealed that downregulation of the cholesterol biosynthesis pathway improves neurological phenotypes in Mecp2 mutant mice. Here, we show that MeCP2 plays a direct role in regulating lipid metabolism. Mecp2 deletion in mice results in a host of severe metabolic defects caused by lipid accumulation, including insulin resistance, fatty liver, perturbed energy utilization, and adipose inflammation by macrophage infiltration. We show that MeCP2 regulates lipid homeostasis by anchoring the repressor complex containing NCoR1 and HDAC3 to its lipogenesis targets in hepatocytes. Consistently, we find that liver targeted deletion of Mecp2 causes fatty liver disease and dyslipidemia similar to HDAC3 liver-specific deletion. These findings position MeCP2 as a novel component in metabolic homeostasis. Rett syndrome patients also show signs of peripheral dyslipidemia; thus, together these data suggest that RTT should be classified as a neurological disorder with systemic metabolic components. We previously showed that treatment of Mecp2 mice with statin drugs alleviated motor symptoms and improved health and longevity. Lipid metabolism is a highly treatable target; therefore, our results shed light on new metabolic pathways for treatment of Rett syndrome.
Collapse
Affiliation(s)
- Stephanie M Kyle
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada.,Department of Molecular and Human Genetics
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Lawrence C Chan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada .,Department of Molecular and Human Genetics.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
17
|
Developmental Dynamics of Rett Syndrome. Neural Plast 2016; 2016:6154080. [PMID: 26942018 PMCID: PMC4752981 DOI: 10.1155/2016/6154080] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
Rett Syndrome was long considered to be simply a disorder of postnatal development, with phenotypes that manifest only late in development and into adulthood. A variety of recent evidence demonstrates that the phenotypes of Rett Syndrome are present at the earliest stages of brain development, including developmental stages that define neurogenesis, migration, and patterning in addition to stages of synaptic and circuit development and plasticity. These phenotypes arise from the pleotropic effects of MeCP2, which is expressed very early in neuronal progenitors and continues to be expressed into adulthood. The effects of MeCP2 are mediated by diverse signaling, transcriptional, and epigenetic mechanisms. Attempts to reverse the effects of Rett Syndrome need to take into account the developmental dynamics and temporal impact of MeCP2 loss.
Collapse
|
18
|
Leong WY, Lim ZH, Korzh V, Pietri T, Goh ELK. Methyl-CpG Binding Protein 2 (Mecp2) Regulates Sensory Function Through Sema5b and Robo2. Front Cell Neurosci 2015; 9:481. [PMID: 26733807 PMCID: PMC4685056 DOI: 10.3389/fncel.2015.00481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the gene encoding the MECP2 underlies Rett syndrome, a neurodevelopmental disorder in young females. Although reduced pain sensitivity in Rett syndrome patients and in partial MeCP2 deficient mice had been reported, these previous studies focused predominantly on motor impairments. Therefore, it is still unknown how MeCP2 is involved in these sensory defects. In addition, the human disease manifestations where males with mutations in MECP2 gene normally do not survive and females show typical neurological symptoms only after 18 months of age, is profoundly different in MeCP2-deficient mouse where all animals survived, and males but not females displayed Rett syndrome phenotypes at an early age. Thus, the mecp2-deficient zebrafish serves as an additional animal model to aid in deciphering the role and mechanisms of Mecp2 in neurodevelopment. Here, we used two independent methods of silencing expression of Mecp2 in zebrafish to uncover a novel role of Mecp2 in trigeminal ganglion sensory neurons during the embryonic development. mecp2-null mutation and morpholino-mediated silencing of Mecp2 in the zebrafish embryos resulted in defects in peripheral innervation of trigeminal sensory neurons and consequently affecting the sensory function. These defects were demonstrated to be dependent on the expression of Sema5b and Robo2. The expression of both proteins together could better overcome the defects caused by Mecp2 deficiency as compared to the expression of either Sema5b or Robo2 alone. Sema5b and Robo2 were downregulated upon Mecp2 silencing or in mecp2-null embryos, and Chromatin immunoprecipitation (ChIP) assay using antibody against Mecp2 was able to pull down specific regions of both Sema5b and Robo2 promoters, showing interaction between Mecp2 and the promoters of both genes. In addition, cell-specific expression of Mecp2 can overcome the innervation and sensory response defects in Mecp2 morphants indicating that these MeCP2-mediated defects are cell-autonomous. The sensory deficits caused by Mecp2 deficiency mirror the diminished sensory response observed in Rett syndrome patients. This suggests that zebrafish could be an unconventional but useful model for this disorder manifesting defects that are not easily studied in full using rodent models.
Collapse
Affiliation(s)
- Wan Y Leong
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore Singapore
| | - Zhi H Lim
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, SingaporeSingapore; Department of Biological Sciences, National University of Singapore, SingaporeSingapore
| | - Thomas Pietri
- Institut de Biologie de l'École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR 8197 Paris, France
| | - Eyleen L K Goh
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, SingaporeSingapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSingapore; KK Research Centre, KK Women's and Children's Hospital, SingaporeSingapore
| |
Collapse
|
19
|
Stagi S, Cavalli L, Congiu L, Scusa MF, Ferlini A, Bigoni S, Benincasa A, Rossi B, Pini G. Thyroid function in Rett syndrome. Horm Res Paediatr 2015; 83:118-25. [PMID: 25614013 DOI: 10.1159/000370066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Thyroid function in Rett syndrome (RTT) has rarely been studied with unanimous results. However, this aspect is of great concern regarding the effect thyroid hormones (TH) have on proper mammalian brain development. OBJECTIVE To evaluate the prevalence of abnormalities of thyroid function in a cohort of children with RTT. PATIENTS AND METHODS Forty-five consecutive Caucasian girls (mean age: 8.6 ± 5.3 years, range: 2.0-26.1) meeting the clinical criteria for RTT were recruited. In all of the subjects, we evaluated the serum concentrations of free-T3 (FT3), free-T4 (FT4), thyroid-stimulating hormone (TSH), thyroperoxidase autoantibodies, thyroglobulin autoantibodies (TgA), and TSH receptor (TSHr) autoantibodies. The results were compared with a group of 146 age-matched healthy Caucasian children and adolescent girls (median age: 9.5 years, range: 1.8-14.6) from the same geographical area. RESULTS Mean FT3 and TSH levels were not significantly different between the RTT patients and controls. Nevertheless, FT4 levels were significantly higher in RTT patients than in controls (p < 0.005). In particular, 17.7% showed FT4 levels higher than the upper reference limit (vs. 0.7% of controls, p < 0.0001), whereas 12 patients (26.7%) showed higher FT3 levels than the upper reference limit, significantly differing in respect to controls (2.0%, p < 0.0001). Finally, 5 patients (11.1%) showed higher levels of TSH, statistically differing from the control subjects (2.0%, p < 0.0001). However, evaluating the patients on the basis of different RTT genotype subgroups, patients with CDKL5 deletions showed significantly higher FT4 values than patients with MeCP2 deletions (p < 0.05). On the other hand, patients with other types of MeCP2 mutations also showed FT4 levels significantly higher than patients with MeCP2 deletions (p < 0.05). In fact, out of 8 patients with FT4 levels higher than the upper references limit, 3 of them presented with CDKL5 deletions (3 patients, 37.5%), 4 (50%) had MeCP2 mutations, and 1 (12.5%) belonged to the subgroup of MeCP2 deletions. However, when analyzing FT3 levels of the 12 patients showing higher FT3 levels than the upper references limit, 6 (50%) belonged to the subgroup with MeCP2 mutations, 4 (33.3%) to the subgroup with MeCP2 deletions, and 2 (16.7%) to the subgroups with CDKL5 deletions. Furthermore, no patient with RTT was positive for antithyroglobulin autoantibodies, antithyroid peroxidase, or anti-TSHr, with no statistical differences in respect to the controls. L-thyroxine treatment was not necessary for any patient. CONCLUSIONS Abnormalities of thyroid function are not rare in RTT. The possible relationship between these disorders and the RTT phenotype should be confirmed and studied. Children with RTT should be screened for potential thyroid dysfunction.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vega‐López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ. Functional analysis of
Hairy
genes in
Xenopus
neural crest initial specification and cell migration. Dev Dyn 2015; 244:988-1013. [DOI: 10.1002/dvdy.24295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Marcela Bonano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| | - Juan P. Fernández
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Tristán H. Agüero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Manuel J. Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| |
Collapse
|
21
|
Gao H, Bu Y, Wu Q, Wang X, Chang N, Lei L, Chen S, Liu D, Zhu X, Hu K, Xiong JW. Mecp2 regulates neural cell differentiation by suppressing the Id1 to Her2 axis in zebrafish. J Cell Sci 2015; 128:2340-50. [DOI: 10.1242/jcs.167874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/28/2015] [Indexed: 01/20/2023] Open
Abstract
ABSTRACT
Rett syndrome (RTT) is a progressive neurological disorder caused by mutations in the X-linked protein methyl-CpG-binding protein 2 (MeCP2). The endogenous function of MeCP2 during neural differentiation is still unclear. Here, we report that mecp2 is required for brain development in zebrafish. Mecp2 was broadly expressed initially in embryos and enriched later in the brain. Either morpholino knockdown or genetic depletion of mecp2 inhibited neuronal differentiation, whereas its overexpression promoted neuronal differentiation, suggesting an essential role of mecp2 in directing neural precursors into differentiated neurons. Mechanistically, her2 (the zebrafish ortholog of mammalian Hes5) was upregulated in mecp2 morphants in an Id1-dependent manner. Moreover, knockdown of either her2 or id1 fully rescued neuronal differentiation in mecp2 morphants. These results suggest that Mecp2 plays an important role in neural cell development by suppressing the Id1–Her2 axis, and provide new evidence that embryonic neural defects contribute to the later motor and cognitive dysfunctions in RTT.
Collapse
Affiliation(s)
- Hai Gao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ye Bu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Wu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xu Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Nannan Chang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lei Lei
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shilin Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Dong Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Keping Hu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
22
|
Zhao N, Ma D, Leong WY, Han J, VanDongen A, Chen T, Goh ELK. The methyl-CpG-binding domain (MBD) is crucial for MeCP2's dysfunction-induced defects in adult newborn neurons. Front Cell Neurosci 2015; 9:158. [PMID: 25964742 PMCID: PMC4408855 DOI: 10.3389/fncel.2015.00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the human X-linked gene MECP2 are responsible for most Rett syndrome (RTT) cases, predominantly within its methyl-CpG-binding domain (MBD). To examine the role of MBD in the pathogenesis of RTT, we generated two MeCP2 mutant constructs, one with a deletion of MBD (MeCP2-ΔMBD), another mimicking a mutation of threonine 158 within the MBD (MeCP2-T158M) found in RTT patients. MeCP2 knockdown resulted in a decrease in total dendrite length, branching, synapse number, as well as altered spontaneous Ca(2+) oscillations in vitro, which could be reversed by expression of full length human MeCP2 (hMeCP2-FL). However, the expression of hMeCP2-ΔMBD in MeCP2-silenced neurons did not rescue the changes in neuronal morphology and spontaneous Ca(2+) oscillations, while expression of hMeCP2-T158M in these neurons could only rescue the decrease in dendrite length and branch number. In vivo over expression of hMeCP2-FL but not hMeCP2-ΔMBD in adult newborn neurons of the dentate gyrus also rescued the cell autonomous effect caused by MeCP2 deficiency in dendrites length and branching. Our results demonstrate that an intact and functional MBD is crucial for MeCP2 functions in cultured hippocampal neurons and adult newborn neurons.
Collapse
Affiliation(s)
- Na Zhao
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Key Laboratory of Health Ministry for Forensic Science, Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine Xi'an, Shaanxi, China
| | - Dongliang Ma
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Wan Ying Leong
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Ju Han
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Antonius VanDongen
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Teng Chen
- Key Laboratory of Health Ministry for Forensic Science, Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine Xi'an, Shaanxi, China
| | - Eyleen L K Goh
- Programme in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore ; KK Research Center, KK Women's and Children's Hospital Singapore, Singapore
| |
Collapse
|
23
|
Abstract
Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Two decades of research have fostered the view that MeCP2 is a multifunctional chromatin protein that integrates diverse aspects of neuronal biology. More recently, studies have focused on specific RTT-associated mutations within the protein. This work has yielded molecular insights into the critical functions of MeCP2 that promise to simplify our understanding of RTT pathology.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| |
Collapse
|
24
|
Heckman LD, Chahrour MH, Zoghbi HY. Rett-causing mutations reveal two domains critical for MeCP2 function and for toxicity in MECP2 duplication syndrome mice. eLife 2014; 3. [PMID: 24970834 PMCID: PMC4102243 DOI: 10.7554/elife.02676] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/25/2014] [Indexed: 11/13/2022] Open
Abstract
Loss of function of the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2) causes the progressive neurological disorder Rett syndrome (RTT). Conversely, duplication or triplication of Xq28 causes an equally wide-ranging progressive neurological disorder, MECP2 duplication syndrome, whose features overlap somewhat with RTT. To understand which MeCP2 functions cause toxicity in the duplication syndrome, we generated mouse models expressing endogenous Mecp2 along with a RTT-causing mutation in either the methyl-CpG binding domain (MBD) or the transcriptional repression domain (TRD). We determined that both the MBD and TRD must function for doubling MeCP2 to be toxic. Mutating the MBD reproduces the null phenotype and expressing the TRD mutant produces milder RTT phenotypes, yet both mutations are harmless when expressed with endogenous Mecp2. Surprisingly, mutating the TRD is more detrimental than deleting the entire C-terminus, indicating a dominant-negative effect on MeCP2 function, likely due to the disruption of a basic cluster.
Collapse
Affiliation(s)
- Laura Dean Heckman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Maria H Chahrour
- Division of Genetics, Department of Medicine, Harvard Medical School, Boston, United States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
25
|
Petazzi P, Akizu N, García A, Estarás C, Martínez de Paz A, Rodríguez-Paredes M, Martínez-Balbás MA, Huertas D, Esteller M. An increase in MECP2 dosage impairs neural tube formation. Neurobiol Dis 2014; 67:49-56. [PMID: 24657916 DOI: 10.1016/j.nbd.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/25/2014] [Accepted: 03/13/2014] [Indexed: 01/23/2023] Open
Abstract
Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development.
Collapse
Affiliation(s)
- Paolo Petazzi
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Naiara Akizu
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Alejandra García
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Conchi Estarás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Alexia Martínez de Paz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manuel Rodríguez-Paredes
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Dori Huertas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
26
|
Bissonnette JM, Schaevitz LR, Knopp SJ, Zhou Z. Respiratory phenotypes are distinctly affected in mice with common Rett syndrome mutations MeCP2 T158A and R168X. Neuroscience 2014; 267:166-76. [PMID: 24626160 DOI: 10.1016/j.neuroscience.2014.02.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/16/2022]
Abstract
Respiratory disturbances are a primary phenotype of the neurological disorder, Rett syndrome (RTT), caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Mouse models generated with null mutations in Mecp2 mimic respiratory abnormalities in RTT girls. Large deletions, however, are seen in only ∼10% of affected human individuals. Here we characterized respiration in heterozygous females from two mouse models that genetically mimic common RTT point mutations, a missense mutation T158A (Mecp2(T158A/)(+)) or a nonsense mutation R168X (Mecp2(R168X/+)). MeCP2 T158A shows decreased binding to methylated DNA, while MeCP2 R168X retains the capacity to bind methylated DNA but lacks the ability to recruit complexes required for transcriptional repression. We found that both Mecp2(T158A/+) and Mecp2(R168X/+) heterozygotes display augmented hypoxic ventilatory responses and depressed hypercapnic responses, compared to wild-type controls. Interestingly, the incidence of apnea was much greater in Mecp2(R168X/+) heterozygotes, 189 per hour, than Mecp2(T158A/+) heterozygotes, 41 per hour. These results demonstrate that different RTT mutations lead to distinct respiratory phenotypes, suggesting that characterization of the respiratory phenotype may reveal functional differences between MeCP2 mutations and provide insights into the pathophysiology of RTT.
Collapse
Affiliation(s)
- J M Bissonnette
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA; Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, USA.
| | - L R Schaevitz
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - S J Knopp
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Z Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Breckenridge RA, Piotrowska I, Ng KE, Ragan TJ, West JA, Kotecha S, Towers N, Bennett M, Kienesberger PC, Smolenski RT, Siddall HK, Offer JL, Mocanu MM, Yelon DM, Dyck JRB, Griffin JL, Abramov AY, Gould AP, Mohun TJ. Hypoxic regulation of hand1 controls the fetal-neonatal switch in cardiac metabolism. PLoS Biol 2013; 11:e1001666. [PMID: 24086110 PMCID: PMC3782421 DOI: 10.1371/journal.pbio.1001666] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/15/2013] [Indexed: 12/15/2022] Open
Abstract
This study reveals a novel pathway that responds to hypoxia and modulates energy metabolism by cardiomyocytes in the mouse heart, thereby determining oxygen consumption. Cardiomyocytes are vulnerable to hypoxia in the adult, but adapted to hypoxia in utero. Current understanding of endogenous cardiac oxygen sensing pathways is limited. Myocardial oxygen consumption is determined by regulation of energy metabolism, which shifts from glycolysis to lipid oxidation soon after birth, and is reversed in failing adult hearts, accompanying re-expression of several “fetal” genes whose role in disease phenotypes remains unknown. Here we show that hypoxia-controlled expression of the transcription factor Hand1 determines oxygen consumption by inhibition of lipid metabolism in the fetal and adult cardiomyocyte, leading to downregulation of mitochondrial energy generation. Hand1 is under direct transcriptional control by HIF1α. Transgenic mice prolonging cardiac Hand1 expression die immediately following birth, failing to activate the neonatal lipid metabolising gene expression programme. Deletion of Hand1 in embryonic cardiomyocytes results in premature expression of these genes. Using metabolic flux analysis, we show that Hand1 expression controls cardiomyocyte oxygen consumption by direct transcriptional repression of lipid metabolising genes. This leads, in turn, to increased production of lactate from glucose, decreased lipid oxidation, reduced inner mitochondrial membrane potential, and mitochondrial ATP generation. We found that this pathway is active in adult cardiomyocytes. Up-regulation of Hand1 is protective in a mouse model of myocardial ischaemia. We propose that Hand1 is part of a novel regulatory pathway linking cardiac oxygen levels with oxygen consumption. Understanding hypoxia adaptation in the fetal heart may allow development of strategies to protect cardiomyocytes vulnerable to ischaemia, for example during cardiac ischaemia or surgery. Regulation of oxygen usage in cardiomyocytes is of great medical interest, because adult cardiac tissue is extremely vulnerable to hypoxia during myocardial infarction and cardiac surgery. While some progress has been made toward protecting cardiomyocytes from hypoxia in these circumstances, it has been limited by a lack of understanding of endogenous oxygen-sensing pathways. In contrast to adult cardiac tissue, embryonic cardiomyocytes are highly resistant to hypoxia, although the mechanisms underlying this have hitherto been unclear. Using mice we show that the transcription factor Hand1 is expressed at high levels in the fetal heart, under direct control of HIF1α signaling, a pathway well known to respond to hypoxia. We show that Hand1 expression decreases at birth as the neonate is exposed to higher levels of oxygen. By experimentally increasing Hand1 expression in the neonatal heart, we see lower oxygen consumption in cardiomyocytes and this is caused by Hand1 repressing key regulatory genes involved in cardiomyocyte lipid metabolism. This has the effect of decreasing mitochondrial ATP generation via the tricarboxylic acid cycle. Furthermore, we show that increasing Hand1 expression in adult transgenic hearts is protective against myocardial infarction, suggesting that a hypoxia–Hand1 pathway may also be of importance in the adult heart.
Collapse
Affiliation(s)
- Ross A. Breckenridge
- Developmental Biology, MRC–National Institute for Medical Research, London, United Kingdom
- Division of Medicine, University College London, London, United Kingdom
- * E-mail:
| | - Izabela Piotrowska
- Developmental Biology, MRC–National Institute for Medical Research, London, United Kingdom
| | - Keat-Eng Ng
- Developmental Biology, MRC–National Institute for Medical Research, London, United Kingdom
| | - Timothy J. Ragan
- Division of Molecular Structure, MRC–National Institute for Medical Research, London, United Kingdom
| | - James A. West
- Department of Biochemistry, Cambridge University, Cambridge, United Kingdom
| | - Surendra Kotecha
- Developmental Biology, MRC–National Institute for Medical Research, London, United Kingdom
| | - Norma Towers
- Developmental Biology, MRC–National Institute for Medical Research, London, United Kingdom
| | - Michael Bennett
- Developmental Biology, MRC–National Institute for Medical Research, London, United Kingdom
| | - Petra C. Kienesberger
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hillary K. Siddall
- Hatter Institute, Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - John L. Offer
- Physical Biochemistry, MRC–National Institute for Medical Research, London, United Kingdom
| | - Mihaela M. Mocanu
- Hatter Institute, Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Derek M. Yelon
- Hatter Institute, Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Jason R. B. Dyck
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jules L. Griffin
- Department of Biochemistry, Cambridge University, Cambridge, United Kingdom
| | - Andrey Y. Abramov
- Institute of Neurology, University College London, London, United Kingdom
| | - Alex P. Gould
- Division of Physiology and Metabolism, MRC–National Institute for Medical Research, London, United Kingdom
| | - Timothy J. Mohun
- Developmental Biology, MRC–National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
28
|
Bogdanovi O, Gomez-Skarmeta JL. Embryonic DNA methylation: insights from the genomics era. Brief Funct Genomics 2013; 13:121-30. [DOI: 10.1093/bfgp/elt039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Pratt KG, Khakhalin AS. Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 2013; 6:1057-65. [PMID: 23929939 PMCID: PMC3759326 DOI: 10.1242/dmm.012138] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Xenopus tadpole model offers many advantages for studying the molecular, cellular and network mechanisms underlying neurodevelopmental disorders. Essentially every stage of normal neural circuit development, from axon outgrowth and guidance to activity-dependent homeostasis and refinement, has been studied in the frog tadpole, making it an ideal model to determine what happens when any of these stages are compromised. Recently, the tadpole model has been used to explore the mechanisms of epilepsy and autism, and there is mounting evidence to suggest that diseases of the nervous system involve deficits in the most fundamental aspects of nervous system function and development. In this Review, we provide an update on how tadpole models are being used to study three distinct types of neurodevelopmental disorders: diseases caused by exposure to environmental toxicants, epilepsy and seizure disorders, and autism.
Collapse
Affiliation(s)
- Kara G. Pratt
- University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA
| | | |
Collapse
|
30
|
Schaevitz LR, Gómez NB, Zhen DP, Berger-Sweeney JE. MeCP2 R168X male and female mutant mice exhibit Rett-like behavioral deficits. GENES BRAIN AND BEHAVIOR 2013; 12:732-40. [PMID: 24283265 DOI: 10.1111/gbb.12070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/03/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022]
Abstract
Rett syndrome (RTT) is a regressive developmental disorder characterized by motor and breathing abnormalities, anxiety, cognitive dysfunction and seizures. Approximately 95% of RTT cases are caused by more than 200 different mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). While numerous transgenic mice have been created modeling common mutations in MeCP2, the behavioral phenotype of many of these male and, especially, female mutant mice has not been well characterized. Thorough phenotyping of additional RTT mouse models will provide valuable insight into the effects of Mecp2 mutations on behavior and aid in the selection of appropriate models, ages, sexes and outcome measures for preclinical trials. In this study, we characterize the phenotype of male and female mice containing the early truncating MeCP2 R168X nonsense point mutation, one of the most common in RTT individuals, and compare the phenotypes to Mecp2 null mutants. Mecp2(R168X) mutants mirror many clinical features of RTT. Mecp2(R168X/y) males exhibit impaired motor and cognitive function and reduced anxiety. The behavioral phenotype is less severe and with later onset in Mecp2(R168X/+) females. Seizures were noted in 3.7% of Mecp2(R168X) mutant females. The phenotype in Mecp2(R168X/y) mutant males is remarkably similar to our previous characterizations of Mecp2 null males, whereas Mecp2(R168X/+) females exhibit a number of phenotypic differences from females heterozygous for a null Mecp2 mutation. This study describes a number of highly robust behavioral paradigms that can be used in preclinical drug trials and underscores the importance of including Mecp2 mutant females in preclinical studies.
Collapse
Affiliation(s)
- L R Schaevitz
- Department of Biological Sciences, Tufts University, Medford, MA, USA
| | | | | | | |
Collapse
|
31
|
A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nat Genet 2013; 45:1013-20. [PMID: 23892605 PMCID: PMC3837522 DOI: 10.1038/ng.2714] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/24/2013] [Indexed: 12/13/2022]
Abstract
Mutations in methyl CpG binding protein 2 (MECP2) cause Rett Syndrome, the most severe autism spectrum disorder. Re-expressing Mecp2 in symptomatic Mecp2 null mice dramatically improves function and longevity, providing hope that therapeutic intervention is possible in humans. To identify pathways in disease pathology for therapeutic intervention, a dominant ENU mutagenesis suppressor screen was carried out in Mecp2 null mice. Five suppressors that ameliorate symptoms of Mecp2 loss were isolated. Here we show that a stop codon mutation in squalene epoxidase (Sqle), a rate-limiting enzyme in cholesterol biosynthesis underlies suppression in one line. Subsequently, we show that lipid metabolism is perturbed in the brain and liver of Mecp2 null males. Consistently, statin drugs improve systemic perturbations of lipid metabolism, alleviate motor symptoms and confer increased longevity in Mecp2 mutant mice. The genetic screen therefore points to cholesterol homeostasis as a potential target for the treatment of Rett patients.
Collapse
|
32
|
Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, Guy J, Kastan NR, Robinson ND, de Lima Alves F, Rappsilber J, Greenberg ME, Bird A. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 2013; 16:898-902. [PMID: 23770565 PMCID: PMC3786392 DOI: 10.1038/nn.3434] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/12/2013] [Indexed: 12/12/2022]
Abstract
Rett syndrome (RTT) is a severe neurological disorder that is caused by mutations in the MECP2 gene. Many missense mutations causing RTT are clustered in the DNA-binding domain of MeCP2, suggesting that association with chromatin is critical for its function. We identified a second mutational cluster in a previously uncharacterized region of MeCP2. We found that RTT mutations in this region abolished the interaction between MeCP2 and the NCoR/SMRT co-repressor complexes. Mice bearing a common missense RTT mutation in this domain exhibited severe RTT-like phenotypes. Our data are compatible with the hypothesis that brain dysfunction in RTT is caused by a loss of the MeCP2 'bridge' between the NCoR/SMRT co-repressors and chromatin.
Collapse
Affiliation(s)
- Matthew J Lyst
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Functional implications of hippocampal adult neurogenesis in intellectual disabilities. Amino Acids 2013; 45:113-31. [DOI: 10.1007/s00726-013-1489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/19/2022]
|
34
|
Abstract
Methylation of the cytosine base in DNA, DNA methylation, is an essential epigenetic mark in mammals that contributes to the regulation of transcription. Several advances have been made in this area in recent years, leading to a leap forward in our understanding of how this pathway contributes to gene regulation during embryonic development, and the functional consequences of its perturbation in human disease. Critical to these advances is a comprehension of the genomic distribution of modified cytosine bases in unprecedented detail, drawing attention to genomic regions beyond gene promoters. In addition, we have a more complete understanding of the multifactorial manner by which DNA methylation influences gene regulation at the molecular level, and which genes rely directly on the DNA methylome for their normal transcriptional regulation. It is becoming apparent that a major role of DNA modification is to act as a relatively stable, and mitotically heritable, template that contributes to the establishment and maintenance of chromatin states. In this regard, interplay is emerging between DNA methylation and the PcG (Polycomb group) proteins, which act as evolutionarily conserved mediators of cell identity. In the present paper we review these aspects of DNA methylation, and discuss how a multifunctional view of DNA modification as an integral part of chromatin organization is influencing our understanding of this epigenetic mark's contribution to transcriptional regulation.
Collapse
|
35
|
Lilja T, Wallenborg K, Björkman K, Albåge M, Eriksson M, Lagercrantz H, Rohdin M, Hermanson O. Novel alterations in the epigenetic signature of MeCP2-targeted promoters in lymphocytes of Rett syndrome patients. Epigenetics 2013; 8:246-51. [PMID: 23348913 PMCID: PMC3669117 DOI: 10.4161/epi.23752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder with neurological symptoms, such as motor disorders and mental retardation. In most cases, RTT is caused by mutations in the DNA binding protein MeCP2. In mice, MeCP2 gene deletion has been reported to result in genome-wide increased histone acetylation. Transcriptional regulation of neurotrophic factor BDNF and transcription factor DLX5, essential for proper neurogenesis, is further altered in MeCP2-deleted animals. We therefore investigated the chromatin environment of MeCP2 target genes BDNF and DLX5 in lymphocytes from RTT patients and human controls, and analyzed the density of histones H3, H2B and H1, as well as the levels of methylation and acetylation on selected lysines of histone H3. Notably, we found a general increase in the density of histone H3 in RTT patients’ lymphocytes compared with controls, and decreased levels of trimethylation of lysine 4 on histone H3 (H3K4me3), a modification associated with transcriptional activation. The levels of acetylation of lysine 9 (H3K9ac) and 27 (H3K27ac) did not show any statistically significant changes when normalized to the decreased histone H3 levels; nevertheless, an average decrease in acetylation was noted. Our results reveal an unexpected alteration of the chromatin state of established MeCP2 target genes in lymphocytes of human subjects with RTT.
Collapse
Affiliation(s)
- Tobias Lilja
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bian EB, Huang C, Wang H, Wu BM, Zhang L, Lv XW, Li J. DNA methylation: new therapeutic implications for hepatic fibrosis. Cell Signal 2012; 25:355-8. [PMID: 23085259 DOI: 10.1016/j.cellsig.2012.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/18/2023]
Abstract
DNA methylation refers to a heritable alteration in the pattern of gene expression that is regulated by a mechanism specifically not owing to changes in the primary nucleotide sequence. The transcriptional silencing caused by DNA methylation affects genes involved in the main cellular pathways: cell cycle control, Ras signaling, apoptosis, and detoxification. Recent studies have shown that methylation modifications orchestrate the activation of hepatic stellate cells (HSCs) characterized by excessive accumulation of extracellular matrices (ECMs). The activation of HSCs is mediated by multiple signal transduction pathways and is generally regarded as the major ECM producer responsible for liver fibrosis. In addition, aberrant methylation of specific gene involved in the activation of multiple signal transduction pathways in liver fibrosis. The aim of this review is to compile recent information on aberrant DNA methylation in hepatic fibrosis and to highlight key genes and molecular pathways in hepatic fibrosis formation.
Collapse
Affiliation(s)
- Er-Bao Bian
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Su D, Cha YM, West AE. Mutation of MeCP2 alters transcriptional regulation of select immediate-early genes. Epigenetics 2012; 7:146-54. [PMID: 22395464 DOI: 10.4161/epi.7.2.18907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Loss-of-function mutations in the methyl-DNA binding protein MeCP2 are associated with neurological dysfunction and impaired neural plasticity. However, the transcriptional changes that underlie these deficits remain poorly understood. Here, we show that mice bearing a C-terminal truncating mutation in Mecp2 (Mecp2 ( 308) ) are hypersensitive to the locomotor stimulating effects of cocaine. Furthermore, these mice have gene-specific alterations in striatal immediate-early gene (IEG) induction following cocaine administration. MeCP2 mutant mice show normal levels of baseline and cocaine-induced striatal Fos expression compared with their wild-type littermates. However, the mutant mice have enhanced cocaine-induced transcription of Junb and Arc. At the chromatin level, we find increased histone H3 acetylation at gene promoters in the Mecp2 mutant mice compared with their wild-type littermates, whereas two sites of repressive histone methylation are unchanged. Interestingly, we find that MeCP2 mutant mice show increased steady-state association of elongation-competent RNA Polymerase II (RNAP II) with the Junb and Arc promoters, whereas levels of RNAP II association at the Fos promoter are unchanged. These data reveal a gene-specific effect of MeCP2 on the recruitment of RNAP II to gene promoters that may modulate the inducibility of IEGs. In addition, our findings raise the possibility that aberrant regulation of IEGs including Junb and Arc may contribute to altered cocaine-induced neuronal and behavioral plasticity in Mecp2 mutant mice.
Collapse
Affiliation(s)
- Dan Su
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
38
|
Fendri-Kriaa N, Rouissi A, Ghorbel R, Mkaouar-Rebai E, Belguith N, Gouider-Khouja N, Fakhfakh F. Novel mutations in the C-terminal region of the MECP2 gene in Tunisian Rett syndrome patients. J Child Neurol 2012; 27:564-8. [PMID: 21940684 DOI: 10.1177/0883073811420496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6 to 18 months of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. In the present study, we performed a mutational analysis of the MECP2 gene in 2 typical Rett syndrome patients and in 1 atypical Rett syndrome girl. The results showed the presence of 3 de novo point mutations in the C-terminal region: 2 novel mutations: c.1065C>A (p.S355R) and c.1030C>G (p.R344G) in the 2 typical Rett syndrome girls, but also the c.996C>T (p.S332S) mutation first described in the atypical Rett syndrome patient.
Collapse
Affiliation(s)
- Nourhene Fendri-Kriaa
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Marshak S, Meynard MM, De Vries YA, Kidane AH, Cohen-Cory S. Cell-autonomous alterations in dendritic arbor morphology and connectivity induced by overexpression of MeCP2 in Xenopus central neurons in vivo. PLoS One 2012; 7:e33153. [PMID: 22427975 PMCID: PMC3302857 DOI: 10.1371/journal.pone.0033153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/07/2012] [Indexed: 11/18/2022] Open
Abstract
Methyl CpG binding protein-2 (MeCP2) is an essential epigenetic regulator in human brain development. Mutations in the MeCP2 gene have been linked to Rett syndrome, a severe X-linked progressive neurodevelopmental disorder, and one of the most common causes of mental retardation in females. MeCP2 duplication and triplication have also been found to affect brain development, indicating that both loss of function and gain in MeCP2 dosage lead to similar neurological phenotypes. Here, we used the Xenopus laevis visual system as an in vivo model to examine the consequence of increased MeCP2 expression during the morphological maturation of individual central neurons in an otherwise intact brain. Single-cell overexpression of wild-type human MeCP2 was combined with time-lapse confocal microscopy imaging to study dynamic mechanisms by which MeCP2 influences tectal neuron dendritic arborization. Analysis of neurons co-expressing DsRed2 demonstrates that MeCP2 overexpression specifically interfered with dendritic elaboration, decreasing the rates of branch addition and elimination over a 48 hour observation period. Moreover, dynamic analysis of neurons co-expressing wt-hMeCP2 and PSD95-GFP revealed that even though neurons expressing wt-hMeCP2 possessed significantly fewer dendrites and simpler morphologies than control neurons at the same developmental stage, postsynaptic site density in wt-hMeCP2-expressing neurons was similar to controls and increased at a rate higher than controls. Together, our in vivo studies support an early, cell-autonomous role for MeCP2 during the morphological differentiation of neurons and indicate that perturbations in MeCP2 gene dosage result in deficits in dendritic arborization that can be compensated, at least in part, by synaptic connectivity changes.
Collapse
Affiliation(s)
- Sonya Marshak
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, California, United States of America
| | - Margarita M. Meynard
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ymkje A. De Vries
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, California, United States of America
| | - Adhanet H. Kidane
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, California, United States of America
| | - Susana Cohen-Cory
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sanmann JN, Schaefer GB, Buehler BA, Sanger WG. Algorithmic approach for methyl-CpG binding protein 2 (MECP2) gene testing in patients with neurodevelopmental disabilities. J Child Neurol 2012; 27:346-54. [PMID: 22123427 DOI: 10.1177/0883073811424796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methyl-CpG binding protein 2 gene (MECP2) testing is indicated for patients with numerous clinical presentations, including Rett syndrome (classic and atypical), unexplained neonatal encephalopathy, Angelman syndrome, nonspecific mental retardation, autism (females), and an X-linked family history of developmental delay. Because of this complexity, a gender-specific approach for comprehensive MECP2 gene testing is described. Briefly, sequencing of exons 1 to 4 of MECP2 is recommended for patients with a Rett syndrome phenotype, unexplained neonatal encephalopathy, an Angelman syndrome phenotype (with negative 15q11-13 analysis), nonspecific mental retardation, or autism (females). Additional testing for large-scale MECP2 deletions is recommended for patients with Rett syndrome or Angelman syndrome phenotypes (with negative 15q11-13 analysis) following negative sequencing. Alternatively, testing for large-scale MECP2 duplications is recommended for males presenting with mental retardation, an X-linked family history of developmental delay, and a significant proportion of previously described clinical features (particularly a history of recurrent respiratory infections).
Collapse
Affiliation(s)
- Jennifer N Sanmann
- Human Genetics Laboratories, University of Nebraska Medical Center and the Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE 68198-5440, USA.
| | | | | | | |
Collapse
|
41
|
Squillaro T, Alessio N, Cipollaro M, Melone MAB, Hayek G, Renieri A, Giordano A, Galderisi U. Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence: new perspective for Rett syndrome. Mol Biol Cell 2012; 23:1435-45. [PMID: 22357617 PMCID: PMC3327309 DOI: 10.1091/mbc.e11-09-0784] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neural differentiation process is studied in mesenchymal stem cells obtained from Rett patients and in neuroblastoma cells carrying a partially silenced MECP2 gene. The data suggest that neural cell fate and neuronal maintenance might be perturbed by senescence triggered by impaired MECP2 protein activity either before or after neural differentiation. MECP2 protein binds preferentially to methylated CpGs and regulates gene expression by causing changes in chromatin structure. The mechanism by which impaired MECP2 activity can induce pathological abnormalities in the nervous system of patients with Rett syndrome (RTT) is not clearly understood. To gain further insight into the role of MECP2 in human neurogenesis, we compared the neural differentiation process in mesenchymal stem cells (MSCs) obtained from a RTT patient and from healthy donors. We further analyzed neural differentiation in a human neuroblastoma cell line carrying a partially silenced MECP2 gene. Senescence and reduced expression of neural markers were observed in proliferating and differentiating MSCs from the RTT patient, which suggests that impaired activity of MECP2 protein may impair neural differentiation, as observed in RTT patients. Next, we used an inducible expression system to silence MECP2 in neuroblastoma cells before and after the induction of neural differentiation via retinoic acid treatment. This approach was used to test whether MECP2 inactivation affected the cell fate of neural progenitors and/or neuronal differentiation and maintenance. Overall, our data suggest that neural cell fate and neuronal maintenance may be perturbed by senescence triggered by impaired MECP2 activity either before or after neural differentiation.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, 80138 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Neural Plast 2012; 2012:415825. [PMID: 22474603 PMCID: PMC3306986 DOI: 10.1155/2012/415825] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/15/2011] [Indexed: 02/08/2023] Open
Abstract
Epigenetics refer to inheritable changes beyond DNA sequence that control cell identity and morphology. Epigenetics play key roles in development and cell fate commitments and highly impact the etiology of many human diseases. A well-known link between epigenetics and human disease is the X-linked MECP2 gene, mutations in which lead to the neurological disorder, Rett Syndrome. Despite the fact that MeCP2 was discovered about 20 years ago, our current knowledge about its molecular function is not comprehensive. While MeCP2 was originally found to bind methylated DNA and interact with repressor complexes to inhibit and silence its genomic targets, recent studies have challenged this idea. Indeed, depending on its interacting protein partners and target genes, MeCP2 can act either as an activator or as a repressor. Furthermore, it is becoming evident that although Rett Syndrome is a progressive and postnatal neurological disorder, the consequences of MeCP2 deficiencies initiate much earlier and before birth. To comprehend the novel and challenging concepts in MeCP2 research and to design effective therapeutic strategies for Rett Syndrome, a targeted collaborative effort from scientists in multiple research areas to clinicians is required.
Collapse
|
43
|
Sanchez-Mut J, Huertas D, Esteller M. Aberrant epigenetic landscape in intellectual disability. PROGRESS IN BRAIN RESEARCH 2012; 197:53-71. [DOI: 10.1016/b978-0-444-54299-1.00004-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Heck BW, Zhang B, Tong X, Pan Z, Deng WM, Tsai CC. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biol Open 2011; 1:182-96. [PMID: 23213409 PMCID: PMC3507286 DOI: 10.1242/bio.2012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr) mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H)], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H), and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.
Collapse
Affiliation(s)
- Bryan W Heck
- UMDNJ-Robert Wood Johnson Medical School, Department of Physiology and Biophysics , 683 Hoes Lane, Piscataway, NJ 08854 , USA
| | | | | | | | | | | |
Collapse
|
45
|
Bogdanović O, Veenstra GJC. Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos. BMC Res Notes 2011; 4:300. [PMID: 21851637 PMCID: PMC3169474 DOI: 10.1186/1756-0500-4-300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/18/2011] [Indexed: 01/12/2023] Open
Abstract
Background DNA methylation is a widespread epigenetic modification in vertebrate genomes. Genomic sites of DNA methylation can be bound by methyl-CpG-binding domain proteins (MBDs) and specific zinc finger proteins, which can recruit co-repressor complexes to silence transcription on targeted loci. The binding to methylated DNA may be regulated by post-translational MBD modifications. Findings A methylated DNA affinity precipitation method was implemented to assay binding of proteins to methylated DNA. Endogenous MeCP2 and MBD3 were precipitated from Xenopus oocyte extracts and conditions for methylation-specific binding were optimized. For a reverse experiment, DNA methylation in early Xenopus embryos was assessed by MBD affinity capture. Conclusions A methylated DNA affinity resin can be applied to probe for MBD activity in extracts. This assay has a broad application potential as it can be coupled to downstream procedures such as western blotting, fluorimetric HDAC assays and quantitative mass spectrometry. Methylated DNA affinity capture by methyl-CpG binding proteins produces fractions highly enriched for methylated DNA, suitable for coupling to next generation sequencing technologies. The two enrichment strategies allow probing of methyl-CpG protein interactions in early vertebrate oocytes and embryos.
Collapse
Affiliation(s)
- Ozren Bogdanović
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Faculty of Science, (Geert Grooteplein 28), Nijmegen, (6525 GA), The Netherlands.
| | | |
Collapse
|
46
|
Defossez PA, Stancheva I. Biological functions of methyl-CpG-binding proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:377-98. [PMID: 21507359 DOI: 10.1016/b978-0-12-387685-0.00012-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation is a stable epigenetic mark in plant and vertebrate genomes; it is implicated in regulation of higher order chromatin structure, maintenance of genome integrity, and stable patterns of gene expression. Biological effects of DNA methylation are, at least in part, mediated by proteins that preferentially bind to methylated DNA. It is now recognized that several structurally unrelated protein folds have the ability to recognize methylated CpGs in vitro and in vivo. In this chapter, we focus on the three major families of methyl-CpG-binding proteins: the MBD protein family, Kaiso and Kaiso-like proteins, and SRA domain proteins. We discuss the structural bases of methyl-CpG recognition, the function and specific properties of individual proteins, and their role in human disease such as Rett syndrome and cancer.
Collapse
|
47
|
Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci U S A 2011; 108:14169-74. [PMID: 21807996 DOI: 10.1073/pnas.1018979108] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rett syndrome (RTT) is one of the most prevalent female neurodevelopmental disorders that cause severe mental retardation. Mutations in methyl CpG binding protein 2 (MeCP2) are mainly responsible for RTT. Patients with classical RTT exhibit normal development until age 6-18 mo, at which point they become symptomatic and display loss of language and motor skills, purposeful hand movements, and normal head growth. Murine genetic models and postmortem human brains have been used to study the disease and enable the molecular dissection of RTT. In this work, we applied a recently developed reprogramming approach to generate a novel in vitro human RTT model. Induced pluripotent stem cells (iPSCs) were derived from RTT fibroblasts by overexpressing the reprogramming factors OCT4, SOX2, KLF4, and MYC. Intriguingly, whereas some iPSCs maintained X chromosome inactivation, in others the X chromosome was reactivated. Thus, iPSCs were isolated that retained a single active X chromosome expressing either mutant or WT MeCP2, as well as iPSCs with reactivated X chromosomes expressing both mutant and WT MeCP2. When these cells underwent neuronal differentiation, the mutant monoallelic or biallelelic RTT-iPSCs displayed a defect in neuronal maturation consistent with RTT phenotypes. Our in vitro model of RTT is an important tool allowing the further investigation of the pathophysiology of RTT and the development of the curative therapeutics.
Collapse
|
48
|
Bogdanović O, Long SW, van Heeringen SJ, Brinkman AB, Gómez-Skarmeta JL, Stunnenberg HG, Jones PL, Veenstra GJC. Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis. Genome Res 2011; 21:1313-27. [PMID: 21636662 PMCID: PMC3149498 DOI: 10.1101/gr.114843.110] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 04/14/2011] [Indexed: 12/18/2022]
Abstract
DNA methylation is a tightly regulated epigenetic mark associated with transcriptional repression. Next-generation sequencing of purified methylated DNA obtained from early Xenopus tropicalis embryos demonstrates that this genome is heavily methylated during blastula and gastrula stages. Although DNA methylation is largely absent from transcriptional start sites marked with histone H3 lysine 4 trimethylation (H3K4me3), we find both promoters and gene bodies of active genes robustly methylated. In contrast, DNA methylation is absent in large H3K27me3 domains, indicating that these two repression pathways have different roles. Comparison with chromatin state maps of human ES cells reveals strong conservation of epigenetic makeup and gene regulation between the two systems. Strikingly, genes that are highly expressed in pluripotent cells and in Xenopus embryos but not in differentiated cells exhibit relatively high DNA methylation. Therefore, we tested the repressive potential of DNA methylation using transient and transgenic approaches and show that methylated promoters are robustly transcribed in blastula- and gastrula-stage embryos, but not in oocytes or late embryos. These findings have implications for reprogramming and the epigenetic regulation of pluripotency and differentiation and suggest a relatively open, pliable chromatin state in early embryos followed by reestablished methylation-dependent transcriptional repression during organogenesis and differentiation.
Collapse
Affiliation(s)
- Ozren Bogdanović
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 Nijmegen, The Netherlands
| | - Steven W. Long
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Simon J. van Heeringen
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 Nijmegen, The Netherlands
| | - Arie B. Brinkman
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 Nijmegen, The Netherlands
| | - Jose Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 Nijmegen, The Netherlands
| | - Peter L. Jones
- Department of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Gert Jan C. Veenstra
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 Nijmegen, The Netherlands
| |
Collapse
|
49
|
Elizondo LI, Jafar-Nejad P, Clewing JM, Boerkoel CF. Gene clusters, molecular evolution and disease: a speculation. Curr Genomics 2011; 10:64-75. [PMID: 19721813 PMCID: PMC2699835 DOI: 10.2174/138920209787581271] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/20/2008] [Accepted: 12/21/2008] [Indexed: 01/10/2023] Open
Abstract
Traditionally eukaryotic genes are considered independently expressed under the control of their promoters and cis-regulatory domains. However, recent studies in worms, flies, mice and humans have shown that genes co-habiting a chromatin domain or “genomic neighborhood” are frequently co-expressed. Often these co-expressed genes neither constitute part of an operon nor function within the same biological pathway. The mechanisms underlying the partitioning of the genome into transcriptional genomic neighborhoods are poorly defined. However, cross-species analyses find that the linkage among the co-expressed genes of these clusters is significantly conserved and that the expression patterns of genes within clusters have coevolved with the clusters. Such selection could be mediated by chromatin interactions with the nuclear matrix and long-range remodeling of chromatin structure. In the context of human disease, we propose that dysregulation of gene expression across genomic neighborhoods will cause highly pleiotropic diseases. Candidate genomic neighborhood diseases include the nuclear laminopathies, chromosomal translocations and genomic instability disorders, imprinting disorders of errant insulator function, syndromes from impaired cohesin complex assembly, as well as diseases of global covalent histone modifications and DNA methylation. The alteration of transcriptional genomic neighborhoods provides an exciting and novel model for studying epigenetic alterations as quantitative traits in complex common human diseases.
Collapse
|
50
|
Fendri-Kriaa N, Hsairi I, Kifagi C, Ellouze E, Mkaouar-Rebai E, Triki C, Fakhfakh F. A case of a Tunisian Rett patient with a novel double-mutation of the MECP2 gene. Biochem Biophys Res Commun 2011; 409:270-4. [PMID: 21575601 DOI: 10.1016/j.bbrc.2011.04.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 11/18/2022]
Abstract
Rett syndrome is an X-linked dominant disorder caused frequently by mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6-18 months of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient by sequencing the corresponding gene and modeling the found variants. The results showed the presence of a double-mutation: a new and de novo mutation c.535C>T (p.P179S) and the common c.763C>T (p.R255X) transition of the MECP2 gene. The p.P179S mutation was located in a conserved amino acid in CRIR domain (corepressor interacting region). Modeling results showed that the P179S transition could change local electrostatic properties by adding a negative charge due to serine hydroxyl group of this region of MeCP2 which may affect the function and stability of the protein. The p.R255X mutation is located in TRD-NLS domain (transcription repression domain-nuclear localization signal) of MeCP2 protein.
Collapse
Affiliation(s)
- Nourhene Fendri-Kriaa
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Tunisia.
| | | | | | | | | | | | | |
Collapse
|