1
|
Storchmannová K, Balouch M, Juračka J, Štěpánek F, Berka K. Meta-Analysis of Permeability Literature Data Shows Possibilities and Limitations of Popular Methods. Mol Pharm 2025; 22:1293-1304. [PMID: 39977255 PMCID: PMC11881145 DOI: 10.1021/acs.molpharmaceut.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Permeability is an important molecular property in drug discovery, as it co-determines pharmacokinetics whenever a drug crosses the phospholipid bilayer, e.g., into the cell, in the gastrointestinal tract, or across the blood-brain barrier. Many methods for the determination of permeability have been developed, including cell line assays (CACO-2 and MDCK), cell-free model systems like parallel artificial membrane permeability assay (PAMPA) mimicking, e.g., gastrointestinal epithelia or the skin, as well as the black lipid membrane (BLM) and submicrometer liposomes. Furthermore, many in silico approaches have been developed for permeability prediction: meta-analysis of publicly available databases for permeability data (MolMeDB and ChEMBL) was performed to establish their usability. Four experimental and two computational methods were evaluated. It was shown that repeatability of the reported permeability measurement is not great even for the same method. For the PAMPA method, two different permeabilities are reported: intrinsic and apparent. They can vary in degrees of magnitude; thus, we suggest being extra cautious using literature data on permeability. When we compared data for the same molecules using different methods, the best agreement was between cell-based methods and between BLM and computational methods. Existence of unstirred water layer (UWL) permeability limits the data agreement between cell-based methods (and apparent PAMPA) with data that are not limited by UWL permeability (computational methods, BLM, intrinsic PAMPA). Therefore, different methods have different limitations. Cell-based methods provide results only in a small range of permeabilities (-8 to -4 in cm/s), and computational methods can predict a wider range of permeabilities beyond physical limitations, but their precision is therefore limited. BLM with liposomes can be used for both fast and slow permeating molecules, but its usage is more complicated than standard transwell techniques. To sum up, when working with in-house measured or published permeability data, we recommend caution in interpreting and combining them.
Collapse
Affiliation(s)
- Kateřina Storchmannová
- Department
of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Martin Balouch
- Department
of Chemical Engineering, University of Chemistry
and Technology, Technická 3, Prague 6, 166 28 Prague, Czech Republic
- Zentiva,
k.s., U. Kabelovny 130, Prague 10, 102 00 Prague, Czech Republic
| | - Jakub Juračka
- Department
of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Department
of Computer Science, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - František Štěpánek
- Department
of Chemical Engineering, University of Chemistry
and Technology, Technická 3, Prague 6, 166 28 Prague, Czech Republic
| | - Karel Berka
- Department
of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
2
|
Nath H, Kundu S. Protein (Lysozyme) Concentration-Dependent Structure, Morphology, and Hysteresis Behavior of a Three-Component (Lysozyme-DMPA-Cholesterol) Protein-Lipid Langmuir Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3865-3876. [PMID: 39904633 DOI: 10.1021/acs.langmuir.4c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Protein (lysozyme)-lipid (DMPA and cholesterol) three-component mixed films (LDC) with varied lysozyme concentration (i.e., LDC_Lx) are investigated at the air-water interface. Elastic modulus-surface pressure (Cs-1-Π) curves derived from Π-A isotherms show that mechanical behavior is strongly dependent on the monolayer composition, and for the same reason, the hysteresis behavior modifies. It is evidenced that the LDC_L0.3 monolayer (lysozyme: 0.3 mg/mL) has significant hysteresis, which is reversible in nature, while the other mixed monolayers do not show such hysteresis behavior. Morphology at the air-water interface via Brewster angle microscopy (BAM) and at the air-solid interface via atomic force microscopy (AFM) shows that the presence of protein in the LDC_Lx monolayer modifies the lateral distribution of molecules, thereby forming a stripe-like pattern at the air-water interface (in optical length scale) with barrier compression or root-like structure on the solid surface at higher Π (in micron length scale), which is not observed in the case of lipid films. Moreover, lysozyme-added LDC_Lx films show an increase in thickness with compression, which is not observed for lipid films, as evidenced from the electron density profiles (EDPs). The morphology modification and thickness variation of LDC_Lx films with compression are most probably due to the reorientation of lysozyme molecules. This structural modification in LDC_Lx films with Π, however, seems to be reversible under expansion, as can be evidenced from the similar in situ morphology observation and similar thickness of the films deposited during both first and second compression. A variation in the strength of interaction forces among film-forming molecules depending on the monolayer composition basically affects the lateral distribution and organizational orientation with surface pressure, thus ultimately influencing macroscopically the monolayer properties such as elastic, hysteresis, morphological, and structural on water and solid surfaces.
Collapse
Affiliation(s)
- Himadri Nath
- Soft Nano Laboratory (SNL), Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarathi Kundu
- Soft Nano Laboratory (SNL), Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Šimonová A, Balouch M, Štěpánek F, Křížek T. Investigating drug-liposome interactions using liposomal electrokinetic chromatography. Anal Bioanal Chem 2025:10.1007/s00216-025-05783-6. [PMID: 39939418 DOI: 10.1007/s00216-025-05783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
This study explores the potential of using liposomal electrokinetic chromatography as a ranking method for the rapid and simultaneous evaluation of drug-membrane interactions of a larger group of substances and assessing their sensitivity to tissue-specific parameters, namely pH, temperature, and lipid composition. We used a group of nine model drug substances to manifest how molecules could be classified for the relative sensitivity of drug-membrane interactions to pH and temperature. We observed that increasing the amount of liposomes in the background electrolyte significantly affected the separation kinetics of various active pharmaceutical ingredients, altering their mobility and/or peak shapes. Experiments with liposomes from bovine liver and heart tissue extracts revealed different interactions based on the lipid composition. Canagliflozin, which initially showed no electrophoretic mobility, migrated toward the anode in the presence of negatively charged liposomes. Mobility of positively charged substances, ambroxol and maraviroc, was suppressed by the interactions with liposomes. Their peaks also exhibited significant tailing. The effect on the separation of negatively charged compounds was significantly weaker. A small change in mobility was observed only in the case of deferasirox. We also examined the effect of temperature during separation, and we observed that increased temperature generally enhanced effective mobility due to lower electrolyte viscosity and increased lipid bilayer fluidity. Lastly, we tested the effect of sodium phosphate buffer pH (ranging from 6.0 to 8.0) with 4% liposomes on drug-liposome interactions. However, the effects were complex due to changes in API ionization and liposome surface charge, complicating the distinction between pH effects and liposome presence on API behavior. Our findings emphasize the significance of liposome composition, temperature, and pH in studying the interactions of liposomes with drugs, which is crucial for optimizing liposome-based drug delivery systems.
Collapse
Affiliation(s)
- Alice Šimonová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 00, Czech Republic
- Zentiva, K.S., U Kabelovny 130, Prague 10, 102 37, Czech Republic
| | - Martin Balouch
- Zentiva, K.S., U Kabelovny 130, Prague 10, 102 37, Czech Republic
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 5, Prague 6, 166 28, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 5, Prague 6, 166 28, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
4
|
Alcaraz A, Nieva JL. Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization. Q Rev Biophys 2025; 58:e1. [PMID: 39806799 DOI: 10.1017/s0033583524000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
5
|
Coronado S, Herrera J, Pino MG, Martín S, Ballesteros-Rueda L, Cea P. Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1489. [PMID: 39330645 PMCID: PMC11434481 DOI: 10.3390/nano14181489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Cell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes-comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)-along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
Collapse
Affiliation(s)
- Sara Coronado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Johan Herrera
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - María Graciela Pino
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luz Ballesteros-Rueda
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Yang X, Yang J, Wei L, Zhang Y, Yang J, Ni M, Dong Y. Formation of a planar biomimetic membrane with a novel zwitterionic polymer for nanopore sequencing. J Mater Chem B 2024; 12:8189-8199. [PMID: 39082061 DOI: 10.1039/d4tb01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Biological membranes containing transmembrane channels play a crucial role in numerous cellular processes, and mimicking of cell membranes has garnered significant interest in various biomedical applications, particularly nanopore sequencing technology, where remarkable progress has been made with nanopore membranes. Considering the fragility of biomimetic membranes formed by artificial lipids and the limited mimicry of those formed by common block copolymers, this study developed a novel amphiphilic polymer by covalently linking hydrophilic heads of phospholipids to the ends of hydrophobic poly(dimethyl siloxane) (PDMS) chains. The absence of hydrophilic blocks allowed for good control over the polydispersity of this polymer within a narrow range. The high flexibility of PDMS chains, combined with relatively uniform molecular weights, would confer enhanced stability and robustness to polymeric membranes. Dynamic light scattering measurements and microdroplet formation tests demonstrated good amphipathic properties of these novel polymers when maintaining an appropriate hydrophilic-hydrophobic ratio. Moreover, the high similarity between the hydrophilic heads and natural phospholipids makes this polymer more compatible with biomolecules. A successful protein insertion experiment confirmed both the stability of this polymeric membrane and its compatibility with membrane proteins. As a result, this novel amphiphilic polymer exhibits great potential for biomembrane mimicking and paves a new path for material design in biomedical applications.
Collapse
Affiliation(s)
| | | | - Lai Wei
- BGI Research, Shenzhen 518083, China.
| | | | | | - Ming Ni
- BGI Research, Shenzhen 518083, China.
| | | |
Collapse
|
7
|
Sproncken CCM, Liu P, Monney J, Fall WS, Pierucci C, Scholten PBV, Van Bueren B, Penedo M, Fantner GE, Wensink HH, Steiner U, Weder C, Bruns N, Mayer M, Ianiro A. Large-area, self-healing block copolymer membranes for energy conversion. Nature 2024; 630:866-871. [PMID: 38839964 PMCID: PMC11208134 DOI: 10.1038/s41586-024-07481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
Membranes are widely used for separation processes in applications such as water desalination, batteries and dialysis, and are crucial in key sectors of our economy and society1. The majority of technologically exploited membranes are based on solid polymers and function as passive barriers, whose transport characteristics are governed by their chemical composition and nanostructure. Although such membranes are ubiquitous, it has proved challenging to maximize selectivity and permeability independently, leading to trade-offs between these pertinent characteristics2. Self-assembled biological membranes, in which barrier and transport functions are decoupled3,4, provide the inspiration to address this problem5,6. Here we introduce a self-assembly strategy that uses the interface of an aqueous two-phase system to template and stabilize molecularly thin (approximately 35 nm) biomimetic block copolymer bilayers of scalable area that can exceed 10 cm2 without defects. These membranes are self-healing, and their barrier function against the passage of ions (specific resistance of approximately 1 MΩ cm2) approaches that of phospholipid membranes. The fluidity of these membranes enables straightforward functionalization with molecular carriers that shuttle potassium ions down a concentration gradient with exquisite selectivity over sodium ions. This ion selectivity enables the generation of electric power from equimolar solutions of NaCl and KCl in devices that mimic the electric organ of electric rays.
Collapse
Affiliation(s)
- Christian C M Sproncken
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Peng Liu
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Justin Monney
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - William S Fall
- Laboratoire de Physique des Solides - UMR 8502, CNRS, Université Paris-Saclay, Orsay, France
| | - Carolina Pierucci
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Philip B V Scholten
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Brian Van Bueren
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Marcos Penedo
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Georg Ernest Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Henricus H Wensink
- Laboratoire de Physique des Solides - UMR 8502, CNRS, Université Paris-Saclay, Orsay, France
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Nico Bruns
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland.
| | - Alessandro Ianiro
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
8
|
Kleinheinz D, D’Onofrio C, Carraher C, Bozdogan A, Ramach U, Schuster B, Geiß M, Valtiner M, Knoll W, Andersson J. Activity of Single Insect Olfactory Receptors Triggered by Airborne Compounds Recorded in Self-Assembled Tethered Lipid Bilayer Nanoarchitectures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46655-46667. [PMID: 37753951 PMCID: PMC10571041 DOI: 10.1021/acsami.3c09304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Membrane proteins are among the most difficult to study as they are embedded in the cellular membrane, a complex and fragile environment with limited experimental accessibility. To study membrane proteins outside of these environments, model systems are required that replicate the fundamental properties of the cellular membrane without its complexity. We show here a self-assembled lipid bilayer nanoarchitecture on a solid support that is stable for several days at room temperature and allows the measurement of insect olfactory receptors at the single-channel level. Using an odorant binding protein, we capture airborne ligands and transfer them to an olfactory receptor from Drosophila melanogaster (OR22a) complex embedded in the lipid membrane, reproducing the complete olfaction process in which a ligand is captured from air and transported across an aqueous reservoir by an odorant binding protein and finally triggers a ligand-gated ion channel embedded in a lipid bilayer, providing direct evidence for ligand capture and olfactory receptor triggering facilitated by odorant binding proteins. This model system presents a significantly more user-friendly and robust platform to exploit the extraordinary sensitivity of insect olfaction for biosensing. At the same time, the platform offers a new opportunity for label-free studies of the olfactory signaling pathways of insects, which still have many unanswered questions.
Collapse
Affiliation(s)
- David Kleinheinz
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
| | - Chiara D’Onofrio
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
| | - Colm Carraher
- The
New Zealand Institute for Plant and Food Research, 120 Mount Albert Road, Sandringham, Auckland 1025, New Zealand
| | - Anil Bozdogan
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
| | - Ulrich Ramach
- Technische
Universität Wien, Wiedner Hauptstr. 8-10/134, Wien 1040, Austria
- CEST
Kompetenzzentrum für Oberflächentechnologie, Viktor Kaplan-Straße 2, Wiener Neustadt 2700, Austria
| | - Bernhard Schuster
- Department
of Bionanosciences, Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences
(BOKU), Muthgasse 11, Vienna 1190, Austria
| | - Manuela Geiß
- Software
Competence Center Hagenberg GmbH, Softwarepark 32a, Hagenberg 4232, Austria
| | - Markus Valtiner
- Technische
Universität Wien, Wiedner Hauptstr. 8-10/134, Wien 1040, Austria
| | - Wolfgang Knoll
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- Danube
Private University, Steiner
Landstraße 124, Krems an der Donau 3500, Austria
| | - Jakob Andersson
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- Technische
Universität Wien, Wiedner Hauptstr. 8-10/134, Wien 1040, Austria
| |
Collapse
|
9
|
Sanram S, Aunkham A, Robinson R, Suginta W. Structural displacement model of chitooligosaccharide transport through chitoporin. J Biol Chem 2023; 299:105000. [PMID: 37394001 PMCID: PMC10406626 DOI: 10.1016/j.jbc.2023.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
VhChiP is a chitooligosaccharide-specific porin identified in the outer membrane of Vibrio campbellii type strain American Type Culture Collection BAA 1116. VhChiP contains three identical subunits, and in each subunit, the 19-amino acid N-terminal segment serves as a molecular plug (the "N-plug") that controls the closed/open dynamics of the neighboring pores. In this study, the crystal structures of VhChiP lacking the N-plug were determined in the absence and presence of chitohexaose. Binding studies of sugar-ligand interactions by single-channel recordings and isothermal microcalorimetry experiments suggested that the deletion of the N-plug peptide significantly weakened the sugar-binding affinity due to the loss of hydrogen bonds around the central affinity sites. Steered molecular dynamic simulations revealed that the movement of the sugar chain along the sugar passage triggered the ejection of the N-plug, while the H-bonds transiently formed between the reducing end GlcNAc units of the sugar chain with the N-plug peptide may help to facilitate sugar translocation. The findings enable us to propose the structural displacement model, which enables us to understand the molecular basis of chitooligosaccharide uptake by marine Vibrio bacteria.
Collapse
Affiliation(s)
- Surapoj Sanram
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
10
|
Andersson J, Kleinheinz D, Ramach U, Kiesenhofer N, Ashenden A, Valtiner M, Holt S, Koeper I, Schmidpeter PAM, Knoll W. Native Function of the Bacterial Ion Channel SthK in a Sparsely Tethered Lipid Bilayer Membrane Architecture. J Phys Chem B 2023; 127:3641-3650. [PMID: 37072125 PMCID: PMC10150356 DOI: 10.1021/acs.jpcb.2c07252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The plasma membrane protects the interiors of cells from their surroundings and also plays a critical role in communication, sensing, and nutrient import. As a result, the cell membrane and its constituents are among the most important drug targets. Studying the cell membrane and the processes it facilitates is therefore crucial, but it is a highly complex environment that is difficult to access experimentally. Various model membrane systems have been developed to provide an environment in which membrane proteins can be studied in isolation. Among them, tethered bilayer lipid membranes (tBLMs) are a promising model system providing a solvent-free membrane environment which can be prepared by self-assembly, is resistant to mechanical disturbances and has a high electrical resistance. tBLMs are therefore uniquely suitable to study ion channels and charge transport processes. However, ion channels are often large, complex, multimeric structures and their function requires a particular lipid environment. In this paper, we show that SthK, a bacterial cyclic nucleotide gated (CNG) ion channel that is strongly dependent on the surrounding lipid composition, functions normally when embedded into a sparsely tethered lipid bilayer. As SthK has been very well characterized in terms of structure and function, it is well-suited to demonstrate the utility of tethered membrane systems. A model membrane system suitable for studying CNG ion channels would be useful, as this type of ion channel performs a wide range of physiological functions in bacteria, plants, and mammals and is therefore of fundamental scientific interest as well as being highly relevant to medicine.
Collapse
Affiliation(s)
- Jakob Andersson
- Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - David Kleinheinz
- Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Ulrich Ramach
- Technische Universität Wien, Wiedner Hauptstr. 8-10/134, 1040 Wien, Austria
- CEST Kompetenzzentrum für Oberflächentechnologie, Viktor Kaplan-Straße 2, 2700 Wiener Neustadt, Austria
| | | | - Alex Ashenden
- Flinders University of South Australia, Bedford Park SA, 5042 Adelaide, Australia
| | - Markus Valtiner
- Technische Universität Wien, Wiedner Hauptstr. 8-10/134, 1040 Wien, Austria
- CEST Kompetenzzentrum für Oberflächentechnologie, Viktor Kaplan-Straße 2, 2700 Wiener Neustadt, Austria
| | - Stephen Holt
- Australian Nuclear Science and Technology Organization, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Ingo Koeper
- Flinders University of South Australia, Bedford Park SA, 5042 Adelaide, Australia
| | - Philipp A M Schmidpeter
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, New York 10065, United States
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
- Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| |
Collapse
|
11
|
Porras-Gómez M, Kim H, Dronadula MT, Kambar N, Metellus CJB, Aluru NR, van der Zande A, Leal C. Multiscale compression-induced restructuring of stacked lipid bilayers: From buckling delamination to molecular packing. PLoS One 2022; 17:e0275079. [PMID: 36490254 PMCID: PMC9733850 DOI: 10.1371/journal.pone.0275079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Lipid membranes in nature adapt and reconfigure to changes in composition, temperature, humidity, and mechanics. For instance, the oscillating mechanical forces on lung cells and alveoli influence membrane synthesis and structure during breathing. However, despite advances in the understanding of lipid membrane phase behavior and mechanics of tissue, there is a critical knowledge gap regarding the response of lipid membranes to micromechanical forces. Most studies of lipid membrane mechanics use supported lipid bilayer systems missing the structural complexity of pulmonary lipids in alveolar membranes comprising multi-bilayer interconnected stacks. Here, we elucidate the collective response of the major component of pulmonary lipids to strain in the form of multi-bilayer stacks supported on flexible elastomer substrates. We utilize X-ray diffraction, scanning probe microscopy, confocal microscopy, and molecular dynamics simulation to show that lipid multilayered films both in gel and fluid states evolve structurally and mechanically in response to compression at multiple length scales. Specifically, compression leads to increased disorder of lipid alkyl chains comparable to the effect of cholesterol on gel phases as a direct result of the formation of nanoscale undulations in the lipid multilayers, also inducing buckling delamination and enhancing multi-bilayer alignment. We propose this cooperative short- and long-range reconfiguration of lipid multilayered films under compression constitutes a mechanism to accommodate stress and substrate topography. Our work raises fundamental insights regarding the adaptability of complex lipid membranes to mechanical stimuli. This is critical to several technologies requiring mechanically reconfigurable surfaces such as the development of electronic devices interfacing biological materials.
Collapse
Affiliation(s)
- Marilyn Porras-Gómez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mohan Teja Dronadula
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Nurila Kambar
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christopher J. B. Metellus
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Narayana R. Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Arend van der Zande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America,* E-mail: (AZ); (CL)
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America,* E-mail: (AZ); (CL)
| |
Collapse
|
12
|
Dronadula MT, Aluru NR. Phospholipid Monolayer/Graphene Interfaces: Curvature Effect on Lipid Morphology and Dynamics. J Phys Chem B 2022; 126:6261-6270. [PMID: 35951540 DOI: 10.1021/acs.jpcb.2c00896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholipids are an important class of lipids that are widely used as model platforms for the study of biological processes and interactions. These lipids can form stable interfaces with solid substrates, such as graphene, and these interfaces have potential applications in biosensing and targeted drug delivery. In this paper, we perform molecular dynamics simulations of graphene-supported lipid monolayers to characterize the lipid properties of such interfaces. We observed substantial differences between the supported monolayer and free-standing bilayer in terms of the lipid properties, such as the tail order parameters, density profiles, diffusion rates, and so on. Furthermore, we studied these interfaces on sinusoidally deformed graphene substrates to understand the effect of curvature on the supported lipids. Here, we observed that the nature of the substrate curvature, that is, concave or convex, can locally affect the lipid/substrate adhesion strength and induce structural and dynamic changes in the adsorbed lipid monolayer. Together, these results help characterize the properties of lipid/graphene interfaces and provide insights into the substrate curvature effect on these interfaces, which can enable the tuning of lipid properties for various sensor devices and drug delivery applications.
Collapse
Affiliation(s)
- Mohan Teja Dronadula
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - N R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Scheidegger L, Stricker L, Beltramo PJ, Vermant J. Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids. J Phys Chem B 2022; 126:5842-5854. [PMID: 35895895 PMCID: PMC9377339 DOI: 10.1021/acs.jpcb.2c02862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Indexed: 11/29/2022]
Abstract
The formation of domains in multicomponent lipid mixtures has been suggested to play a role in moderating signal transduction in cells. Understanding how domain size may be regulated by both hybrid lipid molecules and impurities is important for understanding real biological processes; at the same time, developing model systems where domain size can be regulated is crucial to enable systematic studies of domain formation kinetics and thermodynamics. Here, we perform a model study of the effects of oil molecules, which swell the bilayer, and line-active hybrid phospholipids using a thermally induced liquid-solid phase separation in planar, free-standing lipid bilayers consisting of DOPC and DPPC (1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, respectively). The experiments show that the kinetics of domain growth are significantly affected by the type and molecular structure of the oil (squalene, hexadecane, or decane), with the main contributing factors being the degree of swelling of the bilayer and the changes in line tension induced by the different oils, with smaller domains resulting from systems with smaller values of the line tension. POPC (1-palmitoyl-sn-2-oleoyl-glycero-3-phosphocholine), on the other hand, acts as a line-active hybrid lipid, reducing the domain size when added in small amounts and slowing down domain coarsening. Finally, we show that despite the regulation of domain size by both methods, the phase transition temperature is influenced by the presence of oil molecules but not significantly by the presence of hybrid lipids. Overall, our results show how to regulate domain size in binary membrane model systems, over a wide range of length scales, by incorporating oil molecules and hybrid lipids.
Collapse
Affiliation(s)
- Laura Scheidegger
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Laura Stricker
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Peter J. Beltramo
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Jan Vermant
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Naruse T, Yamada Y, Sowa K, Kitazumi Y, Shirai O. Ion transport across bilayer lipid membranes in the presence of tetraphenylborate. ANAL SCI 2022; 38:683-688. [DOI: 10.1007/s44211-022-00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 11/01/2022]
|
15
|
Labbé E, Buriez O. Electrode‐supported and free‐standing bilayer lipid membranes: Formation and uses in molecular electrochemistry. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eric Labbé
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University Sorbonne Université CNRS Paris 75005 France
| | - Olivier Buriez
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University Sorbonne Université CNRS Paris 75005 France
| |
Collapse
|
16
|
Jurek I, Szuplewska A, Chudy M, Wojciechowski K. Effect of the oat, horse chestnut, cowherb, soy, quinoa and soapwort extracts on skin‐mimicking monolayers and cell lines. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ilona Jurek
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| | | | - Michał Chudy
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| | - Kamil Wojciechowski
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
- SaponLabs Ltd. Warsaw Poland
| |
Collapse
|
17
|
Liu P, Zabala-Ferrera O, Beltramo PJ. Fabrication and electromechanical characterization of freestanding asymmetric membranes. Biophys J 2021; 120:1755-1764. [PMID: 33675759 PMCID: PMC8204216 DOI: 10.1016/j.bpj.2021.02.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
All biological cell membranes maintain an electric transmembrane potential of around 100 mV, due in part to an asymmetric distribution of charged phospholipids across the membrane. This asymmetry is crucial to cell health and physiological processes such as intracell signaling, receptor-mediated endocytosis, and membrane protein function. Experimental artificial membrane systems incorporate essential cell membrane structures, such as the phospholipid bilayer, in a controllable manner in which specific properties and processes can be isolated and examined. Here, we describe an approach to fabricate and characterize planar, freestanding, asymmetric membranes and use it to examine the effect of headgroup charge on membrane stiffness. The approach relies on a thin film balance used to form a freestanding membrane by adsorbing aqueous phase lipid vesicles to an oil-water interface and subsequently thinning the oil to form a bilayer. We validate this lipid-in-aqueous approach by analyzing the thickness and compressibility of symmetric membranes with varying zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and anionic 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG) content as compared with previous lipid-in-oil methods. We find that as the concentration of DOPG increases, membranes become thicker and stiffer. Asymmetric membranes are fabricated by controlling the lipid vesicle composition in the aqueous reservoirs on either side of the oil. Membrane compositional asymmetry is qualitatively demonstrated using a fluorescence quenching assay and quantitatively characterized through voltage-dependent capacitance measurements. Stable asymmetric membranes with DOPC on one side and DOPC-DOPG mixtures on the other were created with transmembrane potentials ranging from 15 to 80 mV. Introducing membrane charge asymmetry decreases both the thickness and stiffness in comparison with symmetric membranes with the same overall phospholipid composition. These initial successes demonstrate a viable pathway to quantitatively characterize asymmetric bilayers that can be extended to accommodate more complex membranes and membrane processes in the future.
Collapse
Affiliation(s)
- Paige Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Oscar Zabala-Ferrera
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
18
|
Membrane interactions in drug delivery: Model cell membranes and orthogonal techniques. Adv Colloid Interface Sci 2020; 281:102177. [PMID: 32417568 DOI: 10.1016/j.cis.2020.102177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/05/2020] [Accepted: 05/07/2020] [Indexed: 01/22/2023]
Abstract
To generate the desired effect in the human body, the active pharmaceutical ingredient usually needs to interact with a receptor located on the cell membrane or inside the cell. Thus, understanding membrane interactions is of great importance when it comes to the development and testing of new drug molecules or new drug delivery systems. Nowadays, there is a tremendous selection of both model cell membranes and of techniques that can be used to characterize interactions between selected model cell membranes and a drug molecule, an excipient, or a drug delivery system. Having such a wide selection of model cell membranes and techniques available makes it sometimes challenging to select the optimal combination for a specific study. Furthermore, it is difficult to compare results obtained using different model cell membranes and techniques, and not all in vitro studies translate as well to an estimation of the in vivo biological activity or understanding of mode of action. This review provides an overview of the available lipid bilayer-based model cell membranes and of the most widely employed techniques for studying membrane interactions. Finally, the need for employing complimentary characterization techniques in order to acquire more reliable and in-depth information is highlighted.
Collapse
|
19
|
Application of N-methyl-D-aspartate receptor nanopore in screening ligand molecules. Bioelectrochemistry 2020; 134:107534. [PMID: 32335354 DOI: 10.1016/j.bioelechem.2020.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are crucial for excitatory synaptic transmission in the central nervous system. To study NMDARs more accurately and conveniently, we developed a stable NMDAR nanopore in a planar lipid bilayer. Pharmacological properties were validated using the allosteric modulator Ro 25-6981 and antagonist D-2-amino-5-phosphonopentanoic acid (D-APV). The cyanotoxin β-N-methylamino-L-alanine (BMAA) found in fresh water systems is suspected to be associated with the development of neurodegenerative diseases. Therefore, BMAA and its two isomers L-2, 4-Diaminobutyric acid dihydrochloride (DAB) and N-(2-aminoethyl) glycine (AEG) and an endogenous excitotoxin, quinolinic acid (QA), were studied using the NMDAR nanopores to assess their effects on NMDAR modulation. We demonstrated that the NMDAR nanopore could reliably detect its ligand molecules at the single-channel level. The study also demonstrated the practicability of NMDAR nanopores, and results were validated using two-electrode voltage-clamp (TEVC) recording. Compared with TEVC recording, the NMDAR nanopores conducted ion channel gating at the single-channel level without being affected by other proteins on the cell membrane. The highly sensitive and accurate NMDAR nanopore technique thus has a unique advantage in screening NMDAR ligand molecules that could be associated with neurodegenerative disease.
Collapse
|
20
|
Yamaguchi T, Kitazumi Y, Kano K, Shirai O. Permselectivity of Gramicidin A Channels Based on Single‐channel Recordings. ELECTROANAL 2020. [DOI: 10.1002/elan.201900684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Takuya Yamaguchi
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
21
|
Abstract
Nanosciences are distinguished by the cross-fertilization of biology, chemistry, material sciences, and solid-state physics and, hence, open up a great variety of new opportunities for innovation. The technological utilization of self-assembly systems, wherein molecules spontaneously associate under equilibrium conditions into reproducible supramolecular structures, is one key challenge in nanosciences for life and non-life science applications. The attractiveness of such processes is due to their ability to build uniform, ultra-small functional units with predictable properties down to the nanometer scale. Moreover, newly developed techniques and methods open up the possibility to exploit these structures at meso- and macroscopic scale. An immense significance at innovative approaches for the self-assembly of supramolecular structures and devices with dimensions of a few to tens of nanometers constitutes the utilization of crystalline bacterial cell surface proteins. The latter have proven to be particularly suited as building blocks in a molecular construction kit comprising of all major classes of biological molecules. The controlled immobilization of biomolecules in an ordered fashion on solid substrates and their directed confinement in definite areas of nanometer dimensions are key requirements for many applications including the development of bioanalytical sensors, biochips, molecular electronics, biocompatible surfaces, and signal processing between functional membranes, cells, and integrated circuits.
Collapse
Affiliation(s)
- Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Uwe B Sleytr
- Department of NanoBiotechnology, Institute for Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
22
|
Anand D, Dhoke GV, Gehrmann J, Garakani TM, Davari MD, Bocola M, Zhu L, Schwaneberg U. Chiral separation of d/l-arginine with whole cells through an engineered FhuA nanochannel. Chem Commun (Camb) 2019; 55:5431-5434. [PMID: 30916680 DOI: 10.1039/c9cc00154a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Downstream processing to obtain enantiopure compounds from a racemic mixture relies mainly on crystallization. Natural transporters can specifically translocate enantiomers through membranes. Here a β-barrel transmembrane protein FhuA is re-engineered into a chiral channel protein (FhuAF4) to resolve racemic mixtures of d-/l-arginine. The engineered FhuAF4 variant exhibits an enantioselectivity (E-value) of 1.92 and an enantiomeric excess percentage (ee%) of 23.91 at 52.39% conversion. OmniChange mutant libraries at the computationally identified "filter-regions" likely help to identify FhuA variants for enantiomeric separation of other compounds.
Collapse
Affiliation(s)
- Deepak Anand
- Institute of Biotechnology, RWTH Aachen University Worringer Weg 3, D-52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Heo P, Ramakrishnan S, Coleman J, Rothman JE, Fleury JB, Pincet F. Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D-Printed Microfluidic Setup. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900725. [PMID: 30977975 DOI: 10.1002/smll.201900725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Experimental setups to produce and to monitor model membranes have been successfully used for decades and brought invaluable insights into many areas of biology. However, they all have limitations that prevent the full in vitro mimicking and monitoring of most biological processes. Here, a suspended physiological bilayer-forming chip is designed from 3D-printing techniques. This chip can be simultaneously integrated to a confocal microscope and a path-clamp amplifier. It is composed of poly(dimethylsiloxane) and consists of a ≈100 µm hole, where the horizontal planar bilayer is formed, connecting two open crossed-channels, which allows for altering of each lipid monolayer separately. The bilayer, formed by the zipping of two lipid leaflets, is free-standing, horizontal, stable, fluid, solvent-free, and flat with the 14 types of physiologically relevant lipids, and the bilayer formation process is highly reproducible. Because of the two channels, asymmetric bilayers can be formed by making the two lipid leaflets of different composition. Furthermore, proteins, such as transmembrane, peripheral, and pore-forming proteins, can be added to the bilayer in controlled orientation and keep their native mobility and activity. These features allow in vitro recapitulation of membrane process close to physiological conditions.
Collapse
Affiliation(s)
- Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
| | - Sathish Ramakrishnan
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James E Rothman
- Ecole Normale Supérieure, PSL University, Paris, 75005, France
| | - Jean-Baptiste Fleury
- Department of Experimental Physics and Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
| |
Collapse
|
24
|
Puiggalí-Jou A, Del Valle LJ, Alemán C. Biomimetic hybrid membranes: incorporation of transport proteins/peptides into polymer supports. SOFT MATTER 2019; 15:2722-2736. [PMID: 30869096 DOI: 10.1039/c8sm02513d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular sensing, water purification and desalination, drug delivery, and DNA sequencing are some striking applications of biomimetic hybrid membranes. These devices take advantage of biomolecules, which have gained excellence in their specificity and efficiency during billions of years, and of artificial materials that load the purified biological molecules and provide technological properties, such as robustness, scalability, and suitable nanofeatures to confine the biomolecules. Recent methodological advances allow more precise control of polymer membranes that support the biomacromolecules, and are expected to improve the design of the next generation of membranes as well as their applicability. In the first section of this review we explain the biological relevance of membranes, membrane proteins, and the classification used for the latter. After this, we critically analyse the different approaches employed for the production of highly selective hybrid membranes, focusing on novel materials made of self-assembled block copolymers and nanostructured polymers. Finally, a summary of the advantages and disadvantages of the different methodologies is presented and the main characteristics of biomimetic hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| |
Collapse
|
25
|
Alghalayini A, Garcia A, Berry T, Cranfield CG. The Use of Tethered Bilayer Lipid Membranes to Identify the Mechanisms of Antimicrobial Peptide Interactions with Lipid Bilayers. Antibiotics (Basel) 2019; 8:antibiotics8010012. [PMID: 30704119 PMCID: PMC6466558 DOI: 10.3390/antibiotics8010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Abstract
This review identifies the ways in which tethered bilayer lipid membranes (tBLMs) can be used for the identification of the actions of antimicrobials against lipid bilayers. Much of the new research in this area has originated, or included researchers from, the southern hemisphere, Australia and New Zealand in particular. More and more, tBLMs are replacing liposome release assays, black lipid membranes and patch-clamp electrophysiological techniques because they use fewer reagents, are able to obtain results far more quickly and can provide a uniformity of responses with fewer artefacts. In this work, we describe how tBLM technology can and has been used to identify the actions of numerous antimicrobial agents.
Collapse
Affiliation(s)
- Amani Alghalayini
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Alvaro Garcia
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Thomas Berry
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Charles G Cranfield
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
26
|
Fusion assays for model membranes: a critical review. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2019. [DOI: 10.1016/bs.abl.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
27
|
Sahoo A, Matysiak S. Computational insights into lipid assisted peptide misfolding and aggregation in neurodegeneration. Phys Chem Chem Phys 2019; 21:22679-22694. [DOI: 10.1039/c9cp02765c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An overview of recent advances in computational investigation of peptide–lipid interactions in neurodegeneration – Alzheimer's, Parkinson's and Huntington's disease.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program
- Institute of Physical Science and Technology
- University of Maryland
- College Park
- USA
| | - Silvina Matysiak
- Biophysics Program
- Institute of Physical Science and Technology
- University of Maryland
- College Park
- USA
| |
Collapse
|
28
|
Belardi B, Son S, Vahey MD, Wang J, Hou J, Fletcher DA. Claudin-4 reconstituted in unilamellar vesicles is sufficient to form tight interfaces that partition membrane proteins. J Cell Sci 2018; 132:jcs.221556. [PMID: 30209136 DOI: 10.1242/jcs.221556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/01/2018] [Indexed: 01/05/2023] Open
Abstract
Tight junctions have been hypothesized to act as molecular fences in the plasma membrane of epithelial cells, helping to form differentiated apical and basolateral domains. While this fence function is believed to arise from the interaction of four-pass transmembrane claudins, the complexity of tight junctions has made direct evidence of their role as a putative diffusion barrier difficult to obtain. Here, we address this challenge by reconstituting claudin-4 into giant unilamellar vesicles using microfluidic jetting. We find that reconstituted claudin-4 alone can form adhesive membrane interfaces without the accessory proteins that are present in vivo By controlling the molecular composition of the inner and outer leaflets of jetted vesicle membranes, we show that claudin-4-mediated interfaces can drive partitioning of extracellular membrane proteins with ectodomains as small as 5 nm but not of inner or outer leaflet lipids. Our findings indicate that homotypic interactions of claudins and their small size can contribute to the polarization of epithelial cells.
Collapse
Affiliation(s)
- Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Sungmin Son
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Michael D Vahey
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Jinzhi Wang
- Department of Internal Medicine & Center for Investigation of Membrane Excitability Disease, Washington University Medical School, St. Louis, MO 63110, USA
| | - Jianghui Hou
- Department of Internal Medicine & Center for Investigation of Membrane Excitability Disease, Washington University Medical School, St. Louis, MO 63110, USA
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA .,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
29
|
Soysa HSM, Suginta W, Moonsap W, Smith MF. Chitosugar translocation by an unexpressed monomeric protein channel. Phys Rev E 2018; 97:052417. [PMID: 29906877 DOI: 10.1103/physreve.97.052417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Indexed: 12/14/2022]
Abstract
The outer membrane protein channel EcChiP, associated with a silent gene in E. coli, is a monomeric chitoporin. In a glucose-deficient environment, E. coli can express the ChiP gene to exploit chitin degradation products. Single-channel small ion current measurements, which reveal the dynamics of single sugar molecules trapped in channel, are used here to study the exotic transport of chitosugars by E. coli. Molecules escape from the channel on multiple timescales. Voltage-dependent trapping rates observed for charged chitosan molecules, as well as model calculations, indicate that the rapid escape processes are those in which the molecule escapes back to the side of the membrane from which it originated. The probability that a sugar molecule is translocated through the membrane is thus estimated from the current data and the dependence of this translocation probability on the length of the chitosugar molecule and the applied voltage analyzed. The described method for obtaining the translocation probability and related molecular translocation current is applicable to other transport channels.
Collapse
Affiliation(s)
- H Sasimali M Soysa
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wipa Suginta
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Watcharaporn Moonsap
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - M F Smith
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
30
|
Block S. Brownian Motion at Lipid Membranes: A Comparison of Hydrodynamic Models Describing and Experiments Quantifying Diffusion within Lipid Bilayers. Biomolecules 2018; 8:biom8020030. [PMID: 29789471 PMCID: PMC6023006 DOI: 10.3390/biom8020030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
The capability of lipid bilayers to exhibit fluid-phase behavior is a fascinating property, which enables, for example, membrane-associated components, such as lipids (domains) and transmembrane proteins, to diffuse within the membrane. These diffusion processes are of paramount importance for cells, as they are for example involved in cell signaling processes or the recycling of membrane components, but also for recently developed analytical approaches, which use differences in the mobility for certain analytical purposes, such as in-membrane purification of membrane proteins or the analysis of multivalent interactions. Here, models describing the Brownian motion of membrane inclusions (lipids, peptides, proteins, and complexes thereof) in model bilayers (giant unilamellar vesicles, black lipid membranes, supported lipid bilayers) are summarized and model predictions are compared with the available experimental data, thereby allowing for evaluating the validity of the introduced models. It will be shown that models describing the diffusion in freestanding (Saffman-Delbrück and Hughes-Pailthorpe-White model) and supported bilayers (the Evans-Sackmann model) are well supported by experiments, though only few experimental studies have been published so far for the latter case, calling for additional tests to reach the same level of experimental confirmation that is currently available for the case of freestanding bilayers.
Collapse
Affiliation(s)
- Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
31
|
Khmelinskaia A, Mücksch J, Conci F, Chwastek G, Schwille P. FCS Analysis of Protein Mobility on Lipid Monolayers. Biophys J 2018; 114:2444-2454. [PMID: 29605081 DOI: 10.1016/j.bpj.2018.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 02/01/2023] Open
Abstract
In vitro membrane model systems are used to dissect complex biological phenomena under controlled unadulterated conditions. In this context, lipid monolayers are a powerful tool to particularly study the influence of lipid packing on the behavior of membrane proteins. Here, monolayers deposited in miniaturized fixed area-chambers, which require only minute amounts of protein, were used and shown to faithfully reproduce the characteristics of Langmuir monolayers. This assay is ideally suited to be combined with single-molecule sensitive fluorescence correlation spectroscopy (FCS) to characterize diffusion dynamics. Our results confirm the influence of lipid packing on lipid mobility and validate the use of FCS as an alternative to conventional surface pressure measurements for characterizing the monolayer. Furthermore, we demonstrate the effect of lipid density on the diffusional behavior of membrane-bound components. We exploit the sensitivity of FCS to characterize protein interactions with the lipid monolayer in a regime in which the monolayer physical properties are not altered. To demonstrate the potential of our approach, we analyzed the diffusion behavior of objects of different nature, ranging from a small peptide to a large DNA-based nanostructure. Moreover, in this work we quantify the surface viscosity of lipid monolayers. We present a detailed strategy for the conduction of point FCS experiments on lipid monolayers, which is the first step toward extensive studies of protein-monolayer interactions.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonas Mücksch
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franco Conci
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Grzegorz Chwastek
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
32
|
Electrochemical Analysis of Enzyme Based on the Self-Assembly of Lipid Bilayer on an Electrode Surface Mediated by Hydrazone Chemistry. Anal Chem 2017; 89:13245-13251. [DOI: 10.1021/acs.analchem.7b03197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Xu Y, Kuhlmann J, Brennich M, Komorowski K, Jahn R, Steinem C, Salditt T. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:566-578. [PMID: 29106973 DOI: 10.1016/j.bbamem.2017.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins.
Collapse
Affiliation(s)
- Yihui Xu
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jan Kuhlmann
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Martha Brennich
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, Grenoble 38042, France
| | - Karlo Komorowski
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen 37077, Germany
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
34
|
Drolle E, Negoda A, Hammond K, Pavlov E, Leonenko Z. Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease. PLoS One 2017; 12:e0182194. [PMID: 28767712 PMCID: PMC5540602 DOI: 10.1371/journal.pone.0182194] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Amyloid-beta peptides (Aβ), implicated in Alzheimer’s disease (AD), interact with the cellular membrane and induce amyloid toxicity. The composition of cellular membranes changes in aging and AD. We designed multi-component lipid models to mimic healthy and diseased states of the neuronal membrane. Using atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and black lipid membrane (BLM) techniques, we demonstrated that these model membranes differ in their nanoscale structure and physical properties, and interact differently with Aβ1–42. Based on our data, we propose a new hypothesis that changes in lipid membrane due to aging and AD may trigger amyloid toxicity through electrostatic mechanisms, similar to the accepted mechanism of antimicrobial peptide action. Understanding the role of the membrane changes as a key activating amyloid toxicity may aid in the development of a new avenue for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Elizabeth Drolle
- Department of Biology, University of Waterloo, Waterloo, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Keely Hammond
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| | - Evgeny Pavlov
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.,Department of Basic Sciences, New York University College of Dentistry, New York, New York, United States of America
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
35
|
The Flip-Flop Diffusion Mechanism across Lipids in a Hybrid Bilayer Membrane. Biophys J 2017; 110:2451-2462. [PMID: 27276263 DOI: 10.1016/j.bpj.2016.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/03/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
In this study, we examine the mechanism of flip-flop diffusion of proton carriers across the lipid layer of a hybrid bilayer membrane (HBM). The HBM consists of a lipid monolayer appended on top of a self-assembled monolayer containing a Cu-based O2 reduction catalyst on a Au electrode. The flip-flop diffusion rates of the proton carriers dictate the kinetics of O2 reduction by the electrocatalyst. By varying both the tail lengths of the proton carriers and the lipids, we find the combinations of lengths that maximize the flip-flop diffusion rate. These experimental results combined with biophysical modeling studies allow us to propose a detailed mechanism for transmembrane flip-flop diffusion in HBM systems, which involves the bending of the alkyl tail of the proton carrier as the rate-determining step. Additional studies with an unbendable proton carrier further validate these mechanistic findings.
Collapse
|
36
|
Soundararajan G, Bhamidimarri SP, Winterhalter M. Understanding Carbapenem Translocation through OccD3 (OpdP) of Pseudomonas aeruginosa. ACS Chem Biol 2017; 12:1656-1664. [PMID: 28440622 DOI: 10.1021/acschembio.6b01150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa utilizes a plethora of substrate specific channels for the uptake of small nutrients. OccD3 (OpdP or PA4501) is an OprD-like arginine uptake channel of P. aeruginosa whose role has been implicated in carbapenem uptake. To understand the mechanism of selective permeation, we reconstituted single OccD3 channels in a planar lipid bilayer and characterized the interaction with Imipenem and Meropenem, analyzing the ion current fluctuation in the presence of substrates. We performed point mutations in the constriction region of OccD3 to understand the binding and translocation of antibiotic in OccD3. By mutating two key residues in the substrate binding sites of OccD3 (located in the internal loop L7 and basic ladder), we emphasize the importance of these residues. We show that carbapenem antibiotics follow a similar path as arginine through the constriction zone and the basic ladder to translocate across OccD3.
Collapse
Affiliation(s)
- Gowrishankar Soundararajan
- Department of Life Sciences
and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | - Mathias Winterhalter
- Department of Life Sciences
and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
37
|
Hinman SS, Cheng Q. Bioinspired Assemblies and Plasmonic Interfaces for Electrochemical Biosensing. J Electroanal Chem (Lausanne) 2016; 781:136-146. [PMID: 28163664 PMCID: PMC5283611 DOI: 10.1016/j.jelechem.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrochemical biosensing represents a collection of techniques that may be utilized for capture and detection of biomolecules in both simple and complex media. While the instrumentation and technological aspects play important roles in detection capabilities, the interfacial design aspects are of equal importance, and often, those inspired by nature produce the best results. This review highlights recent material designs, recognition schemes, and method developments as they relate to targeted electrochemical analysis for biological systems. This includes the design of electrodes functionalized with peptides, proteins, nucleic acids, and lipid membranes, along with nanoparticle mediated signal amplification mechanisms. The topic of hyphenated surface plasmon resonance assays is also discussed, as this technique may be performed concurrently with complementary and/or confirmatory measurements. Together, smart materials and experimental designs will continue to pave the way for complete biomolecular analyses of complex and technically challenging systems.
Collapse
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
| | - Quan Cheng
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, USA
| |
Collapse
|
38
|
Garni M, Thamboo S, Schoenenberger CA, Palivan CG. Biopores/membrane proteins in synthetic polymer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:619-638. [PMID: 27984019 DOI: 10.1016/j.bbamem.2016.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. SCOPE OF THE REVIEW We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. MAJOR CONCLUSION Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. GENERAL SIGNIFICANCE Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Martina Garni
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland
| | - Sagana Thamboo
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland
| | | | - Cornelia G Palivan
- Chemistry Department, University of Basel, Klingelbergstrasse 80, Switzerland.
| |
Collapse
|
39
|
Suginta W, Winterhalter M, Smith MF. Correlated trapping of sugar molecules by the trimeric protein channel chitoporin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3032-3040. [PMID: 27638174 DOI: 10.1016/j.bbamem.2016.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The protein channel chitoporin (ChiP), which is used by marine bacteria to translocate selected sugar molecules through the outer cell membrane, is studied via single channel current measurements in water and heavy water sugar solutions. The dynamic trapping and escape probabilities of sugar molecules from different monomers in the trimeric channel are characterized, including their dependence on channel orientation and sensitivity to a deuterium isotope effect. A detailed analysis of stochastic current fluctuations reveals that the trapping properties of chitoporin exhibit memory effects: the rate of trapping transitions depends on the previous sequence of transitions; and intermonomer correlations: the average trapping rate of an unblocked monomer is larger when its neighboring monomers are blocked. The latter, likely resulting from rapid re-trapping of recently escaped sugar molecules, is considered as a possible design strategy to enhance sugar transport.
Collapse
Affiliation(s)
- Wipa Suginta
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | - M F Smith
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
40
|
Andersson J, Köper I. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function. MEMBRANES 2016; 6:E30. [PMID: 27249006 PMCID: PMC4931525 DOI: 10.3390/membranes6020030] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 11/30/2022]
Abstract
Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.
Collapse
Affiliation(s)
- Jakob Andersson
- Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide SA 5001, Australia.
| | - Ingo Köper
- Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide SA 5001, Australia.
| |
Collapse
|
41
|
Zieleniecki JL, Nagarajan Y, Waters S, Rongala J, Thompson V, Hrmova M, Köper I. Cell-Free Synthesis of a Functional Membrane Transporter into a Tethered Bilayer Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2445-2449. [PMID: 26910192 DOI: 10.1021/acs.langmuir.5b04059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eukaryotic cell-free synthesis was used to incorporate the large and complex multispan plant membrane transporter Bot1 in a functional form into a tethered bilayer lipid membrane. The electrical properties of the protein-functionalized tethered bilayer were measured using electrochemical impedance spectroscopy and revealed a pH-dependent transport of borate ions through the protein. The efficacy of the protein synthesis has been evaluated using immunoblot analysis.
Collapse
Affiliation(s)
- Julius L Zieleniecki
- Flinders Centre for Nanoscale Science and Technology School of Chemical and Physical Sciences, Flinders University , Bedford Park, South Australia 5042, Australia
| | - Yagnesh Nagarajan
- Australian Centre for Plant Functional Genomics School of Agriculture, Food, and Wine, University of Adelaide , Glen Osmond, South Australia 5064, Australia
| | - Shane Waters
- Australian Centre for Plant Functional Genomics School of Agriculture, Food, and Wine, University of Adelaide , Glen Osmond, South Australia 5064, Australia
| | - Jay Rongala
- Australian Centre for Plant Functional Genomics School of Agriculture, Food, and Wine, University of Adelaide , Glen Osmond, South Australia 5064, Australia
| | - Vanessa Thompson
- Flinders Centre for Nanoscale Science and Technology School of Chemical and Physical Sciences, Flinders University , Bedford Park, South Australia 5042, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics School of Agriculture, Food, and Wine, University of Adelaide , Glen Osmond, South Australia 5064, Australia
| | - Ingo Köper
- Flinders Centre for Nanoscale Science and Technology School of Chemical and Physical Sciences, Flinders University , Bedford Park, South Australia 5042, Australia
| |
Collapse
|
42
|
Rascol E, Devoisselle JM, Chopineau J. The relevance of membrane models to understand nanoparticles-cell membrane interactions. NANOSCALE 2016; 8:4780-98. [PMID: 26868717 DOI: 10.1039/c5nr07954c] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.
Collapse
Affiliation(s)
- Estelle Rascol
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France
| | - Joël Chopineau
- Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM, 8 rue de l'Ecole Normale, 34296, Cedex 5 Montpellier, France and Université de Nimes Rue Georges Salan, 30000 Nimes, France.
| |
Collapse
|
43
|
Schmidt J. Membrane platforms for biological nanopore sensing and sequencing. Curr Opin Biotechnol 2016; 39:17-27. [PMID: 26773300 DOI: 10.1016/j.copbio.2015.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
In the past two decades, biological nanopores have been developed and explored for use in sensing applications as a result of their exquisite sensitivity and easily engineered, reproducible, and economically manufactured structures. Nanopore sensing has been shown to differentiate between highly similar analytes, measure polymer size, detect the presence of specific genes, and rapidly sequence nucleic acids translocating through the pore. Devices featuring protein nanopores have been limited in part by the membrane support containing the nanopore, the shortcomings of which have been addressed in recent work developing new materials, approaches, and apparatus resulting in membrane platforms featuring automatability and increased robustness, lifetime, and measurement throughput.
Collapse
Affiliation(s)
- Jacob Schmidt
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
TOYOTA T, KAZAYAMA Y, OSAKI T, TAKEUCHI S. Dynamics of Giant Vesicles and Their Application as Artificial Cell-based Sensor. BUNSEKI KAGAKU 2016. [DOI: 10.2116/bunsekikagaku.65.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Taro TOYOTA
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Yuki KAZAYAMA
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Toshihisa OSAKI
- Institute of Industrial Science (IIS), The University of Tokyo
- Kanagawa Academy of Science and Technology
| | - Shoji TAKEUCHI
- Institute of Industrial Science (IIS), The University of Tokyo
| |
Collapse
|
45
|
Palivan CG, Goers R, Najer A, Zhang X, Car A, Meier W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev 2016; 45:377-411. [DOI: 10.1039/c5cs00569h] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological membranes play an essential role in living organisms by providing stable and functional compartments, supporting signalling and selective transport. Combining synthetic polymer membranes with biological molecules promises to be an effective strategy to mimic the functions of cell membranes and apply them in artificial systems.
Collapse
Affiliation(s)
| | - Roland Goers
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
- Department of Biosystems Science and Engineering
| | - Adrian Najer
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Xiaoyan Zhang
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Anja Car
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Wolfgang Meier
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|
46
|
Morton D, Mortezaei S, Yemenicioglu S, Isaacman MJ, Nova IC, Gundlach JH, Theogarajan L. Tailored Polymeric Membranes for Mycobacterium Smegmatis Porin A (MspA) Based Biosensors. J Mater Chem B 2015; 3:5080-5086. [PMID: 26413301 PMCID: PMC4582436 DOI: 10.1039/c5tb00383k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanopores based on protein channels inserted into lipid membranes have paved the way towards a wide-range of inexpensive biosensors, especially for DNA sequencing. A key obstacle in using these biological ion channels as nanodevices is the poor stability of lipid bilayer membranes. Amphiphilic block copolymer membranes have emerged as a robust alternative to lipid membranes. While previous efforts have shown feasibility, we demonstrate for the first time the effect of polymer composition on MspA protein functionality. We show that membrane-protein interaction depends on the hydrophobic-hydrophilic ratio (f-ratio) of the block copolymer. These effects are particularly pronounced in asymmetric protein pores like MspA compared to the cylindrical α-Hemolysin pore. A key effect of membrane-protein interaction is the increased 1/fα noise. After first showing increases in 1/fα behaviour arise from increased substate activity, the noise power spectral density S(f) was used as a qualitative tool for understanding protein-membrane interactions in polymer membranes. Polymer compositions with f-ratios close to lipid membranes caused noise behaviour not observed in lipid membranes. However, by modifying the f-ratio using a modular synthetic approach, we were able to design a block copolymer exhibiting noise properties similar to a lipid membrane, albeit with better stability. Thus, by careful optimization, block copolymer membranes can emerge as a robust alternative for protein-pore based nano-biosensors.
Collapse
Affiliation(s)
- Danielle Morton
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106
| | - Shahab Mortezaei
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106
| | - Sukru Yemenicioglu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106
| | - Michael J Isaacman
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106
| | - Ian C Nova
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Luke Theogarajan
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106
| |
Collapse
|
47
|
Construction of P-glycoprotein incorporated tethered lipid bilayer membranes. Biochem Biophys Rep 2015; 2:115-122. [PMID: 29124152 PMCID: PMC5668657 DOI: 10.1016/j.bbrep.2015.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 11/26/2022] Open
Abstract
To investigate drug–membrane protein interactions, an artificial tethered lipid bilayer system was constructed for the functional integration of membrane proteins with large extra-membrane domains such as multi-drug resistance protein 1 (MDR1). In this study, a modified lipid (i.e., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG)) was utilized as a spacer molecule to elevate lipid membrane from the sensor surface and generate a reservoir underneath. Concentration of DSPE-PEG molecule significantly affected the liposome binding/spreading and lipid bilayer formation, and 0.03 mg/mL of DSPE-PEG provided optimum conditions for membrane protein integration. Further, the incorporation of MDR1 increased the local rigidity on the platform. Antibody binding studies showed the functional integration of MDR1 protein into lipid bilayer platform. The platform allowed to follow MDR!-statin-based drug interactions in vitro. Each binding event and lipid bilayer formation was monitored in real-time using Surface Plasmon Resonance and Quartz Crystal Microbalance–Dissipation systems, and Atomic Force Microscopy was used for visualization experiments. An artificial lipid bilayer system for large integral membrane proteins. Multi-drug resistance protein embedded in lipid bilayers was used as a model system. Interaction between pravastatin and a membrane protein was examined in vitro system. Characterization by surface sensitive methods such as SPR, QCM, liqAFM.
Collapse
|
48
|
Mizuno M, Toyota T, Konishi M, Kageyama Y, Yamada M, Seki M. Formation of monodisperse hierarchical lipid particles utilizing microfluidic droplets in a nonequilibrium state. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2334-2341. [PMID: 25669326 DOI: 10.1021/acs.langmuir.5b00043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new microfluidic process was used to generate unique micrometer-sized hierarchical lipid particles having spherical lipid-core and multilamellar-shell structures. The process includes three steps: (1) formation of monodisperse droplets in a nonequilibrium state at a microchannel confluence, using a phospholipid-containing water-soluble organic solvent as the dispersed phase and water as the continuous phase; (2) dissolution of the organic solvent of the droplet into the continuous phase and concentration of the lipid molecules; and (3) reconstitution of multilamellar lipid membranes and simultaneous formation of a lipid core. We demonstrated control of the lipid particle size by the process conditions and characterized the obtained particles by transmission electron microscopy and microbeam small-angle X-ray scattering analysis. In addition, we prepared various types of core-shell and core-core-shell particles incorporating hydrophobic/hydrophilic compounds, showing the applicability of the presented process to the production of drug-encapsulating lipid particles.
Collapse
Affiliation(s)
- Masahiro Mizuno
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University , 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Palankar R, Pinchasik BE, Khlebtsov BN, Kolesnikova TA, Möhwald H, Winterhalter M, Skirtach AG. Nanoplasmonically-induced defects in lipid membrane monitored by ion current: transient nanopores versus membrane rupture. NANO LETTERS 2014; 14:4273-4279. [PMID: 24961609 DOI: 10.1021/nl500907k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a nanoplasmonic-based approach to induce nanometer-sized local defects in the phospholipid membranes. Here, gold nanorods and nanoparticles having plasmon resonances in the near-infrared (NIR) spectral range are used as optical absorption centers in the lipid membrane. Defects optically induced by NIR-laser irradiation of gold nanoparticles are continuously monitored by high-precision ion conductance measurement. Localized laser-mediated heating of nanorods and nanoparticle aggregates cause either (a) transient nanopores in lipid membranes or (b) irreversible rupture of the membrane. To monitor transient opening and closing, an electrophysiological setup is assembled wherein a giant liposome is spread over a micrometer hole in a glass slide forming a single bilayer of high Ohmic resistance (so-called gigaseal), while laser light is coupled in and focused on the membrane. The energy associated with the localized heating is discussed and compared with typical elastic parameters in the lipid membranes. The method presented here provides a novel methodology for better understanding of transport across artificial or natural biological membranes.
Collapse
Affiliation(s)
- Raghavendra Palankar
- ZIK HIKE, Nanostructure Group, Ernst-Moritz-Arndt-Universität Greifswald , 17489 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Majd S, Yusko EC, Yang J, Sept D, Mayer M. A model for the interfacial kinetics of phospholipase D activity on long-chain lipids. Biophys J 2014; 105:146-53. [PMID: 23823233 DOI: 10.1016/j.bpj.2013.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 11/26/2022] Open
Abstract
The membrane-active enzyme phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond in phospholipids and plays a critical role in cell signaling. This catalytic reaction proceeds on lipid-water interfaces and is an example of heterogeneous catalysis in biology. Recently we showed that planar lipid bilayers, a previously unexplored model membrane for these kinetic studies, can be used for monitoring interfacial catalytic reactions under well-defined experimental conditions with chemical and electrical access to both sides of the lipid membrane. Employing an assay that relies on the conductance of the pore-forming peptide gramicidin A to monitor PLD activity, the work presented here reveals the kinetics of hydrolysis of long-chain phosphatidylcholine lipids in situ. We have developed an extension of a basic kinetic model for interfacial catalysis that includes product activation and substrate depletion. This model describes the kinetic behavior very well and reveals two kinetic parameters, the specificity constant and the interfacial quality constant. This approach results in a simple and general model to account for product accumulation in interfacial enzyme kinetics.
Collapse
Affiliation(s)
- Sheereen Majd
- Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|