1
|
Lin B, Singh RK, Seiler MJ, Nasonkin IO. Survival and Functional Integration of Human Embryonic Stem Cell-Derived Retinal Organoids After Shipping and Transplantation into Retinal Degeneration Rats. Stem Cells Dev 2024; 33:201-213. [PMID: 38390839 PMCID: PMC11250834 DOI: 10.1089/scd.2023.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.
Collapse
Affiliation(s)
- Bin Lin
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | | - Magdalene J. Seiler
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | |
Collapse
|
2
|
Retinal Organoid Technology: Where Are We Now? Int J Mol Sci 2021; 22:ijms221910244. [PMID: 34638582 PMCID: PMC8549701 DOI: 10.3390/ijms221910244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
It is difficult to regenerate mammalian retinal cells once the adult retina is damaged, and current clinical approaches to retinal damages are very limited. The introduction of the retinal organoid technique empowers researchers to study the molecular mechanisms controlling retinal development, explore the pathogenesis of retinal diseases, develop novel treatment options, and pursue cell/tissue transplantation under a certain genetic background. Here, we revisit the historical background of retinal organoid technology, categorize current methods of organoid induction, and outline the obstacles and potential solutions to next-generation retinal organoids. Meanwhile, we recapitulate recent research progress in cell/tissue transplantation to treat retinal diseases, and discuss the pros and cons of transplanting single-cell suspension versus retinal organoid sheet for cell therapies.
Collapse
|
3
|
Singh RK, Winkler PA, Binette F, Petersen-Jones SM, Nasonkin IO. Comparison of Developmental Dynamics in Human Fetal Retina and Human Pluripotent Stem Cell-Derived Retinal Tissue. Stem Cells Dev 2021; 30:399-417. [PMID: 33677999 DOI: 10.1089/scd.2020.0085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Progressive vision loss, caused by retinal degenerative (RD) diseases such as age-related macular degeneration, retinitis pigmentosa, and Leber congenital amaurosis, severely impacts quality of life and affects millions of people. Finding efficient treatment for blinding diseases is among the greatest unmet clinical needs. The evagination of optic vesicles from developing pluripotent stem cell-derived neuroepithelium and self-organization, lamination, and differentiation of retinal tissue in a dish generated considerable optimism for developing innovative approaches for treating RD diseases, which previously were not feasible. Retinal organoids may be a limitless source of multipotential retinal progenitors, photoreceptors (PRs), and the whole retinal tissue, which are productive approaches for developing RD disease therapies. In this study we compared the distribution and expression level of molecular markers (genetic and epigenetic) in human fetal retina (age 8-16 weeks) and human embryonic stem cell (hESC)-derived retinal tissue (organoids) by immunohistochemistry, RNA-seq, flow cytometry, and mass-spectrometry (to measure methylated and hydroxymethylated cytosine level), with a focus on PRs to evaluate the clinical application of hESC-retinal tissue for vision restoration. Our results revealed high correlation in gene expression profiles and histological profiles between human fetal retina (age 8-13 weeks) and hESC-derived retinal tissue (10-12 weeks). The transcriptome signature of hESC-derived retinal tissue from retinal organoids maintained for 24 weeks in culture resembled the transcriptome of human fetal retina of more advanced developmental stages. The histological profiles of 24 week-old hESC-derived retinal tissue displayed mature PR immunophenotypes and presence of developing inner and outer segments. Collectively, our work highlights the similarity of hESC-derived retinal tissue at early stages of development (10 weeks), and human fetal retina (age 8-13 weeks) and it supports the development of regenerative medicine therapies aimed at using tissue from hESC-derived retinal organoids (hESC-retinal implants) for mitigating vision loss.
Collapse
Affiliation(s)
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
4
|
Singh RK, Binette F, Seiler M, Petersen-Jones SM, Nasonkin IO. Pluripotent Stem Cell-Based Organoid Technologies for Developing Next-Generation Vision Restoration Therapies of Blindness. J Ocul Pharmacol Ther 2021; 37:147-156. [PMID: 33052761 PMCID: PMC8060716 DOI: 10.1089/jop.2020.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Blindness, associated with death of retinal cells at the back of the eye, is caused by a number of conditions with high prevalence such as glaucoma, age-related macular degeneration, and diabetic retinopathy. In addition, a large number of orphan inherited (mostly monogenic) conditions, such as retinitis pigmentosa and Leber Congenital Amaurosis, add to the overall number of patients with blinding retinal degenerative diseases. Blindness caused by deterioration and loss of retina is so far incurable. Modern biomedical research leveraging molecular and regenerative medicine approaches had a number of groundbreaking discoveries and proof-of-principle treatments of blindness in animals. However, these methods are slow to be standardized and commercialized as therapies to benefit people losing their eyesight due to retinal degenerative conditions. In this review, we will outline major regenerative medicine approaches, which are emerging as promising for preserving or/and restoring vision. We discuss the potential of each of these approaches to reach commercialization step and be converted to treatments, which could at least ameliorate blindness caused by retinal cell death.
Collapse
Affiliation(s)
| | | | - Magdalene Seiler
- Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
- Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, California, USA
- Department of Ophthalmology, University of California, Irvine, Irvine, California, USA
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California, USA
| | - Simon M. Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
5
|
Uyama H, Mandai M, Takahashi M. Stem-cell-based therapies for retinal degenerative diseases: Current challenges in the establishment of new treatment strategies. Dev Growth Differ 2021; 63:59-71. [PMID: 33315237 PMCID: PMC7986097 DOI: 10.1111/dgd.12704] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/13/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Various advances have been made in the treatment of retinal diseases, including new treatment strategies and innovations in surgical devices. However, the treatment of degenerative retinal diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), continues to pose a significant challenge. In this review, we focus on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to treat retinal diseases by harnessing the ability of stem cells to differentiate into different body tissues. The retina is a tissue specialized for light sensing, and its degradation leads to vision loss. As part of the central nervous system, the retina has very low regenerative capability, and therefore, treatment options are limited once it degenerates. Nevertheless, innovations in methods to induce the generation of retinal cells and tissues from ESCs/iPSCs enable the development of novel approaches for these irreversible diseases. Here we review some historical background and current clinical trials involving the use of stem-cell-derived retinal pigment epithelial cells for AMD treatment and stem cell-derived retinal cells/tissues for RP therapy. Finally, we discuss our future vision of regenerative treatment for retinal diseases with a partial focus on our studies and introduce other interesting approaches for restoring vision.
Collapse
Affiliation(s)
- Hirofumi Uyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| |
Collapse
|
6
|
Marcos LF, Wilson SL, Roach P. Tissue engineering of the retina: from organoids to microfluidic chips. J Tissue Eng 2021; 12:20417314211059876. [PMID: 34917332 PMCID: PMC8669127 DOI: 10.1177/20417314211059876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Despite advancements in tissue engineering, challenges remain for fabricating functional tissues that incorporate essential features including vasculature and complex cellular organisation. Monitoring of engineered tissues also raises difficulties, particularly when cell population maturity is inherent to function. Microfluidic, or lab-on-a-chip, platforms address the complexity issues of conventional 3D models regarding cell numbers and functional connectivity. Regulation of biochemical/biomechanical conditions can create dynamic structures, providing microenvironments that permit tissue formation while quantifying biological processes at a single cell level. Retinal organoids provide relevant cell numbers to mimic in vivo spatiotemporal development, where conventional culture approaches fail. Modern bio-fabrication techniques allow for retinal organoids to be combined with microfluidic devices to create anato-physiologically accurate structures or 'retina-on-a-chip' devices that could revolution ocular sciences. Here we present a focussed review of retinal tissue engineering, examining the challenges and how some of these have been overcome using organoids, microfluidics, and bioprinting technologies.
Collapse
Affiliation(s)
- Luis F Marcos
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Samantha L Wilson
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| |
Collapse
|
7
|
Singh RK, Occelli LM, Binette F, Petersen-Jones SM, Nasonkin IO. Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye. Stem Cells Dev 2019; 28:1151-1166. [PMID: 31210100 PMCID: PMC6708274 DOI: 10.1089/scd.2019.0090] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop biological approaches to restore vision, we developed a method of transplanting stem cell-derived retinal tissue into the subretinal space of a large-eye animal model (cat). Human embryonic stem cells (hESC) were differentiated to retinal organoids in a dish. hESC-derived retinal tissue was introduced into the subretinal space of wild-type cats following a pars plana vitrectomy. The cats were systemically immunosuppressed with either prednisolone or prednisolone plus cyclosporine A. The eyes were examined by fundoscopy and spectral-domain optical coherence tomography imaging for adverse effects due to the presence of the subretinal grafts. Immunohistochemistry was done with antibodies to retinal and human markers to delineate graft survival, differentiation, and integration into cat retina. We successfully delivered hESC-derived retinal tissue into the subretinal space of the cat eye. We observed strong infiltration of immune cells in the graft and surrounding tissue in the cats treated with prednisolone. In contrast, we showed better survival and low immune response to the graft in cats treated with prednisolone plus cyclosporine A. Immunohistochemistry with antibodies (STEM121, CALB2, DCX, and SMI-312) revealed large number of graft-derived fibers connecting the graft and the host. We also show presence of human-specific synaptophysin puncta in the cat retina. This work demonstrates feasibility of engrafting hESC-derived retinal tissue into the subretinal space of large-eye animal models. Transplanting retinal tissue in degenerating cat retina will enable rapid development of preclinical in vivo work focused on vision restoration.
Collapse
Affiliation(s)
- Ratnesh K Singh
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Francois Binette
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Igor O Nasonkin
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| |
Collapse
|
8
|
Lorach H, Kang S, Bhuckory MB, Trouillet A, Dalal R, Marmor M, Palanker D. Transplantation of Mature Photoreceptors in Rodents With Retinal Degeneration. Transl Vis Sci Technol 2019; 8:30. [PMID: 31171997 PMCID: PMC6543858 DOI: 10.1167/tvst.8.3.30] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/01/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose To demonstrate survival and integration of mature photoreceptors transplanted with the retinal pigment epithelium (RPE). Methods Full-thickness retina with attached RPE was harvested from healthy adult rats. Grafts were implanted into two rat models of retinal degeneration, Royal College of Surgeons (RCS) and S334ter-3. Survival of the host and transplanted retina was monitored using optical coherence tomography (OCT) for up to 6 months. The retinal structure and synaptogenesis between the host and transplant was assessed by histology and immunohistochemistry. Results OCT and histology demonstrated a well-preserved photoreceptor layer with inner and outer segments, while the inner retinal layers of the transplant largely disappeared. Grafts, including RPE, survived better than without and the transplanted RPE appeared as a monolayer integrated with the native one. Synaptogenesis was observed through sprouting of new dendrites from the host bipolar cells and synaptic connections forming with cells of the transplant. However, in many samples, a glial fibrillary acidic protein–positive membrane separated the host retina and the graft. Conclusions Presence of RPE in the graft improved the survival of transplanted photoreceptors. Functional integration between the transplant and the host retina is likely to be further enhanced if formation of a glial seal could be prevented. Transplantation of the mature photoreceptors with RPE may be a practical approach to restoration of sight in retinal degeneration. Translational Relevance This approach to restoration of sight in patients with photoreceptor degeneration can be rapidly advanced to clinical testing. In patients with central scotoma, autologous transplantation of the peripheral retina can be an option.
Collapse
Affiliation(s)
- Henri Lorach
- Hansen Experimental Physics Laboratory, Stanford University, CA, USA
| | - Seungbum Kang
- Hansen Experimental Physics Laboratory, Stanford University, CA, USA.,Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mohajeet B Bhuckory
- Hansen Experimental Physics Laboratory, Stanford University, CA, USA.,Department of Ophthalmology, Stanford University, CA, USA
| | - Alix Trouillet
- Department of Otolaryngology, Stanford University, CA, USA
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University, CA, USA
| | - Michael Marmor
- Department of Ophthalmology, Stanford University, CA, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, CA, USA.,Department of Ophthalmology, Stanford University, CA, USA
| |
Collapse
|
9
|
McLelland BT, Lin B, Mathur A, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ. Transplanted hESC-Derived Retina Organoid Sheets Differentiate, Integrate, and Improve Visual Function in Retinal Degenerate Rats. Invest Ophthalmol Vis Sci 2019; 59:2586-2603. [PMID: 29847666 PMCID: PMC5968836 DOI: 10.1167/iovs.17-23646] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD). Methods 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30–65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers. Results Retina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery. Conclusions These data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.
Collapse
Affiliation(s)
- Bryce T McLelland
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Bin Lin
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Anuradha Mathur
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Robert B Aramant
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Biju B Thomas
- University of Southern California Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Gabriel Nistor
- AIVITA Biomedical, Inc., Irvine, California, United States
| | | | - Magdalene J Seiler
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| |
Collapse
|
10
|
Surgical Approaches for Cell Therapeutics Delivery to the Retinal Pigment Epithelium and Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:141-170. [PMID: 31654389 DOI: 10.1007/978-3-030-28471-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing successful surgical strategies to deliver cell therapeutics to the back of the eye is an essential pillar to success for stem cell-based applications in blinding retinal diseases. Within this chapter, we have attempted to gather all key considerations during preclinical animal trials.Guidance is provided for choices on animal models, options for immunosuppression, as well as anesthesia. Subsequently we cover surgical strategies for RPE graft delivery, both as suspension as well as in monolayers in small rodents, rabbits, pigs, and nonhuman primate. A detailed account is given in particular on animal variations in vitrectomy and subretinal surgery, which requires a considerable learning curve, when transiting from human to animal. In turn, however, many essential subretinal implantation techniques in large-eyed animals are directly transferrable to human clinical trial protocols.A dedicated subchapter on photoreceptor replacement provides insights on preparation of suspension as well as sheet grafts, to subsequently outline the basics of subretinal delivery via both the transscleral and transvitreal route. In closing, a future outlook on vision restoration through retinal cell-based therapeutics is presented.
Collapse
|
11
|
Detailed Visual Cortical Responses Generated by Retinal Sheet Transplants in Rats with Severe Retinal Degeneration. J Neurosci 2018; 38:10709-10724. [PMID: 30396913 DOI: 10.1523/jneurosci.1279-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/21/2022] Open
Abstract
To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed. For our model, we used the transgenic Rho-S334ter line-3 rat (both sexes), which loses photoreceptors at an early age and is effectively blind at postnatal day 30. These rats received fetal retinal sheet transplants in one eye between 24 and 40 d of age. Three to 10 months following surgery, visually responsive neurons were found in regions of primary visual cortex matching the transplanted region of the retina that were as highly selective as normal rat to stimulus orientation, size, contrast, and spatial and temporal frequencies. Conversely, we found that selective response properties were largely absent in nontransplanted line-3 rats. Our data show that fetal retinal sheet transplants can result in remarkably normal visual function in visual cortex of rats with a degenerated host retina and represents a critical step toward developing an effective remedy for the visually impaired human population.SIGNIFICANCE STATEMENT Age-related macular degeneration and retinitis pigmentosa lead to profound vision loss in millions of people worldwide. Many patients lose both retinal pigment epithelium and photoreceptors. Hence, there is a great demand for the development of efficient techniques that allow for long-term vision restoration. In this study, we transplanted dissected fetal retinal sheets, which can differentiate into photoreceptors and integrate with the host retina of rats with severe retinal degeneration. Remarkably, we show that transplants generated visual responses in cortex similar in quality to normal rats. Furthermore, transplants preserved connectivity within visual cortex and the retinal relay from the lateral geniculate nucleus to visual cortex, supporting their potential application in curing vision loss associated with retinal degeneration.
Collapse
|
12
|
Lin B, McLelland BT, Mathur A, Aramant RB, Seiler MJ. Sheets of human retinal progenitor transplants improve vision in rats with severe retinal degeneration. Exp Eye Res 2018; 174:13-28. [PMID: 29782826 DOI: 10.1016/j.exer.2018.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/13/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023]
Abstract
Loss of photoreceptors and other retinal cells is a common endpoint in retinal degenerate (RD) diseases that cause blindness. Retinal transplantation is a potential therapy to replace damaged retinal cells and improve vision. In this study, we examined the development of human fetal retinal sheets with or without their retinal pigment epithelium (RPE) transplanted to immunodeficient retinal degenerate rho S334ter-3 rats. Sheets were dissected from fetal human eyes (11-15.7 weeks gestation) and then transplanted to the subretinal space of 24-31 d old RD nude rats. Every month post surgery, eyes were imaged by high-resolution spectral-domain optical coherence tomography (SD-OCT). SD-OCT showed that transplants were placed into the subretinal space and developed laminated areas or rosettes, with clear development of plexiform layers first seen in OCT at 3 months post surgery. Several months later, as could be expected by the much slower development of human cells compared to rat cells, transplant photoreceptors developed inner and later outer segments. Retinal sections were analyzed by immunohistochemistry for human and retinal markers and confirmed the formation of several retinal subtypes within the retinal layers. Transplant cells extended processes and a lot of the cells could also be seen migrating into the host retina. At 5.8-8.6 months post surgery, selected rats were exposed to light flashes and recorded for visual responses in superior colliculus, (visual center in midbrain). Four of seven rats with transplants showed responses to flashes of light in a limited area of superior colliculus. No response with the same dim light intensity was found in age-matched RD controls (non-surgery or sham surgery). In summary, our data showed that human fetal retinal sheets transplanted to the severely disturbed subretinal space of RD nude rats develop mature photoreceptors and other retinal cells, integrate with the host and induce vision improvement.
Collapse
Affiliation(s)
- Bin Lin
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Bryce T McLelland
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Anuradha Mathur
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Robert B Aramant
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Magdalene J Seiler
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States; Department of Physical Medicine & Rehabilitation, University of California, Irvine, United States.
| |
Collapse
|
13
|
Seiler MJ, Lin RE, McLelland BT, Mathur A, Lin B, Sigman J, De Guzman AT, Kitzes LM, Aramant RB, Thomas BB. Vision Recovery and Connectivity by Fetal Retinal Sheet Transplantation in an Immunodeficient Retinal Degenerate Rat Model. Invest Ophthalmol Vis Sci 2017; 58:614-630. [PMID: 28129425 PMCID: PMC6020716 DOI: 10.1167/iovs.15-19028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 11/29/2016] [Indexed: 01/28/2023] Open
Abstract
Purpose To characterize a recently developed model, the retinal degenerate immunodeficient S334ter line-3 rat (SD-Foxn1 Tg(S334ter)3Lav) (RD nude rat), and to test whether transplanted rat fetal retinal sheets can elicit lost responses to light. Methods National Institutes of Health nude rats (SD-Foxn1 Tg) with normal retina were compared to RD nude rats with and without transplant for morphology and visual function. Retinal sheets from transgenic rats expressing human placental alkaline phosphatase (hPAP) were transplanted into the subretinal space of RD nude rats between postnatal day (P) 26 and P38. Transplant morphology was examined in vivo using optical coherence tomography (OCT). Visual function was assessed by optokinetic (OKN) testing, electroretinogram (ERG), and superior colliculus (SC) electrophysiology. Cryostat sections were analyzed for various retinal/synaptic markers and for the expression of donor hPAP. Results Optical coherence tomography scans showed the placement and laminar development of retinal sheet transplants in the subretinal space. Optokinetic testing demonstrated a deficit in visual acuity in RD nude rats that was improved after retinal sheet transplantation. No ERG responses were detected in the RD nude rats with or without transplantation. Superior colliculus responses were absent in age-matched control and sham surgery RD nude rats; however, robust light-evoked responses were observed in a specific location in the SC of transplanted RD nude rats. Responsive regions corresponded to the area of transplant placement in the eye. The quality of visual responses correlated with transplant organization and placement. Conclusions The data suggest that retinal sheet transplants integrate into the host retina of RD nude rats and recover significant visual function.
Collapse
Affiliation(s)
- Magdalene J. Seiler
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, California, United States
| | - Robert E. Lin
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Bryce T. McLelland
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Anuradha Mathur
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Bin Lin
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Jaclyn Sigman
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Alexander T. De Guzman
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, California, United States
| | - Leonard M. Kitzes
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, California, United States
| | - Robert B. Aramant
- Stem Cell Research Center, University of California-Irvine, Irvine, California, United States
| | - Biju B. Thomas
- USC Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
14
|
Lai JY, Li YT. Influence of Cross-Linker Concentration on the Functionality of Carbodiimide Cross-Linked Gelatin Membranes for Retinal Sheet Carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 22:277-95. [PMID: 20557713 DOI: 10.1163/092050609x12603600753204] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Carbodiimide cross-linking can easily regulate the functionality of gelatin carriers used for retinal sheet delivery. This paper investigates the effect of cross-linker concentrations (0-0.4 mmol EDC/mg gelatin membrane (GM)) on the properties of the chemically-modified GMs. ATR-FT-IR and ninhydrin analyses results consistently indicated that the EDC cross-linking reaction approaches saturation at concentrations around 0.02 mmol EDC/mg GM. The thermal stability and resistance to water dissolution and collagenase digestion were significantly enhanced with increasing cross-linker concentration from 0.001 to 0.02 mmol EDC/mg GM. In addition, the chemical cross-linking did not affect the ability to form a tissue-encapsulating structure at 37°C. Irrespective of their cross-linking degree, the GMs had an appropriate degradation rate sufficient to allow tissue integration. It was noted that, although high cross-linker concentrations can be used to improve the delivery efficiency of gelatin samples, the treatment with 0.1-0.4 mmol EDC/mg GM may lead to poor biocompatibility. Results of Live/Dead and pro-inflammatory cytokine expression analyses showed that the exposure of ARPE-19 cultures to the test materials cross-linked with a concentration ≥0.1 mmol EDC/mg GM induces significant cytotoxicity and high levels of interleukin-1β and interleukin-6. However, the presence of EDC cross-linked gelatin membranes in the culture medium had no effect on the glutamate uptake capacity. It is concluded that among the cross-linked gelatin samples studied, 0.02 mmol EDC/mg GM is the best cross-linker concentration for preparation of retinal sheet delivery carriers.
Collapse
Affiliation(s)
- Jui-Yang Lai
- a Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China; Biomedical Engineering Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China
| | | |
Collapse
|
15
|
Correction of Pathological Morphofunctional Changes in the Mammalian Retina. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Seiler MJ, Aramant RB, Jones MK, Ferguson DL, Bryda EC, Keirstead HS. A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression. Graefes Arch Clin Exp Ophthalmol 2014; 252:1079-92. [PMID: 24817311 DOI: 10.1007/s00417-014-2638-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/26/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The goal of this study was to develop an immunodeficient rat model of retinal degeneration (RD nude rats) that will not reject transplanted human cells. METHODS SD-Tg(S334ter)3Lav females homozygous for a mutated mouse rhodopsin transgene were mated with NTac:NIH-Whn (NIH nude) males homozygous for the Foxn1 (rnu) allele. Through selective breeding, a new stock, SD-Foxn1 Tg(S334ter)3Lav (RD nude) was generated such that all animals were homozygous for the Foxn1 (rnu) allele and either homo- or hemizygous for the S334ter transgene. PCR-based assays for both the Foxn1 (rnu) mutation and the S334ter transgene were developed for accurate genotyping. Immunodeficiency was tested by transplanting sheets of hESC-derived neural progenitor cells to the subretinal space of RD nude rats, and, as a control, NIH nude rats. Rats were killed between 8 and 184 days after surgery, and eye sections were analyzed for human, neuronal, and glial markers. RESULTS After transplantation to RD nude and to NIH nude rats, hESC-derived neural progenitor cells differentiated to neuronal and glial cells, and migrated extensively from the transplant sheets throughout the host retina. Migration was more extensive in RD nude than in NIH nude rats. Already 8 days after transplantation, donor neuronal processes were found in the host inner plexiform layer. In addition, host glial cells extended processes into the transplants. The host retina showed the same photoreceptor degeneration pattern as in the immunocompetent SD-Tg(S334ter)3Lav rats. Recipients survived well after surgery. CONCLUSIONS This new rat model is useful for testing the effect of human cell transplantation on the restoration of vision without interference of immunosuppression.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Anatomy & Neurobiology/Reeve-Irvine Research Center, University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Zuber AA, Robinson DE, Short RD, Steele DA, Whittle JD. Development of a surface to increase retinal pigment epithelial cell (ARPE-19) proliferation under reduced serum conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1367-1373. [PMID: 24493476 DOI: 10.1007/s10856-014-5163-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
Age related macular degeneration of the eye is brought about by damage to the retinal pigment epithelium (RPE) and is a major cause of adult blindness. One potential treatment method is transplantation of RPE cells grown in vitro. Maintaining RPE cell viability and physiological function in vitro is a challenge, and this must also be achieved using materials that can be subsequently used to deliver an intact cell sheet into the eye. In this paper, plasma polymerisation has been used to develop a chemically modified surface for maintaining RPE cells in vitro. Multiwell plates modified with a plasma copolymer of allylamine and octadiene maintained RPE cell growth at a level similar to that of TCPS. However, the addition of bound glycosaminoglycans (GAGs) to the plasma polymerised surface significantly enhanced RPE proliferation. Simply adding GAG to the culture media had no positive effect. It is shown that a combination of plasma polymer and GAG is a promising method for developing suitable surfaces for cell growth and delivery, that can be applied to any substrate material.
Collapse
Affiliation(s)
- Agnieszka A Zuber
- Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | | | | | | | | |
Collapse
|
18
|
G N, Tan A, Farhatnia Y, Rajadas J, Hamblin MR, Khaw PT, Seifalian AM. Channelrhodopsins: visual regeneration and neural activation by a light switch. N Biotechnol 2013; 30:461-74. [PMID: 23664865 DOI: 10.1016/j.nbt.2013.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 01/09/2023]
Abstract
The advent of optogenetics provides a new direction for the field of neuroscience and biotechnology, serving both as a refined investigative tool and as potential cure for many medical conditions via genetic manipulation. Although still in its infancy, recent advances in optogenetics has made it possible to remotely manipulate in vivo cellular functions using light. Coined Nature Methods' 'Method of the Year' in 2010, the optogenetic toolbox has the potential to control cell, tissue and even animal behaviour. This optogenetic toolbox consists of light-sensitive proteins that are able to modulate membrane potential in response to light. Channelrhodopsins (ChR) are light-gated microbial ion channels, which were first described in green algae. ChR2 (a subset of ChR) is a seven transmembrane α helix protein, which evokes membrane depolarization and mediates an action potential upon photostimulation with blue (470 nm) light. By contrast to other seven-transmembrane proteins that require second messengers to open ion channels, ChR2 form ion channels themselves, allowing ultrafast depolarization (within 50 milliseconds of illumination). It has been shown that integration of ChR2 into various tissues of mice can activate neural circuits, control heart muscle contractions, and even restore breathing after spinal cord injury. More compellingly, a plethora of evidence has indicated that artificial expression of ChR2 in retinal ganglion cells can reinstate visual perception in mice with retinal degeneration.
Collapse
Affiliation(s)
- Natasha G
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Seiler MJ, Aramant RB. Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 2012; 31:661-87. [PMID: 22771454 PMCID: PMC3472113 DOI: 10.1016/j.preteyeres.2012.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/23/2012] [Indexed: 12/18/2022]
Abstract
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a 'nursing' role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance - they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Anatomy & Neurobiology, Reeve-Irvine Research Center, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, 1101 Gross Hall, 845 Health Science Rd., Irvine, CA 92697-4265, USA.
| | | |
Collapse
|
20
|
Seiler MJ, Jones BW, Aramant RB, Yang PB, Keirstead HS, Marc RE. Computational molecular phenotyping of retinal sheet transplants to rats with retinal degeneration. Eur J Neurosci 2012; 35:1692-704. [PMID: 22594836 DOI: 10.1111/j.1460-9568.2012.08078.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinal progenitor sheet transplants have been shown to extend neuronal processes into a degenerating host retina and to restore visual responses in the brain. The aim of this study was to identify cells involved in transplant signals to retinal degenerate hosts using computational molecular phenotyping (CMP). S334ter line 3 rats received fetal retinal sheet transplants at the age of 24-40 days. Donor tissues were incubated with slow-releasing microspheres containing brain-derived neurotrophic factor or glial cell-derived neurotrophic factor. Up to 265 days after surgery, eyes of selected rats were vibratome-sectioned through the transplant area (some slices stained for donor marker human placental alkaline phosphatase), dehydrated and embedded in Eponate, sectioned into serial ultrathin datasets and probed for rhodopsin, cone opsin, CRALBP (cellular retinaldehyde binding protein), l-glutamate, l-glutamine, glutathione, glycine, taurine, γ-aminobutyric acid (GABA) and DAPI (4',6-diamidino-2-phenylindole). In large transplant areas, photoreceptor outer segments in contact with host retinal pigment epithelium revealed rod and cone opsin immunoreactivity whereas no such staining was found in the degenerate host retina. Transplant photoreceptor layers contained high taurine levels. Glutamate levels in the transplants were higher than in the host retina whereas GABA levels were similar. The transplant inner nuclear layer showed some loss of neurons, but amacrine cells and horizontal cells were not reduced. In many areas, glial hypertrophy between the host and transplant was absent and host and transplant neuropil appeared to intermingle. CMP data indicate that horizontal cells and both glycinergic and GABAergic amacrine cells are involved in a novel circuit between transplant and host, generating alternative signal pathways between transplant and degenerating host retina.
Collapse
Affiliation(s)
- M J Seiler
- Anatomy & Neurobiol/Reeve-Irvine Research Center, UC Irvine, Irvine, CA 92697-4265, USA
| | | | | | | | | | | |
Collapse
|
21
|
Advances in Retinal Tissue Engineering. MATERIALS 2012; 5:108-120. [PMID: 28817034 PMCID: PMC5448948 DOI: 10.3390/ma5010108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 01/13/2023]
Abstract
Retinal degenerations cause permanent visual loss and affect millions world-wide. Current treatment strategies, such as gene therapy and anti-angiogenic drugs, merely delay disease progression. Research is underway which aims to regenerate the diseased retina by transplanting a variety of cell types, including embryonic stem cells, fetal cells, progenitor cells and induced pluripotent stem cells. Initial retinal transplantation studies injected stem and progenitor cells into the vitreous or subretinal space with the hope that these donor cells would migrate to the site of retinal degeneration, integrate within the host retina and restore functional vision. Despite promising outcomes, these studies showed that the bolus injection technique gave rise to poorly localized tissue grafts. Subsequently, retinal tissue engineers have drawn upon the success of bone, cartilage and vasculature tissue engineering by employing a polymeric tissue engineering approach. This review will describe the evolution of retinal tissue engineering to date, with particular emphasis on the types of polymers that have routinely been used in recent investigations. Further, this review will show that the field of retinal tissue engineering will require new types of materials and fabrication techniques that optimize the survival, differentiation and delivery of retinal transplant cells.
Collapse
|
22
|
Yang PB, Seiler MJ, Aramant RB, Yan F, Mahoney MJ, Kitzes LM, Keirstead HS. Trophic factors GDNF and BDNF improve function of retinal sheet transplants. Exp Eye Res 2010; 91:727-38. [PMID: 20804751 DOI: 10.1016/j.exer.2010.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 02/02/2023]
Abstract
The aim of this study was to compare glial-derived neurotrophic factor (GDNF) treatment with brain-derived neurotrophic factor (BDNF) treatment of retinal transplants on restoration of visual responses in the superior colliculus (SC) of the S334ter line 3 rat model of rapid retinal degeneration (RD). RD rats (age 4-6 weeks) received subretinal transplants of intact sheets of fetal retina expressing the marker human placental alkaline phosphatase (hPAP). Experimental groups included: (1) untreated retinal sheet transplants, (2) GDNF-treated transplants, (3) BDNF-treated transplants, (4) none surgical, age-matched RD rats, (5) sham surgery RD controls, (6) progenitor cortex transplant RD controls, and (7) normal pigmented rat controls. At 2-8 months after transplantation, multi-unit visual responses were recorded from the SC using a 40 ms full-field stimulus (-5.9 to +1 log cd/m(2)) after overnight dark-adaptation. Responses were analyzed for light thresholds, spike counts, response latencies, and location within the SC. Transplants were grouped into laminated or rosetted (more disorganized) transplants based on histological analysis. Visual stimulation of control RD rats evoked no responses. In RD rats with retinal transplants, a small area of the SC corresponding to the position of the transplant in the host retina, responded to light stimulation between -4.5 and -0.08 log cd/m(2), whereas the light threshold of normal rats was at or below -5 log cd/m(2) all over the SC. Overall, responses in the SC in rats with laminated transplants had lower response thresholds and were distributed over a wider area than rats with rosetted transplants. BDNF treatment improved responses (spike counts, light thresholds and responsive areas) of rats with laminated transplants whereas GDNF treatment improved responses from rats with both laminated and rosetted (more disorganized) transplants. In conclusion, treatment of retinal transplants with GDNF and BDNF improved the restoration of visual responses in RD rats; and GDNF appears to exert greater overall restoration than BDNF.
Collapse
Affiliation(s)
- Pamela B Yang
- Anatomy and Neurobiology, Univ. of California, Irvine, CA, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lai JY, Li YT. Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Abstract
Photoreceptor cells are the only retinal neurons that can absorb photons. Their degeneration due to some diseases or injuries leads to blindness. Retinal prostheses electrically stimulating surviving retinal cells and evoking a pseudo light sensation have been investigated over the past decade for restoring vision. Currently, a gene therapy approach is under development. Channelrhodopsin-2 derived from the green alga Chlamydomonas reinhardtii, is a microbial-type rhodopsin. Its specific characteristic is that it functions as a light-driven cation-selective channel. It has been reported that the channelrhodopsin-2 transforms inner light-insensitive retinal neurons to light-sensitive neurons. Herein, we introduce new strategies for restoring vision by using channelrhodopsins and discuss the properties of adeno-associated virus vectors widely used in gene therapy.
Collapse
|
25
|
Yan RT, Liang L, Ma W, Li X, Xie W, Wang SZ. Neurogenin1 effectively reprograms cultured chick retinal pigment epithelial cells to differentiate toward photoreceptors. J Comp Neurol 2010; 518:526-46. [PMID: 20029995 DOI: 10.1002/cne.22236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photoreceptors are highly specialized sensory neurons in the retina, and their degeneration results in blindness. Replacement with developing photoreceptor cells promises to be an effective therapy, but it requires a supply of new photoreceptors, because the neural retina in human eyes lacks regeneration capability. We report efficient generation of differentiating, photoreceptor-like neurons from chick retinal pigment epithelial (RPE) cells propagated in culture through reprogramming with neurogenin1 (ngn1). In reprogrammed culture, a large number of the cells (85.0% +/- 5.9%) began to differentiate toward photoreceptors. Reprogrammed cells expressed transcription factors that set in motion photoreceptor differentiation, including Crx, Nr2E3, NeuroD, and RXRgamma, and phototransduction pathway components, including transducin, cGMP-gated channel, and red opsin of cone photoreceptors (equivalent to rhodopsin of rod photoreceptors). They developed inner segments rich in mitochondria. Furthermore, they responded to light by decreasing their cellular free calcium (Ca(2+)) levels and responded to 9-cis-retinal by increasing their Ca(2+) levels after photobleaching, hallmarks of photoreceptor physiology. The high efficiency and the advanced photoreceptor differentiation indicate ngn1 as a gene of choice to reprogram RPE progeny cells to differentiate into photoreceptor neurons in future cell replacement studies.
Collapse
Affiliation(s)
- Run-Tao Yan
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0009, USA
| | | | | | | | | | | |
Collapse
|
26
|
Seiler MJ, Rao B, Aramant RB, Yu L, Wang Q, Kitayama E, Pham S, Yan F, Chen Z, Keirstead HS. Three-dimensional optical coherence tomography imaging of retinal sheet implants in live rats. J Neurosci Methods 2010; 188:250-7. [PMID: 20219535 DOI: 10.1016/j.jneumeth.2010.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/23/2010] [Accepted: 02/19/2010] [Indexed: 11/16/2022]
Abstract
PURPOSE To obtain three-dimensional images from retinal transplants in live animals and evaluate the placement and structural quality of the transplants. METHODS Donor retinal sheets were isolated from E19 fetuses of transgenic rats expressing human alkaline phosphatase (hPAP), and transplanted to the subretinal space of 19-56 days old S334ter-3 rat recipients with fast retinal degeneration (average age at surgery 32 days). A total of 143 rats were imaged 1 day to 2.8 months after surgery, using a Fourier-domain optical coherence tomography (FDOCT) system, with an axial resolution of 3.5 microm. The CCD A-line integration time was set at 200 micros for better visualization of degenerated retina. After targeting the transplant area, 139 or 199 consecutive slices were scanned. Projection images and movies of the retinal transplant area were computed and later compared with histology. RESULTS OCT scans identified 137 of 141 transplants as a thickening of the degenerated retina. OCT indicated the laminar structure of the transplants and surgical defects, such as RPE/choroid damage with an accuracy rate between 83 and 99%. Three-dimensional projections showed the transplant position in the retina in relation to the optic disc. Histology of transplants by hPAP and hematoxylin-eosin staining was correlated with the OCT results. CONCLUSIONS Optical coherence tomography is an excellent tool to image retinal layers in a live rat. This procedure helps to evaluate the placement and quality of the transplants in the living eye.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Anatomy & Neurobiology, University of California, Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Irvine, CA, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol 2010; 248:763-78. [PMID: 20169358 DOI: 10.1007/s00417-009-1263-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 11/16/2009] [Accepted: 11/26/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several mechanisms of retina degeneration result in the deterioration of the outer retina and can lead to blindness. Currently, with the exception of anti-angiogenic treatments for wet age-related macular degeneration, there are no treatments that can restore lost vision. There is evidence that photoreceptors and embryonic retinal tissue, transplanted to the subretinal space, can form new synapses with surviving host neurons. However, these transplants have yet to result in a clinical treatment for retinal degeneration. METHODS This article reviews the current literature on the transplantation of scaffolds with retinal and retinal pigmented epithelial (RPE) cells to the subretinal space. We discuss the types of cells and materials that have been investigated for transplantation to the subretinal space, summarize the current findings, and present opportunities for future research and the next generation of scaffolds for retinal repair. RESULTS Challenges to cell transplantation include limited survival upon implantation and the formation of abnormal cell architectures in vivo. Scaffolds have been shown to enhance cell survival and direct cell differentiation and organization in a number of models of retinal degeneration. CONCLUSIONS The transplantation of cells within a scaffold represents a possible treatment to repair retinal degeneration and restore vision in effected patients. Materials have been developed for the delivery of retinal and RPE cells separately however, the development of a combined tissue-engineered scaffold targeting both cell populations represents a promising direction for retinal repair.
Collapse
|
28
|
Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS. Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci 2010; 31:508-20. [PMID: 20105230 PMCID: PMC2875871 DOI: 10.1111/j.1460-9568.2010.07085.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine whether retinal progenitor layer transplants form synaptic connections with the host and restore vision. Donor retinal sheets, isolated from embryonic day 19 rat fetuses expressing human placental alkaline phosphatase (hPAP), were transplanted to the subretinal space of 18 S334ter-3 rats with fast retinal degeneration at the age of 0.8-1.3 months. Recipients were killed at the age of 1.6-11.8 months. Frozen sections were analysed by confocal immunohistochemistry for the donor cell label hPAP and synaptic markers. Vibratome slices were stained for hPAP, and processed for electron microscopy. Visual responses were recorded by electrophysiology from the superior colliculus (SC) in 12 rats at the age of 5.3-11.8 months. All recorded transplanted rats had restored or preserved visual responses in the SC corresponding to the transplant location in the retina, with thresholds between -2.8 and -3.4 log cd/m(2). No such responses were found in age-matched S334ter-3 rats without transplants, or in those with sham surgery. Donor cells and processes were identified in the host by light and electron microscopy. Transplant processes penetrated the inner host retina in spite of occasional glial barriers between transplant and host. Labeled neuronal processes were found in the host inner plexiform layer, and formed apparent synapses with unlabeled cells, presumably of host origin. In conclusion, synaptic connections between graft and host cells, together with visual responses from corresponding locations in the brain, support the hypothesis that functional connections develop following transplantation of retinal layers into rodent models of retinal degeneration.
Collapse
Affiliation(s)
- M J Seiler
- Reeve-Irvine Research Center, Gillespie Neuroscience Research Facility, School of Medicine, University of California at Irvine, Irvine, CA 92697-4292, USA
| | | | | | | | | | | |
Collapse
|
29
|
Seiler MJ, Aramant RB, Seeliger MW, Bragadottir R, Mahoney M, Narfstrom K. Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration. Vet Ophthalmol 2009; 12:158-69. [PMID: 19392875 DOI: 10.1111/j.1463-5224.2009.00693.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate whether sheets of fetal retinal allografts can integrate into the dystrophic Abyssinian cat retina with progressive rod cone degeneration. METHODS Fetal retinal sheets (cat gestational day 42), incubated with BDNF microspheres, were transplanted to the subretinal space of four cats at an early disease stage. Cats were studied by fundus examinations, bilateral full-field flash ERGs, and indocyanine green and fluorescein angiograms up to 4 months following surgery. E42 donor and transplanted eyes were analyzed by histology and immunohistochemistry for retinal markers. RESULTS Funduscopy and angiography showed good integration of the transplants in two of four cats, including extension of host blood vessels into the transplant and some scarring in the host. In these two, transplants were found in the subretinal space with laminated areas, with photoreceptor outer segments in normal contacts with the host retinal pigment epithelium. In some areas, transplants appeared to be well-integrated within the host neural retina. Neither of these two cats showed functional improvement in ERGs. In the other two cats, only remnants of donor tissue were left. Transplants stained for all investigated cellular markers. No PKC immunoreactivity was detected in the fetal donor retina at E42, but developed in the 4-month-old grafts. CONCLUSIONS Fetal sheet transplants can integrate well within a degenerating cat retina and develop good lamination of photoreceptors. Functional improvement was not demonstrated by ERG in cats with well-laminated grafts. Transplants need to be further evaluated in cat host retinas with a more advanced retinal degeneration using longer follow-up times.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Ophthalmology, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Li X, Ma W, Zhuo Y, Yan RT, Wang SZ. Using neurogenin to reprogram chick RPE to produce photoreceptor-like neurons. Invest Ophthalmol Vis Sci 2009; 51:516-25. [PMID: 19628733 DOI: 10.1167/iovs.09-3822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE One potential therapy for vision loss from photoreceptor degeneration is cell replacement, but this approach presents a need for photoreceptor cells. This study explores whether the retinal pigment epithelium (RPE) could be a convenient source of developing photoreceptors. METHODS The RPE of chick embryos was subjected to reprogramming by proneural genes neurogenin (ngn)1 and ngn3. The genes were introduced into the RPE through retrovirus RCAS-mediated transduction, with the virus microinjected into the eye or added to retinal pigment epithelial explant culture. The retinal pigment epithelia were then analyzed for photoreceptor traits. RESULTS In chick embryos infected with retrovirus RCAS-expressing ngn3 (RCAS-ngn3), the photoreceptor gene visinin (the equivalent of mammalian recoverin) was expressed in cells of the retinal pigment epithelial layer. When isolated and cultured as explants, retinal pigment epithelial tissues from embryos infected with RCAS-ngn3 or RCAS-ngn1 gave rise to layers of visinin-positive cells. These reprogrammed cells expressed genes of phototransduction and synapses, such as red opsin, the alpha-subunit of cone transducin, SNAP-25, and PSD-95. Reprogramming occurred with retinal pigment epithelial explants derived from virally infected embryos and with retinal pigment epithelial explants derived from normal embryos, with the recombinant viruses added at the onset of the explant culture. In addition, reprogramming took place in retinal pigment epithelial explants from both young and old embryos, from embryonic day (E)6 to E18, when the visual system becomes functional in the chick. CONCLUSIONS The results support the prospect of exploring the RPE as a convenient source of developing photoreceptors for in situ cell replacement.
Collapse
Affiliation(s)
- Xiumei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
31
|
Abstract
While a number of retinal transplantation studies using various types of donor cells have been performed thus far, our study focused on iris tissue as a donor cell source. This is because donor cells from iris pigment epithelium have the following characteristics: (1) they are embryonically related to the neural retina; (2) autologous iris tissue can be obtained via a surgical approach; and (3) they can be cultured to increase the number of donor cells and establish photoreceptor-like cells from iris-derived cells by means of the appropriate gene transfer. Although the potential of iris-derived cells has been indicated, there remain many issues to be investigated.
Collapse
Affiliation(s)
- Tadamichi Akagi
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
32
|
Seiler MJ, Aramant RB. Transplantation of Neuroblastic Progenitor Cells as a Sheet Preserves and Restores Retinal Function. Semin Ophthalmol 2009; 20:31-42. [PMID: 15804842 DOI: 10.1080/08820530590921873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diseases affecting the outer retina are incurable once photoreceptors are lost, and these diseases usually cause retinal pigment epithelium (RPE) dysfunction. However, the inner retina can remain functional for some time, even though retinal remodeling occurs as compensation for photoreceptor loss. If the damaged part can be replaced with neuroblastic progenitor and RPE cells as sheets with a beneficial effect on function, vision loss may be prevented and vision may be restored. This review presents an overview of the research of transplanting sheets of neural retina, with or without its RPE, to the subretinal space. In different animal models of retinal degeneration, retinal transplants can morphologically reconstruct a damaged retina, and restore visual sensitivity. Good morphological integration of transplants with the host retina can occur, whereas other transplants exhibit a glial barrier. Synaptic connections between transplant and host have been indicated by transsynaptic tracing. Retinal transplants can restore and preserve visual responses in a small area of the superior colliculus corresponding to the placement of the transplant in the retina. The beneficial effect of retinal transplantation likely involves two mechanisms: trophic effects, e.g., rescue of host cones; and synaptic connectivity between transplant and host retina.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, 90033, USA.
| | | |
Collapse
|
33
|
Peng Q, Thomas BB, Aramant RB, Chen Z, Sadda SR, Seiler MJ. Structure and Function of Embryonic Rat Retinal Sheet Transplants. Curr Eye Res 2009; 32:781-9. [PMID: 17882711 DOI: 10.1080/02713680701530597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate retinal sheet transplants in S334ter-line-3 retinal degenerate rats by comparing visual responses recorded electrophysiologically with morphology based on light and electron microscopy. METHODS S334ter-line-3 retinal degenerate rats (n = 7) received retinal sheet transplants between postnatal days 28 and 31. The donor tissue was derived from transgenic embryonic day 19 (E19) rat retinae expressing human placental alkaline phosphatase (hPAP). Fresh retinal sheets were gently transplanted into the subretinal space of the left eye with the help of a custom-made implantation tool. Selected rats (n = 5) were subjected to electrophysiologic evaluation of visual responses from the superior colliculus about 84-121 days after surgery. Transplanted eyes were processed for light microscopy (LM) and electron microscopy (EM) evaluations. RESULTS All the transplanted rats that were evaluated for visual responses in the brain showed responses to very low light stimulation (-3.42 to -2.8 log cd/m(2)) of the eye in a small area of the superior colliculus corresponding with the placement of the transplant in the host retina. Histologic evaluation showed that most of the transplants contained well-laminated areas with correct polarity in the subretinal space. Inside the transplant areas, rosettes of photoreceptors with inner and outer segments were found. In the laminated areas, the outer segments of photoreceptors were facing the host retinal pigment epithelium (RPE). Immunohistochemical evaluation of hPAP donor cells revealed areas with specific staining of the transplants in the subretinal space. Electron microscopic evaluation showed a glial demarcation membrane between the host and the transplant, however, processes originating from the transplant were observed inside the host retina. CONCLUSIONS Sheets of E19 rat retina transplanted into the subretinal space of S334ter-line-3 rats survived without immune rejection and continued to show visual function when tested after 3 months. Well-developed photoreceptors and many synapse types were seen within the transplants. hPAP staining showed a certain degree of integration between the host retina and the transplant suggesting that transplanted photoreceptors contributed to the restored light sensitivity.
Collapse
Affiliation(s)
- Qing Peng
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Yaji N, Yamato M, Yang J, Okano T, Hori S. Transplantation of tissue-engineered retinal pigment epithelial cell sheets in a rabbit model. Biomaterials 2009; 30:797-803. [DOI: 10.1016/j.biomaterials.2008.10.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/21/2008] [Indexed: 11/25/2022]
|
35
|
Lai JY, Lin PK, Hsiue GH, Cheng HY, Huang SJ, Li YT. Low Bloom Strength Gelatin as a Carrier for Potential Use in Retinal Sheet Encapsulation and Transplantation. Biomacromolecules 2008; 10:310-9. [DOI: 10.1021/bm801039n] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Po-Kang Lin
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Ging-Ho Hsiue
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Hsiao-Yun Cheng
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Shu-Jung Huang
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Ya-Ting Li
- Institute of Biochemical and Biomedical Engineering, Biomedical Engineering Research Center, and Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China, Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan 11217, Republic of China, and Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| |
Collapse
|
36
|
Retinal degeneration processes and transplantation of retinal pigment epithelial cells: past, present and future trends. SPEKTRUM DER AUGENHEILKUNDE 2008. [DOI: 10.1007/s00717-008-0292-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 2008; 146:172-182. [PMID: 18547537 DOI: 10.1016/j.ajo.2008.04.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 01/12/2023]
Abstract
PURPOSE To demonstrate efficacy and safety of the implantation of neural retinal progenitor cell layers (sheets) with its retinal pigment epithelium (RPE) in retinitis pigmentosa (RP) and dry age-related macular degeneration (AMD) patients with 20/200 or worse vision in the surgery eye. DESIGN Interventional nonrandomized clinical trial. METHODS Ten patients (six RP, four AMD) received retinal implants in one eye and were followed in a phase II trial conducted in a clinical practice setting. Early Treatment Diabetic Retinopathy Study (EDTRS) was the primary outcome measure. All implant recipients and nine of 10 tissue donors were deoxyribonucleic acids typed. RESULTS Seven patients (three RP, four AMD) showed improved EDTRS visual acuity (VA) scores. Three of these patients (one RP, two AMD) showed improvement in both eyes to the same extent. Vision in one RP patient remained the same, while vision in two RP patients decreased. One RP patient has maintained an improvement in vision from 20/800 to 20/200 ETDRS for more than five years; at the six-year examination, it was still maintained at 20/320 while the nonsurgery eye had deteriorated to hand motion vision. This patient also showed a 22.72% increase in light sensitivity at five years compared to microperimetry results at two years; the other patients showed no improved sensitivity. Although no match was found between donors and recipients, no rejection of the implanted tissue was observed clinically. CONCLUSIONS Seven (70%) of 10 patients showed improved VA. This outcome provides clinical evidence of the safety and beneficial effect of retinal implants and corroborates results in animal models of retinal degeneration.
Collapse
|
38
|
Seiler MJ, Thomas BB, Chen Z, Wu R, Sadda SR, Aramant RB. Retinal transplants restore visual responses: trans-synaptic tracing from visually responsive sites labels transplant neurons. Eur J Neurosci 2008; 28:208-20. [DOI: 10.1111/j.1460-9568.2008.06279.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Liang L, Yan RT, Li X, Chimento M, Wang SZ. Reprogramming progeny cells of embryonic RPE to produce photoreceptors: development of advanced photoreceptor traits under the induction of neuroD. Invest Ophthalmol Vis Sci 2008; 49:4145-53. [PMID: 18469196 DOI: 10.1167/iovs.07-1380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In examining the prospect of producing functional photoreceptors by reprogramming the differentiation of RPE progeny cells, this study was conducted to investigate whether reprogrammed cells can develop highly specialized ultrastructural and physiological traits that characterize retinal photoreceptors. METHODS Cultured chick RPE cells were reprogrammed to differentiate along the photoreceptor pathway by ectopic expression of neuroD. Cellular ultrastructure was examined with electron microscopy. Cellular physiology was studied by monitoring cellular free calcium (Ca(2+)) levels in dark-adapted cells in response to light and in light-bleached cells in response to 9-cis-retinal. RESULTS Reprogrammed cells were found to localize red opsin protein appropriately to the apex. These cells developed inner segments rich in mitochondria, and while in culture, some formed rudimentary outer segments, analogous to those of developing photoreceptors in the retina. In response to light, reprogrammed cells reduced their Ca(2+) levels, as observed with developing retinal photoreceptors in culture. Further, on exposure to 9-cis-retinal, the light-bleached, reprogrammed cells increased their Ca(2+) levels, reminiscent of visual cycle recovery. CONCLUSIONS These results indicate the potential of reprogrammed cells to develop advanced ultrastructural and physiological traits of photoreceptors and point to reprogramming progeny cells of embryonic RPE as a possible alternative in producing developing photoreceptors.
Collapse
Affiliation(s)
- Lina Liang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | |
Collapse
|
40
|
Seiler MJ, Thomas BB, Chen Z, Arai S, Chadalavada S, Mahoney MJ, Sadda SR, Aramant RB. BDNF-treated retinal progenitor sheets transplanted to degenerate rats: improved restoration of visual function. Exp Eye Res 2007; 86:92-104. [PMID: 17983616 DOI: 10.1016/j.exer.2007.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/28/2007] [Accepted: 09/26/2007] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the functional efficacy of retinal progenitor cell (RPC) containing sheets with BDNF microspheres following subretinal transplantation in a rat model of retinal degeneration. Sheets of E19 RPCs derived from human placental alkaline phosphatase (hPAP) expressing transgenic rats were coated with poly-lactide-co-glycolide (PLGA) microspheres containing brain-derived neurotrophic factor (BDNF) and transplanted into the subretinal space of S334ter line 3 rhodopsin retinal degenerate rats. Controls received transplants without BDNF or BDNF microspheres alone. Visual function was monitored using optokinetic head-tracking behavior. Visually evoked responses to varying light intensities were recorded from the superior colliculus (SC) by electrophysiology at 60days after surgery. Frozen sections were studied by immunohistochemistry for photoreceptor and synaptic markers. Visual head tracking was significantly improved in rats that received BDNF-coated RPC sheets. Relatively more BDNF-treated transplanted rats (80%) compared to non-BDNF transplants (57%) responded to a "low light" intensity of 1cd/m2 in a confined SC area. With bright light, the onset latency of SC responses was restored to a nearly normal level in BDNF-treated transplants. No significant improvement was observed in the BDNF-only and no surgery transgenic control rats. The bipolar synaptic markers mGluR6 and PSD-95 showed normal distribution in transplants and abnormal distribution of the host retina, both with or without BDNF treatment. Red-green cones were significantly reduced in the host retina overlying the transplant in the BDNF-treated group. In summary, BDNF coating improved the functional efficacy of RPC grafts. The mechanism of the BDNF effects--either promoting functional integration between the transplant and the host retina and/or synergistic action with other putative humoral factors released by the RPCs--still needs to be elucidated.
Collapse
|
41
|
Liang L, Yan RT, Ma W, Zhang H, Wang SZ. Exploring RPE as a source of photoreceptors: differentiation and integration of transdifferentiating cells grafted into embryonic chick eyes. Invest Ophthalmol Vis Sci 2006; 47:5066-74. [PMID: 17065528 PMCID: PMC1868397 DOI: 10.1167/iovs.06-0515] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To study the possibility of generating photoreceptors through programming RPE transdifferentiation by examining cell differentiation after transplantation into the developing chick eye. METHODS RPE was isolated, and the cells were dissociated, cultured, and guided to transdifferentiate by infection with retrovirus expressing neuroD (RCAS-neuroD), using RCAS-green fluorescence protein (GFP) as a control. The cells were then harvested and microinjected into the developing eyes of day 5 to day 7 chick embryos, and their development and integration were analyzed. RESULTS Cells from the control culture integrated into the host RPE. When grafted cells were present in large number, multilayered RPE-like tissues were formed, and the extra tissues consisted of grafted cells and host cells. None of the cells from the control culture expressed photoreceptor-specific genes. In contrast, most cells from RCAS-neuroD-infected culture remained depigmented. A large number of them expressed photoreceptor-specific genes, such as visinin and opsins. Antibodies against red opsin decorated the apical tips and the cell bodies of the grafted, transdifferentiating cells. In the subretinal space, visinin(+) cells aligned along the RPE or an RPE-like structure. When integrated into the host outer nuclear layer, grafted cells emanated elaborate, axonal arborization into the outer plexiform layer of the host retina. CONCLUSIONS Cultured RPE cells retained their remarkable regenerative capabilities. Cells guided to transdifferentiate along the photoreceptor pathway by neuroD developed a highly ordered cellular structure and could integrate into the outer nuclear layer. These data suggest that, through genetic programming, RPE cells could be a potential source of photoreceptor cells.
Collapse
Affiliation(s)
- Lina Liang
- From the Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Run-Tao Yan
- From the Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenxin Ma
- From the Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Huanmin Zhang
- From the United States Department of Agriculture Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan
| | - Shu-Zhen Wang
- From the Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
42
|
Retinal Pigment Epithelium and Photoreceptor Transplantation Frontiers. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Thomas BB, Arai S, Ikai Y, Qiu G, Chen Z, Aramant RB, Sadda SR, Seiler MJ. Retinal transplants evaluated by optical coherence tomography in photoreceptor degenerate rats. J Neurosci Methods 2005; 151:186-93. [PMID: 16129495 DOI: 10.1016/j.jneumeth.2005.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 06/17/2005] [Accepted: 07/13/2005] [Indexed: 11/28/2022]
Abstract
Optical coherence tomography (OCT), a non-invasive method, was used for qualitative assessment of fetal retinal sheet transplants by non-invasive imaging. Rhodopsin-mutant S334ter-line-3 rats with fast retinal degeneration (28-37-day old) were transplanted with fetal retinal sheets from embryonic day (E) 18-19 pigmented normal rats. Retinal thickness measurements from transplanted (n = 51), no surgery control (n = 8), and normal pigmented rat eyes (n = 6) were obtained using a Zeiss stratus OCT-3 scanning instrument. Frozen retinal sections were stained with hematoxylin/eosin. S334ter-line-3 rats showed significant reduction in OCT retinal thickness (p<0.001) compared to normal pigmented rats at the age of 21 days. In 62% of the transplanted rats, OCT scanning revealed the presence of a subretinal graft, which was confirmed by subsequent histology. Retinal thickness in the transplant area was significantly increased compared to the area outside the transplant and to non-transplanted eyes (p<0.001). While most of the transplants with single-band OCT images (87%) had rosetted transplants, a considerable proportion of transplants having a multi-band OCT image were found to have well-laminated areas in the graft after histological evaluation. Following retinal transplantation in rodents, OCT imaging data correlated mostly with transplant morphology. OCT is a useful technique for in vivo screening and evaluation of retinal transplants. This technique determines surgical outcomes at a much earlier stage.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, Doheny Retina Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Seiler MJ, Sagdullaev BT, Woch G, Thomas BB, Aramant RB. Transsynaptic virus tracing from host brain to subretinal transplants. Eur J Neurosci 2005; 21:161-72. [PMID: 15654853 DOI: 10.1111/j.1460-9568.2004.03851.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to establish synapses between a transplant and a degenerated retina. To tackle this difficult task, a little-known but well-established CNS method was chosen: trans-synaptic pseudorabies virus (PRV) tracing. Sheets of E19 rat retina with or without retinal pigment epithelium (RPE) were transplanted to the subretinal space in 33 Royal College of Surgeons (RCS) and transgenic s334ter-5 rats with retinal degeneration. Several months later, PRV-BaBlu (expressing E. colibeta-galactosidase) or PRV-Bartha was injected into an area of the exposed superior colliculus (SC), topographically corresponding to the transplant placement in the retina. Twenty normal rats served as controls. After survival times of 1-5 days, retinas were examined for virus by X-gal histochemistry, immunohistochemistry and electron microscopy. In normal controls, virus was first seen in retinal ganglion cells and Müller glia after 1-1.5 days, and had spread to all retinal layers after 2-3 days. Virus-labeled cells were found in 16 of 19 transplants where the virus injection had retrogradely labeled the topographically correct transplant area of the host retina. Electron microscopically, enveloped and nonenveloped virus could clearly be detected in infected cells. Enveloped virus was found only in neurons. Infected glial cells contained only nonenveloped virus. Neurons in retinal transplants are labeled after PRV injection into the host brain, indicating synaptic connectivity between transplants and degenerated host retinas. This study provides evidence that PRV spreads in the retina as in other parts of the CNS and is useful to outline transplant-host circuitry.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA.
| | | | | | | | | |
Collapse
|
45
|
Arai S, Thomas BB, Seiler MJ, Aramant RB, Qiu G, Mui C, de Juan E, Sadda SR. Restoration of visual responses following transplantation of intact retinal sheets in rd mice. Exp Eye Res 2004; 79:331-41. [PMID: 15336495 DOI: 10.1016/j.exer.2004.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 05/13/2004] [Indexed: 11/17/2022]
Abstract
PURPOSE To correlate the functional outcomes with histologic findings following transplantation of fetal retinal sheets in rd mice, and to investigate the mechanisms of visual function restoration. METHODS Twenty-one postnatal day 31-38 rd/rd (C3H/HeJ) mice were transplanted in one eye with retinal sheets (1.0 x 0.4 mm) obtained from embryonic day (E) 17 enhanced-green-fluorescent protein (eGFP) mice. Five mice underwent sham surgery without insertion of tissue. Four to five weeks after transplantation, visual responses to a light flash were recorded across the superior colliculus (SC) in seven eyes of seven transplanted mice that had clear corneas and lenses, and in all five sham surgery mice. Following the SC recording, the eyes were enucleated and processed for immunohistochemistry and examined using confocal microscopy. RESULTS In three out of the seven eyes (43%), positive responses were recorded in the SC in an area topographically corresponding to the placement of the transplant in the host retina. No responses were recorded in the untreated eyes of 5-week-old and 9-week-old rd/rd mice, and in the 9-week-old sham surgery mice. In contrast, visual responses were recorded over the entire SC in normal eyes. The response onset latencies of the 3 transplanted mice with responses were similar to those of normal control mice. The organization of the graft did not appear to correlate as expected with the electrophysiology results, as eyes with well-organized, laminated grafts showed no response whereas the three light-responsive eyes had rosetted or disorganized grafts. All three light-responsive eyes demonstrated much higher levels of recoverin immunoreactivity in the host retina overlying the graft compared with untreated age-matched rd/rd mice. CONCLUSION Restoration of the SC visual response does not appear to depend on a well-organized transplant in the rd mouse. Increased recoverin-staining in the host retina in light-responsive animals suggested that host cone rescue was the likely mechanism of vision restoration in this transplant model.
Collapse
Affiliation(s)
- S Arai
- Doheny Retina Institute, Keck School of Medicine, University of Southern California, DEI 3610, 1450 San Pablo Street, Los Angeles 90033-3699, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Thomas BB, Seiler MJ, Sadda SR, Aramant RB. Superior colliculus responses to light – preserved by transplantation in a slow degeneration rat model. Exp Eye Res 2004; 79:29-39. [PMID: 15183098 DOI: 10.1016/j.exer.2004.02.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 02/24/2004] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine whether retinal transplantation can preserve visual responses in the superior colliculus (SC) of the S334ter-line-5 rat, a transgenic model for slow photoreceptor degeneration, which is more similar to human retinitis pigmentosa than the fast degeneration line 3 S334ter rat. METHODS Visual responses to a light flash were recorded in the SC. Rats that had received embryonic day (E) 19-20 fetal retinal sheet transplants at the age of 26-30 days were tested at the ages of 200-254 days. Controls were age-matched rats without surgery and with sham surgery. As a baseline, in no-surgery line-5 rats, the temporal pattern of visual sensitivity loss was evaluated electrophysiologically in the SC from 60 days up to one year of age. RESULTS In untreated S334ter-line-5 rats, decline in visual sensitivity in the SC was parallel to the photoreceptor loss. At 109 day of age, a relative scotoma developed in the area of the SC corresponding to the nasal retinal region. At 200-254 days of age, the majority of the SC was devoid of any light-driven responses. In contrast, at this time point, transplanted rats with 'good' retinal grafts with normal lamination had visual responses in the caudal region of the SC, the area corresponding topographically to the transplant location in the retina. In these rats, the various parameters of SC responses such as the latency of the onset of the visual response, the response peak amplitude and the consistency of the visual response were significantly different from the control groups (no-surgery, sham surgery, 'poor' transplants) and were more comparable to normal albino rats, however, with a slightly longer latency (70-90 vs. 30-50 msec). CONCLUSIONS Fetal retinal sheet transplantation showed a long-term rescue effect on visual function in this animal model of slow photoreceptor degeneration.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, Doheny Eye Institute, University of Southern California, 1450 San Pablo St, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- James M Fadool
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4340, USA.
| |
Collapse
|
48
|
Abstract
Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in phase 1 or 2 in some animal models, but depletion of all neuronal classes is evident in phase 3. As remodeling progresses over months and years, more neurons are lost and patches of the ganglion cell layer can become depleted. Some survivor neurons of all classes elaborate new neurites, many of which form fascicles that travel hundreds of microns through the retina, often beneath the distal glial seal. These and other processes form new synaptic microneuromas in the remnant inner nuclear layer as well as cryptic connections throughout the retina. Remodeling activity peaks at mid-phase 3, where neuronal somas actively migrate on glial surfaces. Some amacrine and bipolar cells move into the former ganglion cell layer while other amacrine cells are everted through the inner nuclear layer to the glial seal. Remodeled retinas engage in anomalous self-signaling via rewired circuits that might not support vision even if they could be driven anew by cellular or bionic agents. We propose that survivor neurons actively seek excitation as sources of homeostatic Ca(2+) fluxes. In late phase 3, neuron loss continues and the retina becomes increasingly glial in composition. Retinal remodeling is not plasticity, but represents the invocation of mechanisms resembling developmental and CNS plasticities. Together, neuronal remodeling and the formation of the glial seal may abrogate many cellular and bionic rescue strategies. However, survivor neurons appear to be stable, healthy, active cells and given the evidence of their reactivity to deafferentation, it may be possible to influence their emergent rewiring and migration habits.
Collapse
Affiliation(s)
- Robert E Marc
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah School of Medicine, 50 N Medical Center, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
49
|
Lund RD, Ono SJ, Keegan DJ, Lawrence JM. Retinal transplantation: progress and problems in clinical application. J Leukoc Biol 2003; 74:151-60. [PMID: 12885930 DOI: 10.1189/jlb.0103041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is currently no real treatment for blinding disorders that stem from the degeneration of cells in the retina and affect at least 50 million individuals worldwide. The excitement that accompanied the first studies showing the potential of retinal cell transplantation to alleviate the progress of blindness in such diseases as retinitis pigmentosa and age-related macular degeneration has lost some of its momentum, as attempts to apply research to the clinic have failed so far to provide effective treatments. What these studies have shown, however, is not that the approach is flawed but rather that the steps that need to be taken to achieve a viable, clinical treatment are many. This review summarizes the course of retinal transplant studies and points to obstacles that still need to be overcome to improve graft survival and efficacy and to develop a protocol that is effective in a clinical setting. Emphasis is given particularly to the consequences of introducing transplants to sites that have been considered immunologically privileged and to the role of the major histocompatibility complex classes I and II molecules in graft survival and rejection.
Collapse
Affiliation(s)
- R D Lund
- Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA.
| | | | | | | |
Collapse
|
50
|
Aramant RB, Seiler MJ. Transplanted sheets of human retina and retinal pigment epithelium develop normally in nude rats. Exp Eye Res 2002; 75:115-25. [PMID: 12137757 DOI: 10.1006/exer.2002.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated whether transplanted sheets of human fetal retina together with its retinal pigment epithelium (RPE) could develop and maintain their cytoarchitecture after long survival times. Transplant recipients were nine albino athymic nu/nu rats with a normal retina. The donor tissue was dissected from fetuses of 12-17 weeks gestational age. Transplants were analyzed at 5-12 months after surgery by light and electron microscopy, and immunohistochemistry with various antibodies specific for rhodopsin, S-antigen, transducin, neurofilament and synaptophysin. In 4 of 11 transplants, the RPE stayed as a monolayer sheet and supported the development of the retinal sheet with a normal lamination, including photoreceptor inner and outer segments. Cones and rods in the organized transplants were labeled with different photoreceptor markers. Inner and outer plexiform layers, containing cone pedicles and rods spherules, were immunoreactive for synaptophysin. As the recipients had a normal retina, transplant/host integration was not expected. However, at the transplant/host interface, there were sometimes areas without glial barriers, and neurofilament-containing processes could be observed crossing between transplant and host. In other, more disorganized transplants, the RPE cells were partially dispersed or clumped together in clusters. Such transplants developed photoreceptors in rosettes, often with inner and outer segments. In conclusion, sheets of human fetal retina transplanted together with its RPE to the subretinal space of nude rats can develop and maintain perfectly laminated transplants after long survival times, indicating the potential of applying cotransplantation to human patients with retinal diseases.
Collapse
Affiliation(s)
- Robert B Aramant
- Departments of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|