1
|
Ramachandra Rao S, Fliesler SJ. Bottlenecks in the Investigation of Retinal Sterol Homeostasis. Biomolecules 2024; 14:341. [PMID: 38540760 PMCID: PMC10968604 DOI: 10.3390/biom14030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 01/16/2025] Open
Abstract
Sterol homeostasis in mammalian cells and tissues involves balancing three fundamental processes: de novo sterol biosynthesis; sterol import (e.g., from blood-borne lipoproteins); and sterol export. In complex tissues, composed of multiple different cell types (such as the retina), import and export also may involve intratissue, intercellular sterol exchange. Disruption of any of these processes can result in pathologies that impact the normal structure and function of the retina. Here, we provide a brief overview of what is known currently about sterol homeostasis in the vertebrate retina and offer a proposed path for future experimental work to further our understanding of these processes, with relevance to the development of novel therapeutic interventions for human diseases involving defective sterol homeostasis.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Department of Ophthalmology (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA;
| | - Steven J. Fliesler
- Department of Ophthalmology (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
2
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Chen Y, Coorey NJ, Zhang M, Zeng S, Madigan MC, Zhang X, Gillies MC, Zhu L, Zhang T. Metabolism Dysregulation in Retinal Diseases and Related Therapies. Antioxidants (Basel) 2022; 11:antiox11050942. [PMID: 35624805 PMCID: PMC9137684 DOI: 10.3390/antiox11050942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
The human retina, which is part of the central nervous system, has exceptionally high energy demands that requires an efficient metabolism of glucose, lipids, and amino acids. Dysregulation of retinal metabolism disrupts local energy supply and redox balance, contributing to the pathogenesis of diverse retinal diseases, including age-related macular degeneration, diabetic retinopathy, inherited retinal degenerations, and Macular Telangiectasia. A better understanding of the contribution of dysregulated metabolism to retinal diseases may provide better therapeutic targets than we currently have.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | | | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (M.Z.); (T.Z.)
| | - Shaoxue Zeng
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Michele C. Madigan
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China;
- Beijing Retinal and Choroidal Vascular Study Group, Beijing 100073, China
| | - Mark C. Gillies
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ting Zhang
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- Correspondence: (M.Z.); (T.Z.)
| |
Collapse
|
4
|
Jenkins AJ, Grant MB, Busik JV. Lipids, hyperreflective crystalline deposits and diabetic retinopathy: potential systemic and retinal-specific effect of lipid-lowering therapies. Diabetologia 2022; 65:587-603. [PMID: 35149880 PMCID: PMC9377536 DOI: 10.1007/s00125-022-05655-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The metabolically active retina obtains essential lipids by endogenous biosynthesis and from the systemic circulation. Clinical studies provide limited and sometimes conflicting evidence as to the relationships between circulating lipid levels and the development and progression of diabetic retinopathy in people with diabetes. Cardiovascular-system-focused clinical trials that also evaluated some retinal outcomes demonstrate the potential protective power of lipid-lowering therapies in diabetic retinopathy and some trials with ocular primary endpoints are in progress. Although triacylglycerol-lowering therapies with fibrates afforded some protection against diabetic retinopathy, the effect was independent of changes in traditional blood lipid classes. While systemic LDL-cholesterol lowering with statins did not afford protection against diabetic retinopathy in most clinical trials, and none of the trials focused on retinopathy as the main outcome, data from very large database studies suggest the possible effectiveness of statins. Potential challenges in these studies are discussed, including lipid-independent effects of fibrates and statins, modified lipoproteins and retinal-specific effects of lipid-lowering drugs. Dysregulation of retinal-specific cholesterol metabolism leading to retinal cholesterol accumulation and potential formation of cholesterol crystals are also addressed.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Maria B Grant
- Department of Ophthalmology and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Characterizations of Hamster Retina as a Model for Studies of Retinal Cholesterol Homeostasis. BIOLOGY 2021; 10:biology10101003. [PMID: 34681102 PMCID: PMC8533155 DOI: 10.3390/biology10101003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary This work represents a comprehensive evaluation of hamster retina by state-of-the-art methodologies and provides evidence that hamsters may represent a better model for studies of retinal cholesterol maintenance than mice. The latter is an important finding, as disturbances in retinal cholesterol homeostasis are linked to age-related macular degeneration and diabetic retinopathy, which are blinding diseases. Abstract Cholesterol homeostasis in the retina, a sensory organ in the back of the eye, has been studied in mice but not hamsters, despite the latter being more similar to humans than mice with respect to their whole-body cholesterol maintenance. The goal of this study was to begin to assess hamster retina and conduct initial interspecies comparisons. First, young (3-month old) and mature (6-month old) Syrian (golden) hamsters were compared with 3- and 6-month old mice for ocular biometrics and retinal appearance on optical coherence tomography and fluorescein angiography. Of the 30 evaluated hamsters, seven had retinal structural abnormalities and all had increased permeability of retinal blood vessels. However, hamsters did not carry the mutations causing retinal degenerations 1 and 8, had normal blood glucose levels, and only slightly elevated hemoglobin A1c content. Cholesterol and six other sterols were quantified in hamster retina and compared with sterol profiles in mouse and human retina. These comparisons suggested that cholesterol turnover is much higher in younger than mature hamster retina, and that mature hamster and human retinas share similarities in the ratios of cholesterol metabolites to cholesterol. This study supports further investigations of cholesterol maintenance in hamster retina.
Collapse
|
6
|
Donato L, D’Angelo R, Alibrandi S, Rinaldi C, Sidoti A, Scimone C. Effects of A2E-Induced Oxidative Stress on Retinal Epithelial Cells: New Insights on Differential Gene Response and Retinal Dystrophies. Antioxidants (Basel) 2020; 9:E307. [PMID: 32290199 PMCID: PMC7222197 DOI: 10.3390/antiox9040307] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress represents one of the principal inductors of lifestyle-related and genetic diseases. Among them, inherited retinal dystrophies, such as age-related macular degeneration and retinitis pigmentosa, are well known to be susceptible to oxidative stress. To better understand how high reactive oxygen species levels may be involved in retinal dystrophies onset and progression, we performed a whole RNA-Seq experiment. It consisted of a comparison of transcriptomes' profiles among human retinal pigment epithelium cells exposed to the oxidant agent N-retinylidene-N-retinylethanolamine (A2E), considering two time points (3h and 6h) after the basal one. The treatment with A2E determined relevant differences in gene expression and splicing events, involving several new pathways probably related to retinal degeneration. We found 10 different clusters of pathways involving differentially expressed and differentially alternative spliced genes and highlighted the sub- pathways which could depict a more detailed scenario determined by the oxidative-stress-induced condition. In particular, regulation and/or alterations of angiogenesis, extracellular matrix integrity, isoprenoid-mediated reactions, physiological or pathological autophagy, cell-death induction and retinal cell rescue represented the most dysregulated pathways. Our results could represent an important step towards discovery of unclear molecular mechanisms linking oxidative stress and etiopathogenesis of retinal dystrophies.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (R.D.); (S.A.); (C.R.); (C.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| |
Collapse
|
7
|
Abstract
Olive-pomace oil is rich in oleic acid, and thus it can be an interesting dietary fat alternative as it can allow reaching the recommendation of consuming 20% of total diet energy in the form of monounsaturated fatty acids. In addition, olive-pomace oil also contains a wide range of minor components that may contribute to its healthy properties. The major components identified with healthy properties are triterpenic dialcohols and acids, squalene, tocopherols, sterols, fatty alcohols and phenolic compounds. The refining process, that the crude pomace-oil must undergo for commercial purposes, significantly reduces the content of phenolic compounds, while the other minor components remain at concentrations which can induce positive health effects, especially on cardiovascular health, outstanding pentacyclic triterpenes and aliphatic fatty alcohols in olive-pomace oil. Numerous in vitro and preclinical studies support that mainly the pure compounds, or extracts isolated from plant sources, play an important role in preventing cardiovascular disease and risk factors. Likewise, tocopherols, squalene and phytosterols, in addition to the minor fraction of phenolic compounds, have shown high biological activity with particular association to the cardiovascular function. In the light of the foregoing, and taking into consideration the absence of clinical studies with olive-pomace oil, it would be of great interest to develop randomized, crossover, controlled, double-blind studies to extend the knowledge and understanding on the health effects of olive-pomace olive.
Collapse
Affiliation(s)
- Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Beatriz Sarria
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Laura Bravo
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| |
Collapse
|
8
|
Hirahara Y, Wakabayashi T, Koike T, Gamo K, Yamada H. Change in phospholipid species of retinal layer in traumatic optic neuropathy model. J Neurosci Res 2019; 98:325-337. [PMID: 31385342 DOI: 10.1002/jnr.24500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022]
Abstract
Injured optic nerves induce death in almost all retinal ganglion cells (RGC) and cause a loss of axons. To date, we have studied injured RGC axon regeneration by using a traumatic optic nerve injury (TONI) rodent model, and we revealed that axonal regeneration is induced by the graft of an autologous peripheral nerve. The efficient approach to the regeneration of axons thus needs an environmental adjustment of RGC. However, the RGC environment induced by TONI remains unknown. Here, we analyzed female and male C57BL/6 mouse retinal tissue alterations in detail after TONI and focused on the major phospholipid species that are enriched in the whole retina. Reactive astrocyte accumulation, glia scar formation, and demyelination were observed in the injured optic nerve area, while RGC cell death, astrocyte accumulation, and Glial fibrillary acidic protein (GFAP) positive Müller cell increases were detected in the retinal layer. Furthermore, phosphatidylinositol (PI) 18:0/20:4 was localized to three nuclear layer structures: the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL) in control retina; however, the localization of 18:0/20:4 PI in TONI was disturbed. Meanwhile, phosphatidylserine (PS) 18:0/22:6 showed that the expression was specifically in the inner plexiform layer (IPL) with similar signal intensity in both cases. Other PS species and phosphatidylethanolamine (PE) were differentially localized in the retinal layer; however, the expressions of PE including docosahexaenoic acid (DHA) were affected by TONI. These results suggest that not only GCL but also other retinal layers were influenced by TONI.
Collapse
Affiliation(s)
- Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | | | - Taro Koike
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | - Keizo Gamo
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | - Hisao Yamada
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| |
Collapse
|
9
|
Gavrilova NA, Borzenok SA, Zaletaev DV, Solomin VA, Gadzhieva NS, Tishchenko OE, Komova OU, Zinov'eva AV. Molecular genetic mechanisms of influence of laser radiation with 577 nm wavelength in a microimpulse mode on the condition of the retina. Exp Eye Res 2019; 185:107650. [PMID: 31075223 DOI: 10.1016/j.exer.2019.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
THE AIM OF THE STUDY was to investigate the molecular genetic mechanisms of the influence of laser radiation with 577 nm wavelength in a microimpulse mode on the retina in the experimental conditions after the intravitreal injection of VEGF. MATERIALS AND METHODS The study was performed on 4-5 week-old male mice of the line C57BL/6J. The animals were divided into 4 groups of 5 mice in each group, one eye was excremental, the contralateral eye remained intact. In the first group, intravitreal injection of PBS was performed; in the second group, intravitreal injection of 50 ng/ml of recombinant VEGF165 in 2 μL of phosphate-buffered saline (PBS) was performed; in the third and fourth groups, a day after the intravitreal injection of recombinant VEGF165, laser radiation with wavelength 577 nm was applied in the micropulse and continuous modes, respectively. Tissue samples (neuroepithelium, pigment epithelium) for the microarray transcription analysis in the animals from group 1 and 2 were taken 2 days after the injection of PBS and VEGF, in the animals from group 3 and 4 - a day after the retina was exposed to laser radiation. RESULTS AND CONCLUSION Molecular genetic mechanisms of the influence of laser radiation with wavelength 577 nm in a microimpulse mode on the retina in experimental conditions were studied and the genes that significantly changed the level of expression (the genes that take part in the regulation of neoangiogenesis, structural cell functions, processes of cells proliferation, transcription, differentiation, transmembrane transport, signaling, synaptic transmission, etc.) were identified.
Collapse
Affiliation(s)
- Natalya A Gavrilova
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia.
| | - Sergey A Borzenok
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia; The S. Fyodorov Eye Microsurgery Federal State Institution, 127486, 59a Beskudnikovskiy Boulevard, Moscow, Russia
| | - Dmitri V Zaletaev
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, 8/2 Trubetskaya Str., Moscow, Russia; Research Centre for Medical Genetics, Russian Academy of Sciences, Moscow, 115522, 1 Moscvorechie, Moscow, Russia
| | - Vladislav A Solomin
- The S. Fyodorov Eye Microsurgery Federal State Institution, 127486, 59a Beskudnikovskiy Boulevard, Moscow, Russia
| | - Nuriya S Gadzhieva
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia
| | - Olga E Tishchenko
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia
| | - Olga U Komova
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia
| | - Aleksandra V Zinov'eva
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia
| |
Collapse
|
10
|
Sahoo S, Ravi Kumar RK, Nicolay B, Mohite O, Sivaraman K, Khetan V, Rishi P, Ganesan S, Subramanyan K, Raman K, Miles W, Elchuri SV. Metabolite systems profiling identifies exploitable weaknesses in retinoblastoma. FEBS Lett 2018; 593:23-41. [PMID: 30417337 DOI: 10.1002/1873-3468.13294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 11/06/2022]
Abstract
Retinoblastoma (RB) is a childhood eye cancer. Currently, chemotherapy, local therapy, and enucleation are the main ways in which these tumors are managed. The present work is the first study that uses constraint-based reconstruction and analysis approaches to identify and explain RB-specific survival strategies, which are RB tumor specific. Importantly, our model-specific secretion profile is also found in RB1-depleted human retinal cells in vitro and suggests that novel biomarkers involved in lipid metabolism may be important. Finally, RB-specific synthetic lethals have been predicted as lipid and nucleoside transport proteins that can aid in novel drug target development.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | | | - Brandon Nicolay
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.,Agios Pharmaceutical, 88 Sidney Street, Cambridge, MA, USA
| | - Omkar Mohite
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Sankara Nethralaya, Chennai, India
| | - Suganeswari Ganesan
- Department of Histopathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Karthik Raman
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Wayne Miles
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.,Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sailaja V Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
11
|
Kellner U, Stöhr H, Weinitz S, Farmand G, Weber BHF. Mevalonate kinase deficiency associated with ataxia and retinitis pigmentosa in two brothers with MVK gene mutations. Ophthalmic Genet 2017; 38:340-344. [PMID: 28095071 DOI: 10.1080/13816810.2016.1227459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To report the clinical and molecular genetic findings in two brothers with retinitis pigmentosa (RP) and mevalonate kinase deficiency (MKD). METHODS The brothers were examined clinically and with fundus autofluorescence, near-infrared autofluorescence, and spectral domain optical coherence tomography. Targeted resequencing was done with a custom designed gene panel containing 78 genes associated with RP. Mutations were confirmed by direct Sanger sequencing. RESULTS Both brothers, aged 46 and 47 years, were found to carry compound heterozygous mutations in the MVK gene (c.59A>C, c.1000G>A) encoding mevalonate kinase. They presented with severe ataxia, pseudophakia due to early onset cataract, and progressed retinitis pigmentosa. In one brother with cystoid macular edema, treatment with dorzolamide was beneficial. Serum IgD levels were markedly increased in both brothers and mevalonic acid blood and urine levels were markedly increased in the one brother who could be examined. The disease severity differed between the brothers-one had more severe ataxia and less severe visual deficiency compared to the other. CONCLUSION MKD can be associated with RP and early onset cataract. Most MKD patients developing RP carry the (p.Ala334Thr) mutation. Macular edema can be treated using local dorzolamide.
Collapse
Affiliation(s)
- Ulrich Kellner
- a Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg , MVZ ADTC Siegburg GmbH , Siegburg , Germany.,b RetinaScience , Bonn , Germany
| | - Heidi Stöhr
- c Institut für Humangenetik , Universität Regensburg , Regensburg , Germany
| | - Silke Weinitz
- a Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg , MVZ ADTC Siegburg GmbH , Siegburg , Germany.,b RetinaScience , Bonn , Germany
| | - Ghazaleh Farmand
- a Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg , MVZ ADTC Siegburg GmbH , Siegburg , Germany
| | - Bernhard H F Weber
- c Institut für Humangenetik , Universität Regensburg , Regensburg , Germany
| |
Collapse
|
12
|
Goldberg AFX, Moritz OL, Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res 2016; 55:52-81. [PMID: 27260426 DOI: 10.1016/j.preteyeres.2016.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Abstract
To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ∼10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained.
Collapse
Affiliation(s)
- Andrew F X Goldberg
- Eye Research Institute, Oakland University, 417 Dodge Hall, Rochester, MI, 48309, USA.
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Pfeffer BA, Xu L, Porter NA, Rao SR, Fliesler SJ. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density. Exp Eye Res 2016; 145:297-316. [PMID: 26854824 PMCID: PMC5024725 DOI: 10.1016/j.exer.2016.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 01/18/2023]
Abstract
Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL >> DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that retinal degeneration as well as to SLOS.
Collapse
Affiliation(s)
- Bruce A Pfeffer
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Sriganesh Ramachandra Rao
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Steven J Fliesler
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
14
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 538] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
15
|
|
16
|
Affiliation(s)
- Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, University at Buffalo-The State University of New York (SUNY); the SUNY Eye Institute; and the Research Service, Veterans Administration Western New York Healthcare System (VAWNYHS), Buffalo, NY 14215
| |
Collapse
|
17
|
Mechanism of inflammation in age-related macular degeneration: an up-to-date on genetic landmarks. Mediators Inflamm 2013; 2013:435607. [PMID: 24369445 PMCID: PMC3863457 DOI: 10.1155/2013/435607] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/28/2013] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible visual impairment among people over 50 years of age, accounting for up to 50% of all cases of legal blindness in Western countries. Although the aging represents the main determinant of AMD, it must be considered a multifaceted disease caused by interactions among environmental risk factors and genetic backgrounds. Mounting evidence and/or arguments document the crucial role of inflammation and immune-mediated processes in the pathogenesis of AMD. Proinflammatory effects secondary to chronic inflammation (e.g., alternative complement activation) and heterogeneous types of oxidative stress (e.g., impaired cholesterol homeostasis) can result in degenerative damages at the level of crucial macular structures, that is photoreceptors, retinal pigment epithelium, and Bruch's membrane. In the most recent years, the association of AMD with genes, directly or indirectly, involved in immunoinflammatory pathways is increasingly becoming an essential core for AMD knowledge. Starting from the key basic-research notions detectable at the root of AMD pathogenesis, the present up-to-date paper reviews the best-known and/or the most attractive genetic findings linked to the mechanisms of inflammation of this complex disease.
Collapse
|
18
|
Omarova S, Charvet CD, Reem RE, Mast N, Zheng W, Huang S, Peachey NS, Pikuleva IA. Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis. J Clin Invest 2012; 122:3012-23. [PMID: 22820291 DOI: 10.1172/jci63816] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/24/2012] [Indexed: 11/17/2022] Open
Abstract
Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpected upregulation of retinal cholesterol biosynthesis. Cyp27a1-/- mice developed retinal lesions characterized by cholesterol deposition beneath the retinal pigment epithelium. Further, Cyp27a1-null mice showed pathological neovascularization, which likely arose from both the retina and the choroid, that led to the formation of retinal-choroidal anastomosis. Blood flow alterations and blood vessel leakage were noted in the areas of pathology. The Cyp27a1-/- retina was hypoxic and had activated Müller cells. We suggest a mechanism whereby abolished sterol 27-hydroxylase activity leads to vascular changes and identify Cyp27a1-/- mice as a model for one of the variants of type 3 retinal neovascularization occurring in some patients with age-related macular degeneration.
Collapse
Affiliation(s)
- Saida Omarova
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zheng W, Reem RE, Omarova S, Huang S, DiPatre PL, Charvet CD, Curcio CA, Pikuleva IA. Spatial distribution of the pathways of cholesterol homeostasis in human retina. PLoS One 2012; 7:e37926. [PMID: 22629470 PMCID: PMC3358296 DOI: 10.1371/journal.pone.0037926] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/30/2012] [Indexed: 01/25/2023] Open
Abstract
Background The retina is a light-sensitive tissue lining the inner surface of the eye and one of the few human organs whose cholesterol maintenance is still poorly understood. Challenges in studies of the retina include its complex multicellular and multilayered structure; unique cell types and functions; and specific physico-chemical environment. Methodology/Principal Findings We isolated specimens of the neural retina (NR) and underlying retinal pigment epithelium (RPE)/choroid from six deceased human donors and evaluated them for expression of genes and proteins representing the major pathways of cholesterol input, output and regulation. Eighty-four genes were studied by PCR array, 16 genes were assessed by quantitative real time PCR, and 13 proteins were characterized by immunohistochemistry. Cholesterol distribution among different retinal layers was analyzed as well by histochemical staining with filipin. Our major findings pertain to two adjacent retinal layers: the photoreceptor outer segments of NR and the RPE. We demonstrate that in the photoreceptor outer segments, cholesterol biosynthesis, catabolism and regulation via LXR and SREBP are weak or absent and cholesterol content is the lowest of all retinal layers. Cholesterol maintenance in the RPE is different, yet the gene expression also does not appear to be regulated by the SREBPs and varies significantly among different individuals. Conclusions/Significance This comprehensive investigation provides important insights into the relationship and spatial distribution of different pathways of cholesterol input, output and regulation in the NR-RPE region. The data obtained are important for deciphering the putative link between cholesterol and age-related macular degeneration, a major cause of irreversible vision loss in the elderly.
Collapse
Affiliation(s)
- Wenchao Zheng
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rachel E. Reem
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Saida Omarova
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Suber Huang
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals, Cleveland, Ohio, United States of America
| | - Pier Luigi DiPatre
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Casey D. Charvet
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States of America
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Mast N, Reem R, Bederman I, Huang S, DiPatre PL, Bjorkhem I, Pikuleva IA. Cholestenoic Acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Invest Ophthalmol Vis Sci 2011; 52:594-603. [PMID: 20881306 DOI: 10.1167/iovs.10-6021] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Accumulating evidence indicates a link between cholesterol and age-related macular degeneration. Yet, little is known about cholesterol elimination from the retina and retinal pigment epithelium (RPE), the two layers that are damaged in this blinding disease. Several different pathways of enzymatic cholesterol removal exist in extraocular tissues. The authors tested whether metabolites from these pathways could also be quantified in the bovine and human retina and RPE. For comparison, they measured cholesterol oxidation products in two regions of the bovine and human brain and in the bovine liver and adrenal glands. METHODS Sterol quantification was carried out by isotope dilution gas chromatography-mass spectrometry. Bovine tissues were used first to optimize analytical procedures and to investigate postmortem changes in oxysterol concentrations. Then human specimens were analyzed for oxysterol concentrations. RESULTS Qualitatively, oxysterol profiles were similar in the bovine and human tissues. In the human retina and RPE, the authors could not detect 27-hydroxycholesterol but unexpectedly found that its oxidation product, 5-cholestenoic acid, is the most abundant oxysterol, varying up to threefold in different persons. 24S-Hydroxysterol and pregnenolone were also present in the retina, but at much lower quantities and without significant interindividual variability. In the brain, the predominant oxysterol was 24S-hydroxycholesterol. CONCLUSIONS The oxysterol profile of the retina suggests that all known pathways of cholesterol elimination in extraocular organs are operative in the retina and that they likely vary depending on specific cell type. However, overall oxidation to 5-cholestenoic acid appears to be the predominant mechanism for cholesterol elimination from this organ.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Fliesler SJ, Bretillon L. The ins and outs of cholesterol in the vertebrate retina. J Lipid Res 2010; 51:3399-413. [PMID: 20861164 DOI: 10.1194/jlr.r010538] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The vertebrate retina has multiple demands for utilization of cholesterol and must meet those demands either by synthesizing its own supply of cholesterol or by importing cholesterol from extraretinal sources, or both. Unlike the blood-brain barrier, the blood-retina barrier allows uptake of cholesterol from the circulation via a lipoprotein-based/receptor-mediated mechanism. Under normal conditions, cholesterol homeostasis is tightly regulated; also, cholesterol exists in the neural retina overwhelmingly in unesterified form, and sterol intermediates are present in minimal to negligible quantities. However, under certain pathological conditions, either due to an inborn error in cholesterol biosynthesis or as a consequence of exposure to selective inhibitors of enzymes in the cholesterol pathway, the ratio of sterol intermediates to cholesterol in the retina can rise dramatically and persist, in some cases resulting in progressive degeneration that significantly compromises the structure and function of the retina. Although the relative contributions of de novo synthesis versus extraretinal uptake are not yet known, herein we review what is known about these processes and the dynamics of cholesterol in the vertebrate retina and indicate some future avenues of research in this area.
Collapse
Affiliation(s)
- Steven J Fliesler
- Research Service, Veterans Administration Western New York Healthcare System, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | |
Collapse
|
22
|
Bojanic DD, Tarr PT, Gale GD, Smith DJ, Bok D, Chen B, Nusinowitz S, Lövgren-Sandblom A, Björkhem I, Edwards PA. Differential expression and function of ABCG1 and ABCG4 during development and aging. J Lipid Res 2010. [PMID: 19633360 DOI: 10.1194/jlr.m900250-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of beta-galactosidase-stained tissue sections from Abcg1(-/-)LacZ and Abcg4(-/-)LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4(-/-) mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.
Collapse
Affiliation(s)
- Dragana D Bojanic
- Department of Biological Chemistry at UCLA Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fliesler SJ. Retinal degeneration in a rat model of Smith-Lemli-Opitz Syndrome: thinking beyond cholesterol deficiency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:481-9. [PMID: 20238050 DOI: 10.1007/978-1-4419-1399-9_55] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smith-Lemli-Opitz Syndrome (SLOS) is a recessive hereditary disease caused by a defect in the last step in cholesterol biosynthesis - the reduction of the Delta7 double bond of 7-dehydrocholesterol (7DHC) - resulting in the abnormal accumulation of 7DHC and diminished levels of Chol in all bodily tissues. Treatment of rats with AY9944 - a drug that inhibits the same enzyme that is genetically defective in SLOS (i.e., DHCR7, 3beta-hydroxysterol-Delta7-reductase) - starting in utero and continuing throughout postnatal life, provides a convenient animal model of SLOS for understanding the disease mechanism and also for testing the efficacy of therapeutic intervention strategies. Herein, the biochemical, morphological, and electrophysiological hallmarks of retinal degeneration in this animal model are reviewed. A high-cholesterol diet partially ameliorates the associated visual function deficits, but not the morphological degeneration. Recent studies using this model suggest that the disease mechanism in SLOS goes well beyond the initial cholesterol pathway defect, including global metabolic alterations, lipid and protein oxidation, and differential expression of hundreds of genes in multiple ontological gene families. These findings may have significant implications with regard to developing more optimal therapeutic interventions for managing SLOS patients.
Collapse
Affiliation(s)
- Steven J Fliesler
- Veterans Administration Western New York Healthcare System, NY, USA.
| |
Collapse
|
24
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
25
|
Aguilera Y, Dorado ME, Prada FA, Martínez JJ, Quesada A, Ruiz-Gutiérrez V. The protective role of squalene in alcohol damage in the chick embryo retina. Exp Eye Res 2005; 80:535-43. [PMID: 15781281 DOI: 10.1016/j.exer.2004.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 11/12/2004] [Indexed: 11/28/2022]
Abstract
The developing CNS, and in particular the visual system, is very sensitive to the effects of alcohol. Alcohol causes lipid peroxidation. Squalene, the major olive oil hydrocarbon, is a quencher of singlet oxygen and prevents the corresponding lipid peroxidation. We presumed that squalene can protect against the alcohol-induced damage already observed during the development of the chick retina. Alcohol+squalene was administered directly into the yolk sac of the egg of White Leghorn chicks at day 6 of incubation. The lipid composition of the retina was analyzed in embryos at E7, E11, E15 and E18. The proportions of phospholipids, free and esterified cholesterol, diacylglycerides and free fatty acids were estimated using the Iatroscan TLC/FID procedure. Gas chromatography and mass spectrometry were used to determine the fatty acid composition. The morphological study was carried out at E11 using semithin sections, and by means of immunohistochemical techniques at E19. Comparing the results obtained in control embryos, the administration of alcohol+squalene reduces the effects of alcohol on the total lipid composition of the retina during development. The effects were, in fact, of less magnitude than in embryos treated only with alcohol. The major phospholipid species of alcohol+squalene-treated embryos exhibited total recuperation at E15. As far as fatty acids are concerned, no significant changes were observed with regard to control embryos during development. From a morphological point of view, the retinas of alcohol+squalene-treated embryos show at E11 fewer cellular alterations than the retinas of alcohol-treated embryos. In this respect, the retinas of alcohol+squalene-treated embryos exhibited: a columnar cell arrangement similar to that observed in control retinas; few pycnotic cells and very few alterations in ganglion cell layers and in the optic nerve fibers layer. At E19 the recuperation of the expression of myelin oligodendrocyte specific protein (MOSP) in alcohol+squalene-treated embryos was recorded. Since squalene reduces the deleterious effects caused by alcohol on the lipid composition and the structure of the retina, squalene could act as a naturally occurring agent for the prevention of damage caused by abusive alcohol ingestion during pregnancy.
Collapse
Affiliation(s)
- Yolanda Aguilera
- Instituto de Biología del Desarrollo, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán s/n, 41009 Seville, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Retinitis pigmentosa can occur as a complication of mevalonate kinase deficiency. This may be due to the unique isoprenoid metabolism in the retina. Early detection requires awareness on the part of the treating physician.
Collapse
Affiliation(s)
- B Balgobind
- General Paediatrics, University Medical Center Utrecht, WKZ room KE 04 1331, Lundlaan 6, Utrecht, 3584A EA, The Netherlands
| | | | | |
Collapse
|
27
|
Keller RK, Small M, Fliesler SJ. Enzyme blockade: a nonradioactive method to determine the absolute rate of cholesterol synthesis in the brain. J Lipid Res 2004; 45:1952-7. [PMID: 15258193 DOI: 10.1194/jlr.d400007-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The standard in vivo method to determine rates of brain cholesterol synthesis involves systemic injection of (3)H(2)O and measurement of incorporated radioactivity in sterols. Herein, we describe an alternative method ("enzyme blockade") that obviates the use of radioactivity. The method relies on the ability of AY9944, a potent and relatively selective inhibitor of cholesterol synthesis, to cause the time-dependent accumulation of 7-dehydrocholesterol (DHC), a cholesterol precursor detected with sensitivity and specificity by reverse-phase HPLC-coupled spectrophotometry at 282 nm. To validate the method, adult AY9944-treated and control mice were injected with [(3)H]acetate. After 24 h, most of the radioactivity in brain sterols from treated mice accumulated in DHC, without significantly perturbing overall sterol pathway activity, compared with controls (where cholesterol was the dominant radiolabeled sterol, with no label found in DHC). When adult mice were treated continuously with AY9944, the time-dependent accumulation of DHC in brain was linear (after approximately 8 h) for 3 days. The rate of brain cholesterol synthesis determined by this method ( approximately 30 microg/g/day) closely agrees with that determined by the radioactive method. We also determined the cholesterol synthesis rate in different regions of adult mouse brain, with frontal cortex having the highest rate and cerebellum having the lowest rate.
Collapse
Affiliation(s)
- R Kennedy Keller
- Department of Biochemistry and Molecular Biology, University of South Florida College of Medicine, Tampa, FL, USA
| | | | | |
Collapse
|
28
|
Ruiz-Gutiérrez V, Moreno R, Moreda W, Copado MA, Rodríguez-Burgos A. Detection of squalene in alpha-fetoprotein and fetal serum albumin from bovine. JOURNAL OF PROTEIN CHEMISTRY 2001; 20:19-23. [PMID: 11330344 DOI: 10.1023/a:1011096702910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alpha-fetoprotein and fetal serum albumin have been simultaneously purified from fetal bovine serum by mild procedures utilizing ammonium sulfate, hydrophobic interaction, immobilized metal (nickel) affinity chromatography, and isoelectric focusing. The lipidic extract from each protein was analyzed by gas chromatography and the peak appearing just after the arachidonic acid was identified as squalene by gas chromatography-mass spectrometry. This isoprenoid was not detected formerly in these proteins from human, rat, bovine, and pig. Until recently, in the analysis of the fatty acid composition of the alpha-fetoprotein and serum albumin from mammals, a peak has been assigned in the last part of the chromatographic profile, after arachidonic acid, to docosahexaenoic acid. In the present work, it was found that the peak corresponds to squalene instead of docosahexaenoic acid. Furthermore, we conclude that bovine alpha-fetoprotein and fetal serum albumin carry squalene, but not docosahexaenoic acid. These results agree with others obtained analyzing the same proteins from chick embryo.
Collapse
Affiliation(s)
- V Ruiz-Gutiérrez
- Instituto de la Grasa, Consejo Superior de Investigaciones Cientificas, Seville, Spain.
| | | | | | | | | |
Collapse
|
29
|
Fliesler SJ, Richards MJ, Miller C, Peachey NS, Cenedella RJ. Retinal structure and function in an animal model that replicates the biochemical hallmarks of desmosterolosis. Neurochem Res 2000; 25:685-94. [PMID: 10905631 PMCID: PMC2844951 DOI: 10.1023/a:1007519321917] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Desmosterolosis is a rare, autosomal recessive, human disease characterized by multiple congenital anomalies in conjunction with grossly elevated levels of desmosterol and markedly reduced levels of cholesterol in all bodily tissues. Herein, we evaluated retinal sterol composition, histology, and electrophysiological function in an animal model that exhibited the biochemical features of desmosterolosis, produced by treating pregnant rats and their progeny with U18666A, an inhibitor of desmosterol reductase. Treated rats had cataracts, were substantially smaller, and had markedly high levels of desmosterol and profoundly low levels of cholesterol in their retinas and other tissues compared to age-matched controls. However, their retinas were histologically normal and electrophysiologically functional. These results suggest that desmosterol may be able to replace cholesterol in the retina, both structurally and functionally. These findings are discussed in the context of "sterol synergism".
Collapse
Affiliation(s)
- S J Fliesler
- Saint Louis University Eye Institute and the Cell and Molecular Biology Graduate Program, Saint Louis University School of Medicine, MO, USA.
| | | | | | | | | |
Collapse
|
30
|
Fliesler SJ, Richards MJ, Miller CY, Cenedella RJ. Cholesterol synthesis in the vertebrate retina: effects of U18666A on rat retinal structure, photoreceptor membrane assembly, and sterol metabolism and composition. Lipids 2000; 35:289-96. [PMID: 10783006 DOI: 10.1007/s11745-000-0525-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of neonatal rats with U18666A, an inhibitor of desmosterol delta24-reductase, results in accumulation of desmosterol (delta5,24) and depletion of cholesterol (delta5) in various bodily tissues and also causes cataracts. We evaluated the effects of U18666A on the sterol composition, de novo sterol synthesis, and histological structure of the retina. Neonatal Sprague-Dawley rats were injected subcutaneously with U18666A (15 mg/kg, in olive oil ) every other day from birth through 3 wk of age; in parallel, control rats received olive oil alone. At 21 d, treated and control groups each were subdivided into two groups: one group of each was injected intravitreally with [3H]acetate; retinas were removed 20 h later and nonsaponifiable lipids (NSL) were analyzed by radio-high-performance liquid chromatography. The other group was injected intravitreally with [3H]leucine; 4 d later, one eye of each animal was evaluated by light and electron microscopy and light microscopic autoradiography, while contralateral retinas and rod outer segment (ROS) membranes prepared therefrom were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/fluorography. In the treated group, the delta5/delta5,24 mole ratio of retinas was ca. 1.0, and >88% of the NSL radioactivity was in delta5,24; in contrast, control retinas had delta5/delta5,24 >170, with >80% of the NSL radioactivity in delta5. Retinal histology, ultrastructure, ROS renewal rates, and rhodopsin synthesis and intracellular trafficking were comparable in both treated and control animals. These results suggest that desmosterol can either substitute functionally for cholesterol in the retina or it can complement subthreshold levels of cholesterol by sterol synergism.
Collapse
Affiliation(s)
- S J Fliesler
- Saint Louis University Eye Institute, Saint Louis University School of Medicine, Missouri 63104-1540.
| | | | | | | |
Collapse
|
31
|
Keller RK, Fliesler SJ. Mechanism of aminobisphosphonate action: characterization of alendronate inhibition of the isoprenoid pathway. Biochem Biophys Res Commun 1999; 266:560-3. [PMID: 10600541 DOI: 10.1006/bbrc.1999.1849] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alendronate (ALN), an aminobisphosphonate compound used for the treatment of osteoporosis and other disorders of bone resorption, has been suggested to act by inhibition of the formation of GGPP. In the present study we used an S(10) homogenate fraction of rat liver to show that ALN causes a dose-dependent inhibition of [(3)H]MVA incorporation into sterols and a concomitant increase in incorporation of radiolabel into IPP and DMAPP. We further show that ALN is a potent inhibitor of cytosolic trans-prenyltransferase (FPP synthase). The inhibition is competitive with respect to allylic pyrophosphate substrates, but not IPP, suggesting that ALN acts as an allylic pyrophosphate analog and binds to the free enzyme. The K(i) is in the 0.5 microM range.
Collapse
Affiliation(s)
- R K Keller
- Department of Biochemistry and Molecular Biology, University of South Florida, Tampa, Florida 33612, USA
| | | |
Collapse
|