1
|
Saito T, Tsuchishima M, Tsutsumi M, George J. Molecular pathogenesis of metabolic dysfunction-associated steatotic liver disease, steatohepatitis, hepatic fibrosis and liver cirrhosis. J Cell Mol Med 2024; 28:e18491. [PMID: 38894579 PMCID: PMC11187936 DOI: 10.1111/jcmm.18491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by intense deposition of fat globules in the hepatic parenchyma that could potentially progress to liver cirrhosis and hepatocellular carcinoma. Here, we evaluated a rat model to study the molecular pathogenesis of the spectrum of MASLD and to screen therapeutic agents. SHRSP5/Dmcr rats were fed a high-fat and cholesterol (HFC) diet for a period of 12 weeks and evaluated for the development of steatosis (MASLD), steatohepatitis, fibrosis and cirrhosis. A group of animals were sacrificed at the end of the 4th, 6th, 8th and 12th weeks from the beginning of the experiment, along with the control rats that received normal diet. Blood and liver samples were collected for biochemical and histopathological evaluations. Immunohistochemical staining was performed for α-SMA and Collagen Type I. Histopathological examinations demonstrated steatosis at the 4th week, steatohepatitis with progressive fibrosis at the 6th week, advanced fibrosis with bridging at the 8th week and cirrhosis at the 12th week. Biochemical markers and staining for α-SMA and Collagen Type I demonstrated the progression of steatosis to steatohepatitis, hepatic fibrosis and liver cirrhosis in a stepwise manner. Control animals fed a normal diet did not show any biochemical or histopathological alterations. The results of the present study clearly demonstrated that the HFC diet-induced model of steatosis, steatohepatitis, hepatic fibrosis and cirrhosis is a feasible, quick and appropriate animal model to study the molecular pathogenesis of the spectrum of MASLD and to screen potent therapeutic agents.
Collapse
Affiliation(s)
- Takashi Saito
- Department of HepatologyKanazawa Medical UniversityUchinadaIshikawaJapan
| | | | - Mikihiro Tsutsumi
- Department of HepatologyKanazawa Medical UniversityUchinadaIshikawaJapan
- Center for Regenerative MedicineKanazawa Medical University HospitalUchinadaIshikawaJapan
| | - Joseph George
- Department of HepatologyKanazawa Medical UniversityUchinadaIshikawaJapan
- Center for Regenerative MedicineKanazawa Medical University HospitalUchinadaIshikawaJapan
| |
Collapse
|
2
|
Yamagata M, Tsuchishima M, Saito T, Tsutsumi M, George J. Therapeutic implication of human placental extract to prevent liver cirrhosis in rats with metabolic dysfunction-associated steatohepatitis. Clin Sci (Lond) 2024; 138:327-349. [PMID: 38381799 DOI: 10.1042/cs20230533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is always accompanied with hepatic fibrosis that could potentially progress to liver cirrhosis and hepatocellular carcinoma. Employing a rat model, we evaluated the role of human placental extract (HPE) to arrest the progression of hepatic fibrosis to cirrhosis in patients with MASH. SHRSP5/Dmcr rats were fed with a high-fat and high-cholesterol diet for 4 weeks and evaluated for the development of steatosis. The animals were divided into control and treated groups and received either saline or HPE (3.6 ml/kg body weight) subcutaneously thrice a week. A set of animals were killed at the end of 6th, 8th, and 12th weeks from the beginning of the experiment. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hepatic malondialdehyde (MDA), and glutathione content were measured. Immunohistochemical staining was performed for α-smooth muscle actin (α-SMA), 4-hydroxy-2-nonenal (4-HNE), collagen type I, and type III. Control rats depicted progression of liver fibrosis at 6 weeks, advanced fibrosis and bridging at 8 weeks, and cirrhosis at 12 weeks, which were significantly decreased in HPE-treated animals. Treatment with HPE maintained normal levels of MDA and glutathione in the liver. There was marked decrease in the staining intensity of α-SMA, 4-HNE, and collagen type I and type III in HPE treated rats compared with control animals. The results of the present study indicated that HPE treatment mediates immunotropic, anti-inflammatory, and antioxidant responses and attenuates hepatic fibrosis and early cirrhosis. HPE depicts therapeutic potential to arrest the progression of MASH towards cirrhosis.
Collapse
Affiliation(s)
- Mitsuyoshi Yamagata
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takashi Saito
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
3
|
Nomura M, George J, Hashizume C, Saito T, Ueda Y, Ishigaki Y, Tsuchishima M, Tsutsumi M. Surgical implantation of human adipose derived stem cells attenuates experimentally induced hepatic fibrosis in rats. Mol Med 2022; 28:143. [PMID: 36447136 PMCID: PMC9706981 DOI: 10.1186/s10020-022-00566-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stromal cells and could exert hepatoprotective effects against acute liver injury, steatohepatitis, and fibrogenesis. Here, we evaluated the effects of human adipose derived stem cells (hADSCs) to attenuate experimentally induced hepatic fibrosis and early cirrhosis in rats. METHODS Hepatic fibrosis was induced by intraperitoneal injections of CCl4 (0.1 ml/100 g body weight) twice a week for 8 weeks. hADSCs were isolated and cultured on polyethylene discs coated with hydroxyapatite and 2 cm diameter disc was surgically implanted on the right lateral lobe of the liver. Discs implanted without hADSCs served as control. The animals were injected again with CCl4 once a week for another 8 weeks. All the animals were sacrificed at the end of 16th week. RESULTS Serial administrations of CCl4 resulted in well developed fibrosis and early cirrhosis at 8th week which maintained until the 16th week. Animals treated with hADSC discs depicted over 50% decrease of collagen with significant increase in serum albumin and total protein levels. Immunohistochemical staining for TGF-β1, α-smooth muscle actin, and collagen type I and type III demonstrated marked decrease compared to the animals without hADSC treatment. CONCLUSIONS Treatment with hADSCs improved liver functions, markedly reduced hepatic fibrosis and early cirrhosis. Various pleiotropic and paracrine factors secreted from the hADSCs seem to serve as reparative functions in the attenuation of liver cirrhosis. The data demonstrated that treatment with hADSCs can be successfully used as a potent therapeutic method to prevent progression of hepatic fibrosis and related adverse events.
Collapse
Affiliation(s)
- Masateru Nomura
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Joseph George
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ,grid.510345.60000 0004 6004 9914Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293 Japan
| | - Chieko Hashizume
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Takashi Saito
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Yoshimichi Ueda
- grid.411998.c0000 0001 0265 5359Department of Pathology II, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Yasuhito Ishigaki
- grid.510345.60000 0004 6004 9914Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293 Japan ,grid.411998.c0000 0001 0265 5359Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Mutsumi Tsuchishima
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Mikihiro Tsutsumi
- grid.411998.c0000 0001 0265 5359Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ,grid.510345.60000 0004 6004 9914Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
4
|
George J, Tsuchishima M, Tsutsumi M. Epigallocatechin-3-gallate inhibits osteopontin expression and prevents experimentally induced hepatic fibrosis. Biomed Pharmacother 2022; 151:113111. [PMID: 35594711 DOI: 10.1016/j.biopha.2022.113111] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Osteopontin (OPN) is a matricellular cytokine and a stress-induced profibrogenic molecule that promotes activation of stellate cells during the pathogenesis of hepatic fibrosis. We studied the protective effects of epigallocatechin-3-gallate (EGCG) to suppress oxidative stress, inhibit OPN expression, and prevent experimentally induced hepatic fibrosis. Liver injury was induced with intraperitoneal injections of N-nitrosodimethylamine (NDMA) in a dose of 1 mg/100 g body weight on 3 consecutive days of a week for 28 days. A group of rats received 0.2 mg EGCG/100 g body weight orally everyday during the study. The animals were sacrificed on day 28th from the beginning of exposure. Serum levels of AST, ALT, OPN, malondialdehyde, collagen type IV, and hyaluronic acid were measured. Immunohistochemistry and/or real-time PCR were performed for α-SMA, 4-HNE, OPN, collagen type I, and type III. Serial administrations of NDMA produced well developed fibrosis and early cirrhosis in rat liver. Treatment with EGCG significantly reduced serum/plasma levels of AST, ALT, OPN, malondialdehyde, collagen type IV, and hyaluronic acid and prevented deposition of collagen fibers in the hepatic tissue. Protein and/or mRNA levels demonstrated marked decrease in the expression of α-SMA, 4-HNE, OPN, collagen type I, and type III. Treatment with EGCG prevented excessive generation of reactive oxygen species, suppressed oxidative stress, significantly reduced serum and hepatic OPN levels, and markedly attenuated hepatic fibrosis. The results indicated that EGCG could be used as a potent therapeutic agent to prevent hepatic fibrogenesis and related adverse events.
Collapse
Affiliation(s)
- Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan.
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
5
|
Vasse GF, Nizamoglu M, Heijink IH, Schlepütz M, van Rijn P, Thomas MJ, Burgess JK, Melgert BN. Macrophage-stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. J Pathol 2021; 254:344-357. [PMID: 33506963 PMCID: PMC8252758 DOI: 10.1002/path.5632] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Fibrosis results from aberrant wound healing and is characterized by an accumulation of extracellular matrix, impairing the function of an affected organ. Increased deposition of extracellular matrix proteins, disruption of matrix degradation, but also abnormal post-translational modifications alter the biochemical composition and biophysical properties of the tissue microenvironment - the stroma. Macrophages are known to play an important role in wound healing and tissue repair, but the direct influence of fibrotic stroma on macrophage behaviour is still an under-investigated element in the pathogenesis of fibrosis. In this review, the current knowledge on interactions between macrophages and (fibrotic) stroma will be discussed from biochemical, biophysical, and cellular perspectives. Furthermore, we provide future perspectives with regard to how macrophage-stroma interactions can be examined further to ultimately facilitate more specific targeting of these interactions in the treatment of fibrosis. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gwenda F Vasse
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of PulmonologyGroningenThe Netherlands
| | - Marco Schlepütz
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Patrick van Rijn
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
| | - Matthew J Thomas
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Barbro N Melgert
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
6
|
Metabolism of N-nitrosodimethylamine, methylation of macromolecules, and development of hepatic fibrosis in rodent models. J Mol Med (Berl) 2020; 98:1203-1213. [PMID: 32666246 DOI: 10.1007/s00109-020-01950-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis and cirrhosis are chronic diseases affecting liver and a major health problem throughout the world. The hallmark of fibrosis and cirrhosis is inordinate synthesis and deposition of fibril forming collagens in the extracellular matrix of the liver leading to nodule formation and loss of normal architecture. Hepatic stellate cells play a crucial role in the pathogenesis and progression of liver fibrosis through secretion of several potent fibrogenic factors that trigger hepatocytes, portal fibrocytes, and bone marrow-derived fibroblasts to synthesize and deposit several connective tissue proteins, especially collagens between hepatocytes and space of Disse. Regulation of various events involved in the activation and transformation of hepatic stellate cells seems to be an appropriate strategy for the arrest of hepatic fibrosis and liver cirrhosis. In order to unravel the molecular mechanisms involved in the pathogenesis and progression of hepatic fibrosis, to determine proper and potent targets to arrest fibrosis, and to discover powerful therapeutic agents, a quick and reproducible animal model of hepatic fibrosis and liver cirrhosis that display all decompensating features of human condition is required. This review thoroughly evaluates the biochemical, histological, and pathological features of N-nitrosodimethylamine-induced model of liver injury, hepatic fibrosis, and early cirrhosis in rodents.
Collapse
|
7
|
Doktorova TY, Oki NO, Mohorič T, Exner TE, Hardy B. A semi-automated workflow for adverse outcome pathway hypothesis generation: The use case of non-genotoxic induced hepatocellular carcinoma. Regul Toxicol Pharmacol 2020; 114:104652. [PMID: 32251711 DOI: 10.1016/j.yrtph.2020.104652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/10/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023]
Abstract
The utility of the Adverse Outcome Pathway (AOP) concept has been largely recognized by scientists, however, the AOP generation is still mainly done manually by screening through evidence and extracting probable associations. To accelerate this process and increase the reliability, we have developed an semi-automated workflow for AOP hypothesis generation. In brief, association mining methods were applied to high-throughput screening, gene expression, in vivo and disease data present in ToxCast and Comparative Toxicogenomics Database. This was supplemented by pathway mapping using Reactome to fill in gaps and identify events occurring at the cellular/tissue levels. Furthermore, in vivo data from TG-Gates was integrated to finally derive a gene, pathway, biochemical, histopathological and disease network from which specific disease sub-networks can be queried. To test the workflow, non-genotoxic-induced hepatocellular carcinoma (HCC) was selected as a case study. The implementation resulted in the identification of several non-genotoxic-specific HCC-connected genes belonging to cell proliferation, endoplasmic reticulum stress and early apoptosis. Biochemical findings revealed non-genotoxic-specific alkaline phosphatase increase. The explored non-genotoxic-specific histopathology was associated with early stages of hepatic steatosis, transforming into cirrhosis. This work illustrates the utility of computationally predicted constructs in supporting development by using pre-existing knowledge in a fast and unbiased manner.
Collapse
Affiliation(s)
- Tatyana Y Doktorova
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland.
| | - Noffisat O Oki
- American Association for the Advancement of Science, Science & Technology Policy Fellow, USA; National Institutes of Health, Rockville, MD, USA
| | - Tomaž Mohorič
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| | - Thomas E Exner
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| | - Barry Hardy
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| |
Collapse
|
8
|
Shedid SM, Abdel-Magied N, Saada HN. Role of betaine in liver injury induced by the exposure to ionizing radiation. ENVIRONMENTAL TOXICOLOGY 2019; 34:123-130. [PMID: 30311401 DOI: 10.1002/tox.22664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress, apoptosis, and fibrosis may play a major role in the development of radiation-induced liver damage. Betaine, a native compound widely present in beetroot, was reported to possess hepato-protective properties. The objective of this study was to investigate the influence of betaine on radiation-induced liver damage. Animals were exposed to 9 Gy applied in 3 doses of 3 Gy/wk. Betaine (400 mg/kg/d), was orally supplemented to rats after the first radiation dose, and daily during the irradiation period. Animals were sacrificed 1 day after the last dose of radiation. The results showed that irradiation has induced oxidative stress in the liver denoted by a significant elevation in malondialdehyde, protein carbonyl, and 8-hydroxy-2-deoxyguanosine with a significant reduction in catalase activity and glutathione (GSH) content. The activity of the detoxification enzyme cytochrome P450 (CYP450) increased while GSH transferase (GSH-T) decreased. The activity of the apoptotic marker caspase-3 increased concomitant with increased hyaluronic acid, hydroxyproline, laminin (LN), and collagen IV. These alterations were associated with a significant increase of gamma-glutamyl transferase, alkaline phosphatase and alanine and aspartate aminotransferase markers of liver dysfunction. Betaine treatment has significantly attenuated oxidative stress, decreased the activity of CYP450, enhanced GSH-T, reduced the activity of caspase-3, and the level of fibrotic markers concomitant with a significant improvement of liver function. In conclusion, betaine through its antioxidant activity and by enhancing liver detoxification and reducing apoptosis may alleviate the progression of liver fibrosis and exert a beneficial impact on radiation-induced liver damage.
Collapse
Affiliation(s)
- Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Helen N Saada
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
9
|
George J, Tsutsumi M, Tsuchishima M. Alteration of Trace Elements during Pathogenesis of N-Nitrosodimethylamine Induced Hepatic Fibrosis. Sci Rep 2019; 9:708. [PMID: 30679730 PMCID: PMC6346110 DOI: 10.1038/s41598-018-37516-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 12/30/2022] Open
Abstract
The biochemical abnormalities and oxidative stress during pathogenesis of hepatic fibrosis could lead to alteration of trace elements. We studied the alteration of major trace elements during the pathogenesis of N-nitrosodimethylamine (NDMA)-induced hepatic fibrosis in rats. The biochemical and pathological indices of liver functions and hepatic fibrosis were evaluated. Serum and liver levels of copper, iron and zinc were determined using atomic absorption spectrophotometry. Cobalt, manganese, and molybdenum in the serum and liver were estimated by inductively coupled plasma mass spectrometry. Serial administrations of NDMA resulted in decreased serum albumin, biochemical abnormalities, increase of total liver collagen, and well-developed fibrosis and early cirrhosis. Serum and liver zinc content significantly decreased on all the days following NDMA administration. When copper and molybdenum markedly increased in the serum, liver molybdenum decreased dramatically. Both iron and manganese content significantly increased in the liver following NDMA-induced fibrosis. The results of the present study indicate that alteration of trace elements during pathogenesis of hepatic fibrosis is due to metabolic imbalance, biochemical abnormalities, decreased serum albumin, and ascites following NDMA-induced liver injury. The modulation of trace elements during hepatic fibrosis could play a prominent role in progression of the disease.
Collapse
Affiliation(s)
- Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
10
|
George J, Tsuchishima M, Tsutsumi M. Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Dis 2019; 10:18. [PMID: 30622238 PMCID: PMC6325159 DOI: 10.1038/s41419-018-1272-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Hepatic fibrosis is marked by excessive synthesis and deposition of connective tissue proteins, especially interstitial collagens in the extracellular matrix of the liver. It is a result of an abnormal wound healing in response to chronic liver injury from various causes such as ethanol, viruses, toxins, drugs, or cholestasis. The chronic stimuli involved in the initiation of fibrosis leads to oxidative stress and generation of reactive oxygen species that serve as mediators of molecular events involved in the pathogenesis of hepatic fibrosis. These processes lead to cellular injury and initiate inflammatory responses releasing a variety of cytokines and growth factors that trigger activation and transformation of resting hepatic stellate cells into myofibroblast like cells, which in turn start excessive synthesis of connective tissue proteins, especially collagens. Uncontrolled and extensive fibrosis results in distortion of lobular architecture of the liver leading to nodular formation and cirrhosis. The perpetual injury and regeneration process could also results in genomic aberrations and mutations that lead to the development of hepatocellular carcinoma. This review covers most aspects of the molecular mechanisms involved in the pathogenesis of hepatic fibrosis with special emphasize on N-Nitrosodimethylamine (NDMA; Dimethylnitorsmaine, DMN) as the inducing agent.
Collapse
Affiliation(s)
- Joseph George
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
11
|
George J, Tsutsumi M, Tsuchishima M. MMP-13 deletion decreases profibrogenic molecules and attenuates N-nitrosodimethylamine-induced liver injury and fibrosis in mice. J Cell Mol Med 2017; 21:3821-3835. [PMID: 28782260 PMCID: PMC5706575 DOI: 10.1111/jcmm.13304] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
Connective tissue growth factor (CTGF) is involved in inflammation, pathogenesis and progression of liver fibrosis. Matrix metalloproteinase‐13 (MMP‐13) cleaves CTGF and releases several fragments, which are more potent than the parent molecule to induce fibrosis. The current study was aimed to elucidate the significance of MMP‐13 and CTGF and their downstream effects in liver injury and fibrosis. Hepatic fibrosis was induced using intraperitoneal injections of N‐nitrosodimethylamine (NDMA) in doses of 10 μg/g body weight on three consecutive days of each week over a period of 4 weeks in both wild‐type (WT) and MMP‐13 knockout mice. Administration of NDMA resulted in marked elevation of AST, ALT, TGF‐β1 and hyaluronic acid in the serum and activation of stellate cells, massive necrosis, deposition of collagen fibres and increase in total collagen in the liver of WT mice with a significant decrease in MMP‐13 knockout mice. Protein and mRNA levels of CTGF, TGF‐β1, α‐SMA and type I collagen and the levels of MMP‐2, MMP‐9 and cleaved products of CTGF were markedly increased in NDMA‐treated WT mice compared to the MMP‐13 knockout mice. Blocking of MMP‐13 with CL‐82198 in hepatic stellate cell cultures resulted in marked decrease of the staining intensity of CTGF as well as protein levels of full‐length CTGF and its C‐terminal fragments and active TGF‐β1. The data demonstrate that MMP‐13 and CTGF play a crucial role in modulation of fibrogenic mediators and promote hepatic fibrogenesis. Furthermore, the study suggests that blocking of MMP‐13 and CTGF has potential therapeutic implications to arrest liver fibrosis.
Collapse
Affiliation(s)
- Joseph George
- Department of Medicine, Division of Molecular Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
12
|
da Silva SS, Mizokami SS, Fanti JR, Miranda MM, Kawakami NY, Teixeira FH, Araújo EJA, Panis C, Watanabe MAE, Sforcin JM, Pavanelli WR, Verri WA, Felipe I, Conchon-Costa I. Propolis reduces Leishmania amazonensis-induced inflammation in the liver of BALB/c mice. Parasitol Res 2015; 115:1557-66. [PMID: 26711452 DOI: 10.1007/s00436-015-4890-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
Experimental models of mouse paw infection with L. amazonensis show an induction of a strong inflammatory response in the skin, and parasitic migration may occur to secondary organs with consequent tissue injury. There are few studies focusing on the resolution of damage in secondary organs caused by Leishmania species-related cutaneous leishmaniasis. We investigated the propolis treatment effect on liver inflammation induced by Leishmania amazonensis infection in the mouse paw. BALB/c mice were infected in the hind paw with L. amazonensis (10(7)) promastigote forms. After 15 days, animals were treated daily with propolis (5 mg/kg), Glucantime (10 mg/kg), or with propolis plus Glucantime combined. After 60 days, mice were euthanized and livers were collected for inflammatory process analysis. Liver microscopic analysis showed that propolis reduced the inflammatory process compared to untreated infected control. There was a decrease of liver myeloperoxidase and N-acetyl-β-glucosaminidase activity levels, collagen fiber deposition, pro-inflammatory cytokine production, and plasma aspartate transaminase and alanine transaminase levels. Furthermore, propolis treatment enhanced anti-inflammatory cytokine levels and reversed hepatosplenomegaly. Our data demonstrated that daily low doses of Brazilian propolis reduced the secondary chronic inflammatory process in the liver caused by L. amazonensis subcutaneous infection in a susceptible mice strain.
Collapse
Affiliation(s)
- Suelen S da Silva
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil.
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Jacqueline R Fanti
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Milena M Miranda
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Natalia Y Kawakami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Fernanda Humel Teixeira
- Departamento de Histologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Eduardo J A Araújo
- Departamento de Histologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Carolina Panis
- Laboratório de Mediadores Inflamatórios, Universidade do Oeste do Paraná, UNIOESTE, Francisco Beltrão, 85605-010, Paraná, Brazil
| | - Maria A E Watanabe
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - José M Sforcin
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, 18618-970, São Paulo, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Ionice Felipe
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| |
Collapse
|
13
|
El-Ashmawy NE, El-Bahrawy HA, Shamloula MM, Ibrahim AO. Antifibrotic effect of AT-1 blocker and statin in rats with hepatic fibrosis. Clin Exp Pharmacol Physiol 2015; 42:979-987. [PMID: 26175230 DOI: 10.1111/1440-1681.12446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 01/30/2023]
Abstract
Hepatic fibrosis is an outcome of chronic liver injury. Angiotensin II (ANG II) may play a role in the pathogenesis of hepatic fibrosis. Certain drugs such as ACE inhibitors, ANG II antagonists, and even statins could interfere with the renin angiotensin system and modulate its deleterious effects. This study was carried out to investigate the possible role of losartan and atorvastatin in liver fibrosis. Liver fibrosis was induced in rats by i.p. injection of 50% CCl4 twice per week for 8 weeks. The rats intoxicated with CCl4 were divided into four groups: fibrosis control; losartan group; atorvastatin group; and co-treated group. A fifth group of normal healthy rats served as a control group. The results showed that losartan and atorvastatin, either alone or in combination, significantly decreased ALT, AST, hyaluronic acid and hydroxyproline levels in their groups compared to those of the fibrosis control group. A significant decrease in TGF-β was found in the losartan and co-treated groups but not in the atorvastatin group. These biochemical data were supported by liver histopathology and α-SMA. The results indicate that the combined treatment with both losartan and atorvastatin produced a greater effect than either drug alone and proved a beneficial role in inhibiting or reversing liver fibrosis.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hoda A El-Bahrawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maha M Shamloula
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Glucose-6-phosphate Dehydrogenase Activity During Nʹ-nitrosodiethylamine-induced Hepatic Damage. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.als.2015.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice. PLoS One 2015; 10:e0127946. [PMID: 26024318 PMCID: PMC4449184 DOI: 10.1371/journal.pone.0127946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3), a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs) and natural killer (NK) cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice. Methods Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies. Results Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs. Conclusions Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.
Collapse
|
16
|
Fernandes FF, Ferraz ML, Andrade LE, Dellavance A, Terra C, Pereira G, Pereira JL, Campos F, Figueiredo F, Perez RM. Enhanced liver fibrosis panel as a predictor of liver fibrosis in chronic hepatitis C patients. J Clin Gastroenterol 2015; 49:235-41. [PMID: 24714186 DOI: 10.1097/mcg.0000000000000128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Evaluation of fibrosis is crucial in the assessment of chronic hepatitis C (CHC). The enhanced liver fibrosis (ELF) is a serological panel including hyaluronic acid (HA), tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), and amino-terminal propeptide of type III procollagen (PIIINP) that has shown good results in predicting liver fibrosis in distinct scenarios of chronic liver diseases. AIMS We aimed to assess the performance of ELF on the detection of fibrosis and cirrhosis in a CHC patient cohort and to compare the results of ELF and transient elastography (TE-Fibroscan) using liver biopsy as reference. PATIENTS AND METHODS One hundred twenty patients were prospectively evaluated by TE and ELF using an ADVIA Centaur automated system. The ELF score was calculated using the manufacturer's algorithm. Biopsies were classified according to the METAVIR score. Receiver operator characteristic curve analyses were performed to evaluate the accuracy of ELF and TE. RESULTS The area under the receiver operator characteristic curve (AUROC) of ELF for the diagnosis of significant fibrosis was 0.81 [95% confidence interval (CI), 0.73-0.87], for advanced fibrosis was 0.82 (95% CI, 0.74-0.88), and for cirrhosis was 0.78 (95% CI, 0.70-0.85). Using the proposed cutoffs, ELF overestimated fibrosis in 66% (81/120) of cases and underestimated in 3% (3/120). We found no statistically significant difference when comparing the AUROC of ELF and TE for diagnosing fibrosis or cirrhosis. CONCLUSIONS ELF panel is a good noninvasive fibrosis marker and showed similar results to TE in CHC patients. However, new cutoff points need to be established to improve its performance on patients with CHC.
Collapse
Affiliation(s)
- Flavia F Fernandes
- *Gastroenterology Department, University of the State of Rio de Janeiro †Department of Gastroenterology, Bonsucesso Federal Hospital §D'Or Institute for Research and Education #Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro ‡Gastroenterology Department, Federal University of São Paulo ∥Rheumatology Division, Universidade Federal de São Paulo, UNIFESP, São Paulo ¶Department of Research and Development, Fleury Group, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Serum hyaluronic acid concentration in Fontan circulation: correlation with hepatic function and portal vein hemodynamics. Pediatr Cardiol 2014; 35:608-15. [PMID: 24163010 DOI: 10.1007/s00246-013-0827-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/03/2013] [Indexed: 02/06/2023]
Abstract
Although liver fibrosis causes significant morbidity in the late postoperative period of the Fontan procedure, the diagnostic value of hyaluronic acid (HA), a serum marker of liver fibrosis, has not been established in Fontan patients. The purpose of this study was to determine whether increased serum HA concentration in Fontan patients is associated with an increase in inspiratory-to-expiratory flow rate ratio (Qin/Qex) of the portal vein (PV), which is indicative of liver fibrosis. We retrospectively studied 28 consecutive patients with Fontan circulation who underwent cardiac catheterisation for various indications. The median age at examination was 5.5 years (range 2.2-5.6). The median HA concentration was 17.7 ng mL(-1) (range 10.0-82.1), which was used to divide our 28 patients into two groups. Patients in the high-HA group had significantly greater Qin/Qex of the PV than those in the low-HA group (1.25 ± 0.12 vs. 1.12 ± 0.11, p < 0.05). Platelet counts were significantly lower in the high-HA group (216 ± 74 vs. 294 ± 104 × 10(9) L(-1), p < 0.05). No significant difference was found in inferior vena caval pressure. In conclusion, increase of HA concentration in Fontan patients accompanies the change in PV hemodynamics peculiar to liver cirrhosis and might be an early indicator of liver fibrosis.
Collapse
|
18
|
Lee CK, Perez-Atayde AR, Mitchell PD, Raza R, Afdhal NH, Jonas MM. Serum biomarkers and transient elastography as predictors of advanced liver fibrosis in a United States cohort: the Boston children's hospital experience. J Pediatr 2013; 163:1058-64.e2. [PMID: 23759423 DOI: 10.1016/j.jpeds.2013.04.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/26/2013] [Accepted: 04/23/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To evaluate and compare the ability of serum hyaluronic acid (HA) and human cartilage glycoprotein-39 (YKL-40) values, as well as transient elastography (TE) findings, to predict advanced hepatic fibrosis in a cohort from a single pediatric center. STUDY DESIGN Subjects who underwent liver biopsy analysis within 12 months before enrollment were eligible for this prospective study. HA and YKL-40 measurements were obtained within 1 month of TE. A METAVIR score of F3 or F4 was considered to indicate advanced fibrosis. RESULTS A total of 128 patients (51% males) aged 1.4 months to 27.6 years (22% aged <2 years) were enrolled. Thirty-one subjects had data on only HA and YKL-40 measurements, and 97 subjects had data on both blood tests and TE. For the prediction of advanced fibrosis, the area under the receiver operating characteristic curve (AUC) values were 0.83 for TE, 0.72 for HA, and 0.52 for YKL-40. The AUC of 0.83 for TE was statistically significantly greater than the AUCs for HA (P = .03) and YKL-40 (P < .0001). Optimal cutpoints for predicting F3-F4 fibrosis were 8.6 kPa for TE (P < .0001), 43 ng/mL for HA (P < .0001), and 26.2 ng/mL for YKL-40 (P = .85). The combination of TE and HA was not better than TE alone for predicting advanced fibrosis (P = .15). CONCLUSION In this study, which evaluated TE, HA, and YKL-40 to predict liver fibrosis in children in the US, YKL-40 had no predictive value and TE was superior to HA, but the addition of HA did not improve the performance of TE. Our data suggest that TE and HA may be useful noninvasive tools for assessing liver fibrosis in children.
Collapse
Affiliation(s)
- Christine K Lee
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA.
| | | | | | | | | | | |
Collapse
|
19
|
Lack of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) attenuates liver fibrogenesis in mice. PLoS One 2013; 8:e54962. [PMID: 23408952 PMCID: PMC3569438 DOI: 10.1371/journal.pone.0054962] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/18/2012] [Indexed: 11/30/2022] Open
Abstract
Introduction Secreted Protein, Acidic and Rich in Cysteine (SPARC) is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC. Methods Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC+/+) and knock-out (SPARC−/−) mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC−/− and SPARC+/+ mice using Affymetrix Mouse Gene ST 1.0 array. Results SPARC expression was found induced in fibrotic livers of mouse and human. SPARC−/− mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC−/− mice when compared to SPARC+/+ mice; in addition, MMP-2 expression was increased in SPARC−/− mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA) analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli. Conclusions Overall our data suggest that SPARC plays a significant role in liver fibrogenesis. Interventions to inhibit SPARC expression are suggested as promising approaches for liver fibrosis treatment.
Collapse
|
20
|
Piccioni F, Malvicini M, Garcia MG, Rodriguez A, Atorrasagasti C, Kippes N, Piedra Buena IT, Rizzo MM, Bayo J, Aquino J, Viola M, Passi A, Alaniz L, Mazzolini G. Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice. Glycobiology 2011; 22:400-10. [DOI: 10.1093/glycob/cwr158] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
21
|
He X, Lv R, Wang K, Huang X, Wu W, Yin L, Liu Y. Cytoglobin Exhibits Anti-Fibrosis Activity on Liver In Vivo and In Vitro. Protein J 2011; 30:437-46. [DOI: 10.1007/s10930-011-9340-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem Biol Interact 2011; 193:225-31. [PMID: 21803030 DOI: 10.1016/j.cbi.2011.07.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 12/11/2022]
Abstract
The pathogenesis of hepatic fibrosis involves significant deposition of fibrilar collagen and other extracellular matrix proteins. It is a rather dynamic process of wound healing in response to a variety of persistent liver injury caused by factors such as ethanol intake, viral infection, drugs, toxins, cholestasis, and metabolic disorders. Liver fibrosis distorts the hepatic architecture, decreases the number of endothelial cell fenestrations and causes portal hypertension. Key events are the activation and transformation of quiescent hepatic stellate cells into myofibroblast-like cells with the subsequent up-regulation of proteins such as α-smooth muscle actin, interstitial collagens, matrix metalloproteinases, tissue inhibitor of metalloproteinases, and proteoglycans. Oxidative stress is a major contributing factor to the onset of liver fibrosis and it is typically associated with a decrease in the antioxidant defense. Currently, there is no effective therapy for advanced liver fibrosis. In its early stages, liver fibrosis is reversible upon cessation of the causative agent. In this review, we discuss some aspects on the etiology of liver fibrosis, the cells involved, the molecular pathogenesis, and the current therapeutic approaches.
Collapse
|
23
|
Hobbie KR, DeAngelo AB, George MH, Law JM. Neoplastic and nonneoplastic liver lesions induced by dimethylnitrosamine in Japanese medaka fish. Vet Pathol 2011; 49:372-85. [PMID: 21724976 DOI: 10.1177/0300985811409443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small fish models have been used for decades in carcinogenicity testing. Demonstration of common morphological changes associated with specific mechanisms is a clear avenue by which data can be compared across divergent phyletic levels. Dimethylnitrosamine, used in rats to model human alcoholic cirrhosis and hepatic neoplasia, is also a potent hepatotoxin and carcinogen in fish. We recently reported some striking differences in the mutagenicity of DMN in lambda cII transgenic medaka fish vs. Big Blue(®) rats, but the pre-neoplastic and neoplastic commonalities between the two models are largely unknown. Here, we focus on these commonalities, with special emphasis on the TGF-β pathway and its corresponding role in DMN-induced hepatic neoplasia. Similar to mammals, hepatocellular necrosis, regeneration, and dysplasia; hepatic stellate cell and "spindle cell" proliferation; hepatocellular and biliary carcinomas; and TGF-β1 expression by dysplastic hepatocytes all occurred in DMN-exposed medaka. Positive TGF-β1 staining increased with increasing DMN exposure in bile preductular epithelial cells, intermediate cells, immature hepatocytes and fewer mature hepatocytes. Muscle specific actin identified hepatic stellate cells in DMN-exposed fish. Additional mechanistic comparisons between animal models at different phyletic levels will continue to facilitate the interspecies extrapolations that are so critical to toxicological risk assessments.
Collapse
Affiliation(s)
- K R Hobbie
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
24
|
Priya S, Vijayalakshmi P, Vivekanandan P, Karthikeyan S. Influence of N-acetylcysteine against dimethylnitrosamine induced hepatotoxicity in rats. Toxicol Ind Health 2011; 27:914-22. [PMID: 21558131 DOI: 10.1177/0748233711399323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study evaluates the hepatoprotective and antioxidant properties of N-acetylcysteine (NAC) on dimethylnitrosamine (DMN) induced hepatotoxicity in male Wistar albino rats. A single intraperitoneal dose of DMN (5 mg/kg b.w.) caused a significant increase in the levels of the serum marker enzymes (aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), glutamyl transpeptidase (γ-GT)) and a subsequent decrease in AST, ALT, ALP and increase in LDH and γ-GT in the liver tissue indicating hepatocellular damage. Elevation in the status of lipid peroxidation, fall in the activities of the enzymic (superoxide dismutase, catalase) and non-enzymic antioxidants (vitamin C, vitamin E) in the liver tissue further confirms oxidative stress and hepatocellular damage induced on DMN administration. Oral administration of NAC (50 mg/kg b.w.) for 7 days significantly prevented the above alterations in the status of the marker enzymes of hepatotoxicity and antioxidant parameters and restored them towards normalcy, which was further substantiated by the histopathological studies of the liver tissue. These results suggest that NAC offers hepatoprotection by ameliorating DMN-induced oxidative stress and hepatotoxicity and this protective effect was attributed to its antioxidant and free radical scavenging properties.
Collapse
Affiliation(s)
- Sathish Priya
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India
| | | | | | | |
Collapse
|
25
|
Richette P, Eymard C, Deberg M, Vidaud D, de Kerguenec C, Valla D, Vicaut E, Bardin T, Henrotin Y. Increase in type II collagen turnover after iron depletion in patients with hereditary haemochromatosis. Rheumatology (Oxford) 2010; 49:760-6. [DOI: 10.1093/rheumatology/kep429] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Goo MJ, Ki MR, Lee HR, Yang HJ, Yuan DW, Hong IH, Park JK, Hong KS, Han JY, Hwang OK, Kim DH, Do SH, Cohn RD, Jeong KS. Helicobacter pylori promotes hepatic fibrosis in the animal model. J Transl Med 2009; 89:1291-303. [PMID: 19736546 DOI: 10.1038/labinvest.2009.90] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Helicobacter pylori infection has been reported to be very common in patients with chronic liver diseases, including cirrhosis. To elucidate the pathological effect of H. pylori infection on the progression of hepatic fibrosis, C57BL/6 mice and Sprague-Dawley rats were orally inoculated with H. pylori, and hepatic fibrosis was induced with carbon tetrachloride (CCl(4)) administration. We observed the histopathological changes and the presence of H. pylori genes by PCR in the liver. Significant increase in the fibrotic score as well as in serum alanine aminotransferase and aspartate aminotransferase levels was shown in the CCl(4)+H. pylori group compared with that in the CCl(4)-treated group. Compared with the CCl(4)-treated group, alpha-smooth muscle actin and transforming growth factor-beta1 were enhanced; however, senescence marker protein-30, a multifunctional protein protecting hepatocytes against oxidative stress and apoptosis, was suppressed in the CCl(4)+H. pylori group. The 16S rRNA (400 bp) was demonstrated by PCR for H. pylori genes from genomic DNA extracted from the liver, and H. pylori-infected mice showed 93.8% (15 of 16) seropositivity by contrast with seronegativity in all H. pylori-noninfected mice. In addition, immunohistochemical study against H. pylori showed positive antigen fragments in the liver of the infected groups. Consequently, our data suggest that H. pylori infection could be an important contributing infectious factor to the development of liver cirrhosis.
Collapse
Affiliation(s)
- Moon-Jung Goo
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Buk-ku 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Crawford DHG, Murphy TL, Ramm LE, Fletcher LM, Clouston AD, Anderson GJ, Subramaniam VN, Powell LW, Ramm GA. Serum hyaluronic acid with serum ferritin accurately predicts cirrhosis and reduces the need for liver biopsy in C282Y hemochromatosis. Hepatology 2009; 49:418-25. [PMID: 19177571 DOI: 10.1002/hep.22650] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UNLABELLED Diagnosing the presence of cirrhosis is crucial for the management of patients with C282Y hereditary hemochromatosis (HH). HH patients with serum ferritin >1,000 microg/L are at risk of cirrhosis; however, the majority of these patients do not have cirrhosis. Noninvasive markers of hepatic fibrosis may assist in determining which patients with a serum ferritin >1,000 microg/L have cirrhosis and require liver biopsy. This study evaluated the utility of current diagnostic algorithms for detecting cirrhosis, including serum ferritin concentration, platelet counts, and aspartate aminotransferase (AST) levels, in combination with serum markers of fibrosis, hyaluronic acid and collagen type IV (CLIV), in predicting cirrhosis in HH patients. Stage of fibrosis, serum hyaluronic acid and CLIV levels, were measured in 56 patients with HH. No patient with a serum ferritin <1,000 microg/L had cirrhosis, but only 40% of patients with serum ferritin >1,000 microg/L were cirrhotic. A combination of platelet count (<200 x 10(9)/L), elevated AST, and serum ferritin >1,000 microg/L did not detect 30% of cirrhotic subjects. Serum hyaluronic acid was increased in HH compared with controls (42.0 +/- 9.8 ng/mL versus 19.3 +/- 1.8 ng/mL; P = 0.02). A hyaluronic acid concentration >46.5 ng/mL was 100% sensitive and 100% specific in identifying patients with cirrhosis. In patients with serum ferritin >1,000 microg/L, hyaluronic acid levels were significantly elevated in patients with cirrhosis versus those without cirrhosis (137 +/- 34.4 ng/mL versus 18.6 +/- 1.5 ng/mL, respectively; P = 0.006). CLIV >113 ng/mL was 100% sensitive but only 56% specific for cirrhosis (area under the curve = 0.78; P = 0.01). CONCLUSION In HH, the measurement of hyaluronic acid in patients with serum ferritin >1,000 microg/L is a noninvasive, accurate, and cost-effective method for the diagnosis of cirrhosis. (HEPATOLOGY 2009;49:418-425.).
Collapse
Affiliation(s)
- Darrell H G Crawford
- School of Medicine, The University of Queensland, Greenslopes Private Hospital, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vanderschaeghe D, Laroy W, Sablon E, Halfon P, Van Hecke A, Delanghe J, Callewaert N. GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. Mol Cell Proteomics 2009; 8:986-94. [PMID: 19181623 DOI: 10.1074/mcp.m800470-mcp200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Liver fibrosis is currently assessed by liver biopsy, a costly and rather cumbersome procedure that is unsuitable for frequent patient monitoring, which drives research into biomarkers for this purpose. To investigate whether the serum N-glycome contains information suitable for this goal, we developed a 96-well plate-based serum N-glycomics sample preparation protocol that only involves fluid transfer steps and incubations in a PCR thermocycler yielding 8-aminopyrene-1,3,6-trisulfonic acid-labeled N-glycans. These N-glycans are then ready for analysis on the capillary electrophoresis-based DNA sequencers that are the current standard in clinical genetics laboratories worldwide. Subsequently we performed a multicenter, blinded study of 376 consecutive chronic hepatitis C virus patients for which liver biopsies and extensive serum biochemistry data were available. Among patients, the METAVIR fibrosis stage distribution was as follows: 10.6% F0, 44.4% F1, 20.5% F2, 18.4% F3, and 6.1% F4. We found that the ratio of two N-glycans, here called GlycoFibroTest, correlates with the histological fibrosis stage equally well as FibroTest (rho = 0.4-0.5 in F1-F4), which is used in the clinic today. Finally using affinity chromatography we depleted sera of immunoglobulin G, and this resulted in a complete removal of the undergalactosylated biantennary glycans from the N-glycome, which are partially determining GlycoFibroTest.
Collapse
Affiliation(s)
- Dieter Vanderschaeghe
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Vanderschaeghe D, Laroy W, Sablon E, Halfon P, Van Hecke A, Delanghe J, Callewaert N. GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. Mol Cell Proteomics 2009. [PMID: 19181623 DOI: 10.1074/mcp.m800470-mcp20042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Liver fibrosis is currently assessed by liver biopsy, a costly and rather cumbersome procedure that is unsuitable for frequent patient monitoring, which drives research into biomarkers for this purpose. To investigate whether the serum N-glycome contains information suitable for this goal, we developed a 96-well plate-based serum N-glycomics sample preparation protocol that only involves fluid transfer steps and incubations in a PCR thermocycler yielding 8-aminopyrene-1,3,6-trisulfonic acid-labeled N-glycans. These N-glycans are then ready for analysis on the capillary electrophoresis-based DNA sequencers that are the current standard in clinical genetics laboratories worldwide. Subsequently we performed a multicenter, blinded study of 376 consecutive chronic hepatitis C virus patients for which liver biopsies and extensive serum biochemistry data were available. Among patients, the METAVIR fibrosis stage distribution was as follows: 10.6% F0, 44.4% F1, 20.5% F2, 18.4% F3, and 6.1% F4. We found that the ratio of two N-glycans, here called GlycoFibroTest, correlates with the histological fibrosis stage equally well as FibroTest (rho = 0.4-0.5 in F1-F4), which is used in the clinic today. Finally using affinity chromatography we depleted sera of immunoglobulin G, and this resulted in a complete removal of the undergalactosylated biantennary glycans from the N-glycome, which are partially determining GlycoFibroTest.
Collapse
Affiliation(s)
- Dieter Vanderschaeghe
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang XB. Cordyceps mycelia extract decreases portal hypertension in rats with dimethylnitrosamine-induced liver cirrhosis: a study on its histological basis. ACTA ACUST UNITED AC 2008. [DOI: 10.3736/jcim20081107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Sun C, Wang BC, Chen YW, Chen YW, Li DG. Effect of uPA gene-transfected bone marrow-derived liver stem cell transplantation on activation of hepatic stellate cells in rat liver fibrosis. Shijie Huaren Xiaohua Zazhi 2008; 16:3031-3035. [DOI: 10.11569/wcjd.v16.i27.3031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of urokinase type plasminogen activator (uPA) gene-modified bone marrow-derived stem cell (BDLSC) transplantation on activation of hepatic stellate cells (HSCs) in rats with CCl4-induced liver fibrosis.
METHODS: Rat liver fibrosis model was induced by subcutaneous injection of 400 mL/L CCl4. Thirty-six rats were randomly divided into four groups of 9 rats, including control group which was injected subcutaneously with the same dose of olive oil, model group, BDLSC group and BDLSC-uPA group. All rats were sacrificed to harvest serum and liver tissues at the end of the eighth week. Liver function changes were observed; the expression changes of α-smooth muscle actin (α-SMA) proteins were determined using immunohistochemistry and Western blotting.
RESULTS: In the BDLSC-uPA group, the serum levels of alanine aminotransferase (ALT) and total bilirubin (TBIL) in varying degrees decreased (86.5 ± 9.7 vs 187.1 ± 14.8, 113.5 ± 15.7; 11.5 ± 2.1 vs 26.3 ± 3.7, 17.9 ± 2.8, all P < 0.01), serum levels of hyaluronic acid (HA) and procollagen Ⅲ (PCⅢ) were much lower (47.4 ± 10.1 vs 148.5 ± 22.4, 97.6 ± 14.4; 18.9 ± 4.4 vs 39.0 ± 6.1, 28.2 ± 4.1, all P < 0.01). The expression of α-SMA protein in liver was down-regulated, compared with those in the model group and BDLSC group (0.0174 ± 0.0048 vs 0.3404 ± 0.0662, 0.1080 ± 0.0408, all P < 0.01).
CONCLUSION: uPA gene-modified BDLSC transplantation suppresses CCl4-induced hepatic fibrosis and ameliorates liver functions in rats effectively. Inhibiting the activation of HSC may be one of the main mechanisms for inhabitation of rat liver fibrosis.
Collapse
|
32
|
Impact of treatment with praziquantel, silymarin and/or β-glucan on pathophysiological markers of liver damage and fibrosis in mice infected with Mesocestoides vogae (Cestoda) tetrathyridia. J Helminthol 2008; 82:211-9. [DOI: 10.1017/s0022149x08960776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMesocestoides vogae tetrathyridia infection in mice causes hepatocyte injury, hepatic granulomatous inflammmation, liver fibrosis and chronic peritonitis manifested with portal hypertension. To reduce the detrimental effect of parasites on the host liver, the effect of the anthelmintic drug praziquantel (PZQ) in combination with natural products silymarin (an antioxidant) and β-glucan (an immunomodulator) was investigated. The therapeutic effect of drugs was assessed by means of aminotransferase (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) activities, content of albumin, total proteins and hyaluronic acid (HA) in sera of ICR mice infected with M. vogae larvae. Animals were treated with PZQ suspended in oil emulsion (Group 1), PZQ combined with silymarin incorporated into lipid microspheres (LMS) (Group 2), PZQ combined with β-glucan incorporated into liposomes (LG) (Group 3), PZQ co-administered with LMS and LG (Group 4). Untreated animals (Group 5) served as the control. Treatment of animals started at the early chronic phase of infection (day 14 p.i.) and lasted 10 days; serum samples were collected on days 0, 7, 14, 25, 28, 31, 35 and 45 p.i. ALT and AST activities were significantly (P < 0.05) decreased in Groups 2, 3 and 4. HA content was significantly (P < 0.05 and 0.01) lower in Groups 2 and 4. Albumin levels were decreased in Groups 2 and 4, total protein concentration decreased in Groups 1 and 3 (P < 0.05 and 0.01). These results showed that combined treatment of PZQ with silymarin and/or β-glucan was able to ameliorate or suppress fibrogenesis in the liver, protect liver cells from oxidative damage and, possibly, stimulate regeneration of the parenchyma.
Collapse
|
33
|
George J. Elevated serum β-glucuronidase reflects hepatic lysosomal fragility following toxic liver injury in rats. Biochem Cell Biol 2008; 86:235-43. [DOI: 10.1139/o08-038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The level of serum β-glucuronidase increases in various pathological conditions, including liver disorders. The aim of this investigation was to study the changes in liver lysosomal membrane stability during experimentally induced hepatic fibrosis that may result in the elevation of serum β-glucuronidase. Liver injury was induced by intraperitoneal injections of N-nitrosodimethylamine (NDMA) in adult male albino rats over 3 weeks. The progression of fibrosis was evaluated histopathologically as well as by monitoring liver collagen content. Lipid peroxides and β-glucuronidase levels were measured in the liver homogenate and subcellular fractions on days 0, 7, 14, and 21 after the start of NDMA administration. Serum β-glucuronidase levels were also determined. A significant increase was observed in β-glucuronidase levels in the serum, liver homogenate, and subcellular fractions, but not in the nuclear fraction on days 7, 14, and 21 after the start of NDMA administration. Lipid peroxides also increased in the liver homogenate and the lysosomal fraction. The measurement of lysosomal membrane stability revealed a maximum lysosomal fragility on day 21 during NDMA-induced fibrosis. In vitro studies showed that NDMA has no significant effect on liver lysosomal membrane permeability. The results of this investigation demonstrated that lysosomal fragility increases during NDMA-induced hepatic fibrosis, which could be attributed to increased lipid peroxidation of lysosomal membrane. In this study, we also elucidated the mechanism of increased β-glucuronidase and other lysosomal glycohydrolases in the serum during hepatic fibrosis.
Collapse
Affiliation(s)
- Joseph George
- Department of Biochemistry, Central Leather Research Institute Adyar, Madras - 600 020, India. (e-mail: )
| |
Collapse
|
34
|
Saha JK, Xia J, Sandusky GE, Chen YF, Gerlitz B, Grinnell B, Jakubowski JA. Study of plasma protein C and inflammatory pathways: biomarkers for dimethylnitrosamine-induced liver fibrosis in rats. Eur J Pharmacol 2007; 575:158-67. [PMID: 17719030 DOI: 10.1016/j.ejphar.2007.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/10/2007] [Accepted: 07/17/2007] [Indexed: 01/28/2023]
Abstract
The present investigation was designed to identify potential biomarker(s) and assess the involvement of inflammatory pathway in dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Following DMN-treatment (10 mg/ml/kg, i.p., given three consecutive days each week for 4 weeks) body and liver weights were significantly decreased concurrent with increasing severity of liver damage assessed by bridging fibrosis, a histopathologic assessment and characteristic of human liver disease. Protein C along with albumin, C-reactive-protein (CRP), haptoglobin and total protein were significantly reduced and correlated with changes in liver histopathology. Biochemical markers of liver functions were significantly increased and correlated with changes in liver histopathology and plasma levels of protein C. Soluble intracellular-adhesion-molecule-1 (sICAM-1) levels were increased significantly but were poorly correlated with histopathology and protein C levels. Inflammatory chemokines and other analytes, monocyte-chemoattractant-protein-1 and 3 (MCP-1 and MCP-3), macrophage-colony-stimulating-factor (M-CSF) were significantly increased during the disease progression, whereas macrophage-derived-chemokine (MDC) and CRP were significantly suppressed. Circulating neutrophils and monocytes were also increased along with disease progression. The differential changes in sICAM-1, hyaluronic acid, gamma-glutamyltranspeptidase (GGT), neutrophil and other inflammatory chemokines suggest the involvement of inflammatory pathways in DMN-induced liver fibrosis. In conclusion, the progressive changes in protein C along with other noninvasive biochemical parameters whose levels were significantly correlated with disease progression may serve as biomarkers for pharmacological assessment of targeted therapy for liver fibrosis.
Collapse
Affiliation(s)
- Joy K Saha
- BioTherapeutic Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
George J, Tsutsumi M. siRNA-mediated knockdown of connective tissue growth factor prevents N-nitrosodimethylamine-induced hepatic fibrosis in rats. Gene Ther 2007; 14:790-803. [PMID: 17344905 DOI: 10.1038/sj.gt.3302929] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatic fibrosis is a dynamic process that involves the interplay of different cell types in the hepatic tissue. Connective tissue growth factor (CTGF) is a highly profibrogenic molecule and plays a crucial role in the pathogenesis of hepatic fibrosis. The aim of the present investigation was three-fold. First, we studied the expression of CTGF in the cultured hepatic stellate cells using immunohistochemical technique. Second, we induced hepatic fibrosis in rats through serial intraperitoneal injections of N-nitrosodimethylamine (NDMA; dimethylnitrosamine, DMN) and studied the upregulation of CTGF and TGF-beta1 during hepatic fibrogenesis. Third, we downregulated CTGF expression using CTGF siRNA and examined the role of CTGF siRNA to prevent the progression of NDMA-induced hepatic fibrosis. The results depicted strong staining of CTGF in the transformed hepatic stellate cells in culture. Serial administrations of NDMA resulted in activation of hepatic stellate cells, upregulation of CTGF and TGF-beta1 both at mRNA and protein levels and well-developed fibrosis in the liver. Immunostaining, Western blot analysis, semiquantitative and real-time RT-PCR studies showed downregulation of CTGF and TGF-beta1 after treatment with CTGF siRNA. The results of the present study demonstrated that CTGF gene silencing through siRNA reduces activation of hepatic stellate cells, prevents the upregulation of CTGF and TGF-beta1 gene expression and inhibits accumulation of connective tissue proteins in the liver. The data further suggest that knockdown of CTGF upregulation using siRNA has potential therapeutic application to prevent hepatic fibrogenesis.
Collapse
Affiliation(s)
- J George
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
36
|
Hartley JL, Brown RM, Tybulewicz A, Hayes P, Wilson DC, Gillett P, McKiernan P. Hyaluronic acid predicts hepatic fibrosis in children with hepatic disease. J Pediatr Gastroenterol Nutr 2006; 43:217-21. [PMID: 16877988 DOI: 10.1097/01.mpg.0000228121.44606.9f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hyaluronic acid (HA) is removed by the liver via sinusoidal cell adhesion molecules. This is impeded in fibrosis, leading to a rise in serum HA. As a noninvasive marker of fibrosis, HA may obviate the need for liver biopsy. OBJECTIVE To evaluate HA as a marker of hepatic fibrosis, in unselected children undergoing liver biopsy. METHODS Ninety-three unselected consecutive children (median age, 7.5 years; range, 0.07-19 years) undergoing a liver biopsy between April 2003 and March 2004 were prospectively recruited. Liver biopsy and fasting HA levels were taken simultaneously. The Ishak score was used to stage fibrosis. Scores of 3 or greater were regarded as significant fibrosis. Hyaluronic acid levels were measured using an enzyme-linked binding protein assay (2002 Corgenix, Inc) (adult reference range, 0-75 ng/mL; pediatric reference range, 0-30 ng/mL). RESULTS Twenty-three (25%) of 93 biopsies had significant fibrosis, and HA levels in this group were significantly higher than those with mild fibrosis (Ishak score, <3), (median level, 72 ng/mL vs 30 ng/mL; Mann-Whitney U test; P < 0.005). Hyaluronic acid level of 50 ng/mL had a positive predictive value 40% and negative predictive value 86% for significant fibrosis. An HA level 200 ng/mL has a sensitivity of 26% and specificity of 90%. CONCLUSIONS Hyaluronic Acid is a valid noninvasive predictor of hepatic fibrosis in unselected children with liver disease. An HA level of 200 ng/mL strongly suggests significant fibrosis. Hyaluronic acid level of less than 50 ng/mL accurately identifies those who do not have significant fibrosis.
Collapse
|
37
|
George J. Mineral metabolism in dimethylnitrosamine-induced hepatic fibrosis. Clin Biochem 2006; 39:984-91. [PMID: 16959231 DOI: 10.1016/j.clinbiochem.2006.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/30/2006] [Accepted: 07/15/2006] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Complications such as ascites during the pathogenesis of hepatic fibrosis and cirrhosis may lead to several abnormalities in mineral metabolism. In the present investigation, we have monitored serum and liver concentrations of calcium, magnesium, sodium and potassium during experimentally induced hepatic fibrosis in rats. DESIGN AND METHODS The liver injury was induced by intraperitoneal injections of dimethylnitrosamine (DMN; N-nitrosodimethylamine, NDMA) in doses 1 mg/100 g body weight on 3 consecutive days of each week over a period of 21 days. Calcium, magnesium, sodium and potassium were measured by atomic absorption spectrophotometry in the serum and liver on days 7, 14 and 21 after the start of DMN administration. RESULTS Negative correlations were observed between liver function tests and serum mineral levels, except with albumin. Calcium, magnesium, potassium and sodium concentrations in the serum were decreased after the induction of liver injury. The liver calcium content was increased after DMN treatment. No change occurred in liver sodium content. However, magnesium and potassium content was significantly reduced in the hepatic tissue. CONCLUSIONS The results suggest that DMN-induced hepatic fibrosis plays certain role in the alteration of essential elements. The low levels of albumin and the related ascites may be one of the major causes of the imbalance of mineral metabolism in hepatic fibrosis and further aggravation of the disease.
Collapse
Affiliation(s)
- Joseph George
- Department of Biochemistry, Central Leather Research Institute, Adyar, Madras 600 020, India.
| |
Collapse
|
38
|
Kim DI, Lee TK, Jang TH, Kim CH. The inhibitory effect of a Korean herbal medicine, Zedoariae rhizoma, on growth of cultured human hepatic myofibroblast cells. Life Sci 2005; 77:890-906. [PMID: 15964308 DOI: 10.1016/j.lfs.2005.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 01/05/2005] [Indexed: 11/20/2022]
Abstract
The aim of this study was to assess the effect of ZR on the growth of cultured human hepatic myofibroblast cells (hMF). The zedoary (Zedoariae Rhizoma) made from the dried rhizome of Curcuma zedoaria Roscoe is an herbal drug used as an aromatic stomachic. The plant is a perennial herb which is natively distributed throughout Korea and is a traditional Korean herbal medicine. Zedoariae rhizoma is a bioactive traditional medicine with anti-tumor, anti-atherosclerosis, anti-inflammation, and growth-regulating properties. During the course of liver fibrogenesis, hMF, mostly derived from hepatic stellate cells, proliferate and synthesize excessive amounts of extracellular matrix components. To evaluate the antiproliferative effect of a traditional herbal medicine, Zedoariae rhizoma water extracts (ZR) was examined on the growth inhibition of hMF since proliferation of hMF is known to be central for the development of fibrosis during liver injury, and factors that may limit their growth are potential antifibrotic agents. The aim of this study was to test the effects of ZR on the proliferation in cultured hMF. hMF were obtained by outgrowth from human liver explants. ZR markedly reduced serum driven cell proliferation, as assessed by nuclear autoradiography experiments and measurement of actual cell growth. Growth inhibition was totally reversed after removal of the ZR. ZR potently inhibited hMF growth (IC50 = 8.5 microg/ml), in a pertussis toxin-insensitive manner. Analysis of the mechanisms involved in growth inhibition revealed that ZR rapidly increased prostaglandin E2 production and in turn cAMP, which inhibited hMF proliferation, did not affect cAMP levels. Production of cAMP by ZR was abolished by NS-398, a selective inhibitor of cycloxygenase (COX)-2. Also, ZR potently induced COX-2 protein expression. Blocking COX-2 by NS-398 blunted the antiproliferative effect of ZR. We conclude that ZR inhibits proliferation of hMF, probably via an intracellular mechanism, through early COX-2-dependent release of prostaglandin E2 and cAMP, and delayed COX-2 induction. Our results indicated a novel role for ZR as a growth inhibitory mediator and pointed out its potential involvement in the negative regulation of liver fibrogenesis. The results that ZR exhibits potent antiproliferative and antifibrogenic effects toward hMF, indicated that ZR might have therapeutic implications in chronic liver disease.
Collapse
Affiliation(s)
- Dong-Il Kim
- Department of Biochemistry, Molecular Biology and Gynecology, Dongguk University College of Oriental Medicine, and National Research Laboratory for Glycobiology, Kyungju, Kyungbuk 780-714, Korea
| | | | | | | |
Collapse
|