1
|
Sakaguchi H, Matsuda M, Iwanami N. Single-cell transcriptome analysis of medaka lymphocytes reveals absence of fully mature T cells in the thymus and the T-lineage commitment in the kidney. Front Immunol 2025; 15:1517467. [PMID: 39867910 PMCID: PMC11759298 DOI: 10.3389/fimmu.2024.1517467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a recombination activating gene 1 (rag1) mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells. scRNA-seq analysis of wild type and rag1 mutant lymphocytes in the thymus and kidney characterized the developing stages of T and B cells, and found that most developed cd4+cd8- and cd4-cd8+ single-positive (SP) T-cell populations are absent in the thymus, and identified lymphoid progenitor cells already committed to the T lineage in kidney, implying unique features of medaka lymphocyte development.
Collapse
Affiliation(s)
| | | | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
2
|
Franza M, Varricchio R, Alloisio G, De Simone G, Di Bella S, Ascenzi P, di Masi A. Zebrafish ( Danio rerio) as a Model System to Investigate the Role of the Innate Immune Response in Human Infectious Diseases. Int J Mol Sci 2024; 25:12008. [PMID: 39596075 PMCID: PMC11593600 DOI: 10.3390/ijms252212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The zebrafish (Danio rerio) has emerged as a valuable model for studying host-pathogen interactions due to its unique combination of characteristics. These include extensive sequence and functional conservation with the human genome, optical transparency in larvae that allows for high-resolution visualization of host cell-microbe interactions, a fully sequenced and annotated genome, advanced forward and reverse genetic tools, and suitability for chemical screening studies. Despite anatomical differences with humans, the zebrafish model has proven instrumental in investigating immune responses and human infectious diseases. Notably, zebrafish larvae rely exclusively on innate immune responses during the early stages of development, as the adaptive immune system becomes fully functional only after 4-6 weeks post-fertilization. This window provides a unique opportunity to isolate and examine infection and inflammation mechanisms driven by the innate immune response without the confounding effects of adaptive immunity. In this review, we highlight the strengths and limitations of using zebrafish as a powerful vertebrate model to study innate immune responses in infectious diseases. We will particularly focus on host-pathogen interactions in human infections caused by various bacteria (Clostridioides difficile, Staphylococcus aureus, and Pseudomonas aeruginosa), viruses (herpes simplex virus 1, SARS-CoV-2), and fungi (Aspergillus fumigatus and Candida albicans).
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Romualdo Varricchio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giulia Alloisio
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy;
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, 00146 Roma, Italy; (M.F.); (R.V.); (G.A.); (G.D.S.); (P.A.)
- Centro Linceo Interdisciplinare “Beniamino Segre”, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
3
|
McKinnon Reish H, Dewey L, Kirschman LJ. A host of issues: pseudoreplication in host-microbiota studies. Appl Environ Microbiol 2024; 90:e0103324. [PMID: 39082810 PMCID: PMC11337823 DOI: 10.1128/aem.01033-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Pseudoreplication compromises the validity of research by treating non-independent samples as independent replicates. This review examines the prevalence of pseudoreplication in host-microbiota studies, highlighting the critical need for rigorous experimental design and appropriate statistical analysis. We systematically reviewed 115 manuscripts on host-microbiota interactions. Our analysis revealed that 22% of the papers contained pseudoreplication, primarily due to co-housed organisms, whereas 52% lacked sufficient methodological details. The remaining 26% adequately addressed pseudoreplication through proper experimental design or statistical analysis. The high incidence of pseudoreplication and insufficient information underscores the importance of methodological reporting and statistical rigor to ensure reproducibility of host-microbiota research.
Collapse
Affiliation(s)
- Hannah McKinnon Reish
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
| | - Lindsey Dewey
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
- Deparment of Biology, University of Dayton, Dayton, Ohio, USA
| | - Lucas J. Kirschman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
| |
Collapse
|
4
|
Hussain MT, Stanfield BA, Bernstein DI. Small Animal Models to Study Herpes Simplex Virus Infections. Viruses 2024; 16:1037. [PMID: 39066200 PMCID: PMC11281376 DOI: 10.3390/v16071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) are two of the most prevalent human viruses worldwide. They are known to cause a variety of diseases including genital herpes, meningitis, encephalitis, cold sores and herpes stromal keratitis. The seropositive rate for HSV-1 is around 90%, whereas for HSV-2 it remains around 20-25% for the general adult population. The infections caused by these viruses remain difficult to study because a large proportion of infected individuals are asymptomatic. Furthermore, given the neurotropic characteristics of the virus, studies aimed at understanding the complex pathogenesis in humans is difficult. As a result, animal models have been developed to understand several characteristics of HSV biology, pathogenesis, disease and host responses to infection. These models are also commonly used as the first evaluation of new drugs and vaccines. There are several well-established animal models to study infection with HSV, including mice, guinea pigs and rabbits. Variables within the animal models depend on the species of animal, route of infection, viral strain, dosage, etc. This review aims at summarizing the most commonly used animal models to study HSV pathogenesis and therapies.
Collapse
Affiliation(s)
- Mohammed Tanveer Hussain
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brent A. Stanfield
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David I. Bernstein
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Liu X, Liu F, Liu L, Song Y, Liu H. Carbamazepine transmits immune effect by activation of gut-liver axis and TLR signaling pathway from parental zebrafish to offspring. Toxicol Sci 2024; 199:108-119. [PMID: 38445754 DOI: 10.1093/toxsci/kfae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Carbamazepine (CBZ) has been identified in the aquatic environment as an emerging contaminant. Its immune effect across generations at environmentally relevant concentrations is little known. We aim to elucidate the effects of CBZ on the immune system in zebrafish (Danio rerio), hypothesizing the effects caused by CBZ exposure in the parental generation can be passed on to its offspring, leading to impairment of innate immune function and defense against pathogen weakened. A suite of bioassays (including a test with added lipopolysaccharide) was used to measure the effects of environmentally relevant levels of CBZ (1, 10, and 100 μg/l) on zebrafish at multiple biological levels, and across 2 successive generations (21 days exposure for F0; 5 and 21 days exposure or nonexposure for F1). The results showed that CBZ affected homeostasis in the immune system, caused liver vacuolization, increased the inflammation-related microbiota proportion in gut, and decreased reproduction, by induction of oxidative stress and modulation of Toll-like receptors (TLR) signaling pathway on gut-liver axis. The effects of exposure to CBZ over 21 days in F0 could be passed to the next generation. Intergenerational effects on TLR and antioxidant defense system were also observed in nonexposed F1 at 5 days post-fertilization (5 dpf), but diminished at 21 dpf. The finding provided evidence to unravel immune response by gut-liver axis mediated and oxidative stress under 4 test conditions. The study has raised a potential concern about the multigenerational immune effects of environmental pollutants and calls for a focus on the risk of synergetic pathogen infection.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Fan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Li Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Oslo 0579, Norway
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
6
|
Purushothaman K, Crawford AD, Rocha SD, Göksu AB, Lange BM, Mydland LT, Vij S, Qingsong L, Øverland M, Press CM. Cyberlindnera jadinii yeast as a functional protein source: Modulation of immunoregulatory pathways in the intestinal proteome of zebrafish ( Danio rerio). Heliyon 2024; 10:e26547. [PMID: 38468924 PMCID: PMC10925985 DOI: 10.1016/j.heliyon.2024.e26547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Yeasts contain bioactive components that can enhance fish immune robustness and disease resistance. Our study focused on analyzing intestinal immunoregulatory pathways in zebrafish (Danio rerio) using iTRAQ and 2D LC-MS/MS to quantify intestinal proteins. Zebrafish were fed either control diet (C) or diet supplemented with autolyzed Cyberlindnera jadinii (ACJ). KEGG analysis revealed that ACJ yeast diet induced increased abundance of proteins related to arginine and proline metabolism, phagosome, C-lectin receptor signaling, ribosome and PPAR signaling pathways, which can modulate and enhance innate immune responses. ACJ yeast diet also showed decreased abundance of proteins associated with inflammatory pathways, including apoptosis, necroptosis and ferroptosis. These findings indicate boosted innate immune response and control of inflammation-related pathways in zebrafish intestine. Our findings in the well annotated proteome of zebrafish enabled a detailed investigation of intestinal responses and provide insight into health-beneficial effects of yeast species C. jadinii, which is relevant for aquaculture species.
Collapse
Affiliation(s)
- Kathiresan Purushothaman
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Alexander D. Crawford
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Sérgio D.C. Rocha
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Aleksandar B. Göksu
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Byron Morales Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Shubha Vij
- School of Applied Science, Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964, Singapore
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, 387380, Singapore
| | - Lin Qingsong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Charles McL. Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
Tanner CD, Rosowski EE. Macrophages inhibit extracellular hyphal growth of A. fumigatus through Rac2 GTPase signaling. Infect Immun 2024; 92:e0038023. [PMID: 38168666 PMCID: PMC10863406 DOI: 10.1128/iai.00380-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Macrophages act as a first line of defense against pathogens. Against Aspergillus fumigatus, a fungus with pathogenic potential in immunocompromised patients, macrophages can phagocytose fungal spores and inhibit spore germination to prevent the development of tissue-invasive hyphae. However, the cellular pathways that macrophages use to accomplish these tasks and any roles macrophages have later in infection against invasive forms of fungi are still not fully known. Rac-family Rho GTPases are signaling hubs for multiple cellular functions in leukocytes, including cell migration, phagocytosis, reactive oxygen species (ROS) generation, and transcriptional activation. We therefore aimed to further characterize the function of macrophages against A. fumigatus in an in vivo vertebrate infection model by live imaging of the macrophage behavior in A. fumigatus-infected rac2 mutant zebrafish larvae. While Rac2-deficient zebrafish larvae are susceptible to A. fumigatus infection, Rac2 deficiency does not impair macrophage migration to the infection site, interaction with and phagocytosis of spores, spore trafficking to acidified compartments, or spore killing. However, we reveal a role for Rac2 in macrophage-mediated inhibition of spore germination and control of invasive hyphae. Re-expression of Rac2 under a macrophage-specific promoter rescues the survival of A. fumigatus-infected rac2 mutant larvae through increased control of germination and hyphal growth. Altogether, we describe a new role for macrophages against extracellular hyphal growth of A. fumigatus and report that the function of the Rac2 Rho GTPase in macrophages is required for this function.
Collapse
Affiliation(s)
- Christopher D. Tanner
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
8
|
Hodorovich DR, Fryer Harris T, Burton DF, Neese KM, Bieler RA, Chudasama V, Marsden KC. Effects of 4 Testing Arena Sizes and 11 Types of Embryo Media on Sensorimotor Behaviors in Wild-Type and chd7 Mutant Zebrafish Larvae. Zebrafish 2024; 21:1-14. [PMID: 38301171 PMCID: PMC10902501 DOI: 10.1089/zeb.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
The larval zebrafish is a highly versatile model across research disciplines, and the expanding use of behavioral analysis has contributed to many advances in neuropsychiatric, developmental, and toxicological studies, often through large-scale chemical and genetic screens. In the absence of standardized approaches to larval zebrafish behavior analysis, however, it is critical to understand the impact on behavior of experimental variables such as the size of testing arenas and the choice of embryo medium. Using a custom-built, modular high-throughput testing system, we examined the effects of 4 testing arena sizes and 11 types of embryo media on conserved sensorimotor behaviors in zebrafish larvae. Our data show that testing arena size impacts acoustic startle sensitivity and kinematics, as well as spontaneous locomotion and thigmotaxis, with fish tested in larger arenas displaying reduced startle sensitivity and increased locomotion. We also find that embryo media can dramatically affect startle sensitivity, kinematics, habituation, and prepulse inhibition, as well as spontaneous swimming, turning, and overall activity. Common medium components such as methylene blue and high calcium concentration consistently reduced startle sensitivity and locomotion. To further address how the choice of embryo medium can impact phenotype expression in zebrafish models of disease, we reared chd7 mutant larvae, a model of CHARGE syndrome with previously characterized morphological and behavioral phenotypes, in five different types of media and observed impacts on all phenotypes. By defining the effects of these key extrinsic factors on larval zebrafish behavior, these data can help researchers select the most appropriate conditions for their specific research questions, particularly for genetic and chemical screens.
Collapse
Affiliation(s)
- Dana R Hodorovich
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tiara Fryer Harris
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Derek F Burton
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Katie M Neese
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rachael A Bieler
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Vimal Chudasama
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Bhai MKP, Binesh A, Shanmugam SA, Venkatachalam K. Effects of mercury chloride on antioxidant and inflammatory cytokines in zebrafish embryos. J Biochem Mol Toxicol 2024; 38:e23589. [PMID: 37985964 DOI: 10.1002/jbt.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
In this study, a zebrafish embryo toxicity model was employed, utilizing 24 h postfertilization (hpf) zebrafish embryos. These embryos were treated with varying concentrations of mercuric chloride for 96 h under static conditions. We assessed multiple parameters that reflected developmental abnormalities, behavioral alterations, morphological anomalies, antioxidant enzyme activities, including those of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST), immune messenger RNA transcription levels of key factors such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase 2 (COX-2), as well as protein expression of TNF-α. The results revealed that embryos exposed to higher concentrations of mercury exhibited reduced hatchability and increased rates of morphological abnormalities and mortality at 48, 72, and 96 hpf. In addition, a concentration-dependent increase in developmental abnormalities, including cardiac edema, reduced body length, yolk sac edema, scoliosis, and bent tails, was observed. Larval behaviors, such as touch-induced escape responses, startle reactions, and turning actions, were found to be diminished in a concentration-dependent manner. Additionally, the activities of various antioxidative enzymes, such as SOD, CAT, and GST, exhibited an increase at higher mercury concentrations, with the exception of GPX activity, which decreased significantly in a dose-dependent manner (p < 0.05). Pro-inflammatory cytokine transcription levels, specifically TNF-α, IL-1β, IL-6, and COX-2, were significantly upregulated in a dose-dependent manner in the mercuric (II) chloride (HgCl2 ) treatment group compared with the control group. TNF-α protein expression was notably elevated in the larvae group treated with 300 and 400 nM HgCl2 .
Collapse
Affiliation(s)
- Modi K P Bhai
- Department of Fisheries Biotechnology, Institute of Fisheries Postgraduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| | - S A Shanmugam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| |
Collapse
|
10
|
Lu W, Yang F, Meng Y, An J, Hu B, Jian S, Yang G, Lu H, Wen C. Immunotoxicity and transcriptome analysis of zebrafish embryos exposure to Nitazoxanide. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108977. [PMID: 37579811 DOI: 10.1016/j.fsi.2023.108977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Nitazoxanide (NTZ) is a broad-spectrum immunomodulatory drug, and little information is about the immunotoxicity of aquatic organisms induced by NTZ. In the present study, reduced body length and decreased yolk sac absorption in the NTZ-treated group were observed. Meanwhile, the number of innate immune cells and adaptive immune cells was substantially reduced upon NTZ exposure, and the migration and retention of macrophages and neutrophils in the injured area were inhibited. Following NTZ stimulation, oxidative stress levels in the zebrafish increased obviously. Mechanistically, RNA-seq, a high-throughput method, was performed to analyze the global expression of differentially expressed genes (DEGs) in zebrafish embryos treated with NTZ. 531 DEGs were identified by comparative transcriptome analysis, including 121 up-regulated and 420 down-regulated genes in zebrafish embryos after NTZ exposure. The transcriptome sequences were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) and analysis, showing phototransduction and metabolic pathway, respectively, and were most enriched. In addition, some immune-related genes were inhibited after NTZ exposure. RNA-seq results confirmed by qRT-PCR were used to verify the expression of the 6 selected genes. The other immune-related genes such as two pro-inflammatory cytokines (IL-1β, tnfα) and two chemokines (CXCL8b.3, CXCL-c1c) were further confirmed and were differentially regulated after NTZ exposure. In summary, NTZ exposure could lead to immunotoxicity and increased ROS in zebrafish embryos, this study provides valuable information for future elucidating the molecular mechanism of exogenous stimuli-induced immunotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Wuting Lu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Fanhua Yang
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Yunlong Meng
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinhua An
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Gang Yang
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
11
|
Hodorovich DR, Fryer Harris T, Burton D, Neese K, Bieler R, Chudasama V, Marsden KC. Effects of 4 testing arena sizes and 11 types of embryo media on sensorimotor behaviors in wild-type and chd7 mutant zebrafish larvae: Media and arena size impact zebrafish behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551330. [PMID: 37577457 PMCID: PMC10418063 DOI: 10.1101/2023.07.31.551330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The larval zebrafish is a highly versatile model across research disciplines, and the expanding use of behavioral analysis has contributed to many advances in neuro-psychiatric, developmental, and toxicological studies, often through large-scale chemical and genetic screens. In the absence of standardized approaches to larval zebrafish behavior analysis, however, it is critical to understand the impact on behavior of experimental variables such as the size of testing arenas and the choice of embryo medium. Using a custom-built, modular high-throughput testing system, we examined the effects of 4 testing arena sizes and 11 types of embryo media on conserved sensorimotor behaviors in zebrafish larvae. Our data show that testing arena size impacts acoustic startle sensitivity and kinematics as well as spontaneous locomotion and thigmotaxis, with fish tested in larger arenas displaying reduced startle sensitivity and increased locomotion. We also find that embryo media can dramatically affect startle sensitivity, kinematics, habituation, and pre-pulse inhibition, as well as spontaneous swimming, turning, and overall activity. Common media components such as methylene blue and high calcium concentration consistently reduced startle sensitivity and locomotion. To further address how the choice of embryo medium can impact phenotype expression in zebrafish models of disease, we reared chd7 mutant larvae, a model of CHARGE syndrome with previously characterized morphological and behavioral phenotypes, in 5 different types of media and observed impacts on all phenotypes. By defining the effects of these key extrinsic factors on larval zebrafish behavior, these data can help researchers select the most appropriate conditions for their specific research questions, particularly for genetic and chemical screens.
Collapse
Affiliation(s)
- Dana R. Hodorovich
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
- Current Address: National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Tiara Fryer Harris
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Derek Burton
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
- Current Address: Biogen, Durham, North Carolina, United States of America
| | - Katie Neese
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Rachael Bieler
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Vimal Chudasama
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Kurt. C Marsden
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| |
Collapse
|
12
|
Ott JA, Haakenson JK, Kelly AR, Christian C, Criscitiello MF, Smider VV. Evolution of surrogate light chain in tetrapods and the relationship between lengths of CDR H3 and VpreB tails. Front Immunol 2022; 13:1001134. [PMID: 36311706 PMCID: PMC9614664 DOI: 10.3389/fimmu.2022.1001134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
In the mammalian immune system, the surrogate light chain (SLC) shapes the antibody repertoire during B cell development by serving as a checkpoint for production of functional heavy chains (HC). Structural studies indicate that tail regions of VpreB contact and cover the third complementarity-determining region of the HC (CDR H3). However, some species, particularly bovines, have CDR H3 regions that may not be compatible with this HC-SLC interaction model. With immense structural and genetic diversity in antibody repertoires across species, we evaluated the genetic origins and sequence features of surrogate light chain components. We examined tetrapod genomes for evidence of conserved gene synteny to determine the evolutionary origin of VpreB1, VpreB2, and IGLL1, as well as VpreB3 and pre-T cell receptor alpha (PTCRA) genes. We found the genes for the SLC components (VpreB1, VpreB2, and IGLL1) only in eutherian mammals. However, genes for PTCRA occurred in all amniote groups and genes for VpreB3 occurred in all tetrapod groups, and these genes were highly conserved. Additionally, we found evidence of a new VpreB gene in non-mammalian tetrapods that is similar to the VpreB2 gene of eutherian mammals, suggesting VpreB2 may have appeared earlier in tetrapod evolution and may be a precursor to traditional VpreB2 genes in higher vertebrates. Among eutherian mammals, sequence conservation between VpreB1 and VpreB2 was low for all groups except rabbits and rodents, where VpreB2 was nearly identical to VpreB1 and did not share conserved synteny with VpreB2 of other species. VpreB2 of rabbits and rodents likely represents a duplicated variant of VpreB1 and is distinct from the VpreB2 of other mammals. Thus, rabbits and rodents have two variants of VpreB1 (VpreB1-1 and VpreB1-2) but no VpreB2. Sequence analysis of VpreB tail regions indicated differences in sequence content, charge, and length; where repertoire data was available, we observed a significant relationship between VpreB2 tail length and maximum DH length. We posit that SLC components co-evolved with immunoglobulin HC to accommodate the repertoire - particularly CDR H3 length and structure, and perhaps highly unusual HC (like ultralong HC of cattle) may bypass this developmental checkpoint altogether.
Collapse
Affiliation(s)
- Jeannine A. Ott
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jeremy K. Haakenson
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abigail R. Kelly
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Claire Christian
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Vaughn V. Smider
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
13
|
Rubin SA, Baron CS, Pessoa Rodrigues C, Duran M, Corbin AF, Yang SP, Trapnell C, Zon LI. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish. J Exp Med 2022; 219:e20220038. [PMID: 35938989 PMCID: PMC9365674 DOI: 10.1084/jem.20220038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has proven to be a valuable model organism for studying hematopoiesis, but relatively little is known about zebrafish immune cell development and functional diversity. Elucidating key aspects of zebrafish lymphocyte development and exploring the breadth of effector functions would provide valuable insight into the evolution of adaptive immunity. We performed single-cell RNA sequencing on ∼70,000 cells from the zebrafish marrow and thymus to establish a gene expression map of zebrafish immune cell development. We uncovered rich cellular diversity in the juvenile and adult zebrafish thymus, elucidated B- and T-cell developmental trajectories, and transcriptionally characterized subsets of hematopoietic stem and progenitor cells and early thymic progenitors. Our analysis permitted the identification of two dendritic-like cell populations and provided evidence in support of the existence of a pre-B cell state. Our results provide critical insights into the landscape of zebrafish immunology and offer a foundation for cellular and genetic studies.
Collapse
Affiliation(s)
- Sara A. Rubin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Chloé S. Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Cecilia Pessoa Rodrigues
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alexandra F. Corbin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Song P. Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
14
|
Iribarne M, Hyde DR. Different inflammation responses modulate Müller glia proliferation in the acute or chronically damaged zebrafish retina. Front Cell Dev Biol 2022; 10:892271. [PMID: 36120571 PMCID: PMC9472244 DOI: 10.3389/fcell.2022.892271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike mammals, zebrafish regenerate in response to retinal damage. Because microglia are activated by retinal damage, we investigated their role during regeneration following either acute or chronic damage. At three weeks post-fertilization (wpf), both wild-type fish exhibiting NMDA-induced acute ganglion and amacrine cell death and gold rush (gosh) mutant fish possessing chronic cone photoreceptor degeneration displayed reactive microglia/macrophages and Müller glia proliferation. Dexamethasone-treated retinas, to inhibit the immune response, lacked reactive microglia/macrophages and possessed fewer PCNA-positive cells, while LPS treatment increased microglia/macrophages and PCNA-labeled cells. NMDA-injured retinas upregulated expression of il-1β and tnfα pro-inflammatory cytokine genes, followed by increased expression of il-10 and arg1 anti-inflammatory/remodeling cytokine genes. A transient early TNFα pro-inflammatory microglia/macrophage population was visualized in NMDA-damaged retinas. In contrast, gosh mutant retinas exhibited a slight increase of pro-inflammatory cytokine gene expression concurrently with a greater increased anti-inflammatory/remodeling cytokine gene expression. Few TNFα pro-inflammatory microglia/macrophages were observed in the gosh retina. Understanding why acute and chronic damage results in different inflammation profiles and their effects on regulating zebrafish retinal regeneration would provide important clues toward improving therapeutic strategies for repairing injured mammalian tissues.
Collapse
Affiliation(s)
- Maria Iribarne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| | - David R. Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
- *Correspondence: David R. Hyde,
| |
Collapse
|
15
|
Juste RA, Ferreras-Colino E, de la Fuente J, Domínguez M, Risalde MA, Domínguez L, Cabezas-Cruz A, Gortázar C. Heat inactivated mycobacteria, alpha-gal and zebra fish: insights gained from experiences with two promising trained immunity inductors and a validated animal model. Immunol Suppl 2022; 167:139-153. [PMID: 35752944 DOI: 10.1111/imm.13529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in nonspecific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the etiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,NySA. Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, 28220 Majadahonda, Madrid, Spain
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| |
Collapse
|
16
|
Kwon V, Cai P, Dixon CT, Hamlin V, Spencer CG, Rojas AM, Hamilton M, Shiau CE. Peripheral NOD-like receptor deficient inflammatory macrophages trigger neutrophil infiltration into the brain disrupting daytime locomotion. Commun Biol 2022; 5:464. [PMID: 35577844 PMCID: PMC9110401 DOI: 10.1038/s42003-022-03410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is known to disrupt normal behavior, yet the underlying neuroimmune interactions remain elusive. Here, we investigated whether inappropriate macrophage-evoked inflammation alters CNS control of daily-life animal locomotion using a set of zebrafish mutants selected for specific macrophage dysfunction and microglia deficiency. Large-scale genetic and computational analyses revealed that NOD-like receptor nlrc3l mutants are capable of normal motility and visuomotor response, but preferentially swim less in the daytime, suggesting possible low motivation rather than physical impairment. Examining their brain activities and structures implicates impaired dopaminergic descending circuits, where neutrophils abnormally infiltrate. Furthermore, neutrophil depletion recovered daytime locomotion. Restoring wild-type macrophages reversed behavioral and neutrophil aberrations, while three other microglia-lacking mutants failed to phenocopy nlrc3l mutants. Overall, we reveal how peripheral inflammatory macrophages with elevated pro-inflammatory cues (including il1β, tnfα, cxcl8a) in the absence of microglia co-opt neutrophils to infiltrate the brain, thereby potentially enabling local circuitry modulation affecting daytime locomotion.
Collapse
Affiliation(s)
- Victoria Kwon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiwen Cai
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cameron T Dixon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Hamlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline G Spencer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alison M Rojas
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Hamilton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celia E Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Sertori R, Jones R, Basheer F, Rivera L, Dawson S, Loke S, Heidary S, Dhillon A, Liongue C, Ward AC. Generation and Characterization of a Zebrafish IL-2Rγc SCID Model. Int J Mol Sci 2022; 23:ijms23042385. [PMID: 35216498 PMCID: PMC8875600 DOI: 10.3390/ijms23042385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
The IL-2 family of cytokines act via receptor complexes that share the interleukin-2 receptor gamma common (IL-2Rγc) chain to play key roles in lymphopoiesis. Inactivating IL-2Rγc mutations results in severe combined immunodeficiency (SCID) in humans and other species. This study sought to generate an equivalent zebrafish SCID model. The zebrafish il2rga gene was targeted for genome editing using TALENs and presumed loss-of-function alleles analyzed with respect to immune cell development and impacts on intestinal microbiota and tumor immunity. Knockout of zebrafish Il-2rγc.a resulted in a SCID phenotype, including a significant reduction in T cells, with NK cells also impacted. This resulted in dysregulated intestinal microbiota and defective immunity to tumor xenotransplants. Collectively, this establishes a useful zebrafish SCID model.
Collapse
Affiliation(s)
- Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Realla Jones
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Leni Rivera
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Samantha Dawson
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Stella Loke
- School of Life and Environmental Science, Deakin University, Burwood, VIC 3125, Australia;
| | - Somayyeh Heidary
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Amardeep Dhillon
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|
18
|
Kim H, Kim B, Shin YJ, Kim J, Kim HJ, Kim K, Kim P, Park K. Effect of benzotriazole on oxidative stress response and transcriptional gene expression in Oryzias latipes and Danio rerio embryo. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109222. [PMID: 34718189 DOI: 10.1016/j.cbpc.2021.109222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/03/2022]
Abstract
Emerging contaminants (EC) such as benzotriazole are being released into the environment in various ways, therefore it is necessary to understand how organisms are affected by EC. In this study, we exposed medaka (Oryzias latipes) and zebrafish (Danio rerio) during their embryonic period (1 day after hatching) to benzotriazole to investigate its effects on oxidative stress (ROS, GSH, GST, SOD, CAT and MDA) and changes in gene expression patterns. In both medaka and zebrafish, the influence of oxidative stress was confirmed through an increased MDA level and changes in the ROS and GSH levels. Antioxidant enzymes such as GST, CAT, and SOD were affected by benzotriazole; however, medaka and zebrafish showed different patterns in the effects by benzotriazole. Results of oxidative stress genes expression showed that medaka had either no influence or had a decrease in the gene expression profile, whereas zebrafish had a statistically significant increase in the expression of some genes. The cyp1a gene expression was increased in both species. However, vtg gene expression was increased only in zebrafish but decreased in medaka, indicating no estrogenic effects in medaka. Apoptosis genes showed changes in expression in both the species but was these changes were not dose-dependent. However, zebrafish caspase-9 gene expression was increased in all of the exposed groups, suggesting the effects on the intrinsic pathway associated with caspase-9. In conclusion, the results indicate that the toxic effects of benzotriazole differ at various levels in the two small fish medaka and zebrafish embryos.
Collapse
Affiliation(s)
- Hokyun Kim
- Risk Assessment Division, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea.
| | - Bokyung Kim
- Risk Assessment Division, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Yu-Jin Shin
- Risk Assessment Division, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Jieun Kim
- Risk Assessment Division, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Hee-Jung Kim
- Risk Assessment Division, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Kyungtae Kim
- Risk Assessment Division, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Risk Assessment Division, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Kyunghwa Park
- Risk Assessment Division, National Institute of Environmental Research, Kyungseo-Dong, Seo-gu, Incheon 22689, Republic of Korea.
| |
Collapse
|
19
|
Shan C, Li M, Liu Z, Xu R, Qiao F, Du ZY, Zhang ML. Pediococcus pentosaceus Enhances Host Resistance Against Pathogen by Increasing IL-1β Production: Understanding Probiotic Effectiveness and Administration Duration. Front Immunol 2021; 12:766401. [PMID: 34899717 PMCID: PMC8662542 DOI: 10.3389/fimmu.2021.766401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Probiotic administration is a potential strategy against enteric pathogen infection in either clinical treatment or animal nutrition industry, but the administration duration of probiotics varied and the underlying mechanisms remain unclear. A strain (YC) affiliated to Pediococcus pentosaceus, a commonly used probiotic, was isolated from fish gut and the potential role of YC against Aeromonas hydrophila was detected in zebrafish. We found that 3- or 4-week YC administration (YC3W or YC4W) increased the resistance against A. hydrophila while 1- or 2-week treatment (YC1W or YC2W) did not. To determine the possible reason, intestinal microbiota analysis and RNAseq were conducted. The results showed that compared with CON and YC1W, YC4W significantly increased the abundance of short-chain fatty acids (SCFAs) producing bacteria and elevated the gene expression of nlrp3. Higher butyrate content and enhanced expression of IL1β were subsequently found in YC4W. To identify the causal relationship between butyrate and the higher pathogen resistance, different concentrations of sodium butyrate (SB) were supplemented. The results suggested that 10 mmol/kg SB addition mirrored the protective effect of YC4W by increasing the production of IL-1β. Furthermore, the increased IL-1β raised the percentage of intestinal neutrophils, which endued the zebrafish with A. hydrophila resistance. In vivo knockdown of intestinal il1b eliminated the anti-infection effect. Collectively, our data suggested that the molecular mechanism of probiotics determined the administration duration, which is vital for the efficiency of probiotics. Promoting host inflammation by probiotic pretreatment is one potential way for probiotics to provide their protective effects against pathogens.
Collapse
Affiliation(s)
- Chengjie Shan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Miao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhu Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China.,School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Xu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Yang L, Rojas AM, Shiau CE. Liposomal Clodronate-mediated Macrophage Depletion in the Zebrafish Model. Bio Protoc 2021; 11:e3951. [PMID: 33855113 DOI: 10.21769/bioprotoc.3951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 01/04/2023] Open
Abstract
The ability to conduct in vivo macrophage-specific depletion remains an effective means to uncover functions of macrophages in a wide range of physiological contexts. Compared to the murine model, zebrafish offer superior imaging capabilities due to their optical transparency starting from a single-cell stage to throughout larval development. These qualities become important for in vivo cell specific depletions so that the elimination of the targeted cells can be tracked and validated in real time through microscopy. Multiple methods to deplete macrophages in zebrafish are available, including genetic (such as an irf8 knockout), chemogenetic (such as the nitroreductase/metronidazole system), and toxin-based depletions (such as using clodronate liposomes). The use of clodronate-containing liposomes to induce macrophage apoptosis after phagocytosing the liposomes is effective in depleting macrophages as well as testing their ability to phagocytose. Here we describe a detailed protocol for the systemic depletion of macrophages in zebrafish larvae by intravenous injection of liposomal clodronate supplemented with fluorescent dextran conjugates. Co-injection with the fluorescent dextran allows tracking of macrophage depletion in real time starting with verifying the successful intravenous injection to macrophage uptake of molecules and their eventual death. To verify a high degree of macrophage depletion, the level of brain macrophage (microglia) elimination can be determined by a rapid neutral red vital dye staining when clodronate injection is performed at early larval stages. Graphical abstract: Experimental workflow for in vivo macrophage-specific depletion by liposomal clodronate in larval zebrafish.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Alison M Rojas
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Celia E Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
21
|
Loes AN, Hinman MN, Farnsworth DR, Miller AC, Guillemin K, Harms MJ. Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1046-1057. [PMID: 33472906 PMCID: PMC7889624 DOI: 10.4049/jimmunol.1901288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
The zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS sensing. In amniotes, the protein complex formed by TLR4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule LPS and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4; Md-2 has not been identified outside of amniotes, whereas the zebrafish tlr4 genes appear to be paralogs, not orthologs, of amniote TLR4s We revisited these conclusions. We identified a zebrafish gene encoding Md-2, ly96 Using single-cell RNA sequencing, we found that ly96 is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafish tlr4-like genes. In larval zebrafish, ly96 is expressed in a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4ba form a complex that activates NF-κB signaling in response to LPS. In larval zebrafish ly96 loss-of-function mutations perturbed LPS-induced cytokine production but gave little protection against LPS toxicity. Finally, by analyzing the genomic context of tlr4 genes in 11 jawed vertebrates, we found that tlr4 arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than a de novo invention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS responsiveness to a specific subset of innate immune cells.
Collapse
Affiliation(s)
- Andrea N Loes
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| | - Melissa N Hinman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
| | - Dylan R Farnsworth
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403; and
| | - Adam C Miller
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403; and
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403;
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| |
Collapse
|
22
|
Abstract
Tissue or organ regeneration is a complex process with successful outcomes depending on the type of tissue and organism. Upon damage, mammals can only efficiently restore a few tissues including the liver, skin, epithelia of the lung, kidney, and gut. In contrast, lower vertebrates such as zebrafish possess an extraordinary regeneration ability, which restores the normal function of a broad spectrum of tissues including heart, fin, brain, spinal cord, and retina. This regeneration process is either mediated by the proliferation of resident stem cells, or cells that dedifferentiate into a stem cell-like. In recent years, evidence has suggested that the innate immune system can modulate stem cell activity to initiate the regenerative response to damage. This review will explore some of the newer concepts of inflammation in zebrafish regeneration in different tissues. Understanding how inflammation regulates regeneration in zebrafish would provide important clues to improve the therapeutic strategies for repairing injured mammalian tissues that do not have an inherent regenerative capacity.
Collapse
Affiliation(s)
- Maria Iribarne
- Center for Zebrafish Research, Department of Biological Sciences; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
23
|
López Nadal A, Ikeda-Ohtsubo W, Sipkema D, Peggs D, McGurk C, Forlenza M, Wiegertjes GF, Brugman S. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Front Immunol 2020; 11:114. [PMID: 32117265 PMCID: PMC7014991 DOI: 10.3389/fimmu.2020.00114] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aquafeed companies aim to provide solutions to the various challenges related to nutrition and health in aquaculture. Solutions to promote feed efficiency and growth, as well as improving the fish health or protect the fish gut from inflammation may include dietary additives such as prebiotics and probiotics. The general assumption is that feed additives can alter the fish microbiota which, in turn, interacts with the host immune system. However, the exact mechanisms by which feed influences host-microbe-immune interactions in fish still remain largely unexplored. Zebrafish rapidly have become a well-recognized animal model to study host-microbe-immune interactions because of the diverse set of research tools available for these small cyprinids. Genome editing technologies can create specific gene-deficient zebrafish that may contribute to our understanding of immune functions. Zebrafish larvae are optically transparent, which allows for in vivo imaging of specific (immune) cell populations in whole transgenic organisms. Germ-free individuals can be reared to study host-microbe interactions. Altogether, these unique zebrafish features may help shed light on the mechanisms by which feed influences host-microbe-immune interactions and ultimately fish health. In this review, we first describe the anatomy and function of the zebrafish gut: the main surface where feed influences host-microbe-immune interactions. Then, we further describe what is currently known about the molecular pathways that underlie this interaction in the zebrafish gut. Finally, we summarize and critically review most of the recent research on prebiotics and probiotics in relation to alterations of zebrafish microbiota and immune responses. We discuss the advantages and disadvantages of the zebrafish as an animal model for other fish species to study feed effects on host-microbe-immune interactions.
Collapse
Affiliation(s)
- Adrià López Nadal
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Detmer Sipkema
- Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - David Peggs
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - Charles McGurk
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
24
|
Rosowski EE. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 2020; 13:13/1/dmm041889. [PMID: 31932292 PMCID: PMC6994940 DOI: 10.1242/dmm.041889] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The specific roles of the two major innate immune cell types – neutrophils and macrophages – in response to infection and sterile inflammation are areas of great interest. The larval zebrafish model of innate immunity, and the imaging capabilities it provides, is a source of new research and discoveries in this field. Multiple methods have been developed in larval zebrafish to specifically deplete functional macrophages or neutrophils. Each of these has pros and cons, as well as caveats, that often make it difficult to directly compare results from different studies. The purpose of this Review is to (1) explore the pros, cons and caveats of each of these immune cell-depleted models; (2) highlight and place into a broader context recent key findings on the specific functions of innate immune cells using these models; and (3) explore future directions in which immune cell depletion methods are being expanded. Summary: Macrophages and neutrophils are distinct innate immune cells with diverse roles in diverse inflammatory contexts. Recent research in larval zebrafish using cell-specific depletion methods has revealed new insights into these cells' functions.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
25
|
Rout AK, Paramanik S, Dehury B, Acharya V, Swain HS, Pradhan SK, Behera B, Pati SK, Behera BK, Das BK. Elucidating the molecular interaction of Zebrafish (Danio rerio) peptidoglycan recognition protein 2 with diaminopimelic acid and lysine type peptidoglycans using in silico approaches. J Biomol Struct Dyn 2019; 38:3687-3699. [DOI: 10.1080/07391102.2019.1666742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Sunanda Paramanik
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Varsha Acharya
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Himanshu Sekhar Swain
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
| | - Soumen Kumar Pati
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| |
Collapse
|
26
|
Ji J, Merino S, Tomás JM, Roher N. Nanoliposomes encapsulating immunostimulants modulate the innate immune system and elicit protection in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 92:421-429. [PMID: 31195115 DOI: 10.1016/j.fsi.2019.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Here we present immunostimulant-loaded nanoliposomes (NLc) as a strategy to protect zebrafish larvae against bacterial infection. The NLc encapsulate crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid (Poly I:C), a synthetic analogue of viral dsRNA. Fluorescently-labeled NLc were ingested by zebrafish larvae 4 days post fertilization, when administrated by bath immersion, and accumulated in the intestine. RT-qPCR analysis showed the expression of innate immune related genes (tnfα, il1β, nos2a, irf1a and ptgs2a) was significantly upregulated at 48 h post NLc treatment. A zebrafish larvae infection model for Aeromonas hydrophila was set up by bath immersion, achieving bacterial-dose-dependent significant differences in survival at day 5 post infection in both injured and non-injured larvae. Using this model, NLc protected non-injured zebrafish larvae against an A. hydrophila lethal infection. In contrast, neither the empty nanoliposomes nor the mixture of immunostimulants could protect larvae against lethal challenges. Our results demonstrate that nanoliposomes could be further developed as an efficient carrier, widening the scope for delivery of other immunostimulants in aquaculture.
Collapse
Affiliation(s)
- Jie Ji
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Juan M Tomás
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
27
|
Breen P, Winters AD, Nag D, Ahmad MM, Theis KR, Withey JH. Internal Versus External Pressures: Effect of Housing Systems on the Zebrafish Microbiome. Zebrafish 2019; 16:388-400. [PMID: 31145047 DOI: 10.1089/zeb.2018.1711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish (Danio rerio) are an attractive model organism for scientific studies, including host-microbe interactions. The organism is particularly useful for studying aquatic microbes that can colonize vertebrate hosts, including Vibrio cholerae. Previous studies have established the presence of a core zebrafish intestinal microbiome, and tracked the development of the zebrafish intestinal microbiome from the larval stage to adulthood. An unexplored matter in this host-microbe relationship is the effect of the housing system on the zebrafish intestinal and tank water microbiomes. In this study, we used 16S rRNA gene sequencing to investigate the response of zebrafish intestinal and tank water microbiomes to a change in housing conditions. Zebrafish in the separated fish tanks showed no initial differences in the structures of their intestinal microbial profiles; the same prominent bacteria were present and abundant across tanks. Immediately after the housing switch, the zebrafish intestinal microbial profiles changed in composition and structure. Within 5 days of the housing switch, the intestinal microbiome had stabilized, and changed significantly from the prehousing switch profile. This study demonstrates that although external factors can significantly perturb and alter the zebrafish intestinal microbiome, the microbiome displays a large level of selective resilience whose primary members (namely Vibrio) persist.
Collapse
Affiliation(s)
- Paul Breen
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Dhrubajyoti Nag
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Madison M Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan
| |
Collapse
|
28
|
Zebrafish Granulocyte Colony-Stimulating Factor Receptor Maintains Neutrophil Number and Function throughout the Life Span. Infect Immun 2019; 87:IAI.00793-18. [PMID: 30455199 DOI: 10.1128/iai.00793-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023] Open
Abstract
Granulocyte colony-stimulating factor receptor (G-CSFR), encoded by the CSF3R gene, represents a major regulator of neutrophil production and function in mammals, with inactivating extracellular mutations identified in a cohort of neutropenia patients unresponsive to G-CSF treatment. This study sought to elucidate the role of the zebrafish G-CSFR by generating mutants harboring these inactivating extracellular mutations using genome editing. Zebrafish csf3r mutants possessed significantly decreased numbers of neutrophils from embryonic to adult stages, which were also functionally compromised, did not respond to G-CSF, and displayed enhanced susceptibility to bacterial infection. The study has identified an important role for the zebrafish G-CSFR in maintaining the number and functionality of neutrophils throughout the life span and created a bona fide zebrafish model of nonresponsive neutropenia.
Collapse
|
29
|
Ye B, Xiong X, Deng X, Gu L, Wang Q, Zeng Z, Gao X, Gao Q, Wang Y. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration. PHARMACEUTICAL BIOLOGY 2017; 55:673-679. [PMID: 27981893 PMCID: PMC6130669 DOI: 10.1080/13880209.2016.1238949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/16/2016] [Indexed: 06/01/2023]
Abstract
CONTEXT Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. OBJECTIVE Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. MATERIALS AND METHODS In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. RESULTS In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p < 0.0001). Also, we found that meisoindigo did not affect the process of leukocyte reverse migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. DISCUSSION AND CONCLUSION Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Baixin Ye
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Deng
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiongyu Wang
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingping Gao
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yueying Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Yin J, Wang AP, Li WF, Shi R, Jin HT, Wei JF. Sensitive biomarkers identification for differentiating Cd and Pb induced toxicity on zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:340-349. [PMID: 29102874 DOI: 10.1016/j.etap.2017.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) and lead (Pb) are naturally existing heavy metals that pose significant health risks. The present study aims to identify sensitive biomarkers for differentiating the toxicities induced by Cd and Pb and for providing clues for the early prediction of toxicity and environmental risk assessment. Indicators related to oxidative stress and inflammatory responses in zebrafish treated with Cd and Pb over time (from 24hpf to 96hpf) were compared. Furthermore, endpoints such as embryo lethality and teratogenicity were detected. Then, several related genes involved in oxidative stress and inflammatory responses characterizing both Cd and Pb exposure, along with key molecules in the MAPKs pathway, were compared at the mRNA level, allowing the selection of the most sensitive and informative biomarkers. Significant increases in reactive oxygen species (ROS) production were observed in zebrafish exposed to Cd and Pb. Cd and Pb exposure induced developmental toxicity, influencing survival rate, hatching rate, larval growth, and heart rate and causing abnormal embryonic development. Similar trends in SOD1 and SOD2 gene expression were induced by Cd and Pb, while nuclear factor erythroid-2 related factor 2 (Nrf2) gene expression responded differently to each metal. In addition, Cd and Pb induced a delayed activation of the CAT and HO-1 genes, with no apparent change in the 24hpf and 48hpf groups. Genes related to immunotoxicity were activated significantly in a time-dependent manner, and these genes exhibited different sensitivities to Cd and Pb. MAPKs pathway genes were also activated in a time-dependent manner, and the expression of these genes showed different effects under Cd and Pb treatment. In summary, the present works have identified some potential sensitive biomarkers. The Nrf2 gene is a potential biomarker to differentiate Pb-induced toxicity from that of Cd, and the IFN-γ gene may be used as a sensitive biomarker for evaluating the risk of Pb contamination. We found that the timeline of MAPKs pathway activation helped to differentiate these two metals toxicities. Furthermore, Pb induced the early activation of ERK2/3 and JNK1, while p38 MAPKs showed delayed activation with no apparent change in the 24hpf group. Cd induced an early activation of ERK2 and a delayed activation of p38a, p38b, ERK3 and JNK1, indicating that the JNK1 pathway is sensitive to Pb exposure, while the p38 pathway may be susceptible to Cd. This work contributes to sensitive biomarker identification and early environmental risk evaluation for chemicals as well as toxicity prediction.
Collapse
Affiliation(s)
- Jian Yin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ai-Ping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Wan-Fang Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Rui Shi
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Hong-Tao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jin-Feng Wei
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
31
|
Forn-Cuní G, Varela M, Pereiro P, Novoa B, Figueras A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep 2017; 7:41905. [PMID: 28157230 PMCID: PMC5291205 DOI: 10.1038/srep41905] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential.
Collapse
Affiliation(s)
- G Forn-Cuní
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - M Varela
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - P Pereiro
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - B Novoa
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - A Figueras
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| |
Collapse
|
32
|
Rey S, Moiche V, Boltaña S, Teles M, MacKenzie S. Behavioural fever in zebrafish larvae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:287-292. [PMID: 27670815 DOI: 10.1016/j.dci.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Behavioural fever has been reported in different species of mobile ectotherms including the zebrafish, Danio rerio, in response to exogenous pyrogens. In this study we report, to our knowledge for the first time, upon the ontogenic onset of behavioural fever in zebrafish (Danio rerio) larvae. For this, zebrafish larvae (from first feeding to juveniles) were placed in a continuous thermal gradient providing the opportunity to select their preferred temperature. The novel thermal preference aquarium was based upon a continuous vertical column system and allows for non-invasive observation of larvae vertical distribution under isothermal (TR at 28 °C) and thermal gradient conditions (TCH: 28-32 °C). Larval thermal preference was assessed under both conditions with or without an immersion challenge, in order to detect the onset of the behavioural fever response. Our results defined the onset of the dsRNA induced behavioural fever at 18-20 days post fertilization (dpf). Significant differences were observed in dsRNA challenged larvae, which prefer higher temperatures (1-4 °C increase) throughout the experimental period as compared to non-challenged larvae. In parallel we measured the abundance of antiviral transcripts; viperin, gig2, irf7, trim25 and Mxb mRNAs in dsRNA challenged larvae under both thermal regimes: TR and TCh. Significant increases in the abundance of all measured transcripts were recorded under thermal choice conditions signifying that thermo-coupling and the resultant enhancement of the immune response to dsRNA challenge occurs from 18 dpf onwards in the zebrafish. The results are of importance as they identify a key developmental stage where the neuro-immune interface matures in the zebrafish likely providing increased resistance to viral infection.
Collapse
Affiliation(s)
- Sonia Rey
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Visila Moiche
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Sebastian Boltaña
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Mariana Teles
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain
| | - Simon MacKenzie
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
33
|
von Gersdorff Jørgensen L. Infection and immunity against Ichthyophthirius multifiliis in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2016; 57:335-339. [PMID: 27567935 DOI: 10.1016/j.fsi.2016.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Ichthyophthirius multifiliis, causing white spot disease, is a serious pathogen in aquaculture as well as for the ornamental fish industry. In carp, channel catfish and rainbow trout the immune responses against the parasite have been partly elucidated and these species are able to acquire a high level of immunity against the disease. Zebrafish are however, known to be more resilient towards the disease than channel catfish but the pathology and the ability to obtain protection is unknown. In this study a primary infection in the gills of zebrafish was described and the subsequent acquirement of immunity was evaluated. The parasites in the gills induced hyperplasia, an increase of mucus cells, adhesion and shortening of the secondary lamellae, narrowing of water channels and proliferation. The parasite burden was significantly lower in survivor fish and where all naive fish died within 6 days following secondary infection (challenge) only one of the survivor fish died. This study demonstrates that zebrafish are susceptible to I. multifiliis and that gill pathology is similar to the situation observed in rainbow trout. Furthermore, zebrafish are able to acquire immunity against white spot disease and may therefore be a suitable model organism to study innate and protective immunology and host/parasite interactions during I. multifiliis infections.
Collapse
Affiliation(s)
- Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, DK-1870, Frederiksberg C, Denmark.
| |
Collapse
|
34
|
Korbut R, Mehrdana F, Kania PW, Larsen MH, Frees D, Dalsgaard I, Jørgensen LVG. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri. PLoS One 2016; 11:e0158968. [PMID: 27404564 PMCID: PMC4942034 DOI: 10.1371/journal.pone.0158968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/26/2016] [Indexed: 12/04/2022] Open
Abstract
Immersion-vaccines (bacterins) are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr). During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP) and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant) received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC). In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb) Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species.
Collapse
Affiliation(s)
- Rozalia Korbut
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Foojan Mehrdana
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Per Walter Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne Halberg Larsen
- Food Safety and Zoonoses, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Dorte Frees
- Food Safety and Zoonoses, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Inger Dalsgaard
- Section for Bacteriology and Pathology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
35
|
Nita-Lazar M, Mancini J, Feng C, González-Montalbán N, Ravindran C, Jackson S, de Las Heras-Sánchez A, Giomarelli B, Ahmed H, Haslam SM, Wu G, Dell A, Ammayappan A, Vakharia VN, Vasta GR. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:241-252. [PMID: 26429411 PMCID: PMC4684960 DOI: 10.1016/j.dci.2015.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion.
Collapse
Affiliation(s)
- Mihai Nita-Lazar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Núria González-Montalbán
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Chinnarajan Ravindran
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Shawn Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Ana de Las Heras-Sánchez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Barbara Giomarelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Hafiz Ahmed
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Gang Wu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Arun Ammayappan
- Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Vikram N Vakharia
- Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Huang G, Huang S, Wang R, Yan X, Li Y, Feng Y, Wang S, Yang X, Chen L, Li J, You L, Chen S, Luo G, Xu A. Dynamic Regulation of Tandem 3' Untranslated Regions in Zebrafish Spleen Cells during Immune Response. THE JOURNAL OF IMMUNOLOGY 2015; 196:715-25. [PMID: 26673144 DOI: 10.4049/jimmunol.1500847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/08/2015] [Indexed: 12/24/2022]
Abstract
Alternative polyadenylation (APA) has been found to be involved in tumorigenesis, development, and cell differentiation, as well as in the activation of several subsets of immune cells in vitro. Whether APA takes place in immune responses in vivo is largely unknown. We profiled the variation in tandem 3' untranslated regions (UTRs) in pathogen-challenged zebrafish and identified hundreds of APA genes with ∼ 10% being immune response genes. The detected immune response APA genes were enriched in TLR signaling, apoptosis, and JAK-STAT signaling pathways. A greater number of microRNA target sites and AU-rich elements were found in the extended 3' UTRs than in the common 3' UTRs of these APA genes. Further analysis suggested that microRNA and AU-rich element-mediated posttranscriptional regulation plays an important role in modulating the expression of APA genes. These results indicate that APA is extensively involved in immune responses in vivo, and it may be a potential new paradigm for immune regulation.
Collapse
Affiliation(s)
- Guangrui Huang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuxin Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuchao Feng
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shaozhou Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xia Yang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Jun Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Leiming You
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Guangbin Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Anlong Xu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| |
Collapse
|
37
|
Sertori R, Liongue C, Basheer F, Lewis KL, Rasighaemi P, de Coninck D, Traver D, Ward AC. Conserved IL-2Rγc Signaling Mediates Lymphopoiesis in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2015; 196:135-43. [PMID: 26590317 DOI: 10.4049/jimmunol.1403060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 10/20/2015] [Indexed: 01/30/2023]
Abstract
The IL-2 receptor γ common (IL-2Rγc) chain is the shared subunit of the receptors for the IL-2 family of cytokines, which mediate signaling through JAK3 and various downstream pathways to regulate lymphopoiesis. Inactivating mutations in human IL-2Rγc result in SCID, a primary immunodeficiency characterized by greatly reduced numbers of lymphocytes. This study used bioinformatics, expression analysis, gene ablation, and specific pharmacologic inhibitors to investigate the function of two putative zebrafish IL-2Rγc paralogs, il-2rγc.a and il-2rγc.b, and downstream signaling components during early lymphopoiesis. Expression of il-2rγc.a commenced at 16 h post fertilization (hpf) and rose steadily from 4-6 d postfertilization (dpf) in the developing thymus, with il-2rγc.a expression also confirmed in adult T and B lymphocytes. Transcripts of il-2rγc.b were first observed from 8 hpf, but waned from 16 hpf before reaching maximal expression at 6 dpf, but this was not evident in the thymus. Knockdown of il-2rγc.a, but not il-2rγc.b, substantially reduced embryonic lymphopoiesis without affecting other aspects of hematopoiesis. Specific targeting of zebrafish Jak3 exerted a similar effect on lymphopoiesis, whereas ablation of zebrafish Stat5.1 and pharmacologic inhibition of PI3K and MEK also produced significant but smaller effects. Ablation of il-2rγc.a was further demonstrated to lead to an absence of mature T cells, but not B cells in juvenile fish. These results indicate that conserved IL-2Rγc signaling via JAK3 plays a key role during early zebrafish lymphopoiesis, which can be potentially targeted to generate a zebrafish model of human SCID.
Collapse
Affiliation(s)
- Robert Sertori
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| | - Kanako L Lewis
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; and
| | - Parisa Rasighaemi
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| | - Dennis de Coninck
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht 6200, the Netherlands
| | - David Traver
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; and
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia;
| |
Collapse
|
38
|
Jin Y, Liu Z, Liu F, Ye Y, Peng T, Fu Z. Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicol Teratol 2015; 48:9-17. [DOI: 10.1016/j.ntt.2015.01.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/04/2015] [Accepted: 01/12/2015] [Indexed: 01/12/2023]
|
39
|
Neutrophil migration in the activation of the innate immune response to different Flavobacterium psychrophilum vaccines in zebrafish (Danio rerio). J Immunol Res 2015; 2015:515187. [PMID: 25815347 PMCID: PMC4359811 DOI: 10.1155/2015/515187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/02/2022] Open
Abstract
Flavobacterium psychrophilum is a Gram-negative bacterium, responsible for the bacterial cold-water disease and the rainbow trout fry syndrome in freshwater salmonid fish. At present, there is only one commercial vaccine in Chile, made with two Chilean F. psychrophilum isolates and another licensed in Europe. The present study analyzed neutrophil migration, as a marker of innate immune activation, in zebrafish (Danio rerio) in response to different F. psychrophilum bath vaccines, which is the first step in evaluating vaccine effectiveness and efficiency in fish. Results indicated that bacterins of the LM-02-Fp isolate were more immunogenic than those from the LM-13-Fp isolate. However, no differences were observed between the same bacteria inactivated by either formaldehyde or heat. Importantly, the same vaccine formulation without an adjuvant only triggered a mild neutrophil migration compared to the complete vaccine. Observations also found that, after a year of storage at 4°C, the activation of the innate immune system by the different vaccines was considerably decreased. Finally, new vaccine formulations prepared with heat and formaldehyde inactivated LM-02-Fp were significantly more efficient than the available commercial vaccine in regard to stimulating the innate immune system.
Collapse
|
40
|
Streptococcus agalactiae infection in zebrafish larvae. Microb Pathog 2015; 79:57-60. [PMID: 25617657 DOI: 10.1016/j.micpath.2015.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an encapsulated, Gram-positive bacterium that is a leading cause of neonatal pneumonia, sepsis and meningitis, and an emerging aquaculture pathogen. The zebrafish (Danio rerio) is a genetically tractable model vertebrate that has been used to analyze the pathogenesis of both aquatic and human bacterial pathogens. We have developed a larval zebrafish model of GBS infection to study bacterial and host factors that contribute to disease progression. GBS infection resulted in dose dependent larval death, and GBS serotype III, ST-17 strain was observed as the most virulent. Virulence was dependent on the presence of the GBS capsule, surface anchored lipoteichoic acid (LTA) and toxin production, as infection with GBS mutants lacking these factors resulted in little to no mortality. Additionally, interleukin-1β (il1b) and CXCL-8 (cxcl8a) were significantly induced following GBS infection compared to controls. We also visualized GBS outside the brain vasculature, suggesting GBS penetration into the brain during the course of infection. Our data demonstrate that zebrafish larvae are a valuable model organism to study GBS pathogenesis.
Collapse
|
41
|
Effect of dietary supplementation with Echinacea purpurea on vaccine efficacy against infection with Flavobacterium columnare in zebrafish (Danio rerio). Pol J Vet Sci 2014; 17:583-6. [DOI: 10.2478/pjvs-2014-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effect of dietary Echinacea purpurea (EP) on the response of zebrafish (Danio rerio) to a Flavobacterium columnare vaccine was investigated. Two hundred D. rerio with an average weight of 290 ± 40 g were selected and fed different levels of E. purpurea (5 g kg-1 diet - group 1, 10 g kg-1 diet - group 2, 20 g kg-1 diet - group 3, 30 g kg-1 diet - group 4, and 0 g kg-1 diet - group 5). Experimental feeding was begun 3 weeks prior to bath immunization and continued until the end of the experiment. Twenty-eight days after immunization the fish were challenged by bath immersion with F. columnare at a concentration of 1x106 CFU/ml. The relative percent survival of the experimental groups (1, 2, 3, 4 and 5) was 5.0, 6.0, 30.0, 36.0 and 5.0, respectively. In conclusion, diet supplementation with E. purpurea may effectively enhance the response of zebrafish to a F. columnare vaccine.
Collapse
|
42
|
Zhang S, Cui P. Complement system in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:3-10. [PMID: 24462834 DOI: 10.1016/j.dci.2014.01.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish is recently emerging as a model species for the study of immunology and human diseases. Complement system is the humoral backbone of the innate immune defense, and our knowledge as such in zebrafish has dramatically increased in the recent years. This review summarizes the current research progress of zebrafish complement system. The global searching for complement components in genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in zebrafish. Interestingly, zebrafish complement components also display some distinctive features, such as prominent levels of extrahepatic expression and isotypic diversity of the complement components. Future studies should focus on the following issues that would be of special importance for understanding the physiological role of complement components in zebrafish: conclusive identification of complement genes, especially those with isotypic diversity; analysis and elucidation of function and mechanism of complement components; modulation of innate and adaptive immune response by complement system; and unconventional roles of complement-triggered pathways.
Collapse
Affiliation(s)
- Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China.
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| |
Collapse
|
43
|
Sharma P, Sharma S, Patial V, Singh D, Padwad YS. Zebrafish (Danio rerio): A potential model for nephroprotective drug screening. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cqn.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Antoine TE, Jones KS, Dale RM, Shukla D, Tiwari V. Zebrafish: modeling for herpes simplex virus infections. Zebrafish 2013; 11:17-25. [PMID: 24266790 DOI: 10.1089/zeb.2013.0920] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
For many years, zebrafish have been the prototypical model for studies in developmental biology. In recent years, zebrafish has emerged as a powerful model system to study infectious diseases, including viral infections. Experiments conducted with herpes simplex virus type-1 in adult zebrafish or in embryo models are encouraging as they establish proof of concept with viral-host tropism and possible screening of antiviral compounds. In addition, the presence of human homologs of viral entry receptors in zebrafish such as 3-O sulfated heparan sulfate, nectins, and tumor necrosis factor receptor superfamily member 14-like receptor bring strong rationale for virologists to test their in vivo significance in viral entry in a zebrafish model and compare the structure-function basis of virus zebrafish receptor interaction for viral entry. On the other end, a zebrafish model is already being used for studying inflammation and angiogenesis, with or without genetic manipulations, and therefore can be exploited to study viral infection-associated pathologies. The major advantage with zebrafish is low cost, easy breeding and maintenance, rapid lifecycle, and a transparent nature, which allows visualizing dissemination of fluorescently labeled virus infection in real time either at a localized region or the whole body. Further, the availability of multiple transgenic lines that express fluorescently tagged immune cells for in vivo imaging of virus infected animals is extremely attractive. In addition, a fully developed immune system and potential for receptor-specific knockouts further advocate the use of zebrafish as a new tool to study viral infections. In this review, we focus on expanding the potential of zebrafish model system in understanding human infectious diseases and future benefits.
Collapse
Affiliation(s)
- Thessicar Evadney Antoine
- 1 Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago , Chicago, Illinois
| | | | | | | | | |
Collapse
|
45
|
Abstract
Enterococcus faecalis is an opportunistic pathogen responsible for a wide range of life-threatening nosocomial infections, such as septicemia, peritonitis, and endocarditis. E. faecalis infections are associated with a high mortality and substantial health care costs and cause therapeutic problems due to the intrinsic resistance of this bacterium to antibiotics. Several factors contributing to E. faecalis virulence have been identified. Due to the variety of infections caused by this organism, numerous animal models have been used to mimic E. faecalis infections, but none of them is considered ideal for monitoring pathogenesis. Here, we studied for the first time E. faecalis pathogenesis in zebrafish larvae. Using model strains, chosen isogenic mutants, and fluorescent derivatives expressing green fluorescent protein (GFP), we analyzed both lethality and bacterial dissemination in infected larvae. Genetically engineered immunocompromised zebrafish allowed the identification of two critical steps for successful establishment of disease: (i) host phagocytosis evasion mediated by the Epa rhamnopolysaccharide and (ii) tissue damage mediated by the quorum-sensing Fsr regulon. Our results reveal that the zebrafish is a novel, powerful model for studying E. faecalis pathogenesis, enabling us to dissect the mechanism of enterococcal virulence.
Collapse
|
46
|
Abstract
Naturally occurring viral infections have the potential to introduce confounding variability that leads to invalid and misinterpreted data. Whereas the viral diseases of research rodents are well characterized and closely monitored, no naturally occurring viral infections have been characterized for the laboratory zebrafish (Danio rerio), an increasingly important biomedical research model. Despite the ignorance about naturally occurring zebrafish viruses, zebrafish models are rapidly expanding in areas of biomedical research where the confounding effects of unknown infectious agents present a serious concern. In addition, many zebrafish research colonies remain linked to the ornamental (pet) zebrafish trade, which can contribute to the introduction of new pathogens into research colonies, whereas mice used for research are purpose bred, with no introduction of new mice from the pet industry. Identification, characterization, and monitoring of naturally occurring viruses in zebrafish are crucial to the improvement of zebrafish health, the reduction of unwanted variability, and the continued development of the zebrafish as a model organism. This article addresses the importance of identifying and characterizing the viral diseases of zebrafish as the scope of zebrafish models expands into new research areas and also briefly addresses zebrafish susceptibility to experimental viral infection and the utility of the zebrafish as an infection and immunology model.
Collapse
Affiliation(s)
- Marcus J Crim
- Comparative Medicine Program, University of Missouri, Columbia, MO 65201, USA.
| | | |
Collapse
|
47
|
Jin Y, Pan X, Cao L, Ma B, Fu Z. Embryonic exposure to cis-bifenthrin enantioselectively induces the transcription of genes related to oxidative stress, apoptosis and immunotoxicity in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2013; 34:717-723. [PMID: 23261506 DOI: 10.1016/j.fsi.2012.11.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 11/09/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
Cis-bifenthrin (cis-BF) is used widely for agricultural and non-agricultural purpose. Thus, cis-BF is one of the most frequently detected insecticides in the aquatic ecosystem. As a chiral pesticide, the commercial cis-BF contained two enantiomers including 1R-cis-BF and 1S-cis-BF. However, the difference in inducing oxidative stress, apoptosis and immunotoxicity by the two enantiomers in zebrafish still remains unclear. In the present study, the zebrafish were exposed to environmental concentrations of cis-BF, 1R-cis-BF and 1S-cis-BF during the embryos developmental stage. We observed that the mRNA levels of the most genes related to oxidative stress, apoptosis and immunotoxicity including Cu/Zn-superoxide dismutase (Cu/Zn-Sod), catalase (Cat), P53, murine double minute 2 (Mdm2), B-cell lymphoma/leukaemia-2 gene (Bcl2), Bcl2 associated X protein (Bax), apoptotic protease activating factor-1 (Apaf1), Caspase 9 (Cas9), Caspase 3 (Cas3), interleukin-1 beta (IL-1β) and interleukin-8(Il-8) were much higher in 1S-cis-BF treated group than those in cis-BF or 1R-cis-BF treated ones, suggesting that 1S-cis-BF has higher risk to induced oxidative stress, apoptosis and immunotoxicity than 1R-cis-BF in zebrafish. The information presented in this study will help with elucidating the differences and environmental risk of the two enantiomers of cis-BF-induced toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | | | |
Collapse
|
48
|
Patterson H, Saralahti A, Parikka M, Dramsi S, Trieu-Cuot P, Poyart C, Rounioja S, Rämet M. Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:447-455. [PMID: 22867759 DOI: 10.1016/j.dci.2012.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is the major cause of severe bacterial disease and meningitis in newborns. The zebrafish (Danio rerio) has recently emerged as a valuable and powerful vertebrate model for the study of human streptococcal infections. In the present study we demonstrate that adult zebrafish are susceptible to GBS infection through the intraperitoneal and intramuscular routes of infection. Following intraperitoneal challenge with GBS, zebrafish developed a fulminant infection 24-48 h post-injection, with signs of pathogenesis including severe inflammation at the injection site and meningoencephalitis. Quantification of blood and brain bacterial load confirmed that GBS is capable of replicating in the zebrafish bloodstream and penetrating the blood-brain barrier, resulting in the induction of host inflammatory immune responses in the brain. Additionally, we show that GBS mutants previously described as avirulent in the mice model, have an impaired ability to cause meningitis in this new in vivo model. Taken together, our data demonstrates that adult zebrafish may be used as a bacterial meningitis model as a means for deciphering the pathogenesis and development of invasive GBS disease.
Collapse
Affiliation(s)
- Hayley Patterson
- Institute of Biomedical Technology, BioMediTech, University of Tampere, FI-33014 Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ding Y, Liu X, Bu L, Li H, Zhang S. Antimicrobial-immunomodulatory activities of zebrafish phosvitin-derived peptide Pt5. Peptides 2012; 37:309-13. [PMID: 22841856 DOI: 10.1016/j.peptides.2012.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
A phosvitin (Pv)-derived peptide, Pt5, which consists of the C-terminal 55 residues of Pv in zebrafish, has been shown to function as an antimicrobial agent capable of killing microbes in vitro. However, its in vivo role in zebrafish remains unknown. In this study, we clearly demonstrated that Pt5 protected adult zebrafish from pathogenic Aeromonas hydrophila attack, capable of significantly enhancing the survival rate of zebrafish after the pathogenic challenge. Pt5 also caused a marked decrease in the numbers of A. hydrophila in the blood, spleen, kidney, liver and muscle, suggesting that Pt5 was able to block multiplication/dissemination of A. hydrophila in zebrafish. Additionally, Pt5 markedly suppressed the expression of the proinflammatory cytokine genes IL-1β, IL-6, TNF-α and IFN-γ in the spleen and head kidney of A. hydrophila-infected zebrafish, but it considerably enhanced the expressions of the antiinflammatory cytokine genes IL-10 and IL-4 in the same tissues. Taken together, these data indicate that Pt5 plays a dual role in zebrafish as an antimicrobial and immunomodulatory agent, capable of protecting zebrafish against pathogenic A. hydrophila through its antimicrobial activity as well as preventing zebrafish from the detrimental effects of an excessive inflammatory response via modulating immune functions.
Collapse
Affiliation(s)
- Yunchao Ding
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
50
|
Oyarbide U, Rainieri S, Pardo MA. Zebrafish (Danio rerio) larvae as a system to test the efficacy of polysaccharides as immunostimulants. Zebrafish 2012; 9:74-84. [PMID: 22489616 DOI: 10.1089/zeb.2011.0724] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study was carried out to examine the use of zebrafish (Danio rerio) as a preliminary screening model for testing the effect of potential immunostimulant substances on the innate immune system. β-Glucan, a polysaccharide used widely as an immunostimulant, was used as a representative molecule and tested on zebrafish embryos and larvae. The efficacy of the molecule was evaluated by determining the differential expression of some selected genes related to the immune system by RT-qPCR. Larvae from 72 hours post fertilization were found at the optimal developmental stage for assessing the expression of the selected genes. To verify if the β-glucan entered the larvae and therefore was responsible for the effects produced, the molecule was labeled fluorescently to check its localization by using microscopy. For estimating the effects of β-glucan on gene expression, zebrafish embryos and larvae were immersed in three different concentrations of β-glucan (50, 100, and 150 μg/mL) using five different exposure times. A stronger gene induction was observed when longer times of exposure and older larvae were used. The most evident effects of β-glucan were the overexpression of the genes TNFα, MPO, TRF, and LYZ. Moreover, slight changes in MPO expression were detected using a transgenic line of zebrafish (MPO::GFP), and a temporal increase in resistance against Vibrio anguillarum was found after β-glucan immersion. The assay used in this study permits the testing potential of immunostimulants in a simple and cost-effective way.
Collapse
Affiliation(s)
- U Oyarbide
- Azti-Tecnalia, Food Research Division, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain.
| | | | | |
Collapse
|