1
|
Radmark O. Formation of eicosanoids and other oxylipins in human macrophages. Biochem Pharmacol 2022; 204:115210. [PMID: 35973581 DOI: 10.1016/j.bcp.2022.115210] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
In this review it is attempted to summarize current studies about formation of eicosanoids and other oxylipins in different human macrophages. There are several reports on M1 and M2 cells, also other phenotypes have been described. The eicosanoids formed in the largest amounts are the COX products TxB2 and PGE2. Thus shortlived bioactive TxA2 is a dominating product both in M1- and in M2-lineages, one exception seems to be MGM-CSF, TGFβ cells. 5-LOX products are produced in both M1 and M2 macrophages, as well as in not fully polarized cells of both lineages. MM-CSF as well as M2 macrophages produced LTC4 more readily compared to M1 lineage cells. In MGM-CSF, TGFβ cells LTB4 is a major eicosanoid, in line with high expression of LTA4 hydrolase. Recent reports described increased formation of leukotrienes in macrophages subjected to trained immunity with inflammatory transcriptional reprogramming. Also in macrophages derived from monocytes collected from post-COVID-19 patients. 15-LOX-1 is strongly upregulated in CD206+ M2 cells (M2a), differentiated in presence of IL-4. These macrophages also express 15-LOX-2. In incubations with pathogenic E. coli as well as other stimuli 15(S)-HETE and 17(S)-HDHA were major oxylipins formed. Also, the SPM precursor 5,15-diHETE and the SPM RvD5 were produced in considerable amounts, while other SPMs were less abundant. In M2 macrophages incubated with E. coli or S. aureus the cytosolic 15-LOX-1 enzyme accumulated to punctuate structures in a Ca2+ dependent manner with a relatively slow time course, leading to formation of mediators from endogenous substrate. Chalcones, flavone-like anti-inflammatory natural products, induced translocation of 15-LOX-1 in M2 cells, with high formation of 15-LOX derived oxylipins.
Collapse
Affiliation(s)
- Olof Radmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Eicosanoid production by macrophages during inflammation depends on the M1/M2 phenotype. Prostaglandins Other Lipid Mediat 2022; 160:106635. [PMID: 35307567 DOI: 10.1016/j.prostaglandins.2022.106635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
Macrophages are important in inflammation, and are involved in many physiological and pathological processes. Additionally, macrophages are important producers of eicosanoids, lipids that influence the inflammatory response. Our study aimed to explore the role of eicosanoids in the inflammatory response by studying the production of eicosanoids by macrophages on different stages of inflammation. Murine peritoneal macrophages (MPMs) were obtained at different stages of inflammation, which were then cultured in vitro with polyunsaturated fatty acids. Eicosanoids in MPMs were then detected by liquid chromatography-mass spectrometry. The metabolites derived from the cyclooxygenase (COX) pathway were increased, whereas those from the lipoxygenase (LOX) pathway were reduced. Additionally, the ratio of arachidonic acid (AA)-derived and eicosapentaenoic acid (EPA)-derived eicosanoids was dependent on the stage of inflammation. Moreover, the composition of macrophages with different phenotypes changed. To clarify the relationship between the phenotypes of macrophages and eicosanoids metabolism, we detected the eicosanoids in M1 and M2 differentiated THP-1 cells. Overall, M1 preferred AA, whereas M2 preferred EPA as substrate, which was related to the expression of COX and LOX. In conclusion, this study demonstrates that the difference in macrophage eicosanoids metabolism during the inflammatory response is related to the macrophage polarisation.
Collapse
|
3
|
Zhang XW, Feng N, Wang LC, Liu D, Hua YM, Zhang C, Tu PF, Zeng KW. Small-molecule arone protects from neuroinflammation in LPS-activated microglia BV-2 cells by targeting histone-remodeling chaperone ASF1a. Biochem Pharmacol 2020; 177:113932. [DOI: 10.1016/j.bcp.2020.113932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
|
4
|
Negreiros-Lima GL, Lima KM, Moreira IZ, Jardim BLO, Vago JP, Galvão I, Teixeira LCR, Pinho V, Teixeira MM, Sugimoto MA, Sousa LP. Cyclic AMP Regulates Key Features of Macrophages via PKA: Recruitment, Reprogramming and Efferocytosis. Cells 2020; 9:E128. [PMID: 31935860 PMCID: PMC7017228 DOI: 10.3390/cells9010128] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are central to inflammation resolution, an active process aimed at restoring tissue homeostasis following an inflammatory response. Here, the effects of db-cAMP on macrophage phenotype and function were investigated. Injection of db-cAMP into the pleural cavity of mice induced monocytes recruitment in a manner dependent on PKA and CCR2/CCL2 pathways. Furthermore, db-cAMP promoted reprogramming of bone-marrow-derived macrophages to a M2 phenotype as seen by increased Arg-1/CD206/Ym-1 expression and IL-10 levels (M2 markers). Db-cAMP also showed a synergistic effect with IL-4 in inducing STAT-3 phosphorylation and Arg-1 expression. Importantly, db-cAMP prevented IFN-γ/LPS-induced macrophage polarization to M1-like as shown by increased Arg-1 associated to lower levels of M1 cytokines (TNF-α/IL-6) and p-STAT1. In vivo, db-cAMP reduced the number of M1 macrophages induced by LPS injection without changes in M2 and Mres numbers. Moreover, db-cAMP enhanced efferocytosis of apoptotic neutrophils in a PKA-dependent manner and increased the expression of Annexin A1 and CD36, two molecules associated with efferocytosis. Finally, inhibition of endogenous PKA during LPS-induced pleurisy impaired the physiological resolution of inflammation. Taken together, the results suggest that cAMP is involved in the major functions of macrophages, such as nonphlogistic recruitment, reprogramming and efferocytosis, all key processes for inflammation resolution.
Collapse
Affiliation(s)
- Graziele L. Negreiros-Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Kátia M. Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Isabella Z. Moreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Bruna Lorrayne O. Jardim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Juliana P. Vago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Lívia Cristina R. Teixeira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Mauro M. Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Michelle A. Sugimoto
- Programa de Pós-Graduação em Doenças Infecciosas e Medicina Tropical, Escola de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil;
| | - Lirlândia P. Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| |
Collapse
|
5
|
Roos J, Peters M, Maucher IV, Kühn B, Fettel J, Hellmuth N, Brat C, Sommer B, Urbschat A, Piesche M, Vogel A, Proschak E, Blöcher R, Buscató E, Häfner AK, Matrone C, Werz O, Heidler J, Wittig I, Angioni C, Geisslinger G, Parnham MJ, Zacharowski K, Steinhilber D, Maier TJ. Drug-Mediated Intracellular Donation of Nitric Oxide Potently Inhibits 5-Lipoxygenase: A Possible Key to Future Antileukotriene Therapy. Antioxid Redox Signal 2018; 28:1265-1285. [PMID: 28699354 DOI: 10.1089/ars.2017.7155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIMS 5-Lipoxygenase (5-LO) is the key enzyme of leukotriene (LT) biosynthesis and is critically involved in a number of inflammatory diseases such as arthritis, gout, bronchial asthma, atherosclerosis, and cancer. Because 5-LO contains critical nucleophilic amino acids, which are sensitive to electrophilic modifications, we determined the consequences of a drug-mediated intracellular release of nitric oxide (NO) on 5-LO product formation by human granulocytes and on 5-LO-dependent pulmonary inflammation in vivo. RESULTS Clinically relevant concentrations of NO-releasing nonsteroidal anti-inflammatory drugs and other agents releasing NO intracellularly suppress 5-LO product synthesis in isolated human granulocytes via direct S-nitrosylation of 5-LO at the catalytically important cysteines 416 and 418. Furthermore, suppression of 5-LO product formation was observed in ionophore-stimulated human whole blood and in an animal model of pulmonary inflammation. INNOVATION Here, we report for the first time that drugs releasing NO intracellularly are efficient 5-LO inhibitors in vitro and in vivo at least equivalent to approved 5-LO inhibitors. CONCLUSION Our findings provide a novel mechanistic strategy for the development of a new class of drugs suppressing LT biosynthesis by site-directed nitrosylation. The results may also help to better understand the well-recognized anti-inflammatory clinically relevant actions of NO-releasing drugs. Furthermore, our study describes in detail a novel molecular mode of action of NO. Rebound Track: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Angel Lanas, Hartmut Kühn, Joan Clària, Orina Belton. Antioxid. Redox Signal. 28, 1265-1285.
Collapse
Affiliation(s)
- Jessica Roos
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany .,2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany
| | - Marcus Peters
- 3 Department of Experimental Pneumology, Ruhr University Bochum , Bochum, Germany
| | - Isabelle V Maucher
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Benjamin Kühn
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Jasmin Fettel
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Nadine Hellmuth
- 2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany
| | - Camilla Brat
- 2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany
| | - Benita Sommer
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Anja Urbschat
- 4 Department of Urology and Pediatric Urology, University Hospital Marburg, Philipps-University Marburg , Marburg, Germany .,5 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| | - Matthias Piesche
- 5 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,6 Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule , Talca, Chile
| | - Anja Vogel
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany .,7 Project Group for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Frankfurt, Germany
| | - Ewgenij Proschak
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - René Blöcher
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Estella Buscató
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Ann-Kathrin Häfner
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Carmela Matrone
- 5 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| | - Oliver Werz
- 8 Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University Jena , Jena, Germany
| | - Juliana Heidler
- 9 Department of Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University , Frankfurt, Germany
| | - Ilka Wittig
- 9 Department of Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University , Frankfurt, Germany
| | - Carlo Angioni
- 10 Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University , Frankfurt, Germany
| | - Gerd Geisslinger
- 7 Project Group for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Frankfurt, Germany .,10 Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University , Frankfurt, Germany
| | - Michael J Parnham
- 7 Project Group for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Frankfurt, Germany
| | - Kai Zacharowski
- 2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany
| | - Dieter Steinhilber
- 1 Institute of Pharmaceutical Chemistry, Goethe-University , Frankfurt, Germany
| | - Thorsten J Maier
- 2 Department for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt , Frankfurt, Germany .,5 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| |
Collapse
|
6
|
Salina AC, Souza TP, Serezani CH, Medeiros AI. Efferocytosis-induced prostaglandin E2 production impairs alveolar macrophage effector functions during Streptococcus pneumoniae infection. Innate Immun 2016; 23:219-227. [PMID: 28359217 DOI: 10.1177/1753425916684934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alveolar macrophages (AMs) are multitasking cells that maintain lung homeostasis by clearing apoptotic cells (efferocytosis) and performing antimicrobial effector functions. Different PRRs have been described to be involved in the binding and capture of non-opsonized Streptococcus pneumoniae, such as TLR-2, mannose receptor (MR) and scavenger receptors (SRs). However, the mechanism by which the ingestion of apoptotic cells negatively influences the clearance of non-opsonized S. pneumoniae remains to be determined. In this study, we evaluated whether the prostaglandin E2 (PGE2) produced during efferocytosis by AMs inhibits the ingestion and killing of non-opsonized S. pneumoniae. Resident AMs were pre-treated with an E prostanoid (EP) receptor antagonist, inhibitors of cyclooxygenase and protein kinase A (PKA), incubated with apoptotic Jurkat T cells, and then challenged with S. pneumoniae. Efferocytosis slightly decreased the phagocytosis of S. pneumoniae but greatly inhibited bacterial killing by AMs in a manner dependent on PGE2 production, activation of the EP2-EP4/cAMP/PKA pathway and inhibition of H2O2 production. Our data suggest that the PGE2 produced by AMs during efferocytosis inhibits H2O2 production and impairs the efficient clearance non-opsonized S. pneumoniae by EP2-EP4/cAMP/PKA pathway.
Collapse
Affiliation(s)
- Ana Cg Salina
- 1 Department of Biological Science, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais P Souza
- 1 Department of Biological Science, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Carlos H Serezani
- 2 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandra I Medeiros
- 1 Department of Biological Science, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
7
|
Wang L, Shan Y, Ye Y, Jin L, Zhuo Q, Xiong X, Zhao X, Lin L, Miao J. COX-2 inhibition attenuates lung injury induced by skeletal muscle ischemia reperfusion in rats. Int Immunopharmacol 2015; 31:116-22. [PMID: 26724476 DOI: 10.1016/j.intimp.2015.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Skeletal muscle ischemia reperfusion accounts for high morbidity and mortality, and cyclooxygenase (COX)-2 is implicated in causing muscle damage. Downregulation of aquaporin-1 (AQP-1) transmembrane protein is implicated in skeletal muscle ischemia reperfusion induced remote lung injury. The expression of COX-2 in lung tissue and the effect of COX-2 inhibition on AQP-1 expression and lung injury during skeletal muscle ischemia reperfusion are not known. We investigated the role of COX-2 in lung injury induced by skeletal muscle ischemia reperfusion in rats and evaluated the effects of NS-398, a specific COX-2 inhibitor. METHODS Twenty-four Sprague Dawley rats were randomized into 4 groups: sham group (SM group), sham+NS-398 group (SN group), ischemia reperfusion group (IR group) and ischemia reperfusion+NS-398 group (IN group). Rats in the IR and IN groups were subjected to 3h of bilateral ischemia followed by 6h of reperfusion in hindlimbs, and intravenous NS-398 8 mg/kg was administered in the IN group. In the SM and SN groups, rubber bands were in place without inflation. At the end of reperfusion, myeloperoxidase (MPO) activity, COX-2 and AQP-1 protein expression in lung tissue, PGE2 metabolite (PGEM), tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in bronchoalveolar lavage (BAL) fluid were assessed. Histological changes in lung and muscle tissues and wet/dry (W/D) ratio were also evaluated. RESULTS MPO activity, COX-2 expression, W/D ratio in lung tissue, and PGEM, TNF-α and IL-1β levels in BAL fluid were significantly increased, while AQP-1 protein expression downregulated in the IR group as compared to that in the SM group (P<0.05). These changes were remarkably mitigated in the IN group (P<0.05). NS-398 treatment also alleviated histological signs of lung and skeletal muscle injury. CONCLUSION COX-2 protein expression was upregulated in lung tissue in response to skeletal muscle ischemia reperfusion. COX-2 inhibition may modulate pulmonary AQP-1 expression and attenuate lung injury.
Collapse
Affiliation(s)
- Liangrong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Yuanlu Shan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Yuzhu Ye
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Lida Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Qian Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Xiangqing Xiong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Xiyue Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Lina Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - JianXia Miao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| |
Collapse
|
8
|
Extraction optimization for obtaining Artemisia capillaris extract with high anti-inflammatory activity in RAW 264.7 macrophage cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:872718. [PMID: 26075271 PMCID: PMC4446566 DOI: 10.1155/2015/872718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 01/12/2023]
Abstract
Plant extracts have been used as herbal medicines to treat a wide variety of human diseases. We used response surface methodology (RSM) to optimize the Artemisia capillaris Thunb. extraction parameters (extraction temperature, extraction time, and ethanol concentration) for obtaining an extract with high anti-inflammatory activity at the cellular level. The optimum ranges for the extraction parameters were predicted by superimposing 4-dimensional response surface plots of the lipopolysaccharide- (LPS-) induced PGE2 and NO production and by cytotoxicity of A. capillaris Thunb. extracts. The ranges of extraction conditions used for determining the optimal conditions were extraction temperatures of 57-65°C, ethanol concentrations of 45-57%, and extraction times of 5.5-6.8 h. On the basis of the results, a model with a central composite design was considered to be accurate and reliable for predicting the anti-inflammation activity of extracts at the cellular level. These approaches can provide a logical starting point for developing novel anti-inflammatory substances from natural products and will be helpful for the full utilization of A. capillaris Thunb. The crude extract obtained can be used in some A. capillaris Thunb.-related health care products.
Collapse
|
9
|
Assis PA, Espíndola MS, Paula-Silva FWG, Rios WM, Pereira PAT, Leão SC, Silva CL, Faccioli LH. Mycobacterium tuberculosis expressing phospholipase C subverts PGE2 synthesis and induces necrosis in alveolar macrophages. BMC Microbiol 2014; 14:128. [PMID: 24886263 PMCID: PMC4057917 DOI: 10.1186/1471-2180-14-128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/06/2014] [Indexed: 01/15/2023] Open
Abstract
Background Phospholipases C (PLCs) are virulence factors found in several bacteria. In Mycobacterium tuberculosis (Mtb) they exhibit cytotoxic effects on macrophages, but the mechanisms involved in PLC-induced cell death are not fully understood. It has been reported that induction of cell necrosis by virulent Mtb is coordinated by subversion of PGE2, an essential factor in cell membrane protection. Results Using two Mtb clinical isolates carrying genetic variations in PLC genes, we show that the isolate 97-1505, which bears plcA and plcB genes, is more resistant to alveolar macrophage microbicidal activity than the isolate 97-1200, which has all PLC genes deleted. The isolate 97-1505 also induced higher rates of alveolar macrophage necrosis, and likewise inhibited COX-2 expression and PGE2 production. To address the direct effect of mycobacterial PLC on cell necrosis and PGE2 inhibition, both isolates were treated with PLC inhibitors prior to macrophage infection. Interestingly, inhibition of PLCs affected the ability of the isolate 97-1505 to induce necrosis, leading to cell death rates similar to those induced by the isolate 97-1200. Finally, PGE2 production by Mtb 97-1505-infected macrophages was restored to levels similar to those produced by 97-1200-infected cells. Conclusions Mycobacterium tuberculosis bearing PLCs genes induces alveolar macrophage necrosis, which is associated to subversion of PGE2 production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Cafe, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
10
|
Mangal D, Uboh CE, Jiang Z, Soma LR. Interleukin-1β inhibits synthesis of 5-lipooxygenase in lipopolysaccharide-stimulated equine whole blood. Prostaglandins Other Lipid Mediat 2014; 108:9-22. [PMID: 24530239 DOI: 10.1016/j.prostaglandins.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 12/25/2022]
Abstract
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine. It induces the synthesis of prostaglandin E2 (PGE2) catalyzed by cyclooxygenase (COX) and microsomal prostaglandin E synthase (m-PGES). Besides its pro-inflammatory properties, PGE2 also exhibits anti-inflammatory properties by inhibiting synthesis of 5-lipooxygenase (5-LO) products which are in themselves, pro-inflammatory mediators. Thus, inhibition of 5-LO products is beneficial in regulating immune-responses and pro-inflammatory processes. To investigate the hypothesis that IL-1β is responsible for the increase in the synthesis of PGE2 and in the reduction of 5-LO products, equine whole blood (EWB) was treated with lipopolysaccharide (LPS). In vitro treatment of EWB with LPS resulted in increased expression of IL-1β while expression of 5-LO was suppressed. Quantification of eicosanoids using liquid-chromatography-mass spectrometry/multiple reaction monitoring (LC-MS/MRM) showed increased concentrations of prostaglandins and decreased 5-LO products in LPS-treated EWB. Pretreatment of EWB with IL-1β followed by calcium ionophore A23187 (CI) reduced synthesis of 5-LO products. However, pretreatment of EWB with COX-2 inhibitor (NS-398) or m-PGES-1 inhibitor (CAY 10526) and IL-1β followed with CI resulted in a significant (p<0.0001) increase in 5-LO products. Pretreatment of EWB with phospholipase C inhibitor (U73122) followed with LPS reduced PGE2 production but increased 5-LO products. The result of this study indicated that increased PGE2 production led to reduction in 5-LO products in LPS-treated EWB via IL-1β. However, other pathways, cytokines and mediators may be involved in inhibiting 5-LO products but the present study did not include those other potential pathways. Inhibition of 5-LO products by PGE2 in EWB may regulate the initiation and pathogenesis of inflammatory responses in the horse.
Collapse
Affiliation(s)
- Dipti Mangal
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Cornelius E Uboh
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA; PA Equine Toxicology & Research Center, West Chester University, Department of Chemistry, 220 East Rosedale Avenue, West Chester, PA 19382, USA.
| | - Zibin Jiang
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Lawrence R Soma
- University of Pennsylvania School of Veterinary Medicine, Department of Clinical Studies, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA
| |
Collapse
|
11
|
Potent anti-inflammatory activity of pyrenocine A isolated from the marine-derived fungus Penicillium paxilli Ma(G)K. Mediators Inflamm 2014; 2014:767061. [PMID: 24574582 PMCID: PMC3916108 DOI: 10.1155/2014/767061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022] Open
Abstract
Very little is known about the immunomodulatory potential of secondary metabolites isolated from marine microorganisms. In the present study, we characterized pyrenocine A, which is produced by the marine-derived fungus Penicillium paxilli Ma(G)K and possesses anti-inflammatory activity. Pyrenocine A was able to suppress, both pretreatment and posttreatment, the LPS-induced activation of macrophages via the inhibition of nitrite production and the synthesis of inflammatory cytokines and PGE2. Pyrenocine A also exhibited anti-inflammatory effects on the expression of receptors directly related to cell migration (Mac-1) as well as costimulatory molecules involved in lymphocyte activation (B7.1). Nitrite production was inhibited by pyrenocine A in macrophages stimulated with CpG but not Poly I:C, suggesting that pyrenocine A acts through the MyD88-dependent intracellular signaling pathway. Moreover, pyrenocine A is also able to inhibit the expression of genes related to NFκB-mediated signal transduction on macrophages stimulated by LPS. Our results indicate that pyrenocine A has promissory anti-inflammatory properties and additional experiments are necessary to confirm this finding in vivo model.
Collapse
|
12
|
de Medeiros AI, Gandolfi RC, Secatto A, Falcucci RM, Faccioli LH, Hajdu E, Peixinho S, Berlinck RGS. 11-Oxoaerothionin isolated from the marine spongeAplysina fistularisshows anti-inflammatory activity in LPS-stimulated macrophages. Immunopharmacol Immunotoxicol 2012; 34:919-24. [DOI: 10.3109/08923973.2012.679984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Bozyk PD, Moore BB. Prostaglandin E2 and the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 45:445-52. [PMID: 21421906 DOI: 10.1165/rcmb.2011-0025rt] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prostaglandin (PG)E(2) is a bioactive eicosanoid that regulates many biologically important processes in part due to its ability to signal through four distinct G-protein-coupled receptors with differential signaling activity and unique expression patterns in different cell types. Although PGE(2) has been linked to malignancy in many organs, it is believed to play a beneficial role in the setting of fibrotic lung disease. This is in part due to the ability of PGE(2) to limit many of the pathobiologic features of lung fibroblasts and myofibroblasts, including the ability of PGE(2) to limit fibroblast proliferation, migration, collagen secretion, and, as originally reported in the Journal by us in 2003, the ability to limit transforming growth factor (TGF)-β-induced myofibroblast differentiation. In the setting of lung fibrosis, PGE(2) production and signaling is often diminished. In the last 8 years, significant advances have been made to better understand the dysregulation of PGE(2) production and signaling in the setting of lung fibrosis. We also have a clearer picture of how PGE(2) inhibits myofibroblast differentiation and the receptor signaling pathways that can influence fibroblast proliferation. This review highlights these recent advances and offers new insights into the potential ways that PGE(2) and its downstream signals can be regulated for therapeutic benefit in a disease that has no validated treatment options.
Collapse
Affiliation(s)
- Paul D Bozyk
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
14
|
Esser J, Gehrmann U, Salvado MD, Wetterholm A, Haeggström JZ, Samuelsson B, Gabrielsson S, Scheynius A, Rådmark O. Zymosan suppresses leukotriene C₄ synthase activity in differentiating monocytes: antagonism by aspirin and protein kinase inhibitors. FASEB J 2011; 25:1417-27. [PMID: 21228223 DOI: 10.1096/fj.10-175828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are potent proinflammatory mediators with particular relevance for asthma. However, control of cysLT biosynthesis in the time period after onset of acute inflammation has not been extensively studied. As a model for later phases of inflammation, we investigated regulation of leukotriene (LT) C(4) synthase (LTC(4)S) in differentiating monocytes, exposed for several days to fungal zymosan. Incubations with LTA(4) revealed 20-fold increased LTC(4)S activity during differentiation of monocytic Mono Mac 6 (MM6) cells, which was reduced by 80% in the presence of zymosan (25 μg/ml, 96 h). Zymosan (48 h) similarly attenuated LTC(4)S activity of primary human monocyte-derived macrophages and dendritic cells. Several findings indicate phosphoregulation of LTC(4)S: increased activity during MM6 cell differentiation correlated with reduced phosphorylation of 70-kDa ribosomal protein S6 kinase (p70S6K), which could phosphorylate purified LTC(4)S; the p70S6K inhibitor rapamycin (20 nM) doubled LTC(4)S activity of undifferentiated MM6 cells, and protein kinase A and C inhibitors (H-89, CGP-53353, and staurosporine) reversed the zymosan-induced suppression of LTC(4)S activity. Finally, zymosan (48 h) up-regulated PGE(2) biosynthesis, and aspirin (10 μM) or prostaglandin E(2) (PGE(2)) receptor antagonists counteracted the zymosan effect. Our results suggest a late PGE(2)-mediated phosphoregulation of LTC(4)S during microbial exposure, which may contribute to resolution of inflammation, with implications for aspirin hypersensitivity.
Collapse
Affiliation(s)
- Julia Esser
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Corticosteroid suppression of lipoxin A4 and leukotriene B4 from alveolar macrophages in severe asthma. Respir Res 2010; 11:71. [PMID: 20529300 PMCID: PMC2894769 DOI: 10.1186/1465-9921-11-71] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 06/07/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND An imbalance in the generation of pro-inflammatory leukotrienes, and counter-regulatory lipoxins is present in severe asthma. We measured leukotriene B4 (LTB4), and lipoxin A4 (LXA4) production by alveolar macrophages (AMs) and studied the impact of corticosteroids. METHODS AMs obtained by fiberoptic bronchoscopy from 14 non-asthmatics, 12 non-severe and 11 severe asthmatics were stimulated with lipopolysaccharide (LPS,10 microg/ml) with or without dexamethasone (10(-6)M). LTB4 and LXA4 were measured by enzyme immunoassay. RESULTS LXA4 biosynthesis was decreased from severe asthma AMs compared to non-severe (p < 0.05) and normal subjects (p < 0.001). LXA4 induced by LPS was highest in normal subjects and lowest in severe asthmatics (p < 0.01). Basal levels of LTB4 were decreased in severe asthmatics compared to normal subjects (p < 0.05), but not to non-severe asthma. LPS-induced LTB4 was increased in severe asthma compared to non-severe asthma (p < 0.05). Dexamethasone inhibited LPS-induced LTB4 and LXA4, with lesser suppression of LTB4 in severe asthma patients (p < 0.05). There was a significant correlation between LPS-induced LXA4 and FEV1 (% predicted) (r(s) = 0.60; p < 0.01). CONCLUSIONS Decreased LXA4 and increased LTB4 generation plus impaired corticosteroid sensitivity of LPS-induced LTB4 but not of LXA4 support a role for AMs in establishing a pro-inflammatory balance in severe asthma.
Collapse
|
16
|
Coffey M, Phare S, Peters-Golden M. INDUCTION OF INDUCIBLE NITRIC OXIDE SYNTHASE BY LIPOPOLYSACCHARIDE/INTERFERON GAMMA AND SEPSIS DOWN-REGULATES 5-LIPOXYGENASE METABOLISM IN MURINE ALVEOLAR MACROPHAGES. Exp Lung Res 2009; 30:615-33. [PMID: 15371096 DOI: 10.1080/01902140490476391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pretreatment with lipopolysaccharide (LPS) suppresses rat alveolar macrophage leukotriene synthesis in a nitric oxide (NO)-dependent mechanism. The authors examined the effect of NO on alveolar macrophage leukotriene synthesis following in vitro and in vivo models of sepsis. Treatment of alveolar macrophages from inducible NO synthase (iNOS) wild-type but not knock-out mice with LPS inhibited leukotriene synthesis. iNOS was induced early in alveolar macrophages from cecal ligation and puncture rats and mice compared to sham animals with associated reduced leukotriene synthesis. iNOS knock-out mice were protected from the decrease in alveolar macrophage 5-lipoxygenase metabolism. iNOS regulates alveolar macrophage 5-lipoxygenase metabolism following endotoxin exposure.
Collapse
Affiliation(s)
- Michael Coffey
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0642, USA.
| | | | | |
Collapse
|
17
|
Izzi V, Chiurchiù V, D'Aquilio F, Martino A, Tresoldi I, Modesti A, Baldini PM. Endomorphin-1 inhibits the activation and the development of a hyporesponsive-like phenotype in lipopolysaccharide- stimulated THP-1 monocytes. Int J Immunopathol Pharmacol 2009; 21:833-43. [PMID: 19144269 DOI: 10.1177/039463200802100408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endomorphin-1 (EM-1) is an endogenous opioid peptide selectively binding to micro opioid receptors (MORs). Besides its analgesic effects on the central nervous system (CNS), it has been recently reported that EM-1 can cross the blood-brain barrier (BBB) and diffuse into the blood, behaving as an analgesic/anti-inflammatory molecule on peripheral tissues, thus leading to the hypothesis that it could represent a soluble modulator of immune cell functions. Interestingly, nothing is known about its possible effects on monocytes, the main circulating cell-type involved in those systemic responses, such as fever and septic states, involving the release of high amounts of pyrogenic inflammatory factors. The aim of this work is to evaluate possible EM-1effects on lipopolisaccharide (LPS)-stimulated THP-1 monocytes in terms of the production of inflammatory mediators and the instauration of a hyporesponsive-like phenotype which is a main feature of systemic inflammatory responses, and on the development of peripheral monocytes to DC. Our data demonstrate for the first time that EM-1 is able to inhibit both LPS-stimulated monocyte activation, in terms of arachidonic acid, PGE2, ROI and NO2 production and instauration of a hyporesponsive phenotype without any macroscopic effect on DC development. These data support the hypothesis that EM-1 could be involved in modulating monocyte functions during systemic inflammatory reactions, also providing new evidence for its eventual clinical application in endotoxic states.
Collapse
Affiliation(s)
- V Izzi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mao JT, Tashkin DP, Tsu IH, Serio KJ. Differential modulation of leukotriene B4 synthesis and degradation in human bronchoalveolar lavage cells by lipopolysaccharide and tobacco smoke. Cancer Prev Res (Phila) 2009; 1:266-74. [PMID: 19138970 DOI: 10.1158/1940-6207.capr-08-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leukotrienes have been implicated to play a prominent inductive role in carcinogenesis. We previously reported that bronchoalveolar lavage (BAL) cells from smokers manifested higher levels of leukotriene B4 (LTB4) production than ex-smokers. This study aims to elucidate the underlying mechanism(s). BAL cells from current and former smokers were exposed to lipopolysaccharide (LPS) for up to 7 days. LPS induced the release of LTB4 from BAL cells and down-regulated 5-lipoxygenase (5-LOX) mRNA expression in a dose-dependent manner, followed by a decrease in 5-LOX protein production and normalization of LTB4 levels. Exogenous LTB4 inhibited LPS-induced 5-LOX activity and accentuated the down-regulation of 5-LOX mRNA, whereas suppression of 5-LOX abrogated the LPS-induced changes, suggesting a negative feedback mechanism. LPS concomitantly induced expression and activity of the LTB4 metabolizing enzyme LTB4 omega-hydroxylase (LTB4OH) in ex-smokers' BAL cells, but not in smokers' BAL cells. In vitro smoke exposure of ex-smokers' BAL cells also abrogated the LPS-induced up-regulation of LTB4OH mRNA expression. Furthermore, ex-smokers' BAL cells expressed significantly higher LTB4OH mRNA levels than smokers' BAL cells. Such differential modulation of LTB4 synthesis and degradation by LPS in the setting of tobacco smoke exposure suggests that mechanisms responsible for sustained elevation of LTB4 levels in the lung microenvironment may contribute to the pathogenesis of tobacco-related respiratory diseases such as lung cancer. By regulating the balance of LTB4 in the lung, LTB4OH may function as a suppressor of lung carcinogenesis.
Collapse
Affiliation(s)
- Jenny T Mao
- Division of Pulmonary and Critical Care Medicine, CHS 37-131, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095-1690, USA.
| | | | | | | |
Collapse
|
19
|
Leite ACRM, Cunha FQ, Dal-Secco D, Fukada SY, Girão VCC, Rocha FAC. Effects of nitric oxide on neutrophil influx depends on the tissue: role of leukotriene B4 and adhesion molecules. Br J Pharmacol 2009; 156:818-25. [PMID: 19220287 DOI: 10.1111/j.1476-5381.2008.00094.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effect of nitric oxide synthase (NOS) inhibition on polymorphonuclear cell (PMN) influx in zymosan or lipopolysaccharide (LPS)-induced arthritis and peritonitis. EXPERIMENTAL APPROACH Wistar rats received intra-articular (i.art.) zymosan (30-1000 microg) or LPS (1-10 microg). Swiss C57/Bl6 mice genetically deficient in intercellular adhesion molecule-1 (ICAM-1(-/-)) or in beta(2)-integrin (beta(2)-integrin(-/-)) received zymosan either i.art. or i.p. PMN counts, leukotriene B(4) (LTB(4)), tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) levels were measured in joint and peritoneal exudates. Groups received the NOS inhibitors N(G)-nitro-L-arginine methyl ester (LN), nitro-L-arginine, N-[3-(aminomemethyl)benzyl] acetamide or aminoguanidine, prior to zymosan or LPS, given i.p. or s.c. in the arthritis and peritonitis experiments respectively. A group of rats received LN locally (i.art. or i.p.), 30 min prior to 1 mg zymosan i.art. KEY RESULTS Systemic or local NOS inhibition significantly prevented PMN migration in arthritis while increasing it in peritonitis, regardless of stimuli, concentration of NOS inhibitors and species. NOS inhibition did not alter TNF-alpha and IL-10 but decreased LTB(4) in zymosan-induced arthritis. LN administration significantly inhibited PMN influx into the joints of ICAM-1(-/-) and beta(2)-integrin(-/-) mice with zymosan-arthritis, while not altering PMN influx into the peritoneum of mice with zymosan-peritonitis. CONCLUSIONS AND IMPLICATIONS Nitric oxide has a dual modulatory role on PMN influx into joint and peritoneal cavities that is stimulus- and species-independent. Differences in local release of LTB(4) and in expression of ICAM-1 and beta(2)-integrin account for this dual role of NO on PMN migration.
Collapse
Affiliation(s)
- A C R M Leite
- Department of Internal Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Chen LC, Gordon RE, Laskin JD, Laskin DL. Role of TLR-4 in liver macrophage and endothelial cell responsiveness during acute endotoxemia. Exp Mol Pathol 2007; 83:311-26. [PMID: 17996232 DOI: 10.1016/j.yexmp.2007.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 08/24/2007] [Accepted: 08/24/2007] [Indexed: 01/13/2023]
Abstract
Liver macrophages and endothelial cells have been implicated in hepatotoxicity induced by endotoxin (ETX). In these studies, we analyzed the role of toll-like receptor 4 (TLR-4) in the response of these cells to acute endotoxemia. Treatment of control C3H/HeOuJ mice with ETX (3 mg/kg, i.p.) resulted in increased numbers of activated macrophages in the liver. This was associated with morphological changes in the cells and a rapid (within 3 h) induction of nitric oxide synthase-2, cyclooxygenase-2, microsomal PGE synthase-1, interleukin-1 beta and tumor necrosis factor alpha gene expression. In endothelial cells, acute endotoxemia led to increased expression of these genes, as well as 5-lipoxygenase. In contrast, liver sinusoidal cells from C3H/HeJ TLR-4 mutant mice were relatively unresponsive to ETX. Treatment of C3H/HeOuJ, but not C3H/HeJ mice with ETX, resulted in activation of transcription factors AP-1 and NF-kappaB in liver sinusoidal cells, which was evident within 3 h. Whereas in macrophages, transcription factor activation was transient, in endothelial cells, it persisted for 24 h. In C3H/HeOuJ mice treated with ETX, activation of p38 MAP kinase was also evident in macrophages and endothelial cells, and JNK kinase in macrophages. In contrast, reduced protein kinase B (AKT) was noted in macrophages. In C3H/HeJ mice, ETX administration also led to activation of p38 MAP kinase in macrophages with no effects on JNK, p44/42 MAP kinase or AKT. These studies demonstrate that liver macrophages and endothelial cells are highly responsive to acute endotoxemia. Moreover, this activity is largely dependent on TLR-4.
Collapse
Affiliation(s)
- Li C Chen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
21
|
Bermudez-Fajardo A, Ylihärsilä M, Evans WH, Newby AC, Oviedo-Orta E. CD4+ T lymphocyte subsets express connexin 43 and establish gap junction channel communication with macrophages in vitro. J Leukoc Biol 2007; 82:608-12. [PMID: 17596336 PMCID: PMC2847614 DOI: 10.1189/jlb.0307134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gap junction channels constructed of connexins (Cxs) are expressed by peripheral and secondary lymphoid organ-derived lymphocytes. These channels in the plasma membrane play key roles in a range of lymphocyte functions exemplified by the synthesis and secretion of Igs and cytokines and during transmigration across the endothelium. Most recently, their involvement in antigen cross-presentation has also been established. We report here for the first time the expression of mRNA and protein encoding Cx43 in mouse-derived CD4+ Th0, Th1, and Th2 lymphocyte subpopulations and demonstrate the establishment gap junction channel formation with primary macrophages in vitro. We show that this mode of direct communication is particularly favored in Th1-macrophage interactions and that LPS inhibits lymphocyte-macrophage cross-talk independently of the subset of lymphocyte involved. Our work suggests that gap junction-mediated communication can be modulated in the absence of specific antigenic stimulation. Therefore, a further mechanism featuring gap junction-mediated communication may be implicated in immune regulation.
Collapse
Affiliation(s)
| | - Minna Ylihärsilä
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, United Kingdom
| | - W. Howard Evans
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Wales, United Kingdom
| | - Andrew C. Newby
- Bristol Heart Institute, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Ernesto Oviedo-Orta
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, United Kingdom
- Correspondence: School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
22
|
Zardi EM, Zardi DM, Dobrina A, Afeltra A. Prostacyclin in sepsis: A systematic review. Prostaglandins Other Lipid Mediat 2007; 83:1-24. [PMID: 17259068 DOI: 10.1016/j.prostaglandins.2006.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 10/24/2006] [Accepted: 12/15/2006] [Indexed: 01/22/2023]
Abstract
According to current literature, infective processes greatly modify both vascular hemodynamics and anti-oxidant properties of affected tissues, causing a change in homeostasis that regulates the correct functioning of all cells responsible for the physiological and metabolic balance of various organs. As a consequence, the response to the infection that has caused the change is also likely to be weaker and, in the case of septic shock, ineffective. In this review, we will take into consideration these mechanisms and then focus on a group of vasodilator drugs (prostacyclin and its analogs) which, though have been used for over 20 years mainly to treat obstructive vascular diseases, have such hemodynamic and anti-inflammatory properties which prevent homeostatic changes. It is obvious that prostacyclin does not definitively have anti-infective characteristics; however, in association with anti-infective drugs (antibiotics, etc.), the effectiveness of the latter appears improved, at least in some circumstances. Similarly, the fact that prostacyclin and its analogs have a cytoprotective effect on the liver and reduce the ischemia-reperfusion damage following liver transplant is not a novelty and evidence that they improve hepatic hemodynamics suggests their use in those pathologies characterized by possible reduced perfusion or ascertained ischemia of the liver.
Collapse
Affiliation(s)
- E M Zardi
- Area of Internal Medicine and Immunology, University Campus Bio-Medico, Rome, Italy.
| | | | | | | |
Collapse
|
23
|
Monick MM, Powers LS, Gross TJ, Flaherty DM, Barrett CW, Hunninghake GW. Active ERK contributes to protein translation by preventing JNK-dependent inhibition of protein phosphatase 1. THE JOURNAL OF IMMUNOLOGY 2006; 177:1636-45. [PMID: 16849472 DOI: 10.4049/jimmunol.177.3.1636] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human alveolar macrophages, central to immune responses in the lung, are unique in that they have an extended life span in contrast to precursor monocytes. We have shown previously that the ERK MAPK (ERK) pathway is constitutively active in human alveolar macrophages and contributes to the prolonged survival of these cells. We hypothesized that ERK maintains survival, in part, by positively regulating protein translation. In support of this hypothesis, we have found novel links among ERK, JNK, protein phosphatase 1 (PP1), and the eukaryotic initiation factor (eIF) 2alpha. eIF2alpha is active when hypophosphorylated and is essential for initiation of protein translation (delivery of initiator tRNA charged with methionine to the ribosome). Using [(35)S]methionine labeling, we found that ERK inhibition significantly decreased protein translation rates in alveolar macrophages. Decreased protein translation resulted from phosphorylation (and inactivation) of eIF2alpha. We found that ERK inhibition increased JNK activity. JNK in turn inactivated (via phosphorylation) PP1, the phosphatase responsible for maintaining the hypophosphorylated state of eIF2alpha. As a composite, our data demonstrate that in human alveolar macrophages, constitutive ERK activity positively regulates protein translation via the following novel pathway: active ERK inhibits JNK, leading to activation of PP1alpha, eIF2alpha dephosphorylation, and translation initiation. This new role for ERK in alveolar macrophage homeostasis may help to explain the survival characteristic of these cells within their unique high oxygen and stress microenvironment.
Collapse
Affiliation(s)
- Martha M Monick
- University of Iowa Carver College of Medicine, Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Leukotrienes are lipid messengers involved in autocrine and paracrine cellular signaling. They are synthesized from arachidonic acid by the 5-lipoxygenase pathway. Current models of this enzymatic pathway recognize that a key step in initiating leukotriene synthesis is the calcium-mediated movement of enzymes, including 5-lipoxygenase, to intracellular membranes. However, 5-lipoxygenase can be imported into or exported from the nucleus before calcium activation. As a result, its subcellular localization will affect its ability to be activated by calcium, as well as the membrane to which it binds and its interaction with other enzymes. This commentary focuses on the role of 5-lipoxygenase compartmentation in determining its regulation and, ultimately, leukotriene synthesis.
Collapse
Affiliation(s)
- Thomas G Brock
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
25
|
Delaporte M, Soudant P, Moal J, Giudicelli E, Lambert C, Séguineau C, Samain JF. Impact of 20∶4n−6 supplementation on the fatty acid composition and hemocyte parameters of the pacific oyster crassostrea gigas. Lipids 2006; 41:567-76. [PMID: 16981435 DOI: 10.1007/s11745-006-5006-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Arachidonic acid (20:4n-6, ArA) and its eicosanoid metabolites have been demonstrated to be implicated in immune functions of vertebrates, fish, and insects. Thus, the aim of this study was to assess the impact of ArA supplementation on the FA composition and hemocyte parameters of oysters Crassostrea gigas. Oyster dietary conditioning consisted of direct addition of ArA solutions at a dose of 0, 0.25, or 0.41 microg ArA per mL of seawater into tanks in the presence or absence of T-Iso algae. Results showed significant incorporation of ArA into gill polar lipids when administered with algae (up to 19.7%) or without algae (up to 12.1%). ArA supplementation led to an increase in hemocyte numbers, phagocytosis, and production of reactive oxygen species by hemocytes from ArA-supplemented oysters. Moreover, the inhibitory effect of Vibrio aestuarianus extracellular products on the adhesive proprieties of hemocytes was lessened in oysters fed ArA-supplemented T-Iso. All changes in oyster hemocyte parameters reported in the present study suggest that ArA and/or eicosanoid metabolites affect oyster hemocyte functions.
Collapse
Affiliation(s)
- Maryse Delaporte
- UMR 100 Physiologie and Ecophysiologie des Mollusques Marins, Centre IFREMER de Brest, BP70, 29280 Plouzané, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Serio KJ, Reddy KV, Bigby TD. Lipopolysaccharide induces 5-lipoxygenase-activating protein gene expression in THP-1 cells via a NF-κB and C/EBP-mediated mechanism. Am J Physiol Cell Physiol 2005; 288:C1125-33. [PMID: 15625306 DOI: 10.1152/ajpcell.00296.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined induced expression of the 5-lipoxygenase-activating protein (FLAP), which is critical for leukotriene synthesis in mononuclear phagocytes. Prolonged exposure to the bacterial component, lipopolysaccharide (LPS), increased FLAP gene transcription, mRNA expression, and protein expression in the human monocyte-like THP-1 cell line. Activation and inhibition of the NF-κB pathway modulated LPS induction of FLAP gene expression. An NF-κB-mediated mechanism of action was supported by overexpression of dominant-negative IκBα and p50/p65 proteins. EMSA/supershift and DNase I footprint analyses revealed that p50 binds to an NF-κB site located in the proximal FLAP promoter, while chromatin immunoprecipitation assays demonstrated that LPS induced binding of p50 but not of p65. Moreover, EMSA/supershift analyses demonstrated that LPS induced time-dependent binding of THP-1 nuclear extracts (containing p50) to this promoter region. Mutation of the NF-κB site decreased basal promoter activity and abolished the p50- and p65-associated induction. EMSA/supershift analyses also demonstrated that LPS induced binding of THP-1 nuclear extracts [containing CCAAT/enhancer binding protein (C/EBP)-α, -δ, and -ε] to a C/EBP site located adjacent to the NF-κB site in the FLAP promoter. We conclude that LPS enhances FLAP gene expression via both NF-κB- and C/EBP-mediated transcriptional mechanisms in mononuclear phagocytes.
Collapse
Affiliation(s)
- Kenneth J Serio
- Dept. of Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | | | | |
Collapse
|
27
|
Peters-Golden M, Canetti C, Mancuso P, Coffey MJ. Leukotrienes: underappreciated mediators of innate immune responses. THE JOURNAL OF IMMUNOLOGY 2005; 174:589-94. [PMID: 15634873 DOI: 10.4049/jimmunol.174.2.589] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukotrienes are bronchoconstrictor and vasoactive lipid mediators that are targets in the treatment of asthma. Although they are increasingly recognized to exert broad proinflammatory effects, their role in innate immune responses is less well appreciated. These molecules are indeed synthesized by resident and recruited leukocytes during infection. Acting via cell surface G protein-coupled receptors and subsequent intracellular signaling events, they enhance leukocyte accumulation, phagocyte capacity for microbial ingestion and killing, and generation of other proinflammatory mediators. Interestingly, a variety of acquired states of immunodeficiency, such as HIV infection and malnutrition, are characterized by a relative deficiency of leukotriene synthesis. The data reviewed herein point to leukotrienes as underappreciated yet highly relevant mediators of innate immunity.
Collapse
Affiliation(s)
- Marc Peters-Golden
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor 48109, USA.
| | | | | | | |
Collapse
|
28
|
Bunderson M, Brooks DM, Walker DL, Rosenfeld ME, Coffin JD, Beall HD. Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol Appl Pharmacol 2004; 201:32-9. [PMID: 15519606 DOI: 10.1016/j.taap.2004.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/19/2004] [Indexed: 10/26/2022]
Abstract
A correlation between arsenic and cardiovascular disease (CVD) has been established through epidemiological studies, although the mechanisms are unknown. Using a mouse model that develops atherosclerotic lesions on a normal chow diet, we have confirmed a connection between long-term arsenic intake and CVD. Our results reveal a significant increase in the degree of atherosclerotic plaque stenosis within the innominate artery of ApoE-/-/LDLr-/- mice treated with 10 ppm sodium arsenite (133 microM) in drinking water for 18 weeks compared to controls. Immunohistochemistry shows nitrotyrosine formation, a marker of reactive nitrogen species generation, is significantly higher within the atherosclerotic plaque of arsenic-treated mice. In addition, there is a significant increase in the 5-lipoxygenase (5-LO) product, leukotriene E4 (LTE4), in the serum of arsenic-treated mice. This is supported by induction of the 5-LO protein and subsequent increases in LTE4 synthesis in bovine aortic endothelial cells. This increase in LTE4 is partially inhibited by inhibitors of nitric oxide synthase, suggesting a link between reactive nitrogen species and arsenic-induced inflammation. Furthermore, there is a significant increase in prostacyclin (PGI2) in the serum of arsenic-treated mice. We conclude that changes in specific inflammatory mediators such as LTE4 and PGI2 are related to arsenic-induced atherosclerosis. In addition, amplified synthesis of reactive species such as peroxynitrite results in increased protein nitration in response to arsenic exposure. This finding is consistent with the pathology seen in human atherosclerotic plaques.
Collapse
Affiliation(s)
- Melisa Bunderson
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812-1552, USA
| | | | | | | | | | | |
Collapse
|