1
|
Saha N, Tomar RS. Copper inhibits protein maturation in the secretory pathway by targeting the Sec61 translocon in Saccharomyces cerevisiae. J Biol Chem 2022; 298:102170. [PMID: 35738397 PMCID: PMC9304788 DOI: 10.1016/j.jbc.2022.102170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
In Saccharomyces cerevisiae, proteins destined for secretion utilize the post-translational translocon machinery to gain entry into the endoplasmic reticulum. These proteins then mature by undergoing a number of post-translational modifications in different compartments of the secretory pathway. While these modifications have been well established for many proteins, to date only a few studies have been conducted regarding the conditions and factors affecting maturation of these proteins before entering into the endoplasmic reticulum. Here, using immunoblotting, microscopy, and spot test assays, we show that excess copper inhibits the Sec61 translocon function and causes accumulation of two well-known post-translationally translocated proteins, Gas1 (glycophospholipid-anchored surface protein) and CPY (carboxypeptidase Y), in the cytosol. We further show that the copper-sensitive phenotype of sec61-deficient yeast cells is ameliorated by restoring the levels of SEC61 through plasmid transformation. Furthermore, screening of translocation-defective Sec61 mutants revealed that sec61-22, bearing L80M, V134I, M248V, and L342S mutations, is resistant to copper, suggesting that copper might be inflicting toxicity through one of these residues. In conclusion, these findings imply that copper-mediated accumulation of post-translationally translocated proteins is due to the inhibition of Sec61.
Collapse
Affiliation(s)
- Nitu Saha
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
2
|
Müller GA. Insulin-like and mimetic molecules from non-mammalian organisms: potential relevance for drug discovery. Arch Physiol Biochem 2020; 126:420-429. [PMID: 30633571 DOI: 10.1080/13813455.2018.1551906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin was first discovered in extracts of vertebrate pancreas during a focused search for a therapy for diabetes. Subsequent efforts to discover and isolate a similar active principle from yeast and plants driven by the hope to identify insulin-like/mimetic molecules with critical advantages in the pharmacokinetic profile and expenditure of production compared to authentic human insulin were not successful. As a consequence, it has generally been assumed that hormones evolved exclusively during course of the evolution of vertebrate endocrine organs, implying a rather recent origin. Concomitantly, the existence and physiological role of vertebrate hormones in lower multi- and unicellular eukaryotes have remained a rather controversial subject over decades, albeit there is some evidence that hormones and hormone-binding proteins resembling those of vertebrates are expressed in fungi and yeast. Past and recent findings on the existence of insulin-like and mimetic materials, such as the glucose tolerance factor, in lower eukaryotes, in particular Neurospora crassa and yeast, will be presented. These data provide further evidence for the provocative view that the evolutionary roots of the vertebrate endocrine system may be far more ancient than is generally believed and that the identification and characterisation of insulin-like/mimetic molecules from lower eukaryotes may be useful for future drug discovery efforts.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Center München, Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
D'Souza SW, Copp AJ, Greene NDE, Glazier JD. Maternal Inositol Status and Neural Tube Defects: A Role for the Human Yolk Sac in Embryonic Inositol Delivery? Adv Nutr 2020; 12:212-222. [PMID: 32892218 PMCID: PMC7849949 DOI: 10.1093/advances/nmaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Supplementation with myo-inositol during the periconceptional period of pregnancy may ameliorate the recurrence risk of having a fetus affected by a neural tube defect (NTD; e.g., spina bifida). This could be of particular importance in providing a means for preventing NTDs that are unresponsive to folic acid. This review highlights the characteristics of inositol and describes the role of myo-inositol in the prevention of NTDs in rodent studies and the evidence for its efficacy in reducing NTD risk in human pregnancy. The possible reduction in NTD risk by maternal myo-inositol implies functional and developmentally important maternal-embryonic inositol interrelationships and also suggests that embryonic uptake of myo-inositol is crucial for embryonic development. The establishment of active myo-inositol cellular uptake mechanisms in the embryonic stages of human pregnancy, when the neural tube is closing, is likely to be an important determinant of normal development. We draw attention to the generation of materno-fetal inositol concentration gradients and relationships, and outline a transport pathway by which myo-inositol may be delivered to the early developing human embryo. These considerations provide novel insights into the mechanisms that may underpin inositol's ability to confer embryonic developmental benefit.
Collapse
Affiliation(s)
- Stephen W D'Souza
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
4
|
Hulme CH, Stevens A, Dunn W, Heazell AEP, Hollywood K, Begley P, Westwood M, Myers JE. Identification of the functional pathways altered by placental cell exposure to high glucose: lessons from the transcript and metabolite interactome. Sci Rep 2018; 8:5270. [PMID: 29588451 PMCID: PMC5869594 DOI: 10.1038/s41598-018-22535-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
The specific consequences of hyperglycaemia on placental metabolism and function are incompletely understood but likely contribute to poor pregnancy outcomes associated with diabetes mellitus (DM). This study aimed to identify the functional biochemical pathways perturbed by placental exposure to high glucose levels through integrative analysis of the trophoblast transcriptome and metabolome. The human trophoblast cell line, BeWo, was cultured in 5 or 25 mM glucose, as a model of the placenta in DM. Transcriptomic analysis using microarrays, demonstrated 5632 differentially expressed gene transcripts (≥± 1.3 fold change (FC)) following exposure to high glucose. These genes were used to generate interactome models of transcript response using BioGRID (non-inferred network: 2500 nodes (genes) and 10541 protein-protein interactions). Ultra performance-liquid chromatography-mass spectrometry (MS) and gas chromatography-MS analysis of intracellular extracts and culture medium were used to assess the response of metabolite profiles to high glucose concentration. The interactions of altered genes and metabolites were assessed using the MetScape interactome database, resulting in an integrated model of systemic transcriptome (2969 genes) and metabolome (41 metabolites) response within placental cells exposed to high glucose. The functional pathways which demonstrated significant change in response to high glucose included fatty acid β-oxidation, phospholipid metabolism and phosphatidylinositol phosphate signalling.
Collapse
Affiliation(s)
- C H Hulme
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maternal and Fetal Health Research Centre, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester Academic Health sciences Centre, Manchester, M13 9WL, UK
| | - A Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine & Health University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
| | - W Dunn
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,School of Biosciences, Phenome Centre Birmingham and Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - A E P Heazell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maternal and Fetal Health Research Centre, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester Academic Health sciences Centre, Manchester, M13 9WL, UK
| | - K Hollywood
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK.,Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - P Begley
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9WL, UK
| | - M Westwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK.,Maternal and Fetal Health Research Centre, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester Academic Health sciences Centre, Manchester, M13 9WL, UK
| | - J E Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK. .,Maternal and Fetal Health Research Centre, Central Manchester University Hospitals NHS Foundation Trust, St Mary's Hospital, Manchester Academic Health sciences Centre, Manchester, M13 9WL, UK.
| |
Collapse
|
5
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Ritorto MS, Rhode H, Vogel A, Borlak J. Regulation of glycosylphosphatidylinositol-anchored proteins and GPI-phospholipase D in a c-Myc transgenic mouse model of hepatocellular carcinoma and human HCC. Biol Chem 2017; 397:1147-1162. [PMID: 27232633 DOI: 10.1515/hsz-2016-0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/24/2016] [Indexed: 01/13/2023]
Abstract
Recent research implicated glycosylphosphatidylinositol-anchored proteins (GPI-AP) and GPI-specific phospholipase D (GPI-PLD) in the pathogenesis of fatty liver disease and hepatocellular carcinoma (HCC). Given that c-Myc is frequently amplified in HCC, we investigated their regulation in a c-Myc transgenic disease model of liver cancer and HCC patient samples. Whole genome scans defined 54 significantly regulated genes coding for GPI-AP of which 29 and 14 were repressed in expression in transgenic tumors and steatotic human hepatocyte cultures, respectively, to influence lipid-mediated signal transduction, extracellular matrix and immunity pathways. Analysis of gene specific promoter revealed >95% to carry c-Myc binding sites thus establishing a link between c-Myc activity and transcriptional response. Alike, serum GPI-PLD activity was increased 4-fold in transgenic mice; however its tissue activity was reduced by 70%. The associated repression of the serine/threonine phosphatase 2A (PP2A), i.e. a key player of c-Myc proteolysis, indicates co-ordinate responses aimed at impairing tissue GPI-PLD anti-proliferative activities. Translational research identified >4-fold increased GPI-PLD serum protein expression though enzyme activities were repressed by 60% in NASH and HCC patients. Taken collectively, c-Myc influences GPI-AP signaling transcriptionally and posttranslational and represses GPI-AP anti-proliferative signaling in tumors. The findings broaden the perspective of molecular targeted therapies and disease monitoring.
Collapse
|
7
|
Suzuki S, Suzuki C, Hinokio Y, Ishigaki Y, Katagiri H, Kanzaki M, Azev VN, Chakraborty N, d'Alarcao M. Insulin-mimicking bioactivities of acylated inositol glycans in several mouse models of diabetes with or without obesity. PLoS One 2014; 9:e100466. [PMID: 24971987 PMCID: PMC4074071 DOI: 10.1371/journal.pone.0100466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/27/2014] [Indexed: 12/13/2022] Open
Abstract
Insulin-mimetic species of low molecular weight are speculated to mediate some intracellular insulin actions. These inositol glycans, which are generated upon insulin stimulation from glycosylphosphatidylinositols, might control the activity of a multitude of insulin effector enzymes. Acylated inositol glycans (AIGs) are generated by cleavage of protein-free GPI precursors through the action of GPI-specific phospholipase C (GPI-PLC) and D (GPI-PLD). We synthesized AIGs (IG-1, IG-2, IG-13, IG-14, and IG-15) and then evaluated their insulin-mimicking bioactivities. IG-1 significantly stimulated glycogen synthesis and lipogenesis in 3T3-L1 adipocytes and rat isolated adipocytes dose-dependently. IG-2 significantly stimulated lipogenesis in rat isolated adipocytes dose-dependently. IG-15 also enhanced glycogen synthesis and lipogenesis in 3T3-L1 adipocytes. The administration of IG-1 decreased plasma glucose, increased glycogen content in liver and skeletal muscles and improved glucose tolerance in C57B6N mice with normal diets. The administration of IG-1 decreased plasma glucose in STZ-diabetic C57B6N mice. The treatment of IG-1 decreased plasma glucose, increased glycogen content in liver and skeletal muscles and improved glucose tolerance in C57B6N mice with high fat-diets and db/db mice. The long-term treatment of IG-1 decreased plasma glucose and reduced food intake and body weight in C57B6N mice with high fat-diets and ob/ob mice. Thus, IG-1 has insulin-mimicking bioactivities and improves glucose tolerance in mice models of diabetes with or without obesity.
Collapse
Affiliation(s)
- Susumu Suzuki
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Japan
- Diabetes Center, Ohta Nishinouchi Hospital, Koriyama, Japan
- * E-mail:
| | - Chitose Suzuki
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Japan
| | - Yoshinori Hinokio
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Japan
| | - Yasushi Ishigaki
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Japan
| | - Hideki Katagiri
- Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Viatcheslav N. Azev
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Nilanjana Chakraborty
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
| | - Marc d'Alarcao
- Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America
- Department of Chemistry, San Jose State University, San Jose, California, United States of America
| |
Collapse
|
8
|
Stevens A, Bonshek C, Whatmore A, Butcher I, Hanson D, De Leonibus C, Shaikh G, Brown M, O'Shea E, Victor S, Powell P, Settle P, Padmakumar B, Tan A, Odeka E, Cooper C, Birch J, Shenoy A, Westwood M, Patel L, Dunn BW, Clayton P. Insights into the pathophysiology of catch-up compared with non-catch-up growth in children born small for gestational age: an integrated analysis of metabolic and transcriptomic data. THE PHARMACOGENOMICS JOURNAL 2014; 14:376-84. [PMID: 24614687 DOI: 10.1038/tpj.2014.4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Abstract
Small for gestational age (SGA) children exhibiting catch-up (CU) growth have a greater risk of cardiometabolic diseases in later life compared with non-catch-up (NCU) SGA children. The aim of this study was to establish differences in metabolism and gene expression profiles between CU and NCU at age 4-9 years. CU children (n=22) had greater height, weight and body mass index standard deviation scores along with insulin-like growth factor-I (IGF-I) and fasting glucose levels but lower adiponectin values than NCU children (n=11; all P<0.05). Metabolic profiling demonstrated a fourfold decrease of urine myo-inositol in CU compared with NCU (P<0.05). There were 1558 genes differentially expressed in peripheral blood mononuclear cells between the groups (P<0.05). Integrated analysis of data identified myo-inositol related to gene clusters associated with an increase in insulin, growth factor and IGF-I signalling in CU children (P<0.05). Metabolic and transcriptomic profiles in CU SGA children showed changes that may relate to cardiometabolic risk.
Collapse
Affiliation(s)
- A Stevens
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - C Bonshek
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - A Whatmore
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - I Butcher
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - D Hanson
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - C De Leonibus
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - G Shaikh
- Yorkhill Children's Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - M Brown
- 1] Centre for Endocrinology and Diabetes, Institute of Human Development, The University of Manchester, Manchester, UK [2] Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - E O'Shea
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - S Victor
- St Mary's Hospital, CMFT, Manchester, UK
| | - P Powell
- Royal Bolton Hospital, Royal Bolton Hospital NHS Foundation Trust, Manchester, UK
| | - P Settle
- Hope Hospital, Salford Royal NHS Foundation Trust, Salford, UK
| | - B Padmakumar
- North Manchester General Hospital, Pennine Acute Hospitals NHS Trust, Crumpsall, UK
| | - A Tan
- North Manchester General Hospital, Pennine Acute Hospitals NHS Trust, Crumpsall, UK
| | - E Odeka
- North Manchester General Hospital, Pennine Acute Hospitals NHS Trust, Crumpsall, UK
| | - C Cooper
- Stepping Hill Hospital, Stockport NHS Foundation Trust, Manchester, UK
| | - J Birch
- Tameside General Hospital, Tameside Hospital NHS Foundation Trust, Manchester, UK
| | - A Shenoy
- Royal Albert Edward Infirmary, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
| | - M Westwood
- Maternal and Fetal Health Research Centre, University of Manchester and St Mary's Hospital, CMFT, MAHSC, Manchester, UK
| | - L Patel
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - B W Dunn
- 1] Centre for Endocrinology and Diabetes, Institute of Human Development, The University of Manchester, Manchester, UK [2] Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - P Clayton
- 1] Royal Manchester Children's Hospital (RMCH), Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK [2] Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Wang Y, Murakami Y, Yasui T, Wakana S, Kikutani H, Kinoshita T, Maeda Y. Significance of glycosylphosphatidylinositol-anchored protein enrichment in lipid rafts for the control of autoimmunity. J Biol Chem 2013; 288:25490-25499. [PMID: 23864655 DOI: 10.1074/jbc.m113.492611] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycosylphosphatidylinositols (GPI) are complex glycolipids that are covalently linked to the C terminus of proteins as a post-translational modification and tether proteins to the plasma membrane. One of the most striking features of GPI-anchored proteins (APs) is their enrichment in lipid rafts. The biosynthesis of GPI and its attachment to proteins occur in the endoplasmic reticulum. In the Golgi, GPI-APs are subjected to fatty acid remodeling, which replaces an unsaturated fatty acid at the sn-2 position of the phosphatidylinositol moiety with a saturated fatty acid. We previously reported that fatty acid remodeling is critical for the enrichment of GPI-APs in lipid rafts. To investigate the biological significance of GPI-AP enrichment in lipid rafts, we generated a PGAP3 knock-out mouse (PGAP3(-/-)) in which fatty acid remodeling of GPI-APs does not occur. We report here that a significant number of aged PGAP3(-/-) mice developed autoimmune-like symptoms, such as increased anti-DNA antibodies, spontaneous germinal center formation, and enlarged renal glomeruli with deposition of immune complexes and matrix expansion. A possible cause for this was the impaired engulfment of apoptotic cells by resident peritoneal macrophages in PGAP3(-/-) mice. Mice with conditional targeting of PGAP3 in either B or T cells did not develop such autoimmune-like symptoms. In addition, PGAP3(-/-) mice exhibited the tendency of Th2 polarization. These data demonstrate that PGAP3-dependent fatty acid remodeling of GPI-APs has a significant role in the control of autoimmunity, possibly by the regulation of apoptotic cell clearance and Th1/Th2 balance.
Collapse
Affiliation(s)
- Yetao Wang
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Yoshiko Murakami
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Teruhito Yasui
- Department of Molecular Immunology, Research Institute for Microbial Diseases, and Laboratory of Molecular Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 and
| | - Shigeharu Wakana
- the Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN Bioresource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hitoshi Kikutani
- Department of Molecular Immunology, Research Institute for Microbial Diseases, and Laboratory of Molecular Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 and
| | - Taroh Kinoshita
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Yusuke Maeda
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and.
| |
Collapse
|
10
|
Donà G, Sabbadin C, Fiore C, Bragadin M, Giorgino FL, Ragazzi E, Clari G, Bordin L, Armanini D. Inositol administration reduces oxidative stress in erythrocytes of patients with polycystic ovary syndrome. Eur J Endocrinol 2012; 166:703-10. [PMID: 22223702 DOI: 10.1530/eje-11-0840] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Possibly due to a deficiency of insulin mediators, polycystic ovary syndrome (PCOS) is often associated with insulin resistance (IR) and hyperinsulinemia, likely responsible for an elevated production of reactive oxygen species. We investigated oxidative-related alterations in erythrocytes and anti-inflammatory effects of inositol in women with PCOS before and after treatment with myo-inositol (MYO). METHODS Twenty-six normal-weight PCOS patients were investigated before and after MYO administration (1200 mg/day for 12 weeks; n=18) or placebo (n=8) by evaluating serum testosterone, serum androstenedione, fasting serum insulin, fasting serum glucose, insulin area under the curve (AUC), and glucose AUC after oral glucose tolerance test and homeostasis model of assessment-IR. In erythrocytes, band 3 tyrosine phosphorylation (Tyr-P) level, glutathione (GSH) content, and glutathionylated proteins (GSSP) were also assessed. RESULTS Data show that PCOS patients' erythrocytes underwent oxidative stress as indicated by band 3 Tyr-P values, reduced cytosolic GSH content, and increased membrane protein glutathionylation. MYO treatment significantly improved metabolic and biochemical parameters. Significant reductions were found in IR and serum values of androstenedione and testosterone. A significant association between band 3 Tyr-P levels and insulin AUC was found at baseline but disappeared after MYO treatment, while a correlation between band 3 Tyr-P and testosterone levels was detected both before and after MYO treatment. CONCLUSIONS PCOS patients suffer from a systemic inflammatory status that induces erythrocyte membrane alterations. Treatment with MYO is effective in reducing hormonal, metabolic, and oxidative abnormalities in PCOS patients by improving IR.
Collapse
Affiliation(s)
- Gabriella Donà
- Department of Biological Chemistry, University of Padua, Viale G. Colombo 3, Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Müller A, Klöppel C, Smith-Valentine M, Van Houten J, Simon M. Selective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:117-24. [DOI: 10.1016/j.bbamem.2011.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 01/22/2023]
|
12
|
Murakami H, Wang Y, Hasuwa H, Maeda Y, Kinoshita T, Murakami Y. Enhanced response of T lymphocytes from Pgap3 knockout mouse: Insight into roles of fatty acid remodeling of GPI anchored proteins. Biochem Biophys Res Commun 2012; 417:1235-41. [DOI: 10.1016/j.bbrc.2011.12.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
|
13
|
Hecht ML, Tsai YH, Liu X, Wolfrum C, Seeberger PH. Synthetic inositol phosphoglycans related to GPI lack insulin-mimetic activity. ACS Chem Biol 2010; 5:1075-86. [PMID: 20825209 DOI: 10.1021/cb1002152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin signaling has been suggested, at least in part, to be affected by an insulin-mimetic species of low molecular weight. These inositol phosphoglycans (IPGs) are generated upon growth hormone/cytokine stimulation and control the activity of a multitude of insulin effector enzymes. The minimal structural requirements of IPGs for insulin-mimetic action have been debated. Two types of IPGs were suggested, and the IPG-A type resembles the core glycan of glycosylphosphatidylinositol (GPI)-anchors. In fact, purified GPI-anchors of lower eukaryotic origin have been shown to influence glucose homeostasis. To elucidate active IPGs, a collection of synthetic IPGs designed on the basis of previous reports of activity were tested for their insulin-mimetic activity. In vitro and ex vivo assays in rodent adipose tissue as well as in vivo analyses in mice were employed to test the synthetic IPGs. None of the IPGs we tested mimic insulin actions as determined by PKB/Akt phosphorylation and quantification of glucose transport and lipogenesis. Furthermore, none of the IPGs had any effect in in vivo insulin tolerance assays. In stark contrast to previous claims, we conclude that neither of the compounds tested is insulin-mimetic.
Collapse
Affiliation(s)
- Marie-Lyn Hecht
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, Zurich, 8093 Zurich, Switzerland
| | - Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Xinyu Liu
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Christian Wolfrum
- Competence Center for Systems Physiology and Metabolic Diseases, Zurich, 8093 Zurich, Switzerland
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Müller G, Schulz A, Dearey EA, Wetekam EM, Wied S, Frick W. Synthetic phosphoinositolglycans regulate lipid metabolism between rat adipocytes via release of GPI-protein-harbouring adiposomes. Arch Physiol Biochem 2010; 116:97-115. [PMID: 20515260 DOI: 10.3109/13813455.2010.485205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A novel molecular mechanism for the regulation of lipid metabolism by palmitate, H2O2 and the anti-diabetic sulfonylurea drug, glimepiride, in rat adipocytes was recently elucidated. It encompasses the translocation of the glycosylphosphatidylinositol-anchored (GPI-) and (c)AMP degrading enzymes Gce1 and CD73 from detergent-insoluble glycolipid-enriched microdomains of the plasma membrane (DIGs) to intracellular lipid droplets (LD), the incorporation of Gce1 and CD73 into vesicles (adiposomes) which are then released from donor adipocytes and finally the transfer of Gce1 and CD73 from the adiposomes to acceptor adipocytes, where they degrade (c)AMP at the LD surface. Here the stimulation of esterification and inhibition of lipolysis by synthetic phosphoinositolglycans (PIGs), such as PIG37, which represents the glycan component of the GPI anchor, are shown to be correlated to translocation from DIGs to LD and release into adiposomes of Gce1 and CD73. PIG37 actions were blocked upon disruption of DIGs, inactivation of PIG receptor and removal of adiposomes from the incubation medium as was true for those induced by palmitate, H2O2 or glimepiride. In contrast, only the latter actions were dependent on the GPI-specific phospholipase C (GPI-PLC), which may generate PIGs, or on exogenous PIG37 in case of inhibited GPI-PLC. At submaximal concentrations PIG37 and palmitate, H2O2 or glimepiride acted in synergistic fashion. These data suggest that PIGs provoke the transfer of GPI-proteins from DIGs via LD and adiposomes of donor adipocytes to acceptor adipocytes and thereby mediate the regulation of lipid metabolism by palmitate, H2O2 and glimepiride between adipocytes.
Collapse
Affiliation(s)
- Günter Müller
- Sanofi-Aventis Deutschland GmbH, Research & Development, 65926 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Curran JM, Stringer DM, Wright B, Taylor CG, Przybylski R, Zahradka P. Biological response of hepatomas to an extract of Fagopyrum esculentum M. (buckwheat) is not mediated by inositols or rutin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3197-3204. [PMID: 20128593 DOI: 10.1021/jf903890c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Buckwheat contains d-chiro-inositol (D-CI) and myo-inositol (MI), possible insulin-mimetic compounds; thus, this study investigated the insulin-mimetic activities of a buckwheat concentrate (BWC), D-CI, and MI on insulin signal transduction pathways and glucose uptake with H4IIE rat hepatoma cells. BWC stimulated phosphorylation of p42/44 extracellular-related kinase (p42/44 ERK) and its downstream target, p70(S6K), on Thr(421). In contrast, D-CI, MI, rutin, or its agylcone form, quercetin, did not activate these signal transduction proteins. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), another target of insulin, was also up-regulated upon BWC treatment. The effects of BWC on glucose uptake were subsequently investigated using H4IIE cells. Insulin and D-CI stimulated glucose uptake, whereas BWC inhibited basal and insulin-stimulated glucose uptake. Although results from this work suggest that BWC has insulin-mimetic effects on select protein phosphorylation events in H4IIE cells, D-CI and MI were not the active components responsible for the observed effects. The inhibition of glucose uptake by BWC suggests that buckwheat may affect hepatic glucose metabolism, possibly by inhibiting glucose flux. Furthermore, the fact that D-CI and MI stimulated glucose uptake in H4IIE cells suggests that other compounds are responsible for inhibition of glucose uptake by BWC.
Collapse
Affiliation(s)
- Julianne M Curran
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Padiyar LT, Wen YS, Hung SC. Metal trifluoromethanesulfonate-catalyzed regioselective acylation of myo-inositol 1,3,5-orthoformate. Chem Commun (Camb) 2010; 46:5524-6. [DOI: 10.1039/c0cc00236d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Cai G, Freeman GJ. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev 2009; 229:244-58. [DOI: 10.1111/j.1600-065x.2009.00783.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Pantera B, Bini C, Cirri P, Paoli P, Camici G, Manao G, Caselli A. PrPc activation induces neurite outgrowth and differentiation in PC12 cells: role for caveolin-1 in the signal transduction pathway. J Neurochem 2009; 110:194-207. [PMID: 19457127 DOI: 10.1111/j.1471-4159.2009.06123.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular prion protein (PrP(c)) is a ubiquitous glycoprotein, whose physiological role is poorly characterized. It has been suggested that PrP(c) participates in neuritogenesis, neuroprotection, copper metabolism, and signal transduction. In this study we detailed the intracellular events induced by PrP(c) antibody-mediated cross-linking in PC12 cells. We found a Fyn-dependent activation of the Ras-Raf pathway, which leads to a rapid and transient phosphorylation of extracellular regulated kinases. In addition, this activation cascade relies on the engagement of integrins, and involves focal adhesion kinase activation. We demonstrated the tyrosine phosphorylation of caveolin-1 as a consequence of PrP(c) stimulation, and showed that phosphocaveolin-1 scaffolds and coordinates protein complexes involved in PrP(c)-dependent signaling. Moreover, we found that caveolin-1 phosphorylation, is a mechanism for recruiting the C-terminal Src kinase and inactivating Fyn, so as to terminate cell signaling. Furthermore our data support a significant role for PrP(c) as a response mediator in neuritogenesis and cell differentiation.
Collapse
Affiliation(s)
- Barbara Pantera
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Stull AJ, Thyfault JP, Haub MD, Ostlund RE, Campbell WW. Relationships between urinary inositol excretions and whole-body glucose tolerance and skeletal muscle insulin receptor phosphorylation. Metabolism 2008; 57:1545-51. [PMID: 18940392 PMCID: PMC3469253 DOI: 10.1016/j.metabol.2008.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 06/09/2008] [Indexed: 11/26/2022]
Abstract
This study assessed the relationships of urinary D-chiro-inositol and myo-inositol excretions to indices of whole-body glucose tolerance and total content and tyrosine phosphorylation of the insulin receptor (activation) in skeletal muscle of older nondiabetic subjects. Fifteen adults (age, 65 +/- 8 years; body mass index, 27.9 +/- 3.3 kg/m(2) [mean +/- SD]) completed duplicate assessments of oral (75-g oral glucose tolerance test [OGTT]) and intravenous (300 mg/kg body weight intravenous glucose tolerance test) glucose tolerance challenges and 24-hour urinary D-chiro-inositol and myo-inositol excretions. Skeletal muscle (vastus lateralis) biopsies were obtained at minute 60 of the OGTTs. Subjects with higher urinary D-chiro-inositol excretion had higher insulin (rho = 0.51, P < or = .05) and C-peptide (rho = 0.56, P < or = .05) area under the curves, and lower insulin sensitivity index (rho = -0.60, P < or = .05) during the intravenous glucose tolerance test. The urinary myo- to D-chiro-inositol ratio was also inversely related to insulin area under the curve (rho = -0.59, P < or = .05). Urinary D-chiro-inositol (rho = -0.60, P < or = .05) and myo-inositol (rho = -0.60, P < or = .05) were inversely related to tyrosine phosphorylation of the insulin receptor (phosphotyrosine 1162/1163), but not total content of the insulin receptor during the OGTT. The apparent relationships were modestly weakened when adjustments were made for sex. These findings support previous research linking higher urinary D-chiro-inositol excretion with a progressive decline in whole-body glucose tolerance. This is the first report to link higher urinary D-chiro-inositol excretion to a blunted activation of skeletal muscle insulin receptor signaling in older nondiabetic subjects.
Collapse
Affiliation(s)
- April J Stull
- Department of Foods and Nutrition and Center on Aging and the Life Course, Purdue University, West, Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
20
|
Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 2008; 47:6991-7000. [PMID: 18557633 PMCID: PMC2663890 DOI: 10.1021/bi8006324] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified protein in the outer leaflet of the cell membrane. The GPI anchor is a complex structure comprising a phosphoethanolamine linker, glycan core, and phospholipid tail. GPI-anchored proteins are structurally and functionally diverse and play vital roles in numerous biological processes. While several GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. This review discusses the structural diversity of the GPI anchor and its putative cellular functions, including involvement in lipid raft partitioning, signal transduction, targeting to the apical membrane, and prion disease pathogenesis. We specifically highlight studies in which chemically synthesized GPI anchors and analogues have been employed to study the roles of this unique posttranslational modification.
Collapse
Affiliation(s)
- Margot G Paulick
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
21
|
Park KS, Lee JM, Ku BJ, Jo YS, Lee SK, Min KW, Han KA, Kim HJ, Kim HJ. The Effects of D-Chiro-Inositol on Glucose Metabolism in 3T3-L1 Cells. KOREAN DIABETES JOURNAL 2008. [DOI: 10.4093/kdj.2008.32.3.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Seo Park
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | | | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Korea
| | - Young Suk Jo
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Seong Kyu Lee
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Kyung Wan Min
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Kyung Ah Han
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Hyo Jeong Kim
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Eulji University School of Medicine, Korea
| |
Collapse
|
22
|
A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor. Proc Natl Acad Sci U S A 2007; 104:20332-7. [PMID: 18077333 DOI: 10.1073/pnas.0710139104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI) anchor is a C-terminal posttranslational modification found on many eukaryotic proteins that reside in the outer leaflet of the cell membrane. The complex and diverse structures of GPI anchors suggest a rich spectrum of biological functions, but few have been confirmed experimentally because of the lack of appropriate techniques that allow for structural perturbation in a cellular context. We previously synthesized a series of GPI anchor analogs with systematic deletions within the glycan core and coupled them to the GFP by a combination of expressed protein ligation and native chemical ligation [Paulick MG, Wise AR, Forstner MB, Groves JT, Bertozzi CR (2007) J Am Chem Soc 129:11543-11550]. Here we investigate the behavior of these GPI-protein analogs in living cells. These modified proteins integrated into the plasma membranes of a variety of mammalian cells and were internalized and directed to recycling endosomes similarly to GFP bearing a native GPI anchor. The GPI-protein analogs also diffused freely in cellular membranes. However, changes in the glycan structure significantly affected membrane mobility, with the loss of monosaccharide units correlating to decreased diffusion. Thus, this cellular system provides a platform for dissecting the contributions of various GPI anchor components to their biological function.
Collapse
|
23
|
Rademacher TW, Gumaa K, Scioscia M. Preeclampsia, insulin signalling and immunological dysfunction: a fetal, maternal or placental disorder? J Reprod Immunol 2007; 76:78-84. [PMID: 17537518 DOI: 10.1016/j.jri.2007.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/14/2007] [Accepted: 03/14/2007] [Indexed: 11/18/2022]
Abstract
An inappropriate glycogen accumulation in preeclamptic placentas was described as secondary to biochemical alterations. Insulin resistance is widely accepted to be associated with preeclampsia, although its basis remain unclear. A family of putative insulin mediators, namely inositol phosphoglycans, were described to exert many insulin-like effects on lipid and glucose metabolism. A definite association between the P-type mediator (P-IPG) and preeclampsia was reported, being increased in placenta, urine, amniotic fluid and cord blood from human preeclamptic pregnancies. A strong link exists between insulin resistance and inflammation. Clear features of insulin resistance and systemic inflammatory activation were described in preeclampsia. It may be a consequence of the immunological dysfunction that occurs in preeclampsia that is temporized during sperm exposure and co-habitation which confuses the maternal immune network to perceive 'danger'. The over-expression of P-IPG during preeclampsia may be a counter-regulatory mechanism to insulin resistance since these molecules mimic insulin action. Besides, the lipidic form of P-IPG was reported to be similar to endotoxins, and may represent the 'danger signa'. We propose here a novel working theory on insulin resistance and preeclampsia.
Collapse
Affiliation(s)
- Thomas W Rademacher
- Department of Immunology and Molecular Pathology, Molecular Medicine Unit, Royal Free and University College London Medical School, London, UK
| | | | | |
Collapse
|
24
|
Scioscia M, Kunjara S, Gumaa K, McLean P, Rodeck CH, Rademacher TW. Urinary excretion of inositol phosphoglycan P-type in gestational diabetes mellitus. Diabet Med 2007; 24:1300-4. [PMID: 17956457 DOI: 10.1111/j.1464-5491.2007.02267.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The mechanisms underlying insulin resistance during normal pregnancy, and its further exacerbation in pregnancies complicated by gestational diabetes mellitus (GDM), are generally unknown. Inositolphosphoglycan P-type (P-IPG), a putative second messenger of insulin, correlates with the degree of insulin resistance in diabetic subjects. An increase during normal pregnancy, in maternal and fetal compartments, has recently been reported. METHODS A cross-sectional study was carried out in 48 women with GDM and 23 healthy pregnant women. Urinary levels of P-IPG were assessed spectrophotometrically by the activation of pyruvate dehydrogenase phosphatase in urinary specimens and correlated with clinical parameters. RESULTS Urinary excretion of P-IPG was higher in GDM than in control women (312.1 +/- 151.0 vs. 210.6 +/- 82.7 nmol NADH/min/mg creatinine, P < 0.01) with values increasing throughout pregnancy in control subjects (r2 = 0.34, P < 0.01). P-IPG correlated with blood glucose levels (r(2) = 0.39, P < 0.01 for postprandial glycaemia and r2 = 0.18 P < 0.01 for mean glycaemia) and birthweight in the diabetic group (r2 = 0.14, P < 0.01). CONCLUSIONS Increased P-IPG urinary excretion occurs in GDM and positively correlates with blood glucose levels. P-IPG may play a role in maternal glycaemic control and, possibly, fetal growth in GDM.
Collapse
Affiliation(s)
- M Scioscia
- Department of Immunology and Molecular Pathology, Molecular Medicine Unit, Royal Free and University College Medical School, London, UK.
| | | | | | | | | | | |
Collapse
|
25
|
XIA TAO, WANG QIN. D-CHIRO-INOSITOL FOUND IN MOMORDICA CHARANTIA FRUIT EXTRACT PLAYS A ROLE IN REDUCING BLOOD GLUCOSE IN STREPTOZOTOCIN-DIABETIC RATS. J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00129.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Xia T, Wang Q. D-chiro-inositol found in Cucurbita ficifolia (Cucurbitaceae) fruit extracts plays the hypoglycaemic role in streptozocin-diabetic rats. J Pharm Pharmacol 2007; 58:1527-32. [PMID: 17132216 DOI: 10.1211/jpp.58.10.0014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurbita ficifolia is commonly used as an antihyperglycaemic agent in Asia. However, the mechanism of its action is unknown. Chemically synthesized D-chiro-inositol (D-CI), a component of an insulin mediator, has been demonstrated to have antihyperglycaemic effects in rats. In this study, we found that C. ficifolia contained fairly high levels of D-CI, thus, C. ficifolia may be a natural source of D-CI for reducing blood glucose concentrations in diabetics. We evaluated C. ficifolia fruit extract, containing D-CI, for its antihyperglycaemic effect in streptozotocin-induced diabetic rats. Oral administration of C. ficifolia fruit extract containing 10 or 20 mg D-CI kg(-1) body weight for 30 days resulted in significantly lowered levels of blood glucose, and increased levels of hepatic glycogen, total haemoglobin and plasma insulin. An oral glucose tolerance test was performed in fasted diabetic and normal rats, in which there was a significant improvement in blood glucose tolerance in the diabetic rats treated with C. ficifolia fruit extract. The effects were compared with 20 mg kg(-1) body weight chemically synthesized D-CI. Findings from this study demonstrated that C. ficifolia fruit extract was an effective source of D-CI for its hypoglycaemic effects in rats, and therefore may be useful in the treatment of diabetes.
Collapse
Affiliation(s)
- Tao Xia
- College of Life Science, East China Normal University, Shanghai, PR China.
| | | |
Collapse
|
27
|
Yoon HJ, Park SW, Lee HB, Im SY, Hooper NM, Park HS. Release of renal dipeptidase from Glycosylphosphatidylinositol anchor by insulin-triggered phospholipase c/intracellular Ca2+. Arch Pharm Res 2007; 30:608-15. [PMID: 17615681 DOI: 10.1007/bf02977656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchored proteins appear to be released from the plasma membrane due to various extracellular stimuli. To determine the signaling pathway from insulin to GPI-protein, the release of GPI-renal dipeptidase (RDPase, EC 3.4.13.19) from porcine proximal tubules, stimulated by insulin, was explored. Insulin stimulated the release of RDPase in a concentration-dependent manner (half maximal release at 0.58 nM), which peaked at 10-20 min. Western blot analysis, with antibody against the cross-reacting determinant (CRD), revealed that RDPase was released by a GPI-specific phospholipase C (GPI-PLC), and was shown to be Ca2+-dependent. A PI-PLC inhibitor, U73122, effectively blocked the effect of insulin on the release of RDPase, suggesting insulin is associated with an intracellular PI-PLC. Insulin treatment increased the production of intracellular Ca2+ from porcine proximal tubules. Intracellular Ca2+, coupled with insulin, facilitated the releases of RDPase, an inhibitor of inositol trisphosphate-dependent Ca2+ from the endoplasmic reticulum, and a Ca2+ channel blocker that blocked the effect of insulin. Taken together, these results suggest that insulin, in part, may activate a GPI-PLC, via PI-PLC/intracellular Ca2+, which may consequently stimulate the release of RDPase.
Collapse
Affiliation(s)
- Hyun Joong Yoon
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Chevalier F, Lopez-Prados J, Groves P, Perez S, Martín-Lomas M, Nieto PM. Structure and dynamics of the conserved protein GPI anchor core inserted into detergent micelles. Glycobiology 2006; 16:969-80. [PMID: 16774909 DOI: 10.1093/glycob/cwl015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A suitable approach which combines nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have been used to study the structure and the dynamics of the glycosylphosphatidylinositol (GPI) anchor Manalphal-2Manalpha1-6Manalphal -4GlcNalpha1-6myo-inositol-1-OPO(3)-sn-1,2-dimyristoylglycerol (1) incorporated into dodecylphosphatidylcholine (DPC) micelles. The results have been compared to those previously obtained for the products obtainable from (1) after phospholipase cleavage, in aqueous solution. Relaxation and diffusion NMR experiments were used to establish the formation of stable aggregates and the insertion of (1) into the micelles. MD calculations were performed including explicit water, sodium and chloride ions and using the Particle Mesh Ewald approach for the evaluation of the electrostatic energy term. The MD predicted three dimensional structure and dynamics were substantiated by nuclear overhauser effect (NOE) measurements and relaxation data. The pseudopentasaccharide structure, which was not affected by incorporation of (1) into the micelle, showed a complex dynamic behaviour with a faster relative motion at the terminal mannopyranose unit and decreased mobility close to the micelle. This motion may be better described as an oscillation relative to the membrane rather than a folding event.
Collapse
Affiliation(s)
- Franck Chevalier
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Isla de la Cartuja, Seville, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Yoshida KI, Yamaguchi M, Morinaga T, Ikeuchi M, Kinehara M, Ashida H. Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl Environ Microbiol 2006; 72:1310-5. [PMID: 16461681 PMCID: PMC1392952 DOI: 10.1128/aem.72.2.1310-1315.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-chiro-inositol (DCI) is a drug candidate for the treatment of type 2 diabetes and polycystic ovary syndrome, since it improves the efficiency with which the body uses insulin and also promotes ovulation. Here, we report genetic modification of Bacillus subtilis for production of DCI from myo-inositol (MI). The B. subtilis iolABCDEFGHIJ operon encodes enzymes for the multiple steps of the MI catabolic pathway. In the first and second steps, MI is converted to 2-keto-MI (2KMI) by IolG and then to 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione by IolE. In this study, we identified iolI encoding inosose isomerase, which converts 2KMI to 1-keto-D-chiro-inositol (1KDCI), and found that IolG reduces 1KDCI to DCI. Inactivation of iolE in a mutant constitutively expressing the iol operon blocked the MI catabolic pathway to accumulate 2KMI, which was converted to DCI via the activity of IolI and IolG. The mutant was able to convert at least 6% of input MI in the culture medium to DCI.
Collapse
Affiliation(s)
- Ken-ichi Yoshida
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Bonilla JB, Cid MB, Contreras FX, Goñi FM, Martín-Lomas M. Phospholipase cleavage of D- and L-chiro-glycosylphosphoinositides asymmetrically incorporated into liposomal membranes. Chemistry 2006; 12:1513-28. [PMID: 16315198 DOI: 10.1002/chem.200500833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nature of chiro-inositol-containing inositolphosphoglycans (IPGs), reported to be putative insulin mediators, was studied by examination of the substrate specificities of the phosphatidylinositol-specific phospholipase C (PI-PLC) and the glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) by using a series of synthetic D- and L-chiro-glycosylphosphoinositides. 3-O-alpha-D-Glucosaminyl- (3) and -galactosaminyl-2-phosphatidyl-L-chiro-inositol (4), which show the maximum stereochemical similarity to the 6-O-alpha-D-glucosaminylphosphatidylinositol pseudodisaccharide motifs of GPI anchors, were synthesized and asymmetrically incorporated into phospholipid bilayers in the form of large unilamellar vesicles (LUVs). Similarly, 2-O-alpha-D-glucosaminyl- (5) and -galactosaminyl-1-phosphatidyl-D-chiro-inositol (6), which differ from the corresponding pseudodisaccharide motif of the GPI anchors only in the axial orientation of the phosphatidyl moiety, were also synthesized and asymmetrically inserted into LUVs. The cleavage of these synthetic molecules in the liposomal constructs by PI-PLC from Bacillus cereus and by GPI-PLD from bovine serum was studied with the use of 6-O-alpha-D-glucosaminylphosphatidylinositol (7) and the conserved GPI anchor structure (8) as positive controls. Although PI-PLC cleaved 3 and 4 with about the same efficiency as 7 and 8, this enzyme did not accept 5 or 6. GPI-PLD accepted both the L-chiro- (3 and 4) and the D-chiro- (5 and 6) glycosylinositolphosphoinositides. Therefore, IPGs containing L-chiro-inositol only are expected to be released from chiro-inositol-containing GPIs if the cleavage is effected by a PI-PLC, whereas GPI-PLD cleavage could result in both L-chiro- and D-chiro-inositol-containing IPGs.
Collapse
Affiliation(s)
- Julia B Bonilla
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | | | |
Collapse
|
31
|
Wang Q, Fujioka H, Nussenzweig V. Mutational analysis of the GPI-anchor addition sequence from the circumsporozoite protein of Plasmodium. Cell Microbiol 2005; 7:1616-26. [PMID: 16207248 DOI: 10.1111/j.1462-5822.2005.00579.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The plasma membrane of Plasmodium sporozoites is uniformly covered by the glycosylphosphatidylinositol (GPI)-anchored circumsporozoite (CS) protein. Sporozoites form in the mosquito midgut through a budding process that occurs within a multinucleate oocyst underneath the basal lamina of the gut. Earlier genetic studies established that normal sporozoite development requires CS. Mutant parasites lacking CS [CS (-)] do not form sporozoites. Ultrastructural analysis of the oocysts from these parasites revealed that there is an early block in the cytokinesis that occurs within the multinucleate oocysts to generate individual sporozoites. Parasites that are hypomorphic for CS expression gave rise to sporozoites with abnormal morphology. These results proved that CS plays a direct role in the maturation of oocysts and in the normal budding of sporozoites. In this article, we examined if the membrane localization of CS via a GPI-anchor, is crucial for its function during sporozoite formation. We generated three mutants in Plasmodium berghei CS, CS-DeltaGPI, CS-TM1 and CS-TM2. In CS-DeltaGPI, we deleted the signal sequence required for the addition of a GPI-anchor to CS. The resulting protein was found only in the cytoplasm of the oocyst. In CS-TM1 and CS-TM2, the GPI-anchor addition sequence of CS was substituted by the transmembrane domain and truncated (to different degrees) cytoplasmic tail of Plasmodium thrombospondin-related anonymous protein (TRAP). The resulting CS protein was detected on the plasma membrane of the oocysts. The amount of CS in the mutants was similar to that of wild type. The sporozoite budding and development were abrogated in both CS-DeltaGPI and CS-TM mutants. The ultrastructure of the mutant oocysts was indistinguishable from that of the CS (-) parasites. Our results suggest that the GPI-anchor of the CS protein is required for sporogenesis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pathology, Michael Heidelberger Division of Immunology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
32
|
Chakraborty N, d'Alarcao M. An anionic inositol phosphate glycan pseudotetrasaccharide exhibits high insulin-mimetic activity in rat adipocytes. Bioorg Med Chem 2005; 13:6732-41. [PMID: 16115771 DOI: 10.1016/j.bmc.2005.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/20/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Inositol phosphate glycan pseudotetrasaccharides consisting of man-(alpha1-6)-man-(alpha1-4)-glcN-(alpha,beta1-6)-myo-inositol-1,2-cyclic phosphate possessing a sulfate group at either O-6 (compounds 3alpha,beta) or O-2 (compounds 4alpha,beta) of the terminal mannose have been prepared. Compound 4alpha was able to stimulate lipogenesis in native rat adipocytes to 78% of the maximal insulin response (MIR) with an EC50 of 1.1 microM. The other compounds exhibited lower maximal stimulations (47-63% MIR) and higher EC50 values (9.5-10.6 microM).
Collapse
Affiliation(s)
- Nilanjana Chakraborty
- Michael Chemistry Laboratory, Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
33
|
Turner DI, Chakraborty N, d'Alarcao M. A fluorescent inositol phosphate glycan stimulates lipogenesis in rat adipocytes by extracellular activation alone. Bioorg Med Chem Lett 2005; 15:2023-5. [PMID: 15808461 DOI: 10.1016/j.bmcl.2005.02.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 02/17/2005] [Accepted: 02/18/2005] [Indexed: 11/25/2022]
Abstract
The chemical synthesis of 2,6-dideoxy-2-amino-6-mercaptoglucopyranosyl-(alpha1-6)-myo-inositol 1,2-cyclic phosphate and its conjugation with a lucifer yellow derivative are reported. The resulting fluorescent IPG analogue was able to stimulate lipogenesis in rat adipocytes despite the fact that it was not internalized into the cell. The results demonstrate that internalization of the IPG is not required for manifestation of its insulin-like effects.
Collapse
Affiliation(s)
- David I Turner
- Michael Chemistry Laboratory, Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
34
|
Chevalier F, Lopez-Prados J, Perez S, Martín-Lomas M, Nieto PM. Conformational Study of GPI Anchors: the Common Oligosaccharide GPI Anchor Backbone. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Díaz-López A, Rivas C, Iniesta P, Morán A, García-Aranda C, Megías D, Sánchez-Pernaute A, Torres A, Díaz-Rubio E, Benito M, De Juan C. Characterization of MDGA1, a novel human glycosylphosphatidylinositol-anchored protein localized in lipid rafts. Exp Cell Res 2005; 307:91-9. [PMID: 15922729 DOI: 10.1016/j.yexcr.2005.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 02/03/2005] [Accepted: 02/10/2005] [Indexed: 10/25/2022]
Abstract
We report the characterization of the novel human protein MDGA1 encoded by MDGA1 (MAM domain containing glycosylphosphatidylinositol anchor-1) gene, firstly termed as GPIM. MDGA1 has been mapped to 6p21 and it is expressed in human tissues and tumors. The deduced polypeptide consists of 955 amino acids and exhibits structural features found in different types of cell adhesion molecules (CAMs), such as the presence of both immunoglobulin domains and a MAM domain or the capacity to anchor to the cell membrane by a GPI (glycosylphosphatidylinositol) motif. Our results demonstrate that human MDGA1 (hMDGA1) is localized in the membrane of eukaryotic cells. The protein follows the secretion pathway and finally it is retained in the cell membrane by a GPI anchor, susceptible to be cleavaged by phospholipase C (PI-PLC). Moreover, our results reveal that hMDGA1 is localized specifically into membrane microdomains known as lipid rafts. Finally, as other proteins of the secretory pathway, hMDGA1 undergoes other post-translational modification consisting of N-glycosylation.
Collapse
Affiliation(s)
- A Díaz-López
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
López-Prados J, Cuevas F, Reichardt NC, de Paz JL, Morales EQ, Martín-Lomas M. Design and synthesis of inositolphosphoglycan putative insulin mediators. Org Biomol Chem 2005; 3:764-86. [PMID: 15731862 DOI: 10.1039/b418041k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.
Collapse
Affiliation(s)
- Javier López-Prados
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Américo Vespucio s/n, 41092, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Flores-Borja F, Kieszkievicz J, Church V, Francis-West PH, Schofield J, Rademacher TW, Lund T. Genetic regulation of mouse glycosylphosphatidylinositol-phospholipase D. Biochimie 2005; 86:275-82. [PMID: 15194230 DOI: 10.1016/j.biochi.2004.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 04/06/2004] [Indexed: 12/17/2022]
Abstract
Glycosylphosphatidylinositol phospholipase D (GPI-PLD) has been proposed to be responsible for cleaving membrane-associated glycosylphosphatidyl inositol (GPI) molecules to generate inositol phosphoglycan (IPGs), which have growth factor-mimetic properties. We have cloned the mouse liver GPI-PLD cDNA, which has a sequence that differs from that previously isolated from a mouse glucagonoma cell library. Using a highly specific and very sensitive RNase protection assay, we found that the GPI-PLD expressed in adult/post-natal brain, antrum and insulin-producing cells is identical to that isolated from liver. The expression of mouse GPI-PLD in liver shows a complex genetic regulation with a mouse strain-specific variation. In addition, GPI-PLD mRNA levels were higher in 4-week old animals compared to older animals, and the GPI-PLD mRNA levels increased in mice that developed insulin dependent type 1 diabetes spontaneously. This suggests that the expression of liver GPI-PLD in mice is highly regulated.
Collapse
Affiliation(s)
- Fabian Flores-Borja
- Department of Immunology and Molecular Pathology, University College London, 46 Cleveland street, London W1T 4JF, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Higgins BD, Kane MT. Inositol transport in mouse embryonic stem cells. Reprod Fertil Dev 2005; 17:633-9. [PMID: 16263069 DOI: 10.1071/rd05021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 06/05/2005] [Indexed: 11/23/2022] Open
Abstract
The uptake of myo-inositol by mouse embryonic stem (ES) cells was measured using [2-3H]myo-inositol. Uptake of myo-inositol by ES cells occurred in a mainly saturable, sodium-, time- and temperature-dependent manner, which was inhibited by glucose, phloridzin and ouabain. Self inhibition by inositol was much greater than inhibition by glucose indicating that transport was not occurring via a sodium-dependent glucose transporter. Uptake rate was much greater than efflux rate indicating a mainly unidirectional transport mechanism. Estimated kinetics parameters for sodium-dependent inositol uptake were a Km of 65.1 ± 11.8 μ mol L−1 and a Vmax of 5.0 ± 0.59 pmol μ g protein−1 h−1. Inositol uptake was also sensitive to osmolality; uptake increased in response to incubation in hypertonic medium indicating a possible role for inositol as an osmolyte in ES cells. These characteristics indicate that myo-inositol transport in mouse ES cells occurs by a sodium-dependent myo-inositol transporter protein.
Collapse
Affiliation(s)
- B D Higgins
- Department of Physiology, National University of Ireland, Galway
| | | |
Collapse
|
39
|
Martini CN, Vaena de Avalos SG, del Carmen Vila M. ACTH stimulates the release of alkaline phosphatase through Gi-mediated activation of a phospholipase C and the release of inositol-phosphoglycan. Mol Cell Biochem 2004; 258:191-9. [PMID: 15030184 DOI: 10.1023/b:mcbi.0000012855.94291.dd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously reported that ACTH activates a phospholipase C that hydrolyzes glycosylphosphatidylinositol (GPI), which would release inositolphosphoglycan (IPG) to the extracellular medium, and that an IPG purified from Trypanosoma cruzi is able to inhibit ACTH-mediated steroid production in adrenocortical cells. In the present paper, it was found that anti-inositolphosphoglycan antibodies (anti-CRD) increased ACTH-mediated corticosterone production, which indicates that an endogenous IPG is a physiological inhibitor of ACTH response. On the other hand, we investigated the release to the extracellular medium of the GPI-anchored enzyme, alkaline phosphatase, by ACTH. We found that: (a) the released enzyme appeared in the aqueous phase after Triton X-114 partitioning, consistent with loss of the GPI, (b) the phospholipase C inhibitor, U73122, impaired the release of the enzyme by the hormone and (c) two inhibitors of IPG uptake, inositol 2-monophosphate and 2 M NaCl, increased the amount of alkaline phosphatase in the extracellular medium. These results suggest that ACTH releases alkaline phosphatase by activation of a phospholipase C. Dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) was able to increase the release of alkaline phosphatase from adrenocortical cells and this effect was inhibited by U73122, suggesting that cAMP is involved in the activation of phospholipase C. In addition, it was found that a pertussis-toxin sensitive G-protein is required for ACTH- and db-cAMP-mediated release of alkaline phosphatase and that incorporation of anti-Gi antibodies in adrenocortical cells inhibited the release of alkaline phosphatase by ACTH. Our results suggest that ACTH increases the release of alkaline phosphatase by activation of a phospholipase C through cAMP and Gi which would contribute to produce IPG It was also found that the two inhibitors of IPG uptake, inositol-2-monophosphate and 2 M NaCl, increased the amount of alkaline phosphatase in the extracellular medium of ACTH-treated cells more than in control cells, indicating that ACTH also stimulates the uptake of IPG These data support a role of GPI and the involvement of Gi in ACTH action.
Collapse
Affiliation(s)
- Claudia N Martini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
40
|
Jones DR, Pañeda C, Villar AV, Alonso A, Goñi FM, Bütikofer P, Brodbeck U, Shepherd PR, Varela-Nieto I. Phosphorylation of glycosyl-phosphatidylinositol by phosphatidylinositol 3-kinase changes its properties as a substrate for phospholipases. FEBS Lett 2004; 579:59-65. [PMID: 15620691 DOI: 10.1016/j.febslet.2004.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/08/2004] [Accepted: 11/09/2004] [Indexed: 11/27/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3K) phosphorylate the 3-position of the inositol ring of phosphatidylinositol-4,5-bisphosphate to produce phosphatidylinositol-3,4,5-trisphosphate. It is not clear whether PI3K can phosphorylate the inositol group in other biomolecules. We sought to determine whether PI3K was able to use glycosyl-phosphatidylinositol (GPI) as a substrate. This phospholipid may exist either in free form (GPIfree) or forming a lipid anchor (GPIanchor) for the attachment of extracellular proteins to the plasma membrane. We demonstrate the specific PI3K-mediated phosphorylation of the inositol 3-hydroxyl group within both types of GPI by incubating this phospholipid with immunoprecipitated PI3K. The phosphorylated product behaves in HPLC as a derivative of a PI3K lipid product. To our knowledge, this is the first demonstration that PI3K uses lipid substrates other than phosphoinositides. Further, we show that this has potential functional consequences. When GPIfree is phosphorylated, it becomes a poorer substrate for GPI-specific phospholipase D, but a better substrate for phosphatidylinositol-specific phospholipase C. These phosphorylation events may constitute the basis of a previously undescribed signal transduction mechanism.
Collapse
Affiliation(s)
- David R Jones
- Department of Cell Signalling, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Krawiec L, Pizarro RA, Aphalo P, de Cavanagh EMV, Pisarev MA, Juvenal GJ, Policastro L, Bocanera LV. Role of peroxidase inhibition by insulin in the bovine thyroid cell proliferation mechanism. ACTA ACUST UNITED AC 2004; 271:2607-14. [PMID: 15206926 DOI: 10.1111/j.1432-1033.2004.04189.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monolayer primary cultures of thyroid cells produce, in the presence of insulin, a cytosolic inhibitor of thyroid peroxidase (TPO), lacto peroxidase (LPO), horseradish peroxidase (HRPO) and glutathione peroxidase (GPX). The inhibitor, localized in the cytosol, is thermostable and hydrophylic. Its molecular mass is less than 2 kDa. The inhibitory activity, resistant to proteolytic and nucleolytic enzymes, disappears with sodium metaperiodate treatment, as an oxidant of carbohydrates, supporting its oligosaccharide structure. The presence of inositol, mannose, glucose, the specific inhibition of cyclic AMP-dependent protein kinase and the disappearance of peroxidase inhibition by alkaline phosphatase and alpha-mannosidase in purified samples confirms its chemical structure as inositol phosphoglycan-like. Purification by anionic interchange shows that the peroxidase inhibitor elutes like the two subtypes of inositol phosphoglycans (IPG)P and A, characterized as signal transducers of insulin action. Insulin significantly increases the concentration of the peroxidase inhibitor in a thyroid cell culture at 48 h. The addition of both isolated substances to a primary thyroid culture produces, after 30 min, a significant increase in hydrogen peroxide (H2O2) concentration in the medium, concomitantly with the disappearance of the GPX activity in the same conditions. The presence of insulin or anyone of both products, during 48 h, induces cell proliferation of the thyroid cell culture. In conclusion, insulin stimulates thyroid cell division through the effect of a peroxidase inhibitor, as its second messenger. The inhibition of GPX by its action positively modulates the H2O2 level, which would produce, as was demonstrated by other authors, the signal for cell proliferation.
Collapse
Affiliation(s)
- León Krawiec
- Argentine National Research Council (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sun W, Zhao ZD, Hare MC, Kieliszewski MJ, Showalter AM. Tomato LeAGP-1 is a plasma membrane-bound, glycosylphosphatidylinositol-anchored arabinogalactan-protein. PHYSIOLOGIA PLANTARUM 2004; 120:319-327. [PMID: 15032867 DOI: 10.1111/j.0031-9317.2004.0236.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arabinogalactan-proteins (AGPs) are a class of highly glycosylated, hydroxyproline-rich glycoproteins that function in plant growth and development. Tomato LeAGP-1 represents a major AGP expressed in cultured cells and plants. Based on cDNA and amino acid sequence analyses along with carbohydrate and other biochemical analyses, tomato LeAGP-1 is hypothesized to be a classical AGP localized to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. Here, this hypothesis was tested and supported with the following experiments. First, tomato (Lycopersicon esculentum, cv. UC82B) cotyledon protoplasts were isolated following cell wall digestion with cellulase and pectinase, and LeAGP-1 was immunolocalized to the plasma membrane with a LeAGP-1 antibody. Second, LeAGP-1 was shown to be a major AGP component in plasma membrane vesicles from tomato cv. Bonnie Best suspension-cultured cells by Western blot analysis with the LeAGP-1 antibody. Third, fluorescence microscopy of plasmolysed, transgenic tobacco (Nicotiana tabacum BY-2) suspension-cultured cells expressing a green fluorescent protein (GFP)-LeAGP-1 fusion product demonstrated localization to the plasma membrane and Hechtian threads. Fourth, the GFP-LeAGP-1 fusion protein was present in plasma membrane preparations from these transgenic tobacco cells by Western blot analysis with a GFP antibody. Fifth, GFP-LeAGP-1 secreted into the culture media contained ethanolamine, presumably attached to the C-terminal amino acid residue, consistent with its processing and release from the plasma membrane. Thus, these data support the hypothesis that LeAGP-1 is localized to the plasma membrane via a GPI anchor and suggest possible roles for LeAGP-1 in cellular signalling and matrix remodelling.
Collapse
Affiliation(s)
- Wenxian Sun
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701-2979, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The structure of covalently-linked glycosylphosphatidylinositol (GPI) anchors of membrane proteins displayed on the cell surface is described. Evidence of how the GPI-anchors are sorted into membrane rafts in the plasma membrane is reviewed. Proteins are released by hydrolysis of the linkage to the GPI anchor and phospholipases from different sources involved in this process are characterised. The regulation of protein conformation and function resulting from phospholipase cleavage of the GPI anchor is discussed in the context of its role in signal transduction by insulin. In this signalling system, re-distribution of critical membrane components, including GPI-anchored proteins and non-receptor tyrosine kinases, between different raft domains appears to play a central role in the signal transduction pathway.
Collapse
Affiliation(s)
- Frances J Sharom
- Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | |
Collapse
|
44
|
Miscellaneous Second Messengers. Mol Endocrinol 2004. [DOI: 10.1016/b978-012111232-5/50011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
Kawa JM, Taylor CG, Przybylski R. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:7287-7291. [PMID: 14640572 DOI: 10.1021/jf0302153] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The antihyperglycemic effects of chemically synthesized d-chiro-inositol (d-CI), a component of an insulin mediator, have been demonstrated in rats. Buckwheat contains relatively high levels of d-CI: thus, it has been proposed as a source of d-CI for reducing serum glucose concentrations in diabetics. The present study evaluates the effects of a buckwheat concentrate, containing d-CI, on hyperglycemia and glucose tolerance in streptozotocin (STZ) rats. In fed STZ rats, both doses of the buckwheat concentrate (containing 10 and 20 mg of d-CI/kg of body weight) were effective for lowering serum glucose concentrations by 12-19% at 90 and 120 min after administration. Findings from this study demonstrate that a buckwheat concentrate is an effective source of d-CI for lowering serum glucose concentrations in rats and therefore may be useful in the treatment of diabetes.
Collapse
Affiliation(s)
- Julianne M Kawa
- Department of Human Nutritional Sciences, University of Manitoba, H505 Duff Roblin Building, 190 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | |
Collapse
|
46
|
Kawa JM, Przybylski R, Taylor CG. Urinary chiro-inositol and myo-inositol excretion is elevated in the diabetic db/db mouse and streptozotocin diabetic rat. Exp Biol Med (Maywood) 2003; 228:907-14. [PMID: 12968062 DOI: 10.1177/153537020322800806] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inositol phosphoglycan molecules containing either D-chiro-inositol or myo-inositol have been isolated from various mammalian tissues and are putative mediators of insulin action. Urinary excretion of inositols appears to be altered in diabetes mellitus; however, the relationships with different types of diabetes are unclear. The objective of this study was to determine the urinary excretion of chiro- and myo-inositol in diabetic animal models, including streptozotocin (STZ) rats, db/db mice, and fa/fa Zucker rats. In STZ rats (type 1 diabetes), 12-hr urinary excretion of chiro-inositol was elevated 336-fold and myo-inositol excretion was elevated 47-fold compared with their nondiabetic counterparts. When corrected for creatinine, chiro-inositol excretion was 259-fold higher and myo-inositol excretion was 36-fold higher in STZ rats than in normal rats. The same pattern was observed in db/db mice (type 2 diabetes), where 12-hr urinary chiro-inositol excretion was elevated 247-fold compared with normal mice. When corrected for creatinine, chiro-inositol excretion was 2455-fold higher and urinary myo-inositol excretion was elevated 8.5-fold in db/db mice compared with normal mice. The fa/fa Zucker rats (impaired glucose tolerance) had a pattern of urinary inositol excretion that was similar to the nondiabetic animals (lean Zucker rats, C57BL/6 mice, and Sprague-Dawley rats). In summary, urinary chiro-inositol and myo-inositol excretion was elevated in animal models of type 1 and type 2 diabetes mellitus, concomitant with hyperglycemia and glucosuria.
Collapse
Affiliation(s)
- Julianne M Kawa
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | |
Collapse
|
47
|
Deborde S, Schofield JN, Rademacher TW. Placental GPI-PLD is of maternal origin and its GPI substrate is absent from placentae of pregnancies associated with pre-eclampsia. J Reprod Immunol 2003; 59:277-94. [PMID: 12896829 DOI: 10.1016/s0165-0378(03)00054-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pre-eclampsia (PE) is a disorder affecting 5-10% of all pregnancies and is characterised by abnormal trophoblast invasion, maternal endothelial cell dysfunction and a systemic maternal response. A unifying factor responsible for eliciting these effects remains unknown. However, levels of the autocrine insulin mediators, inositolphosphoglycans (IPG), are elevated 3-fold in pre-eclamptic placentae compared with controls and are also elevated 3-fold in maternal urine of pre-eclamptic women, suggesting an abnormal paracrine role of the mediator in the systemic maternal response. At the placental level, IPGs are metabolic second messengers capable of eliciting some of the characteristic features of PE, such as the 10-fold increase in glycogen synthesis and 16-fold increase in the activity of the IPG-dependent enzyme glycogen synthase. IPGs are derived from their lipidic precursors, the glycosylphosphatidylinositols (GPI), in membrane associated caveolae by the action of a GPI-specific phospholipase D whose activity is regulated by its membrane microenvironment. We show that the lipidic GPI precursor was detected in total placental membrane and microvillous membrane from normal placentae. The presence of GPI could not be detected in PE placentae, suggesting that the GPI/IPG signalling system is dysregulated in this disorder. Equivalent amounts of a proteolytically-cleaved 50 kDa GPI-PLD protein is detected in both normal and PE placentae. However, GPI-PLD mRNA is absent, suggesting a mechanism of uptake from maternal serum. Since GPI-PLD, whose presence is required for hydrolysis of GPI and release of free IPG, is detectable with equal activity in both normal and PE placentae, we postulate that dysregulation of the tubular caveolar structure of the microvilli in pre-eclamptic placentae provides an environment which promotes the unregulated hydrolysis of GPI in this disorder.
Collapse
Affiliation(s)
- S Deborde
- Department of Molecular Pathology and Immunology, Windeyer Institute of Medical Sciences, University College London, W1T 4JF London, UK
| | | | | |
Collapse
|
48
|
Sharom FJ, Lehto MT. Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 2003; 80:535-49. [PMID: 12440695 DOI: 10.1139/o02-146] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A wide variety of proteins are tethered by a glycosylphosphatidylinositol (GPI) anchor to the extracellular face of eukaryotic plasma membranes, where they are involved in a number of functions ranging from enzymatic catalysis to adhesion. The exact function of the GPI anchor has been the subject of much speculation. It appears to act as an intracellular signal targeting proteins to the apical surface in polarized cells. GPI-anchored proteins are sorted into sphingolipid- and cholesterol-rich microdomains, known as lipid rafts, before transport to the membrane surface. Their localization in raft microdomains may explain the involvement of this class of proteins in signal transduction processes. Substantial evidence suggests that GPI-anchored proteins may interact closely with the bilayer surface, so that their functions may be modulated by the biophysical properties of the membrane. The presence of the anchor appears to impose conformational restraints, and its removal may alter the catalytic properties and structure of a GPI-anchored protein. Release of GPI-anchored proteins from the cell surface by specific phospholipases may play a key role in regulation of their surface expression and functional properties. Reconstitution of GPI-anchored proteins into bilayers of defined phospholipids provides a powerful tool with which to explore the interactions of these proteins with the membrane and investigate how bilayer properties modulate their structure, function, and cleavage by phospholipases.
Collapse
Affiliation(s)
- Frances J Sharom
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Canada.
| | | |
Collapse
|
49
|
Müller G, Hanekop N, Kramer W, Bandlow W, Frick W. Interaction of phosphoinositolglycan(-peptides) with plasma membrane lipid rafts of rat adipocytes. Arch Biochem Biophys 2002; 408:17-32. [PMID: 12485599 DOI: 10.1016/s0003-9861(02)00451-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin receptor-independent activation of the insulin signal transduction cascade in insulin-responsive target cells by phosphoinositolglycans (PIG) and PIG-peptides (PIG-P) is accompanied by redistribution of glycosylphosphatidylinositol (GPI)-anchored plasma membrane proteins (GPI proteins) and dually acylated nonreceptor tyrosine kinases from detergent/carbonate-resistant glycolipid-enriched plasma membrane raft domains of high-cholesterol content (hcDIGs) to rafts of lower cholesterol content (lcDIGs). Here we studied the nature and localization of the primary target of PIG(-P) in isolated rat adipocytes. Radiolabeled PIG-P (Tyr-Cys-Asn-NH-(CH(2))(2)-O-PO(OH)O-6Manalpha1(Manalpha1-2)-2Manalpha1-6Manalpha1-4GluN1-6Ino-1,2-(cyclic)-phosphate) prepared by chemical synthesis or a radiolabeled lipolytically cleaved GPI protein from Saccharomyces cerevisiae, which harbors the PIG-P moiety, bind to isolated hcDIGs but not to lcDIGs. Binding is saturable and abolished by pretreatment of intact adipocytes with trypsin followed by NaCl or with N-ethylmaleimide, indicating specific interaction of PIG-P with a cell surface protein. A 115-kDa polypeptide released from the cell surface by the trypsin/NaCl-treatment is labeled by [(14)C]N-ethylmaleimide. The labeling is diminished upon incubation of adipocytes with PIG-P which can be explained by direct binding of PIG-P to the 115-kDa protein and concomitant loss of its accessibility to N-ethylmaleimide. Binding of PIG-P to hcDIGs is considerably increased after pretreatment of adipocytes with (glycosyl)phosphatidylinositol-specific phospholipases compatible with lipolytic removal of endogenous ligands, such as GPI proteins/lipids. These data demonstrate that in rat adipocytes synthetic PIG(-P) as well as lipolytically cleaved GPI proteins interact specifically with hcDIGs. The interaction depends on the presence of a trypsin/NaCl/NEM-sensitive 115-kDa protein located at hcDIGs which thus represents a candidate for a binding protein for exogenous insulin-mimetic PIG(-P) and possibly endogenous GPI proteins/lipids.
Collapse
Affiliation(s)
- Günter Müller
- Aventis Pharma Germany, DG Metabolic Diseases, Industrial Park Höchst, Bldg. H825, 65926, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
50
|
Müller G, Jung C, Frick W, Bandlow W, Kramer W. Interaction of phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes. Arch Biochem Biophys 2002; 408:7-16. [PMID: 12485598 DOI: 10.1016/s0003-9861(02)00450-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phosphoinositolglycan(-peptide) (PIG-P) portion of glycosylphosphatidylinositol-anchored plasma membrane (GPI) proteins or synthetic PIG(-P) molecules interact with proteinaceous binding sites which are located in high-cholesterol-containing detergent/carbonate-insoluble glycolipid-enriched raft domains (hcDIGs) of the plasma membrane. In isolated rat adipocytes, PIG(-P) induce the redistribution of GPI proteins from hcDIGs to low-cholesterol-containing DIGs (lcDIGs) and concomitantly provoke insulin-mimetic signaling and metabolic action. Using a set of synthetic PIG(-P) derivatives we demonstrate here that their specific binding to hcDIGs and their insulin-mimetic signaling/metabolic activity strictly correlate with respect to (i) translocation of the GPI proteins, Gce1 and 5(')-nucleotidase, from hcDIGs to lcDIGs, (ii) dissociation of the nonreceptor tyrosine kinase, pp59(Lyn), from caveolin residing at hcDIGs, (iii) translocation of pp59(Lyn) from hcDIGs to lcDIGs, (iv) activation of pp59(Lyn), (v) tyrosine phosphorylation of insulin receptor substrate proteins-1/2, and finally (vi) stimulation of glucose transport. The natural PIG(-P) derived from the carboxy-terminal tripeptide of Gce1, YCN-PIG, exhibits the highest potency followed by a combination of the separate peptidylethanolamidyl and PIG constituents. We conclude that efficient positive cross-talk of PIG(-P) to the insulin signaling cascade requires their interaction with hcDIGs. We suggest that PIG(-P) thereby displace GPI proteins from binding to hcDIGs leading to their release from hcDIGs for lateral movement to lcDIGs which initiates signal transduction from DIGs via caveolin and pp59(Lyn) to the insulin receptor substrate proteins of the insulin signaling pathway.
Collapse
Affiliation(s)
- Günter Müller
- Aventis Pharma Germany, DG Metabolic Diseases, Industrial Park Höchst, Bldg. H825, 65926, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|