1
|
Ait Djebbara S, Mcheik S, Percier P, Segueni N, Poncelet A, Truyens C. The macrophage infectivity potentiator of Trypanosoma cruzi induces innate IFN-γ and TNF-α production by human neonatal and adult blood cells through TLR2/1 and TLR4. Front Immunol 2023; 14:1180900. [PMID: 37304288 PMCID: PMC10250606 DOI: 10.3389/fimmu.2023.1180900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
We previously identified the recombinant (r) macrophage (M) infectivity (I) potentiator (P) of the protozoan parasite Trypanosoma cruzi (Tc) (rTcMIP) as an immuno-stimulatory protein that induces the release of IFN-γ, CCL2 and CCL3 by human cord blood cells. These cytokines and chemokines are important to direct a type 1 adaptive immune response. rTcMIP also increased the Ab response and favored the production of the Th1-related isotype IgG2a in mouse models of neonatal vaccination, indicating that rTcMIP could be used as a vaccine adjuvant to enhance T and B cell responses. In the present study, we used cord and adult blood cells, and isolated NK cells and human monocytes to investigate the pathways and to decipher the mechanism of action of the recombinant rTcMIP. We found that rTcMIP engaged TLR1/2 and TLR4 independently of CD14 and activated the MyD88, but not the TRIF, pathway to induce IFN-γ production by IL-15-primed NK cells, and TNF-α secretion by monocytes and myeloid dendritic cells. Our results also indicated that TNF-α boosted IFN-γ expression. Though cord blood cells displayed lower responses than adult cells, our results allow to consider rTcMIP as a potential pro-type 1 adjuvant that might be associated to vaccines administered in early life or later.
Collapse
Affiliation(s)
- Sarra Ait Djebbara
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saria Mcheik
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pauline Percier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service Immune Response, Sciensano, Brussels, Belgium
| | - Noria Segueni
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antoine Poncelet
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Porvac ® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus. Vaccines (Basel) 2021; 9:vaccines9020167. [PMID: 33671399 PMCID: PMC7922993 DOI: 10.3390/vaccines9020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban “Margarita” strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines.
Collapse
|
3
|
Effects of Gnathostoma spinigerum infective stage larva excretory-secretory products on NK cells in peripheral blood mononuclear cell culture: focused on expressions of IFN-γ and killer cell lectin-like receptors. Parasitol Res 2020; 119:1011-1021. [PMID: 31932913 DOI: 10.1007/s00436-019-06593-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/29/2019] [Indexed: 12/24/2022]
Abstract
Human gnathostomiasis is mainly caused by third-stage larvae of Gnathostoma spinigerum (G. spinigerum L3). Excretory-secretory products (ES) released from infective helminthic larvae are associated with larval migration and host immunity modulation. Natural killer (NK) cells have important immune functions against helminth infection. Currently, the effects of ES from G. spinigerum L3 (G. spinigerum ES) on NK cell activity are unclear. This study investigated whether G. spinigerum ES affected human NK cells. Human normal peripheral blood mononuclear cell (PBMC) cultures were used to mimic immune cells within the circulation. PBMC were co-cultured with G. spinigerum ES (0.01-0.05 μg/ml) for 5 or 7 days. Levels of IFN-γ in cultured supernatants were measured by enzyme-linked immunosorbent assay. The expressions of mRNA encoding NK cell receptors, especially the C type killer cell lectin-like family (KLR; NKG2A, NKG2C, and NKG2D) and IFN-γ in ES induced PBMC were determined by quantitative reverse transcription-polymerase chain reaction (RT-qPCR). ES induced PBMC markedly decreased the levels of IFN-γ and increased the expressions of NKG2A and NKG2D on NK cells. In conclusion, low amounts of G. spinigerum ES modulated NK cells by downregulating the transcription of IFN-γ and upregulating the expressions of KLR (NKG2A and NKG2D receptors) during the 7-day observation period. These findings indicate more in-depth studies of NK cell function are required to better understand the mechanism involved in immune evasive strategies of human gnathostomiasis.
Collapse
|
4
|
Shereck E, Day NS, Awasthi A, Ayello J, Chu Y, McGuinn C, van de Ven C, Lim MS, Cairo MS. Immunophenotypic, cytotoxic, proteomic and genomic characterization of human cord blood vs. peripheral blood CD56 Dim NK cells. Innate Immun 2019; 25:294-304. [PMID: 31068047 PMCID: PMC6830905 DOI: 10.1177/1753425919846584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Unrelated cord blood (CB) is an excellent alternative as an allogeneic donor
source for stem cell transplantation. CB transplantation is associated with
lower incidence of severe acute graft versus host disease (GVHD) and chronic
GVHD but similar rates of malignant relapse compared with other unrelated donor
cell transplants. NK cells are critical innate immune components and the
comparison of CB vs. peripheral blood (PB) NK cells is relatively unknown. NK
cell receptor expression, cell function, and maturation may play a role in the
risk of relapse after CB transplant. We investigated CB vs. PB NK cell subset
cytotoxicity, function, receptor expression, and genomic and proteomic
signatures. The CB CD56dim compared with PB CD56dim
demonstrated significantly increased expression of NKG2A and NKG2D,
respectively. CB vs. PB CD56dim NK cells had significantly decreased
in vitro cytotoxicity against a variety of non-Hodgkin
lymphoma targets. Various proteins were significantly under- and over-expressed
in CB vs. PB CD56dim NK cells. Microarray analyses and qRT-PCR in CB
vs. PB CD56dim demonstrated significantly increased expression of
genes in cell regulation and development of apoptosis, respectively. In summary,
CB vs. PB CD56dim NK cells appear to be earlier in development, have
decreased functional activity, and increased capacity for programmed cell death,
suggesting that CB NK cells require functional and maturational stimulation to
achieve similar functional levels as PB CD56dim NK cells.
Collapse
Affiliation(s)
- Evan Shereck
- 1 Department of Pediatrics, Oregon Health and Science University, Portland, 97239, USA
| | - Nancy S Day
- 2 Department of Pediatrics, Columbia University, New York, USA
| | - Aradhana Awasthi
- 3 Department of Pediatrics, New York Medical College, Valhalla, USA
| | - Janet Ayello
- 3 Department of Pediatrics, New York Medical College, Valhalla, USA
| | - Yaya Chu
- 3 Department of Pediatrics, New York Medical College, Valhalla, USA
| | | | | | - Megan S Lim
- 4 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mitchell S Cairo
- 3 Department of Pediatrics, New York Medical College, Valhalla, USA.,5 Department of Medicine, New York Medical College, Valhalla, USA.,6 Department of Pathology, New York Medical College, Valhalla, USA.,7 Department of Microbiology and Immunology, New York Medical College, Valhalla, USA.,8 Department Cell Biology and Anatomy, New York Medical College, Valhalla, USA
| |
Collapse
|
5
|
Placental imprinted gene expression mediates the effects of maternal psychosocial stress during pregnancy on fetal growth. J Dev Orig Health Dis 2019; 10:196-205. [PMID: 30968809 DOI: 10.1017/s2040174418000545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Imprinted genes uniquely drive and support fetoplacental growth by controlling the allocation of maternal resources to the fetus and affecting the newborn's growth. We previously showed that alterations of the placental imprinted gene expression are associated with suboptimal perinatal growth and respond to environmental stimuli including socio-economic determinants. At the same time, maternal psychosocial stress during pregnancy (MPSP) has been shown to affect fetal growth. Here, we set out to test the hypothesis that placental imprinted gene expression mediates the effects of MPSP on fetal growth in a well-characterized birth cohort, the Stress in Pregnancy (SIP) Study. We observed that mothers experiencing high MPSP deliver infants with lower birthweight (P=0.047). Among the 109 imprinted genes tested, we detected panels of placental imprinted gene expression of 23 imprinted genes associated with MPSP and 26 with birthweight. Among these genes, five imprinted genes (CPXM2, glucosidase alpha acid (GAA), GPR1, SH3 and multiple ankyrin repeat domains 2 (SHANK2) and THSD7A) were common to the two panels. In multivariate analyses, controlling for maternal age and education and gestational age at birth and infant gender, two genes, GAA and SHANK2, each showed a 22% mediation of MPSP on fetal growth. These data provide new insights into the role that imprinted genes play in translating the maternal stress message into a fetoplacental growth pattern.
Collapse
|
6
|
Hou G, Xu B, Bi Y, Wu C, Ru B, Sun B, Bai X. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: A brief update. Bosn J Basic Med Sci 2018; 18:297-304. [PMID: 30179586 DOI: 10.17305/bjbms.2018.3539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive tumor, often difficult to diagnose and treat. Aspartate β-hydroxylase (ASPH) is a type II transmembrane protein and the member of α-ketoglutarate-dependent dioxygenase family, found to be overexpressed in different cancer types, including PC. ASPH appears to be involved in the regulation of proliferation, invasion and metastasis of PC cells through multiple signaling pathways, suggesting its role as a tumor biomarker and therapeutic target. In this review, we briefly summarize the possible mechanisms of action of ASPH in PC and recent progress in the therapeutic approaches targeting ASPH.
Collapse
Affiliation(s)
- Guofang Hou
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Martínez-González JM, Martín-Ares M, Martínez-Rodríguez N, Barona-Dorado C, Sanz-Alonso J, Cortés-Bretón-Brinkmann J, Ata-Ali J. Comparison of peri-implant soft tissues in submerged versus transmucosal healing: A split mouth prospective immunohistochemical study. Arch Oral Biol 2018; 90:61-66. [PMID: 29549712 DOI: 10.1016/j.archoralbio.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/21/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The present split-mouth prospective study involves an immunohistochemical evaluation of peri-implant soft tissue healing after the osseointegration period, comparing submerged and transmucosal approaches using two-piece implant systems. The null hypothesis was that both surgical procedures elicit a similar immune response of the peri-implant soft tissues. DESIGN Thirty-one healthy patients were included in this study, in which two implants were placed in the right and left maxillary pre-molar regions. A total of 62 dental implants were analyzed, establishing a control side with 31 submerged implants, and a study side with 31 exposed implants bearing healing abutments. After a three-month healing period, a soft tissue biopsy was collected and prepared for immunohistochemical analysis of the proportions of different lymphocyte subpopulations. RESULTS The comparative analysis between the submerged and transmucosal approaches failed to identify statistically significant differences in CD19+ B cells, CD4+ T cells, CD8+ T cells, CD25+ T cells or γd T cells. However, significant differences in NK lymphocytes (p = 0.012) were recorded with the submerged surgical procedure. CONCLUSIONS Peri-implant soft tissue immune response with submerged or transmucosal healing protocols demonstrated comparable outcomes after the osseointegration period. There is sufficient evidence that the null hypothesis of no difference cannot be rejected. To the best of our knowledge, this is the first study of its kind. Further research is therefore needed to further clarify the role of these lymphocyte subpopulations in peri-implant soft tissues.
Collapse
Affiliation(s)
| | - María Martín-Ares
- Department of Medicine and Oral Surgery, Faculty of Dentistry, Complutense University of Madrid, Spain.
| | | | - Cristina Barona-Dorado
- Department of Medicine and Oral Surgery, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Javier Sanz-Alonso
- Department of Medicine and Oral Surgery, Faculty of Dentistry, Complutense University of Madrid, Spain
| | | | - Javier Ata-Ali
- Department of Dentistry, European University of Valencia, Valencia, Spain; Public Dental Health Service, Arnau de Vilanova Hospital, Valencia, Spain
| |
Collapse
|
8
|
Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, Zhang J, Tun N, Peng Y, Yu J. Regulation of Human Natural Killer Cell IFN-γ Production by MicroRNA-146a via Targeting the NF-κB Signaling Pathway. Front Immunol 2018; 9:293. [PMID: 29593706 PMCID: PMC5854688 DOI: 10.3389/fimmu.2018.00293] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/01/2018] [Indexed: 02/05/2023] Open
Abstract
Natural killer (NK) cells are one group of innate lymphocytes that are important for host defense against malignancy and viruses. MicroRNAs (miRNAs) play a critical role in regulating responses of immune cells including NK cells. Accumulating evidence suggests that miR-146a is involved in the regulation of immune responses. However, the mechanism by which miR-146a regulates NK cell function is largely unknown. In the current study, we found that miR-146a intrinsically regulated NK cell function. Forced overexpression of miR-146a decreased IFN-γ production, whereas downregulation of miR-146a by anti-miR-146a significantly enhanced IFN-γ production in the human NK-92 cell line and primary human NK cells upon stimulation with IL-12 or co-stimulation with IL-12 and IL-18. Mechanistically, miR-146a regulated IFN-γ production via NF-κB, as evidenced in NK-92 cells, by downregulation of NF-κB p65 phosphorylation when miR-146a was overexpressed but upregulation of NF-κB p65 phosphorylation when anti-miR-146a was overexpressed. miR-146a directly targeted IRAK1 and TRAF6, the upstream signaling components of the NF-κB signaling pathway. This direct targeting mechanism confirmed the above gain- and loss-of-function approaches. However, the potent IFN-γ-producing subset, CD56bright NK cells, expressed higher levels of miR-146a than the lesser IFN-γ-producing subset, CD56dim NK cells. We also observed that co-stimulation of IL-12 and IL-18 significantly increased miR-146a expression in bulk NK cells and in the CD56bright subset in a time-dependent manner, correlating with augmented IFN-γ production. These data suggest that miR-146a plays a negative role in IFN-γ production by human NK cells and this miRNA may be critical in preventing NK cells from being super activated and overproducing IFN-γ.
Collapse
Affiliation(s)
- Hongwei Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Department of Pathology, the First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Yibo Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Xiaojin Wu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Hanwei Cui
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Department of Obstetrics and Gynecology, Daping Hospital, Army Medical School, Chongqing, China
| | - Xinxin Li
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Jianying Zhang
- Department of Bioinformatics, The Ohio State University, Columbus, OH, United States
| | - Norman Tun
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Yong Peng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,The James Cancer Hospital, Columbus, OH, United States
| |
Collapse
|
9
|
Abstract
Metabolism is critical for a host of cellular functions and provides a source of intracellular energy. It has been recognized recently that metabolism also regulates differentiation and effector functions of immune cells. Although initial work in this field has focused largely on T lymphocytes, recent studies have demonstrated metabolic control of innate immune cells, including natural killer (NK) cells. Here, we review what is known regarding the metabolic requirements for NK cell activation, focusing on NK cell production of interferon-gamma (IFN-γ). NK cells are innate immune lymphocytes that are poised for rapid activation during the early immune response. Although their basal metabolic rates do not change with short-term activation, they exhibit specific metabolic requirements for activation depending upon the stimulus received. These metabolic requirements for NK cell activation are altered by culturing NK cells with interleukin-15, which increases NK cell metabolic rates at baseline and shifts them toward aerobic glycolysis. We discuss the metabolic pathways important for NK cell production of IFN-γ protein and potential mechanisms whereby metabolism regulates NK cell function.
Collapse
Affiliation(s)
- Annelise Y Mah
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
10
|
Wolf AS, Sherratt S, Riley EM. NK Cells: Uncertain Allies against Malaria. Front Immunol 2017; 8:212. [PMID: 28337195 PMCID: PMC5343013 DOI: 10.3389/fimmu.2017.00212] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Until recently, studies of natural killer (NK) cells in infection have focused almost entirely on their role in viral infections. However, there is an increasing awareness of the potential for NK cells to contribute to the control of a wider range of pathogens, including intracellular parasites such as Plasmodium spp. Given the high prevalence of parasitic diseases in the developing world and the devastating effects these pathogens have on large numbers of vulnerable people, investigating interactions between NK cells and parasitized host cells presents the opportunity to reveal novel immunological mechanisms with the potential to aid efforts to eradicate these diseases. The capacity of NK cells to produce inflammatory cytokines early after malaria infection, as well as a possible role in direct cytotoxic killing of malaria-infected cells, suggests a beneficial impact of NK cells in this disease. However, NK cells may also contribute to overproduction of pro-inflammatory cytokines and the consequent immunopathology. As comparatively little is known about the role of NK cells later in the course of infection, and growing evidence suggests that heterogeneity in NK cell responses to malaria may be influenced by KIR/HLA interactions, a better understanding of the mechanisms by which NK cells might directly interact with parasitized cells may reveal a new role for these cells in the course of malaria infection.
Collapse
Affiliation(s)
- Asia-Sophia Wolf
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Samuel Sherratt
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
11
|
Wilensky A, Chaushu S, Shapira L. The role of natural killer cells in periodontitis. Periodontol 2000 2015; 69:128-41. [DOI: 10.1111/prd.12092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
|
12
|
Zhou H, Chen S, Qi Y, Zhou Q, Wang M, Jia R, Zhu D, Liu M, Liu F, Chen X, Cheng A. Identification of Type II Interferon Receptors in Geese: Gene Structure, Phylogenetic Analysis, and Expression Patterns. BIOMED RESEARCH INTERNATIONAL 2015; 2015:537637. [PMID: 26345454 PMCID: PMC4544874 DOI: 10.1155/2015/537637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/09/2015] [Indexed: 11/29/2022]
Abstract
Interferon γ receptor 1 (IFNGR1) and IFNGR2 are two cell membrane molecules belonging to class II cytokines, which play important roles in the IFN-mediated antiviral signaling pathway. Here, goose IFNGR1 and IFNGR2 were cloned and identified for the first time. Tissue distribution analysis revealed that relatively high levels of goose IFNγ mRNA transcripts were detected in immune tissues, including the harderian gland, cecal tonsil, cecum, and thymus. Relatively high expression levels of both IFNGR1 and IFNGR2 were detected in the cecal tonsil, which implicated an important role of IFNγ in the secondary immune system of geese. No specific correlation between IFNγ, IFNGR1, and IFNGR2 expression levels was observed in the same tissues of healthy geese. IFNγ and its cognate receptors showed different expression profiles, although they appeared to maintain a relatively balanced state. Furthermore, the agonist R848 led to the upregulation of goose IFNγ but did not affect the expression of goose IFNGR1 or IFNGR2. In summary, trends in expression of goose IFNγ and its cognate receptors showed tissue specificity, as well as an age-related dependency. These findings may help us to better understand the age-related susceptibility to pathogens in birds.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yulin Qi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fei Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
13
|
Huyan T, Li Q, Ye LJ, Yang H, Xue XP, Zhang MJ, Huang QS, Yin DC, Shang P. Inhibition of human natural killer cell functional activity by human aspartyl β-hydroxylase. Int Immunopharmacol 2014; 23:452-9. [PMID: 25281391 DOI: 10.1016/j.intimp.2014.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cells are a key component of the innate immune system and play pivotal roles as inflammatory regulators and in tumor surveillance. Human aspartyl β-hydroxylase (HAAH) is a plasma membrane and endoplasmic reticulum protein with hydroxylation activity, which is over-expressed in many malignant neoplasms and can be detected from the sera of tumor patients. HAAH is involved in regulating tumor cell infiltration and metastasis. Escaping from immune surveillance may help tumor cell infiltration and metastasis. However, the effects of HAAH on tumor immune surveillance have not yet been investigated carefully. The present study investigated the potential use of HAAH as an immune regulator of human NK cells. We assessed the effects of recombinant HAAH (r-HAAH) on primary human NK cell morphology, viability, cytotoxicity, apoptosis, receptors expression and cytokine/cytolytic proteins production. Our results demonstrated that r-HAAH negatively affects NK cell activity in a time and dose-dependent manner. It noticeably reduces the viability of the NK cells by increasing apoptosis and necrosis via caspase signaling pathways. Moreover, r-HAAH reduces the NK cell cytotoxicity by inhibiting surface expression of NKG2D, NKp44 and IFN-γ secretion. These findings suggest that one of the ways by which HAAH actively promotes tumor formation and proliferation is by inhibiting NK cell-surveillance activity.
Collapse
Affiliation(s)
- Ting Huyan
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Lin-Jie Ye
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Xiao-Ping Xue
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Ming-Jie Zhang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China; Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 1401 Rockville Pike, Rockville, MD, USA
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|
14
|
Mikulak J, Bozzo L, Roberto A, Pontarini E, Tentorio P, Hudspeth K, Lugli E, Mavilio D. Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. THE JOURNAL OF IMMUNOLOGY 2014; 193:2792-800. [PMID: 25127864 DOI: 10.4049/jimmunol.1401114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several lines of evidence indicate that dopamine (DA) plays a key role in the cross-talk between the nervous and immune systems. In this study, we disclose a novel immune-regulatory role for DA: inhibition of effector functions of activated NK lymphocytes via the selective upregulation of the D5 dopaminergic receptor in response to prolonged cell stimulation with rIL-2. Indeed, engagement of this D1-like inhibitory receptor following binding with DA suppresses NK cell proliferation and synthesis of IFN-γ. The inhibition of IFN-γ production occurs through blocking the repressor activity of the p50/c-REL dimer of the NF-κB complex. Indeed, the stimulation of the D5 receptor on rIL-2-activated NK cells inhibits the binding of p50 to the microRNA 29a promoter, thus inducing a de novo synthesis of this miRNA. In turn, the increased levels of microRNA 29a were inversely correlated with the ability of NK cells to produce IFN-γ. Taken together, our findings demonstrated that DA switches off activated NK cells, thus representing a checkpoint exerted by the nervous system to control the reactivity of these innate immune effectors in response to activation stimuli and to avoid the establishment of chronic and pathologic inflammatory processes.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Luisa Bozzo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Elena Pontarini
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Paolo Tentorio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Kelly Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; and Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Milan, Italy
| |
Collapse
|
15
|
Wang Z, Zhong M, Fu M, Dou T, Bian Z. Evidence of positive selection at signal peptide region of interferon gamma. Biosci Biotechnol Biochem 2014; 78:588-92. [PMID: 25036954 DOI: 10.1080/09168451.2014.896732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interferon gamma (IFNG) is a major cytokine and plays crucial roles in pathogen clearance. About the course of evolution of IFNG, it has been reported that IFNG is being subjected to adaptive selection, which is proved at the level of gene. Neighbor-joining method was used to reconstruct the phylogenetic tree of all IFNG protein-coding sequences. The pair-wise computation of Ka/Ks between every exon homologs, branch-specific model, and site-specific model of the likelihood method were performed to detect positive selection of IFNG. We reported, for the first time, that the signal peptide region of IFNG is under significant positive selection, evolving faster than other parts. We provide evidence at the level of individual exon and individual amino acid site that IFNG is under adaptive evolution, which establishes the basis for further researches about IFNG.
Collapse
Affiliation(s)
- Zhengshi Wang
- a Department of General Surgery, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | | | | | | | | |
Collapse
|
16
|
Robinet P, Baychelier F, Fontaine T, Picard C, Debré P, Vieillard V, Latgé JP, Elbim C. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5332-42. [PMID: 24790151 DOI: 10.4049/jimmunol.1303180] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillus fumigatus is an opportunistic human fungal pathogen that sheds galactosaminogalactan (GG) into the environment. Polymorphonuclear neutrophils (PMNs) and NK cells are both part of the first line of defense against pathogens. We recently reported that GG induces PMN apoptosis. In this study, we show that PMN apoptosis occurs via a new NK cell-dependent mechanism. Reactive oxygen species, induced by the presence of GG, play an indispensable role in this apoptotic effect by increasing MHC class I chain-related molecule A expression at the PMN surface. This increased expression enables interaction between MHC class I chain-related molecule A and NKG2D, leading to NK cell activation, which in turn generates a Fas-dependent apoptosis-promoting signal in PMNs. Taken together, our results demonstrate that the crosstalk between PMNs and NK cells is essential to GG-induced PMN apoptosis. NK cells might thus play a role in the induction of PMN apoptosis in situations such as unexplained neutropenia or autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Robinet
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | - Florence Baychelier
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | | | - Capucine Picard
- Centre D'étude des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, L'hôpital Necker - Enfants Malades, 75743 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U980, Necker Medical School, 75015 Paris, France; and
| | - Patrice Debré
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France; Département d'Immunologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Vincent Vieillard
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France
| | - Jean-Paul Latgé
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | - Carole Elbim
- Université Pierre et Marie Curie Paris 06, Unité Mixte de Recherche-S CR7, Sorbonne Université, F-75005 Paris, France; INSERM, Centre d'Immunologie et des Maladies Infectieuses, Unité Mixte de Recherche-S CR7, INSERM U1135, F-75013 Paris, France;
| |
Collapse
|
17
|
Qiu Y, Yang J, Wang W, Zhao W, Peng F, Xiang Y, Chen G, Chen T, Chai C, Zheng S, Watkins DJ, Feng J. HMGB1-promoted and TLR2/4-dependent NK cell maturation and activation take part in rotavirus-induced murine biliary atresia. PLoS Pathog 2014; 10:e1004011. [PMID: 24651485 PMCID: PMC3961347 DOI: 10.1371/journal.ppat.1004011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/04/2014] [Indexed: 02/05/2023] Open
Abstract
Recent studies show that NK cells play important roles in murine biliary atresia (BA), and a temporary immunological gap exists in this disease. In this study, we found high-mobility group box-1 (HMGB1) and TLRs were overexpressed in human and rotavirus-induced murine BA. The overexpressed HMGB1 released from the nuclei of rotavirus-infected cholangiocytes, as well as macrophages, activated hepatic NK cells via HMGB1-TLRs-MAPK signaling pathways. Immature NK cells had low cytotoxicity on rotavirus-injured cholangiocytes due to low expression of TLRs, which caused persistent rotavirus infection in bile ducts. HMGB1 up-regulated the levels of TLRs of NK cells and promoted NK cell activation in an age-dependent fashion. As NK cells gained increasing activation as mice aged, they gained increasing cytotoxicity on rotavirus-infected cholangiocytes, which finally caused BA. Adult NK cells eliminated rotavirus-infected cholangiocytes shortly after infection, which prevented persistent rotavirus infection in bile ducts. Moreover, adoptive transfer of mature NK cells prior to rotavirus infection decreased the incidence of BA in newborn mice. Thus, the dysfunction of newborn NK cells may, in part, participate in the immunological gap in the development of rotavirus induced murine BA. Biliary atresia (BA) is the most common precipitating factor for liver transplantation in infants. BA is caused by the obstruction of hepatic bile ducts, leading to progressive obstructive jaundice and liver fibrosis. A well-recognized theory is that rotavirus injures biliary epithelia in a mouse model of BA, followed by attack of immunocytes, such as NK cells. We performed this research to investigate whether maturation and activation of NK cells take part in the development of BA. We identified that rotavirus induced HMGB1 release from injured bile ducts. HMGB1 induced NK cell activation in an age-dependent fashion via HMGB1-TLRs-MAPK signaling pathways. Newborn NK cells were unable to eliminate rotavirus-infected cholangiocytes, which caused persistent biliary infection; maturated NK cells were activated gradually and caused persistent biliary injury, which finally led to BA. We identify HMGB1 as an important pro-inflammatory initiator and a critical inducer for maturation of NK cells in the development of BA. HMGB1-induced activation of NK cells may, in part, plays crucial roles in the development of murine BA. Novel therapies targeting HMGB1 or TLRs in patients with BA may be applied in the future to decrease the activity of NK cells in order to inhibit the progression of BA.
Collapse
Affiliation(s)
- Yinrong Qiu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmei Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Zhao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengwei Chai
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaiyu Zheng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel J. Watkins
- Department of Surgery, Wayne State University, Detroit, Michigan, United States of America
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
18
|
Neves PCC, Santos JR, Tubarão LN, Bonaldo MC, Galler R. Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses. PLoS One 2013; 8:e81953. [PMID: 24324734 PMCID: PMC3855709 DOI: 10.1371/journal.pone.0081953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/18/2013] [Indexed: 01/01/2023] Open
Abstract
Yellow Fever vaccine is one of the most efficacious human vaccines ever made. The vaccine (YF 17D) virus induces polyvalent immune responses, with a mixed TH1/TH2 CD4(+) cell profile, which results in robust T CD8(+) responses and high titers of neutralizing antibody. In recent years, it has been suggested that early events after yellow fever vaccination are crucial to the development of adequate acquired immunity. We have previously shown that primary immunization of humans and monkeys with YF 17D virus vaccine resulted in the early synthesis of IFN-γ. Herein we have demonstrated, for the first time that early IFN-γ production after yellow fever vaccination is a feature also of murine infection and is much more pronounced in the C57BL/6 strain compared to the BALB/c strain. Likewise, in C57BL/6 strain, we have observed the highest CD8(+) T cells responses as well as higher titers of neutralizing antibodies and total anti-YF IgG. Regardless of this intense IFN-γ response in mice, it was not possible to see higher titers of IgG2a in relation to IgG1 in both mice lineages. However, IgG2a titers were positively correlated to neutralizing antibodies levels, pointing to an important role of IFN-γ in eliciting high quality responses against YF 17D, therefore influencing the immunogenicity of this vaccine.
Collapse
Affiliation(s)
- Patrícia C. C. Neves
- Vice-diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Juliana R. Santos
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana N. Tubarão
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ricardo Galler
- Vice-diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Achour A, Baychelier F, Besson C, Arnoux A, Marty M, Hannoun L, Samuel D, Debré P, Vieillard V. Expansion of CMV-Mediated NKG2C+NK Cells Associates with the Development of Specific De Novo Malignancies in Liver-Transplanted Patients. THE JOURNAL OF IMMUNOLOGY 2013; 192:503-11. [DOI: 10.4049/jimmunol.1301951] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Bozzano F, Marras F, Biassoni R, De Maria A. Natural killer cells in hepatitis C virus infection. Expert Rev Clin Immunol 2013; 8:775-88. [PMID: 23167689 DOI: 10.1586/eci.12.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infection induces the long-term risk of liver cirrhosis or hepatocellular carcinoma and in adults represents the most common cause of liver transplantation. Natural killer (NK) cells participate in innate immune responses with efficient direct antitumor and antiviral defense. Over the years, their complex interaction with downstream adaptive responses and with the regulation of immune responses has been increasingly recognized. Considerable advances have been made particularly in understanding the role of NK cells in the pathophysiology of HCV infection and their possible use as biological markers for clinical purposes. This review summarizes the available data on the role of NK cells in the natural history of HCV infection and their role in the outcome of treatment. The main objective of this review is to summarize recent advancements in the basic understanding of NK cell function highlighting their possible translational use in clinical practice. An integrated practical view on the possible use of currently available predictive immunogenetic and NK cell functional tests is provided, to support clinical management choices for optimal treatment of patients with both standard and new drug regimens.
Collapse
Affiliation(s)
- Federica Bozzano
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | | | | | | |
Collapse
|
21
|
Bhan U, Newstead MJ, Zeng X, Podsaid A, Goswami M, Ballinger MN, Kunkel SL, Standiford TJ. TLR9-dependent IL-23/IL-17 is required for the generation of Stachybotrys chartarum-induced hypersensitivity pneumonitis. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23180821 DOI: 10.4049/jimmunol.1202225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypersensitivity pneumonitis (HP) is an inflammatory lung disease that develops after repeated exposure to inhaled particulate Ag. Stachybotrys chartarum is a dimorphic fungus that has been implicated in a number of respiratory illnesses, including HP. In this study, we have developed a murine model of S. chartarum-induced HP that reproduces pathology observed in human HP, and we have hypothesized that TLR9-mediated IL-23 and IL-17 responses are required for the generation of granulomatous inflammation induced by inhaled S. chartarum. Mice that undergo i.p. sensitization and intratracheal challenge with 10(6) S. chartarum spores developed granulomatous inflammation with multinucleate giant cells, accompanied by increased accumulation of T cells. S. chartarum sensitization and challenge resulted in robust pulmonary expression of IL-17 and IL-23. S. chartarum-mediated granulomatous inflammation required intact IL-23 or IL-17 responses and required TLR9, because TLR9(-/-) mice displayed reduced IL-17 and IL-23 expression in whole lung associated with decreased accumulation of IL-17 expressing CD4(+) and γδ T cells. Compared with S. chartarum-sensitized dendritic cells (DC) isolated from WT mice, DCs isolated from TLR9(-/-) mice had a reduced ability to produce IL-23 in responses to S. chartarum. Moreover, shRNA knockdown of IL-23 in DCs abolished IL-17 production from splenocytes in response to Ag challenge. Finally, the intratracheal reconstitution of IL-23 in TLR9(-/-) mice recapitulated the immunopathology observed in WT mice. In conclusion, our studies suggest that TLR9 is critical for the development of Th17-mediated granulomatous inflammation in the lung in response to S. chartarum.
Collapse
Affiliation(s)
- Urvashi Bhan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rowe JH, Ertelt JM, Way SS. Innate IFN-γ is essential for programmed death ligand-1-mediated T cell stimulation following Listeria monocytogenes infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:876-84. [PMID: 22711893 PMCID: PMC3402342 DOI: 10.4049/jimmunol.1103227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although best characterized for sustaining T cell exhaustion during persistent viral infection, programmed death ligand-1 (PDL-1) also stimulates the expansion of protective T cells after infection with intracellular bacterial pathogens. Therefore, establishing the molecular signals that control whether PDL-1 stimulates immune suppression or activation is important as immune modulation therapies based on manipulating PDL-1 are being developed. In this study, the requirement for PDL-1 blockade initiated before infection with the intracellular bacterium Listeria monocytogenes in reducing pathogen-specific T cell expansion is demonstrated. In turn, the role of proinflammatory cytokines triggered early after L. monocytogenes infection in controlling PDL-1-mediated T cell stimulation was investigated using mice with targeted defects in specific cytokines or cytokine receptors. These experiments illustrate an essential role for IL-12 or type I IFNs in PDL-1-mediated expansion of pathogen-specific CD8(+) T cells. Unexpectedly, direct stimulation by neither IL-12 nor type I IFNs on pathogen-specific CD8(+) cells was essential for PDL-1-mediated expansion. Instead, the absence of early innate IFN-γ production in mice with combined defects in both IL-12 and type I IFNR negated the impacts of PDL-1 blockade. In turn, IFN-γ ablation using neutralizing Abs or in mice with targeted defects in IFN-γR each eliminated the PDL-1-mediated stimulatory impacts on pathogen-specific T cell expansion. Thus, innate IFN-γ is essential for PDL-1-mediated T cell stimulation.
Collapse
Affiliation(s)
- Jared H. Rowe
- Departments of Pediatrics and Microbiology, Center for Microbiology and Infectious Disease Translational Research, University of Minnesota School of Medicine
| | - James M. Ertelt
- Departments of Pediatrics and Microbiology, Center for Microbiology and Infectious Disease Translational Research, University of Minnesota School of Medicine
| | - Sing Sing Way
- Departments of Pediatrics and Microbiology, Center for Microbiology and Infectious Disease Translational Research, University of Minnesota School of Medicine
| |
Collapse
|
23
|
Placke T, Salih HR, Kopp HG. GITR ligand provided by thrombopoietic cells inhibits NK cell antitumor activity. THE JOURNAL OF IMMUNOLOGY 2012; 189:154-60. [PMID: 22649191 DOI: 10.4049/jimmunol.1103194] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Thrombocytopenia inhibits tumor growth and especially metastasis in mice, whereas additional depletion of NK cells reverts this antimetastatic phenotype. It has therefore been speculated that platelets may protect hematogenously disseminating tumor cells from NK-dependent antitumor immunity. Tumor cells do not travel through the blood alone, but are rapidly coated by platelets, and this phenomenon has been proposed to shield disseminating tumor cells from NK-mediated lysis. However, the underlying mechanisms remain largely unclear. In this study, we show that megakaryocytes acquire expression of the TNF family member glucocorticoid-induced TNF-related ligand (GITRL) during differentiation, resulting in GITRL expression by platelets. Upon platelet activation, GITRL is upregulated on the platelet surface in parallel with the α-granular activation marker P-selectin. GITRL is also rapidly mobilized to the platelet surface following interaction with tumor cells, which results in platelet coating. Whereas GITRL, in the fashion of several other TNF family members, is capable of transducing reverse signals, no influence on platelet activation and function was observed upon GITRL triggering. However, platelet coating of tumor cells inhibited NK cell cytotoxicity and IFN-γ production that could partially be restored by blocking GITR on NK cells, thus indicating that platelet-derived GITRL mediates NK-inhibitory forward signaling via GITR. These data identify conferment of GITRL pseudoexpression to tumor cells by platelets as a mechanism by which platelets may alter tumor cell immunogenicity. Our data thus provide further evidence for the involvement of platelets in facilitating evasion of tumor cells from NK cell immune surveillance.
Collapse
Affiliation(s)
- Theresa Placke
- Department of Hematology/Oncology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | | | | |
Collapse
|
24
|
Matthews K, Ntsekhe M, Syed F, Scriba T, Russell J, Tibazarwa K, Deffur A, Hanekom W, Mayosi BM, Wilkinson RJ, Wilkinson KA. HIV-1 infection alters CD4+ memory T-cell phenotype at the site of disease in extrapulmonary tuberculosis. Eur J Immunol 2012; 42:147-57. [PMID: 22215422 PMCID: PMC3298896 DOI: 10.1002/eji.201141927] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
HIV-1-infected people have an increased risk of developing extrapulmonary tuberculosis (TB), the immunopathogenesis of which is poorly understood. Here, we conducted a detailed immunological analysis of human pericardial TB, to determine the effect of HIV-1 co-infection on the phenotype of Mycobacterium tuberculosis (MTB)-specific memory T cells and the role of polyfunctional T cells at the disease site, using cells from pericardial fluid and blood of 74 patients with (n=50) and without (n=24) HIV-1 co-infection. The MTB antigen-induced IFN-γ response was elevated at the disease site, irrespective of HIV-1 status or antigenic stimulant. However, the IFN-γ ELISpot showed no clear evidence of increased numbers of antigen-specific cells at the disease site except for ESAT-6 in HIV-1 uninfected individuals (p=0.009). Flow cytometric analysis showed that CD4+ memory T cells in the pericardial fluid of HIV-1-infected patients were of a less differentiated phenotype, with the presence of polyfunctional CD4+ T cells expressing TNF, IL-2 and IFN-γ. These results indicate that HIV-1 infection results in altered phenotype and function of MTB-specific CD4+ T cells at the disease site, which may contribute to the increased risk of developing TB at all stages of HIV-1 infection.
Collapse
Affiliation(s)
- Kerryn Matthews
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
MicroRNAs (miRs) are small, noncoding RNA molecules with important regulatory functions whose role in regulating natural killer (NK) cell biology is not well defined. Here, we show that miR-155 is synergistically induced in primary human NK cells after costimulation with IL-12 and IL-18, or with IL-12 and CD16 clustering. Over-expression of miR-155 enhanced induction of IFN-γ by IL-12 and IL-18 or CD16 stimulation, whereas knockdown of miR-155 or its disruption suppressed IFN-γ induction in monokine and/or CD16-stimulated NK cells. These effects on the regulation of NK cell IFN-γ expression were found to be mediated at least in part via miR-155's direct effects on the inositol phosphatase SHIP1. Consistent with this, we observed that modulation of miR-155 overrides IL-12 and IL-18-mediated regulation of SHIP1 expression in NK cells. Collectively, our data indicate that miR-155 expression is regulated by stimuli that strongly induce IFN-γ in NK cells such as IL-12, IL-18, and CD16 activation, and that miR-155 functions as a positive regulator of IFN-γ production in human NK cells, at least in part via down-regulating SHIP1. These findings may have clinical relevance for targeting miR-155 in neoplastic disease.
Collapse
|
26
|
Placke T, Örgel M, Schaller M, Jung G, Rammensee HG, Kopp HG, Salih HR. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 2011; 72:440-8. [PMID: 22127925 DOI: 10.1158/0008-5472.can-11-1872] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that play an important role in tumor immunosurveillance, preferentially eliminating targets with low or absent expression of MHC class I and stress-induced expression of ligands for activating NK receptors. Platelets promote metastasis by protecting disseminating tumor cells from NK cell immunosurveillance, but the underlying mechanisms are not well understood. In this study, we show that tumor cells rapidly get coated in the presence of platelets in vitro, and circulating tumor cells of cancer patients display coexpression of platelet markers. Flow cytometry, immunofluorescent staining, confocal microscopy, and analyses on an ultrastructural level using immunoelectron microscopy revealed that such coating may cause transfer of MHC class I onto the tumor cell surface resulting in high-level expression of platelet-derived normal MHC class I. The resulting "phenotype of false pretenses" disrupts recognition of tumor cell missing self, thereby impairing cytotoxicity and IFN-γ production by NK cells. Thus, our data indicate that platelets, by conferring an unsuspicious "pseudonormal" phenotype, may enable a molecular mimicry that allows metastasizing tumor cells to downregulate MHC class I, to escape T-cell-mediated immunity without inducing susceptibility to NK cell reactivity.
Collapse
Affiliation(s)
- Theresa Placke
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Bihl F, Germain C, Luci C, Braud VM. Mechanisms of NK cell activation: CD4(+) T cells enter the scene. Cell Mol Life Sci 2011; 68:3457-67. [PMID: 21861183 PMCID: PMC11114938 DOI: 10.1007/s00018-011-0796-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes involved in immunosurveillance through their cytotoxic activity and their capacity to secrete inflammatory cytokines. NK cell activation is necessary to initiate effector functions and results from a complex series of molecular and cellular events. We review here the signals that trigger NK cells and discuss recent findings showing that, besides antigen-presenting cells, T cells can play a central role in the initiation of NK cell activation in lymph nodes.
Collapse
Affiliation(s)
- Franck Bihl
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Université de Nice-Sophia Antipolis, UMR6097, 660, route des Lucioles, 06560 Valbonne, France
| | - Claire Germain
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Université de Nice-Sophia Antipolis, UMR6097, 660, route des Lucioles, 06560 Valbonne, France
| | - Carmelo Luci
- Faculté de Médecine Pasteur, Inserm, U634, 06107 Nice cedex 2, France
| | - Veronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Université de Nice-Sophia Antipolis, UMR6097, 660, route des Lucioles, 06560 Valbonne, France
| |
Collapse
|
28
|
Bhan U, Newstead MJ, Zeng X, Ballinger MN, Standiford LR, Standiford TJ. Stachybotrys chartarum-induced hypersensitivity pneumonitis is TLR9 dependent. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2779-87. [PMID: 21982832 DOI: 10.1016/j.ajpath.2011.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/17/2011] [Accepted: 08/26/2011] [Indexed: 12/18/2022]
Abstract
Hypersensitivity pneumonitis (HP), an inflammatory lung disease, develops after repeated exposure to inhaled particulate antigen and is characterized by a vigorous T helper type 1-mediated immune response, resulting in the release of IL-12 and interferon (IFN)-γ. These T helper type 1 cytokines may participate in the pathogenesis of HP. Stachybotrys chartarum (SC) is a dimorphic fungus implicated in a number of respiratory illnesses, including HP. Here, we have developed a murine model of SC-induced HP that reproduces pathology observed in human HP and hypothesized that toll receptor-like 9 (TLR9)-mediated dendritic cell responses are required for the generation of granulomatous inflammation induced by inhaled SC. Mice sensitized and challenged with 10(6) SC spores develop granulomatous inflammation with multinucleate giant cells, accompanied by increased accumulation of neutrophils and CD4(+) and CD8(+) T cells. SC sensitization and challenge resulted in robust pulmonary expression of tumor necrosis factor-α, IL-12, and IFN-γ. SC-mediated granulomatous inflammation required IFN-γ and was TLR9 dependent, because TLR9(-/-) mice displayed reduced peribronchial inflammation, decreased accumulation and/or activation of polymorphonuclear (PMN) and CD4(+) and CD8(+) T cells, and reduced lung expression of type 1 cytokines and chemokines. T-cell production of IFN-γ was IL-12 dependent. Our studies suggest that TLR9 is critical for dendritic cell-mediated development of a type 1 granulomatous inflammation in the lung in response to SC.
Collapse
Affiliation(s)
- Urvashi Bhan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Alshaker HA, Qinna NA, Qadan F, Bustami M, Matalka KZ. Eriobotrya japonica hydrophilic extract modulates cytokines in normal tissues, in the tumor of Meth-A-fibrosarcoma bearing mice, and enhances their survival time. Altern Ther Health Med 2011; 11:9. [PMID: 21294856 PMCID: PMC3045389 DOI: 10.1186/1472-6882-11-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/04/2011] [Indexed: 12/21/2022]
Abstract
Background Cytokines play a key role in the immune response to developing tumors, and therefore modulating their levels and actions provides innovative strategies for enhancing the activity of antigen presenting cells and polarizing towards T helper 1 type response within tumor microenvironment. One of these approaches could be the employment of plant extracts that have cytokine immunomodulation capabilities. Previously, we have shown that the Eriobotrya japonica hydrophilic extract (EJHE) induces proinflammatory cytokines in vitro and in vivo. Methods The present study explored the in vivo immunomodulatory effect on interferon-gamma (IFN-γ), interleukin-17 (IL-17), and transforming growth factor-beta 1 (TGF-β1) evoked by two water-extracts prepared from EJ leaves in the tissues of normal and Meth-A-fibrosarcoma bearing mice. Results Intraperitoneal (i.p.) administration of 10 μg of EJHE and EJHE-water residue (WR), prepared from butanol extraction, increased significantly IFN-γ production in the spleen (p < 0.01) and lung (p < 0.03) tissues at 6-48 hours and suppressed significantly TGF-β1 production levels (p < 0.001) in the spleen for as long as 48 hours. The latter responses, however, were not seen in Meth-A fibrosarcoma-bearing mice. On the contrary, triple i.p. injections, 24 hours apart; of 10 μg EJHE increased significantly IFN-γ production in the spleen (p < 0.02) while only EJHE-WR increased significantly IFN-γ, TGF-β1 and IL-17 (p < 0.03 - 0.005) production within the tumor microenvironment of Meth-A fibrosarcoma. In addition, the present work revealed a significant prolongation of survival time (median survival time 72 days vs. 27 days of control, p < 0.007) of mice inoculated i.p. with Meth-A cells followed by three times/week for eight weeks of i.p. administration of EJHE-WR. The latter prolonged survival effect was not seen with EJHE. Conclusions The therapeutic value of EJHE-WR as an anticancer agent merits further investigation of understanding the effect of immunomodulators' constituents on the cellular components of the tissue microenvironment. This can lead to the development of improved strategies for cancer treatment and thus opening up a new frontier for future studies.
Collapse
|
30
|
Salih J, Hilpert J, Placke T, Grünebach F, Steinle A, Salih HR, Krusch M. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer 2010; 127:2119-28. [PMID: 20143399 DOI: 10.1002/ijc.25233] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In chronic myeloid leukemia (CML), BCR/ABL-mediated oncogenic signaling can be targeted with the BCR/ABL-inhibitors Imatinib, Nilotinib and Dasatinib. However, these agents may also affect anti-tumor immunity. Here, we analyzed the effects of the 3 BCR/ABL-inhibitors on natural killer (NK) cell reactivity. Exposure of CML cells (K562, Meg-01) to pharmacological concentrations of Imatinib, Nilotinib and Dasatinib diminished expression of ligands for the activating immunoreceptor NKG2D to a similar extent. This resulted in comparably reduced NK cell cytotoxicity and IFN-gamma production. When direct effects on NK cell responses to K562 and primary CML cells as well as activating cytokines were studied, Dasatinib was found to abrogate NK cytotoxicity and cytokine production. Nilotinib did not alter cytotoxicity but, at high levels, impaired NK cytokine production, while Imatinib had no direct influence on NK cell reactivity. Of note, Nilotinib, but not the other BCR/ABL-inhibitors increased cell death within the preferentially cytokine-secreting CD56(bright)CD16(-) NK cell subset, which may, at least in part, serve to explain the effect of Nilotinib on NK cytokine production. Analysis of NK cell signaling revealed that Dasatinib inhibited proximal signaling events leading to decreased phosphorylation of PI3K and ERK that are crucial for NK cell reactivity. Imatinib and Nilotinib, in contrast, showed no relevant effect on NK cell PI3K or ERK activity. In light of the potential role of NK cells in the immunesurveillance of residual leukemia and for future combinatory immunotherapeutic approaches, our data indicate that choice and dosing of the most suitable BCR/ABL-inhibitor for a given patient require careful consideration.
Collapse
Affiliation(s)
- Julia Salih
- Department of Hematology/Oncology, Eberhard-Karls-University, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Bihl F, Pecheur J, Bréart B, Poupon G, Cazareth J, Julia V, Glaichenhaus N, Braud VM. Primed antigen-specific CD4+ T cells are required for NK cell activation in vivo upon Leishmania major infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:2174-81. [PMID: 20624944 DOI: 10.4049/jimmunol.1001486] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of NK cells to rapidly produce IFN-gamma is an important innate mechanism of resistance to many pathogens including Leishmania major. Molecular and cellular components involved in NK cell activation in vivo are still poorly defined, although a central role for dendritic cells has been described. In this study, we demonstrate that Ag-specific CD4(+) T cells are required to initiate NK cell activation early on in draining lymph nodes of L. major-infected mice. We show that early IFN-gamma secretion by NK cells is controlled by IL-2 and IL-12 and is dependent on CD40/CD40L interaction. These findings suggest that newly primed Ag-specific CD4(+) T cells could directly activate NK cells through the secretion of IL-2 but also indirectly through the regulation of IL-12 secretion by dendritic cells. Our results reveal an unappreciated role for Ag-specific CD4(+) T cells in the initiation of NK cell activation in vivo upon L. major infection and demonstrate bidirectional regulations between innate and adaptive immunity.
Collapse
Affiliation(s)
- Franck Bihl
- Centre National de la Recherche Scientifique/Université de Nice-Sophia Antipolis, Unité Mixte de Recherche 6097, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kubota K. Innate IFN-gamma production by subsets of natural killer cells, natural killer T cells and gammadelta T cells in response to dying bacterial-infected macrophages. Scand J Immunol 2010; 71:199-209. [PMID: 20415785 DOI: 10.1111/j.1365-3083.2009.02366.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Interferon-gamma (IFN-gamma) activation of macrophages is a crucial step in the early innate defence against bacterial infection. This innate IFN-gamma is thought to be produced mainly by natural killer (NK) cells through activation with interleukin (IL)-12p70 secreted by macrophages and dendritic cells (DCs) that have sensed bacterial products. However, a number of reports have shown that bacterial stimuli are unable to induce macrophages and/or DCs to produce sufficient amounts of IL-12p70 unless these cells are primed by IFN-gamma. It remains, therefore, unsettled how initial IFN-gamma is produced. In a previous study, we reported a novel IFN-gamma production pathway that was associated with cell death in macrophages caused by intracellular bacteria like Listeria monocytogenes (LM) and Shigella flexneri. In this study, we showed that cell death of bone-marrow-derived macrophage (BMM) cells following in vitro infection with Staphylococcus aureus (SA), an extracellular bacterium, can also stimulate this IFN-gamma production pathway. We also unequivocally demonstrated by using BMM cells from IL-12-deficient mice that the bacterial-infected macrophage cell death-mediated IFN-gamma production can occur without IL-12 although the magnitude of the response is much smaller than that in the presence of IL-12. The enhancing effect of IL-12 on this response proved to be attributable to the negligible amounts (0.5 approximately 1.5 pg/ml) of IL-12p70 but not to the large amounts of IL-12p40 that were both secreted by SA- and LM-infected macrophages. Taken all together, we propose that macrophage cell death caused by bacteria may trigger the initial IFN-gamma production at an early stage of bacterial infection.
Collapse
Affiliation(s)
- K Kubota
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
33
|
Humann J, Lenz LL. Activation of naive NK cells in response to Listeria monocytogenes requires IL-18 and contact with infected dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:5172-8. [PMID: 20351186 DOI: 10.4049/jimmunol.0903759] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The mechanisms for NK cell activation during infection by intracellular bacterial pathogens are not clearly defined. To dissect how Listeria monocytogenes infection elicits NK cell activation, we evaluated the requirements for activation of naive splenic NK cells by infected bone marrow-derived dendritic cells (BMDCs). We found that NK cell activation in this setting required infection of BMDCs by live wild type bacteria. NK cells were not activated when BMDCs were infected with a live hemolysin deficient (Deltahly) strain. Neutralization of IL-12, TNF-alpha, or caspase-1 each dramatically reduced NK cell IFN-gamma production in response to live wt L. monocytogenes infection. Addition of recombinant IL-18, but not IL-1beta, reversed the effects of caspase-1 inhibition. Recombinant IL-18 also restored NK cell activation by BMDCs infected with Deltahly L. monocytogenes, which produced IL-12 but not IL-18. IL-18 acted on NK cells because MyD88 expression was required in responding NK cells, but not infected BMDC. However, secreted cytokines were not sufficient for activation of naive NK cells by infected BMDCs. Rather, NK cell activation additionally required contact between infected BMDCs and NK cells. These data suggest that the activation of NK cells during L. monocytogenes infection requires both secreted cytokines and ligation of NK activating receptors during direct contact with infected DCs.
Collapse
Affiliation(s)
- Jessica Humann
- National Jewish Health and Integrated Department of Immunology, University of Colorado, Denver, CO 80206, USA
| | | |
Collapse
|
34
|
Krusch M, Salih J, Schlicke M, Baessler T, Kampa KM, Mayer F, Salih HR. The Kinase Inhibitors Sunitinib and Sorafenib Differentially Affect NK Cell Antitumor Reactivity In Vitro. THE JOURNAL OF IMMUNOLOGY 2009; 183:8286-94. [DOI: 10.4049/jimmunol.0902404] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Xie Y, Zhang H, Wang YL, Zhou QM, Qiu R, Yuan ZG, Zhou GM. Alterations of immune functions induced by 12C6+ ion irradiation in mice. Int J Radiat Biol 2009; 83:577-81. [PMID: 17654099 DOI: 10.1080/09553000701481774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To estimate the biological risks to the immune system of the type of space radiation, 12C6+, encountered by cosmonauts during long-term travel in space. MATERIALS AND METHODS The Kun-Ming strain mice were whole-body irradiated by 12C6+ ion with 0, 0.01, 0.05, 0.075, 0.2, 0.3, 0.5, 0.75, 1 or 2 Gy, at a dose rate of 1 Gy/min. At 35 days after irradiation, the thymus and spleen weights were measured, the natural killer (NK) cells activity of spleen was determined by 3-(4, 5-dimethylthiazol-2-yl)- 2, 5-diphenyl tetrazolium bromide (MTT), and the interferon-gamma (IFN-gamma) levels in serum and thymus were detected with enzyme-linked immunosorbent assays (ELISA). RESULTS The results showed that the thymus weight, IFN-gamma levels in serum and the activity of splenic NK-cells had significantly increased at a dose of 0.05 Gy. With further dose increase, the weight of spleen continued to increase but the weight of thymus, IFN-gamma level and NK-cells activity declined. CONCLUSIONS These results suggest that the dose of 0.05 Gy irradiation has a stimulatory effect on mouse immunity; this effect declined with increasing dose.
Collapse
Affiliation(s)
- Y Xie
- Department of Radiology, Institute of Modern Physics, the Chinese Academy of Science, Lanzhou, Gansu Province, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Graham EM, Thom ML, Howard CJ, Boysen P, Storset AK, Sopp P, Hope JC. Natural killer cell number and phenotype in bovine peripheral blood is influenced by age. Vet Immunol Immunopathol 2009; 132:101-8. [PMID: 19525013 DOI: 10.1016/j.vetimm.2009.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 04/29/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Natural killer (NK) cells are critical to the innate defence against intracellular infection. High NK cell frequencies have been detected in human neonates, which may compensate for the relative immaturity of the specific immune response. Additionally, phenotypic subsets of NK cells have been identified in humans with different functional properties. In this study, we examined the age distribution and phenotype of NK populations in bovine peripheral blood, including neonatal animals. We found that the NK cell populations defined by the phenotypes CD3(-)CD2(+) and NKp46(+) largely overlapped, so that the majority of NK cells in bovine peripheral blood were CD3(-)CD2(+)NKp46(+). The remainder of the NK-like cells comprised two minor populations, CD3(-)CD2(+)NKp46(-) and CD3(-)CD2(-)NKp46(+); the relative proportions of these varied with age. The lowest frequency of NK cells was recorded in 1-day-old calves, with the highest frequency in day 0 calves. The phenotypic characteristics of CD3(-)CD2(+) and NKp46(+) NK populations were similar; both populations expressed CD45RO, CD45RB, CD11b, CC84, CD8alphaalpha and CD8alphabeta and did not express CD21, WC1, CD14 or gammadelta TCR. Age-related phenotypic differences were apparent. The phenotypic characteristics of three NK subpopulations were described; a significantly greater proportion of the CD3(-)CD2(-)NKp46(+) population expressed CD8alpha compared to CD3(-)CD2(+)NKp46(+) cells. Furthermore, a significantly greater proportion of the CD3(-)CD2(+)NKp46(-) population expressed CD8 compared to total CD3(-)CD2(+) cells. Adult cattle had a significantly higher proportion of perforin(+) cells compared to calves aged </=6 weeks. In this age group, the majority of perforin(+) cells expressed NKp46, while in adults the majority of perforin(+) cells were NKp46(-). However, the proportion of NKp46(+) and CD3(-)CD2(+) cells that expressed perforin was not significantly different in any age group tested.
Collapse
Affiliation(s)
- Elizabeth M Graham
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Savan R, Ravichandran S, Collins JR, Sakai M, Young HA. Structural conservation of interferon gamma among vertebrates. Cytokine Growth Factor Rev 2009; 20:115-24. [PMID: 19268624 PMCID: PMC2755191 DOI: 10.1016/j.cytogfr.2009.02.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interferon gamma (IFN-gamma), being the hallmark of the T-cell T(H)1 response, has been extensively studied with respect to its expression and regulation of immune function. This gene has been extensively characterized in many mammalian species, making it one of the most widely cloned immunoregulatory genes. Recently, the gene has been identified in avian and piscine species and we have identified the gene in the frog genome. Based on these identified DNA sequences, we have constructed an evolutionary history of IFN-gamma that shows this molecule can be traced back more than 450 million years ago. Our analysis shows that type II interferon (IFN-gamma) function evolved before the tetrapod-fish split, a finding that contrasts earlier studies showing its origins in tetrapods. The IFN-gamma gene has undergone a further duplication event in teleosts after the tetrapod-fish split suggesting a specific-evolutionary adaptation in fish. The analyses of IFN-gamma, IL-22 and IL-26 genomic region in mammals, chicken, frog and fish reveal an evolutionary conservation of the loci and several regulatory elements controlling IFN-gamma gene transcription. Furthermore, across the vertebrata, the first intron of IFN-gamma gene contains a polymorphic microsatellite that has been closely correlated with disease susceptibility. Comparative-modeling of IFN-gamma structure revealed differences among the representative species but with an overall conservation of the fold, dimer interface and some interactions with the receptor. The structural and functional conservation of IFN-gamma suggests the presence of an innate, natural killer (NK) like response or even an adaptive T(H)1 immune response in lower vertebrates.
Collapse
Affiliation(s)
- Ram Savan
- Laboratory for Experimental Immunology, Cancer and Inflammation Program, Center of Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702 USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, MD, 21702 USA
| | - Jack R. Collins
- Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, MD, 21702 USA
| | - Masahiro Sakai
- Laboratory of Marine Biotechnology, University of Miyazaki, Gakuen kibanadai nishi 1-1, Miyazaki city 889-2192, Miyazaki, Japan
| | - Howard A. Young
- Laboratory for Experimental Immunology, Cancer and Inflammation Program, Center of Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702 USA
| |
Collapse
|
38
|
Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. THE JOURNAL OF IMMUNOLOGY 2009; 182:240-9. [PMID: 19109155 DOI: 10.4049/jimmunol.182.1.240] [Citation(s) in RCA: 585] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
NK cells, the important effector of innate immunity, play critical roles in the antitumor immunity. Myeloid-derived suppressor cells (MDSC), a population of CD11b(+)Gr-1(+) myeloid cells expanded dramatically during tumor progression, can inhibit T cells and dendritic cells, contributing to tumor immune escape. However, regulation of NK cell innate function by MDSC in tumor-bearing host needs to be investigated. In this study, we found that the function of NK cells from liver and spleen was impaired significantly in all tumor-bearing models, indicating the impairment of hepatic NK cell function by tumor is a universal phenomenon. Then we prepared the orthotopic liver cancer-bearing mice as tumor model to investigate how hepatic NK cells are impaired. We show that down-regulation of NK cell function is inversely correlated with the marked increase of MDSC in liver and spleen. MDSC inhibit cytotoxicity, NKG2D expression, and IFN-gamma production of NK cells both in vitro and in vivo. After incubation with MDSC, NK cells could not be activated to produce IFN-gamma. Furthermore, membrane-bound TGF-beta1 on MDSC is responsible for MDSC-mediated suppression of NK cells. The impaired function of hepatic NK cells in orthotopic liver cancer-bearing mice could be restored by depletion of MDSC, but not regulatory T cells. Therefore, cancer-expanded MDSC can induce anergy of NK cells via membrane-bound TGF-beta1. MDSC, but not regulatory T cells, are main negative regulator of hepatic NK cell function in tumor-bearing host. Our study provides new mechanistic explanations for tumor immune escape.
Collapse
Affiliation(s)
- Hequan Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Peoples Republic of China
| | | | | | | | | |
Collapse
|
39
|
Kloss M, Decker P, Baltz KM, Baessler T, Jung G, Rammensee HG, Steinle A, Krusch M, Salih HR. Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA. THE JOURNAL OF IMMUNOLOGY 2008; 181:6711-9. [PMID: 18981088 DOI: 10.4049/jimmunol.181.10.6711] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reciprocal interactions between NK cells and dendritic cells have been shown to influence activation of NK cells, maturation, or lysis of dendritic cells and subsequent adaptive immune responses. However, little is known about the crosstalk between monocytes and NK cells and the receptors involved in this interaction. We report in this study that human monocytes, upon TLR triggering, up-regulate MHC class I-Related Chain (MIC) A, but not other ligands for the activating immunoreceptor NKG2D like MICB or UL-16 binding proteins 1-3. MICA expression was associated with CD80, MHC class I and MHC class II up-regulation, secretion of proinflammatory cytokines, and apoptosis inhibition, but was not accompanied by release of MIC molecules in soluble form. TLR-induced MICA on the monocyte cell surface was detected by autologous NK cells as revealed by NKG2D down-regulation. Although MICA expression did not render monocytes susceptible for NK cell cytotoxicity, LPS-treated monocytes stimulated IFN-gamma production of activated NK cells which was substantially dependent on MICA-NKG2D interaction. No enhanced NK cell proliferation or cytotoxicity against third-party target cells was observed after stimulation of NK cells with LPS-activated monocytes. Our data indicate that MICA-NKG2D interaction constitutes a mechanism by which monocytes and NK cells as an early source of IFN-gamma may communicate directly during an innate immune response to infections in humans.
Collapse
Affiliation(s)
- Mercedes Kloss
- Department of Hematology, Eberhard Karls University of Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Exposure of cord blood to Mycobacterium bovis BCG induces an innate response but not a T-cell cytokine response. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1666-73. [PMID: 18815231 DOI: 10.1128/cvi.00202-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite routine vaccination with Mycobacterium bovis bacillus Calmette-Guérin (BCG) soon after birth, tuberculosis in babies and adults remains epidemic in South Africa. The immune responses of the naïve newborn child and how they are affected by vaccination with BCG are as yet not fully understood. Immunity during pregnancy and in healthy human newborns may be skewed toward type 2 cytokine production; however, it is type 1 cytokines that are required for protection against M. tuberculosis infection. To better understand neonatal cytokine responses prior to and following exposure to mycobacteria, we have collected cord blood and peripheral blood samples and evaluated the cytokine response following ex vivo incubation with BCG. Gamma interferon (IFN-gamma), interleukin 10 (IL-10), IL-12, and low levels of IL-13 and IL-5 but no IL-4 were secreted into the culture supernatant of cord blood mononuclear cells. Intracellular staining showed that IL-10 and IL-12 were produced by monocytes and that IFN-gamma was produced by natural killer (NK) cells but not by CD4(+) or CD8(+) T cells. In contrast, in the peripheral blood samples collected from babies 13 weeks post-BCG vaccination, IFN-gamma was detected within CD4(+) and CD8(+) cells. Taken together, the data suggest a central role for Th1 cytokines in naïve as well as BCG-vaccinated neonates in the protective immune response to tuberculosis. NK cell-derived IFN-gamma produced in naïve neonates likely plays a key protective role via monocyte activation and the priming of a subsequent adaptive Th1 response.
Collapse
|
41
|
Armeanu S, Krusch M, Baltz KM, Weiss TS, Smirnow I, Steinle A, Lauer UM, Bitzer M, Salih HR. Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma. Clin Cancer Res 2008; 14:3520-8. [PMID: 18519785 DOI: 10.1158/1078-0432.ccr-07-4744] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) displays particular resistance to conventional cytostatic agents. Alternative treatment strategies focus on novel substances exhibiting antineoplastic and/or immunomodulatory activity enhancing for example natural killer (NK) cell antitumor reactivity. However, tumor-associated ligands engaging activating NK cell receptors are largely unknown. Exceptions are NKG2D ligands (NKG2DL) of the MHC class I-related chain and UL16-binding protein families, which potently stimulate NK cell responses. We studied the consequences of proteasome inhibition with regard to direct and NK cell-mediated effects against HCC. EXPERIMENTAL DESIGN Primary human hepatocytes (PHH) from different donors, hepatoma cell lines, and NK cells were exposed to Bortezomib. Growth and viability of the different cells, and immunomodulatory effects including alterations of NKG2DL expression on hepatoma cells, specific induction of NK cell cytotoxicity and IFN-gamma production were investigated. RESULTS Bortezomib treatment inhibited hepatoma cell growth with IC(50) values between 2.4 and 7.7 nmol/L. These low doses increased MICA/B mRNA levels, resulting in an increase of total and cell surface protein expression in hepatoma cells, thus stimulating cytotoxicity and IFN-gamma production of cocultured NK cells. Importantly, although NK cell IFN-gamma production was concentration-dependently reduced, low-dose Bortezomib neither induced NKG2DL expression or cell death in PHH nor altered NK cell cytotoxicity. CONCLUSIONS Low-dose Bortezomib mediates a specific dual antitumor effect in HCC by inhibiting tumor cell proliferation and priming hepatoma cells for NK cell antitumor reactivity. Our data suggest that patients with HCC may benefit from Bortezomib treatment combined with immunotherapeutic approaches such as adoptive NK cell transfer taking advantage of enhanced NKG2D-mediated antitumor immunity.
Collapse
Affiliation(s)
- Sorin Armeanu
- Department of Gastroenterology and Hepatology, Medical University Hospital, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qian BF, Tonkonogy SL, Sartor RB. Reduced responsiveness of HLA-B27 transgenic rat cells to TGF-beta and IL-10-mediated regulation of IFN-gamma production. Inflamm Bowel Dis 2008; 14:921-30. [PMID: 18340648 DOI: 10.1002/ibd.20415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND We have reported that commensal luminal bacterial components induce an active in vitro IFN-gamma response in mesenteric lymph node (MLN) and intestinal cells from specific pathogen-free (SPF) HLA-B27 transgenic (TG) rats with chronic colitis but not in cells from non-diseased SPF non-TG, germ-free (GF) non-TG or GF TG rats. METHODS The study examined IL-12 stimulation of MLN IFN-gamma responses to luminal bacteria and regulation of these responses by suppressive cytokines. RESULTS Exogenous IL-12 significantly increased the bacterial lysate-induced IFN-gamma response in SPF TG MLN cells, while bacterial lysate and IL-12 synergistically induced IFN-gamma from low baseline levels in cells obtained from both SPF and GF non-TG rats, and in GF TG cells. TGF-beta fully counteracted the effects of IL-12 and bacterial lysate on non-TG cells by almost completely inhibiting IFN-gamma production. In contrast, TG cells were less responsive to TGF-beta-mediated downregulation with a substantial residual IFN-gamma response to IL-12 plus bacterial lysate. Further experiments showed that CD4+/CD25+ cells had no inhibitory effect on the IFN-gamma production and were not required for TGF-beta-mediated suppression. Addition of exogenous IL-10 also partially inhibited IFN-gamma production by non-TG cells but did not affect TG cells. Conversely, exogenous IL-12 preferentially suppressed bacterial lysate-induced TGF-beta and IL-10 production in TG rat cells. CONCLUSIONS An attenuated response to regulatory signals leads to uncontrolled potentiated induction of effector IFN-gamma responses to commensal bacteria in HLA-B27 TG rats that spontaneously develop chronic intestinal inflammation.
Collapse
Affiliation(s)
- Bi-Feng Qian
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
43
|
Orgun NN, Mathis MA, Wilson CB, Way SS. Deviation from a strong Th1-dominated to a modest Th17-dominated CD4 T cell response in the absence of IL-12p40 and type I IFNs sustains protective CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:4109-15. [PMID: 18322221 DOI: 10.4049/jimmunol.180.6.4109] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The differentiation of naive CD4 T cells into specific effector subsets is controlled in large part by the milieu of cytokines present during their initial encounter with Ag. Cytokines that drive differentiation of the newly described Th17 lineage have been characterized in vitro, but the cytokines that prime commitment to this lineage in response to infection in vivo are less clear. Listeria monocytogenes (Lm) induces a strong Th1 response in wild-type mice. By contrast, we demonstrate that in the absence of IL-12p40 (or IFN-gamma) and type I IFN receptor signaling, the Th1 Ag-specific CD4 T cell response is virtually abolished and replaced by a relatively low magnitude Th17-dominated response. This Th17 response was dependent on TGF-beta and IL-6. Despite this change in CD4 T cell response, neither the kinetics of the CD4 and CD8 T cell responses, the quality of the CD8 T cell response, nor the ability of CD8 T cells to mediate protection were affected. Thus, generation of protective CD8 T cell immunity was resilient to perturbations that replace a strong Th1-dominated to a reduced magnitude Th17-dominated Ag-specific CD4 T cell response.
Collapse
Affiliation(s)
- Nural N Orgun
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Little is known about the role of the cytokine interleukin-12 (IL-12) in Pneumocystis pneumonia or its potential use as immunotherapy. We asked whether release of IL-12 is part of the normal host response to this infection and whether local treatment with IL-12 or gene transfer of IL-12 could accelerate clearance of infection. IL-12 was assayed by enzyme-linked immunosorbent assay in normal mice and in mice deficient in IL-12 after inoculation of Pneumocystis carinii. P. carinii-infected mice were treated with local instillation of IL-12 and gene transfer of the IL-12 gene. Inoculation of P. carinii into normal mice evoked a brisk release of IL-12 into lung tissue, and IL-12 P35-deficient mice showed delayed clearance of infection measured by PCR for P. carinii rRNA. In control mice, intranasal recombinant IL-12 accelerated clearance of infection, and this was associated with increased recruitment of inflammatory cells into lavage fluid and increased release of tumor necrosis factor alpha, IL-12, and gamma interferon. Similar results were observed in infected mice depleted of CD4+ lymphocytes by using in vivo transfer of the IL-12 gene in a replication-deficient adenoviral vector. IL-12 is part of the normal host response to infection with P. carinii. IL-12 therapy can enhance host resistance to infection in both normal mice and mice depleted of CD4+ T lymphocytes. A treatment effect of IL-12 is mediated through enhanced inflammatory cell recruitment into lung tissue and increased tissue concentrations of proinflammatory cytokines.
Collapse
|
45
|
Hazlett LD, Li Q, Liu J, McClellan S, Du W, Barrett RP. NKT cells are critical to initiate an inflammatory response after Pseudomonas aeruginosa ocular infection in susceptible mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:1138-46. [PMID: 17617607 DOI: 10.4049/jimmunol.179.2.1138] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) T cells produce IFN-gamma contributing to corneal perforation in C57BL/6 (B6) mice after Pseudomonas aeruginosa infection. To determine the role of NK and NKT cells, infected corneas of B6 mice were dual immunolabeled. Initially, more NKT than NK cells were detected, but as disease progressed, NK cells increased, while NKT cells decreased. Therefore, B6 mice were depleted of NK/NKT cells with anti-asialo GM1 or anti-NK1.1 Ab. Either treatment accelerated time to perforation, increased bacterial load and polymorphonuclear neutrophils, but decreased IFN-gamma and IL-12p40 mRNA expression vs controls. Next, RAG-1 knockout (-/-; no T/NKT cells), B6.TCR Jalpha281(-/-) (NKT cell deficient), alpha-galactosylceramide (alphaGalCer) (anergized NKT cells) injected and IL-12p40(-/-) vs B6 controls were tested. IFN-gamma mRNA was undetectable in RAG-1(-/-)- and alphaGalCer-treated mice at 5 h and was significantly reduced vs controls at 1 day postinfection. It also was reduced significantly in B6.TCR Jalpha281(-/-), alphaGalCer-treated, and IL-12p40(-/-) (activated CD4(+) T cells also reduced) vs control mice at 5 days postinfection. In vitro studies tested whether endotoxin (LPS) stimulated Langerhans cells and macrophages (Mphi; from B6 mice) provided signals to activate NKT cells. LPS up-regulated mRNA expression for IL-12p40, costimulatory molecules CD80 and CD86, NF-kappaB, and CD1d, and addition of rIFN-gamma potentiated Mphi CD1d levels. Together, these data suggest that Langerhans cell/Mphi recognition of microbial LPS regulates IL-12p40 (and CD1d) driven IFN-gamma production by NKT cells, that IFN-gamma is required to optimally activate NK cells to produce IFN-gamma, and that depletion of both NKT/NK cells results in earlier corneal perforation.
Collapse
Affiliation(s)
- Linda D Hazlett
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Trotta R, Ciarlariello D, Dal Col J, Allard J, Neviani P, Santhanam R, Mao H, Becknell B, Yu J, Ferketich AK, Thomas B, Modi A, Blaser BW, Perrotti D, Caligiuri MA. The PP2A inhibitor SET regulates natural killer cell IFN-gamma production. ACTA ACUST UNITED AC 2007; 204:2397-405. [PMID: 17875674 PMCID: PMC2118465 DOI: 10.1084/jem.20070419] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monokines (i.e., interleukin [IL]-12, -18, and -15) induce natural killer (NK) cells to produce interferon-γ (IFN-γ), which is a critical factor for immune surveillance of cancer and monocyte clearance of infection. We show that SET, which is a potent inhibitor of protein phosphatase type 2A (PP2A) activity, is highly expressed in human CD56bright NK cells, which produce more IFN-γ than CD56dim NK cells. SET was up-regulated upon monokine stimulation of primary human NK cells. Furthermore, ectopic overexpression of SET significantly enhanced IFN-γ gene expression in monokine-stimulated NK cells. In contrast, RNAi-mediated suppression of SET expression renders NK cells inefficient in producing high levels of IFN-γ in response to monokine costimulation. Mechanistically, suppression of PP2A activity by SET is important for IFN-γ gene expression in NK cells. In fact, treatment of primary human NK cells with the PP2A activator 1,9-dideoxy-forskolin, as well as administration of the drug to C57BL/6 mice, significantly reduced NK-dependent IFN-γ production in response to monokine treatment. Further, SET knockdown or pharmacologic activation of PP2A diminished extracellular signal-regulated kinase 1/2, p65RelA, signal transducer and activator of transduction 4 (STAT4), and STAT5 activity in monokine-stimulated NK cells, potentially contributing to the reduction in IFN-γ gene expression. Thus, SET expression is essential for suppressing PP2A phosphatase activity that would otherwise limit NK cell antitumoral and/or antiinflammatory functions by impairing NK cell production of IFN-γ.
Collapse
Affiliation(s)
- Rossana Trotta
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lauzon NM, Mian F, Ashkar AA. Toll-like receptors, natural killer cells and innate immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:1-11. [PMID: 17892200 DOI: 10.1007/978-0-387-71767-8_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nicole M Lauzon
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
48
|
Lauzon NM, Mian F, MacKenzie R, Ashkar AA. The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity. Cell Immunol 2006; 241:102-12. [PMID: 17049504 DOI: 10.1016/j.cellimm.2006.08.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 08/08/2006] [Indexed: 11/22/2022]
Abstract
Toll-like receptor (TLR) ligands are potent inducers of the innate immune system, of which NK and NKT cells play an important role. We examined the direct activation of highly purified human NK and/or NKT cells with known TLR ligands. NK/NKT cells were positive for all known TLR mRNA (TLR1-10). Ligands for TLR2-5 induced production of significant amounts of IFN-gamma by purified NK cells. However, a TLR9 ligand failed to induce significant levels of the cytokine. NK cells were depleted from PBMCs to confirm that they were the main source of IFN-gamma following treatment with TLR ligands, which resulted in a significant decrease in cytokines. The direct effects of TLR ligands on NK cytotoxicity were determined using 51Cr-labeled K562 target cells. Ligands for TLR2-5 were potent inducers of NK cell cytotoxicity, a TLR9 ligand was not. Our results suggest that TLR ligands can directly stimulate and enhance NK cell cytokine production and induce cytotoxic activities.
Collapse
Affiliation(s)
- Nicole M Lauzon
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ont., Canada L8N 3Z5
| | | | | | | |
Collapse
|
49
|
Ribeiro-Dias F, Tosta CE. Dynamics and kinetics of natural killer cell cytotoxicity in human malaria as evaluated by a novel stepwise cytotoxicity assay. Rev Soc Bras Med Trop 2006; 39:357-64. [PMID: 17119751 DOI: 10.1590/s0037-86822006000400008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 07/27/2006] [Indexed: 11/21/2022] Open
Abstract
Malaria causes important functional alterations of the immune system, but several of them are poorly defined. To evaluate thoroughly the natural killer cell cytotoxicity in patients with malaria, we developed a technique capable to assess both the dynamics and the kinetics of the process. For the kinetics assay, human peripheral blood mononuclear cells were previously incubated with K562 cells and kept in agarose medium, while for the dynamics assay both cells were maintained in suspension. NK activity from patients with vivax malaria presented a kinetics profile faster than those with falciparum malaria. NK cytotoxicity positively correlated with parasitemia in falciparum malaria. The dynamics of NK cytotoxicity of healthy individuals was elevated at the beginning of the process and then significantly decreased. In contrast, malaria patients presented successive peaks of NK activity. Our results confirmed the occurrence of alteration in NK cell function during malaria, and added new data about the NK cytotoxicity process.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Adult
- Animals
- Case-Control Studies
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/immunology
- Cytotoxicity, Immunologic/physiology
- Female
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/physiology
- Kinetics
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/parasitology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Male
- Middle Aged
- Parasitemia/immunology
- Time Factors
Collapse
Affiliation(s)
- Fátima Ribeiro-Dias
- Area de Patologia, Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF
| | | |
Collapse
|
50
|
Hallett WHD, Murphy WJ. Positive and negative regulation of Natural Killer cells: therapeutic implications. Semin Cancer Biol 2006; 16:367-82. [PMID: 16934486 DOI: 10.1016/j.semcancer.2006.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural Killer (NK) cells can mediate numerous anti-tumor and anti-viral effector functions as well as play important immunoregulatory roles in various disease states. Promoting the ability of NK cells to respond in an immunotherapeutic setting has often been sought by the addition of NK cell-stimulating factors. However, such therapies are often found to be insufficient, which may in part be due to the presence of inhibitory influences on the NK cell. NK cells can respond to a plethora of cytokines which are generated by numerous cell types and these interactions can markedly affect NK cell survival and activity. NK cells also possess multiple activating and inhibiting receptors which can alter their function. Whether the NK cell will become activated or not can depend on a complex balance of activating and inhibitory signals received by the cell and modulation of these signals may shift the balance on NK activation. This review discusses the various activating and inhibitory stimuli which can act on NK cells, and suggests that future NK cell-based therapies consider not only activating stimuli but also removal of possible inhibitory elements which could prevent optimal NK cell function and/or survival.
Collapse
Affiliation(s)
- William H D Hallett
- Department of Microbiology and Immunology, MS 199, University of Nevada School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | | |
Collapse
|