1
|
Klebl BM, Kurtenbach A, Salassidis K, Daub H, Herget T. Host Cell Targets in HCV Therapy: Novel Strategy or Proven Practice? ACTA ACUST UNITED AC 2016; 16:69-90. [PMID: 15889531 DOI: 10.1177/095632020501600201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of novel antiviral drugs against hepatitis C is a challenging and competitive area of research. Progress of this research has been hampered due to the quasispecies nature of the hepatitis C virus, the absence of cellular infection models and the lack of easily accessible and highly representative animal models. The current combination therapy consisting of interferon-α and ribavirin mainly acts by supporting host cell defence. These therapeutics are the prototypic representatives of indirect antiviral agents as they act on cellular targets. However, the therapy is not a cure, when considered from the long-term perspective, for almost half of the chronically infected patients. This draws attention to the urgent need for more efficient treatments. Novel anti-hepatitis C treatments under study are directed against a number of so-called direct antiviral targets such as polymerases and proteases, which are encoded by the virus. Although such direct antiviral approaches have proven to be successful in several viral indications, there is a risk of resistant viruses developing. In order to avoid resistance, the development of indirect antiviral compounds has to be intensified. These act on host cell targets either by boosting the immune response or by blocking the virus host cell interaction. A particularly interesting approach is the development of inhibitors that interfere with signal transduction, such as protein kinase inhibitors. The purpose of this review is to stress the importance of developing indirect antiviral agents that act on host cell targets. In doing so, a large source of potential targets and mechanisms can be exploited, thus increasing the likelihood of success. Ultimately, combination therapies consisting of drugs against direct and indirect viral targets will most probably provide the solution to fighting and eradicating hepatitis C virus in patients.
Collapse
|
2
|
Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges. Vaccines (Basel) 2015; 3:293-319. [PMID: 26343189 PMCID: PMC4494351 DOI: 10.3390/vaccines3020293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus is a respiratory pathogen which causes both seasonal epidemics and occasional pandemics; infection continues to be a significant cause of mortality worldwide. Current influenza vaccines principally stimulate humoral immune responses that are largely directed towards the variant surface antigens of influenza. Vaccination can result in an effective, albeit strain-specific antibody response and there is a need for vaccines that can provide superior, long-lasting immunity to influenza. Vaccination approaches targeting conserved viral antigens have the potential to provide broadly cross-reactive, heterosubtypic immunity to diverse influenza viruses. However, the field lacks consensus on the correlates of protection for cellular immunity in reducing severe influenza infection, transmission or disease outcome. Furthermore, unlike serological methods such as the standardized haemagglutination inhibition assay, there remains a large degree of variation in both the types of assays and method of reporting cellular outputs. T-cell directed immunity has long been known to play a role in ameliorating the severity and/or duration of influenza infection, but the precise phenotype, magnitude and longevity of the requisite protective response is unclear. In order to progress the development of universal influenza vaccines, it is critical to standardize assays across sites to facilitate direct comparisons between clinical trials.
Collapse
|
3
|
Das P, Deng X, Zhang L, Roth MG, Fontoura BMA, Phillips MA, De Brabander JK. SAR Based Optimization of a 4-Quinoline Carboxylic Acid Analog with Potent Anti-Viral Activity. ACS Med Chem Lett 2013; 4:517-521. [PMID: 23930152 DOI: 10.1021/ml300464h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It is established that drugs targeting viral proteins are at risk of generating resistant strains. However, drugs targeting host factors can potentially avoid this problem. Herein we report structure-activity relationship studies leading to the discovery of a very potent lead compound 6-fluoro-2-(5-isopropyl-2-methyl-4-phenoxyphenyl)quinoline-4-carboxylic acid (C44) that inhibits human dihydroorotate dehydrogenase (DHODH) with an IC50 of 1 nM, and viral replication of VSV and WSN-Influenza with an EC50 of 2 nM and 41 nM. We also solved the X-ray structure of human DHODH bound to C44, providing structural insight into the potent inhibition of biaryl ether analogs of brequinar.
Collapse
Affiliation(s)
- Priyabrata Das
- Department
of Biochemistry, ‡Department of Pharmacology, and §Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas,
Texas 75390, United States
| | - Xiaoyi Deng
- Department
of Biochemistry, ‡Department of Pharmacology, and §Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas,
Texas 75390, United States
| | - Liang Zhang
- Department
of Biochemistry, ‡Department of Pharmacology, and §Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas,
Texas 75390, United States
| | - Michael G. Roth
- Department
of Biochemistry, ‡Department of Pharmacology, and §Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas,
Texas 75390, United States
| | - Beatriz M. A. Fontoura
- Department
of Biochemistry, ‡Department of Pharmacology, and §Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas,
Texas 75390, United States
| | - Margaret A. Phillips
- Department
of Biochemistry, ‡Department of Pharmacology, and §Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas,
Texas 75390, United States
| | - Jef K. De Brabander
- Department
of Biochemistry, ‡Department of Pharmacology, and §Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas,
Texas 75390, United States
| |
Collapse
|
4
|
Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G, Lacaze P, Khondoker M, Dickinson P, Sing G, Rodríguez-Martín S, Phelan P, Forster T, Strobl B, Müller M, Riemersma R, Osborne T, Wenk MR, Angulo A, Ghazal P. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol 2011; 9:e1000598. [PMID: 21408089 PMCID: PMC3050939 DOI: 10.1371/journal.pbio.1000598] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/26/2011] [Indexed: 01/05/2023] Open
Abstract
Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or β but not TNF, IL1β, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNβ treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNβ, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNβ treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as a potential antiviral strategy.
Collapse
Affiliation(s)
- Mathieu Blanc
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Wei Yuan Hsieh
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin A. Robertson
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Steven Watterson
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Guanghou Shui
- Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore
| | - Paul Lacaze
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Mizanur Khondoker
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Dickinson
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Garwin Sing
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Rodríguez-Martín
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Phelan
- Metabolic Signaling Diseases Program, Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Thorsten Forster
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Veterinary University of Vienna, Vienna, Austria
| | - Matthias Müller
- Institute of Animal Breeding and Genetics, Veterinary University of Vienna, Vienna, Austria
| | - Rudolph Riemersma
- Centre for Cardiovascular Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy Osborne
- Metabolic Signaling Diseases Program, Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Markus R. Wenk
- Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore
| | - Ana Angulo
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Saxena SK, Mishra N, Saxena R. Advances in antiviral drug discovery and development: Part II: Advancements in antiviral drug development. Future Virol 2009. [DOI: 10.2217/fvl.09.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Shailendra K Saxena
- Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500 007 (AP), India
| | - Niraj Mishra
- Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500 007 (AP), India
| | - Rakhi Saxena
- Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500 007 (AP), India
| |
Collapse
|
6
|
Buck AH, Santoyo-Lopez J, Robertson KA, Kumar DS, Reczko M, Ghazal P. Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 2007; 81:13761-70. [PMID: 17928340 PMCID: PMC2168849 DOI: 10.1128/jvi.01290-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 10/01/2007] [Indexed: 01/07/2023] Open
Abstract
The prevalence and importance of microRNAs (miRNAs) in viral infection are increasingly relevant. Eleven miRNAs were previously identified in human cytomegalovirus (HCMV); however, miRNA content in murine CMV (MCMV), which serves as an important in vivo model for CMV infection, has not previously been examined. We have cloned and characterized 17 novel miRNAs that originate from at least 12 precursor miRNAs in MCMV and are not homologous to HCMV miRNAs. In parallel, we applied a computational analysis, using a support vector machine approach, to identify potential precursor miRNAs in MCMV. Four of the top 10 predicted precursor sequences were cloned in this study, and the combination of computational and cloning analysis demonstrates that MCMV has the capacity to encode miRNAs clustered throughout the genome. On the basis of drug sensitivity experiments for resolving the kinetic class of expression, we show that the MCMV miRNAs are both early and late gene products. Notably, the MCMV miRNAs occur on complementary strands of the genome in specific regions, a feature which has not previously been observed for viral miRNAs. One cluster of miRNAs occurs in close proximity to the 5' splice site of the previously identified 7.2-kb stable intron, implying a variety of potential regulatory mechanisms for MCMV miRNAs.
Collapse
Affiliation(s)
- Amy H Buck
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
In the last years, different non-biological and biological carrier systems have been developed for anti-HIV1 therapy. Liposomes are excellent potential anti-HIV1 carriers that have been tested with drugs, antisense oligonucleotides, ribozymes and therapeutic genes. Nanoparticles and low-density lipoproteins (LDLs) are cell-specific transporters of drugs against macrophage-specific infections such as HIV1. Through a process of protein transduction, cell-permeable peptides of natural origin or designed artificially allow the delivery of drugs and genetic material inside the cell. Erythrocyte ghosts and bacterial ghosts are a promising delivery system for therapeutic peptides and HIV vaccines. Of interest are the advances made in the field of HIV gene therapy by the use of autologous haematopoietic stem cells and viral vectors for HIV vaccines. Although important milestones have been reached in the development of carrier systems for the treatment of HIV, especially in the field of gene therapy, further clinical trials are required so that the efficiency and safety of these new systems can be guaranteed in HIV patients.
Collapse
Affiliation(s)
- José M Lanao
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| | | | | |
Collapse
|
8
|
Schang LM, St Vincent MR, Lacasse JJ. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir Chem Chemother 2007; 17:293-320. [PMID: 17249245 DOI: 10.1177/095632020601700601] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In 1997-1998, the pharmacological cyclin-dependent kinase (CDK) inhibitors (PCIs) were independently discovered to inhibit replication of human cytomegalovirus, herpes simplex virus type 1 and HIV-1. The results from small clinical trials against cancer were then suggesting that PCIs could be safe enough to be used clinically. It was thus hypothesized that PCIs could have the potential to be developed as novel antivirals targeting cellular proteins. Consequently, Antiviral Chemistry & Chemotherapy published in 2001 the first review on the potential of CDKs, and cellular proteins in general, as potential targets for antivirals. The viral functions inhibited by PCIs, or their cellular targets, were then just starting to be characterized. The antiviral spectrum of PCIs and their effects on viral disease were still mostly untested. Even their actual specificity was not yet completely characterized. In addition, cellular proteins were not accepted as valid targets for antivirals. Significant progress has been made in the last 5 years in understanding the antiviral activities of PCIs and the potential roles of cellular proteins in general as targets for antivirals. The first clinical trials of the antiviral activities of PCIs and other inhibitors of cellular protein kinases have now been scheduled. Herein, we review the progress made since the publication of the first review on PCIs as potential antiviral drugs and on CDKs, and cellular proteins in general, as potential targets for antiviral drugs. We also highlight the major issues that still need to be addressed before PCIs or other drugs targeting cellular proteins can be developed as clinical antivirals.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
9
|
Go EP, Wikoff WR, Shen Z, O’Maille G, Morita H, Conrads TP, Nordstrom A, Trauger SA, Uritboonthai W, Lucas DA, Chan KC, Veenstra TD, Lewicki H, Oldstone MB, Schneemann A, Siuzdak G. Mass spectrometry reveals specific and global molecular transformations during viral infection. J Proteome Res 2006; 5:2405-16. [PMID: 16944953 PMCID: PMC2566936 DOI: 10.1021/pr060215t] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mass spectrometry analysis was used to target three different aspects of the viral infection process: the expression kinetics of viral proteins, changes in the expression levels of cellular proteins, and the changes in cellular metabolites in response to viral infection. The combination of these methods represents a new, more comprehensive approach to the study of viral infection revealing the complexity of these events within the infected cell. The proteins associated with measles virus (MV) infection of human HeLa cells were measured using a label-free approach. On the other hand, the regulation of cellular and Flock House Virus (FHV) proteins in response to FHV infection of Drosophila cells was monitored using stable isotope labeling. Three complementary techniques were used to monitor changes in viral protein expression in the cell and host protein expression. A total of 1500 host proteins was identified and quantified, of which over 200 proteins were either up- or down-regulated in response to viral infection, such as the up-regulation of the Drosophila apoptotic croquemort protein, and the down-regulation of proteins that inhibited cell death. These analyses also demonstrated the up-regulation of viral proteins functioning in replication, inhibition of RNA interference, viral assembly, and RNA encapsidation. Over 1000 unique metabolites were also observed with significant changes in over 30, such as the down-regulated cellular phospholipids possibly reflecting the initial events in cell death and viral release. Overall, the cellular transformation that occurs upon viral infection is a process involving hundreds of proteins and metabolites, many of which are structurally and functionally uncharacterized.
Collapse
Affiliation(s)
- Eden P. Go
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - William R. Wikoff
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Zhouxin Shen
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
- Mass Consortium Corporation, San Diego, CA 92109
| | - Grace O’Maille
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Hirotoshi Morita
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Thomas P. Conrads
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Anders Nordstrom
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Sunia A. Trauger
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Wilasinee Uritboonthai
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - David A. Lucas
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - King C. Chan
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Hanna Lewicki
- Departments of Molecular and Integrative Neuroscience and Infectology, The Scripps Research Institute La Jolla, CA 92037
| | - Michael B. Oldstone
- Departments of Molecular and Integrative Neuroscience and Infectology, The Scripps Research Institute La Jolla, CA 92037
| | - Anette Schneemann
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
- Corresponding authors to whom all correspondence should be addressed, email addresses: , and
| | - Gary Siuzdak
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
- Corresponding authors to whom all correspondence should be addressed, email addresses: , and
| |
Collapse
|
10
|
Yang J, Ding X, Zhang Y, Bo X, Zhang M, Wang S. Fibronectin is essential for hepatitis B virus propagation in vitro: may be a potential cellular target? Biochem Biophys Res Commun 2006; 344:757-64. [PMID: 16631116 DOI: 10.1016/j.bbrc.2006.03.204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
Previous studies in our laboratory strongly suggested that fibronectin was upregulated by hepatitis B virus (HBV) in HepG2.2.15 cells. Report by Budkowska A also indicated that human liver fibronectin could bind HBV in a species-restricted manner. Therefore, it is reasonable to ask whether inhibiting fibronectin expression might have anti-HBV activity and whether fibronectin might be developed as a new potential cellular target for anti-HBV drugs. By using fibronectin antisense oligonucleotide (ASODN), fibronectin antibody, and Protocatechuic aldehyde (PA), we were able to show that HBV productions in HepG2.2.15 cell culture were reduced in a dose-dependent manner by fibronectin inhibition. In addition, we found that treatment with ASODNs, fibronectin antibody, and PA did not affect HepG2.2.15 cell viability. Furthermore, we observed that fibronectin inhibition sensitized HBV to anti-HBV drugs. In summary, this study demonstrates that fibronectin is essential for HBV propagation and also provides some evidences for the potential of fibronectin as a new cellular target for HBV infection therapy.
Collapse
Affiliation(s)
- Jing Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
McFadden G. Smallpox: an ancient disease enters the modern era of virogenomics. Proc Natl Acad Sci U S A 2004; 101:14994-5. [PMID: 15479762 PMCID: PMC524071 DOI: 10.1073/pnas.0406207101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Grant McFadden
- Department of Microbiology and Immunology and Robarts Research Laboratory, Room 1-33, Siebens Drake Building, University of Western Ontario, 1400 Western Road, London, ON, Canada N6G 2V4.
| |
Collapse
|
13
|
Abstract
Virology research and antiviral drug discovery are poised to benefit from the post-genomic revolution for three main reasons. First, viruses need the host to replicate and are therefore vulnerable to inhibition of cellular pathways. Knowledge of complete genomic sequences of both virus and host now permits the study of this interplay on a global scale. Combining transcriptomics and proteomics with large-scale gene knockdown experiments will enable the identification of novel antiviral targets. Second, massive parallel assay systems, such as DNA microarrays, which define the post-genomic era, will facilitate viral diagnostics. Third, the combination of genetics with genomics will enable the analysis of viral mutants and strains on an unprecedented scale. The dramatic effects of viral infection on host cell transcriptional patterns have been well-documented and will be briefly highlighted. In addition, we discuss recent trends that apply functional genomics methods to the discovery of new targets and therapies for viral disease.
Collapse
|
14
|
Schang LM. Effects of pharmacological cyclin-dependent kinase inhibitors on viral transcription and replication. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:197-209. [PMID: 15023361 DOI: 10.1016/j.bbapap.2003.11.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinases (CDKs) are required for replication of adeno-, papilloma- and other viruses that replicate only in dividing cells. Surprisingly, CDKs are also required for replication of HIV-1, HSV-1, and other viruses that can replicate in non-dividing cells. Since two low-molecular weight pharmacological CDK inhibitors (PCIs), flavopiridol (Flavo) and roscovitine (Rosco), appear to be non-toxic in human clinical trials against cancer, these drugs have been proposed as potential antiviral drugs. Rosco preferentially inhibits CDKs involved in cell cycle regulation (CDK1, 2, and 7) or neuronal functions (CDK5), whereas Flavo preferentially inhibits CDKs involved in cell cycle (CDK1, 2, 4, 7) or transcription (CDK7, and 9). As potential antivirals, PCIs display several advantages: (i) they are active against many different viruses, including drug-resistant strains of HIV-1 and HSV-1; (ii) PCI-resistant mutants of HIV-1 or HSV-1 have not been identified; and (iii) the antiviral effects of PCIs and conventional antivirals appear to be additive (as expected from drugs that target independent pathways). Moreover, PCIs target both the etiological agents (i.e., the virus) and the pathogenic mechanisms (i.e., unrestricted cell division) of the many diseases that include both a CDK-requiring virus and unrestricted cell division (e.g., Kaposi's sarcoma, cervical carcinoma, HIV-associated nephropathy-HIVAN). This is nicely illustrated in a recent study which demonstrated the efficacy of Flavo in a mouse model of HIVAN. Herein, we will review the involvement of CDKs in viral replication and the antiviral properties of the most extensively characterized PCIs, with special emphasis on the mechanisms of inhibition of viral transcription.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry and Department of Medical Microbiology and Immunology, Signal Transduction Research Group, Molecular Mechanisms of Growth Control Research Group, University of Alberta, Canada.
| |
Collapse
|
15
|
Abstract
Genomics and pharmacogenomics are signalling the start of a new era for the pharmaceutical industry. The successful integration of these technologies into the drug discovery process provides the promise of increased efficiency for pharmaceutical companies, with higher confidence in the targets they pursue and smarter design of clinical trials. There are benefits too for the consumer, with the possibility of customized drug treatments leading to improved efficacy and fewer side-effects. This article reviews the impact of genomics at the various stages in the lifetime of a drug, through discovery, development and clinical use, focusing particularly on anti-infectives.
Collapse
|
16
|
Abstract
The action of interferons (IFNs) on virus-infected cells and surrounding tissues elicits an antiviral state that is characterized by the expression and antiviral activity of IFN-stimulated genes. In turn, viruses encode mechanisms to counteract the host response and support efficient viral replication, thereby minimizing the therapeutic antiviral power of IFNs. In this review, we discuss the interplay between the IFN system and four medically important and challenging viruses -- influenza, hepatitis C, herpes simplex and vaccinia -- to highlight the diversity of viral strategies. Understanding the complex network of cellular antiviral processes and virus-host interactions should aid in identifying new and common targets for the therapeutic intervention of virus infection. This effort must take advantage of the recent developments in functional genomics, bioinformatics and other emerging technologies.
Collapse
Affiliation(s)
- Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington 98195-8070, USA.
| | | | | |
Collapse
|
17
|
Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, Taubenberger JK, Bumgarner RE, Palese P, Katze MG, García-Sastre A. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A 2002; 99:10736-41. [PMID: 12149435 PMCID: PMC125029 DOI: 10.1073/pnas.112338099] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NS1 protein of influenza A virus contributes to viral pathogenesis, primarily by enabling the virus to disarm the host cell type IFN defense system. We examined the downstream effects of NS1 protein expression during influenza A virus infection on global cellular mRNA levels by measuring expression of over 13,000 cellular genes in response to infection with wild-type and mutant viruses in human lung epithelial cells. Influenza A/PR/8/34 virus infection resulted in a significant induction of genes involved in the IFN pathway. Deletion of the viral NS1 gene increased the number and magnitude of expression of cellular genes implicated in the IFN, NF-kappaB, and other antiviral pathways. Interestingly, different IFN-induced genes showed different sensitivities to NS1-mediated inhibition of their expression. A recombinant virus with a C-terminal deletion in its NS1 gene induced an intermediate cellular mRNA expression pattern between wild-type and NS1 knockout viruses. Most significantly, a virus containing the 1918 pandemic NS1 gene was more efficient at blocking the expression of IFN-regulated genes than its parental influenza A/WSN/33 virus. Taken together, our results suggest that the cellular response to influenza A virus infection in human lung cells is significantly influenced by the sequence of the NS1 gene, demonstrating the importance of the NS1 protein in regulating the host cell response triggered by virus infection.
Collapse
Affiliation(s)
- Gary K Geiss
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, Luukkonen BGM, Griffith DJ, Wait CL, Druker BJ, Heinrich MC, Nelson JA, Früh K. Kaposi's sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol 2002; 76:8383-99. [PMID: 12134042 PMCID: PMC155158 DOI: 10.1128/jvi.76.16.8383-8399.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kaposi's sarcoma (KS), the most frequent malignancy afflicting AIDS patients, is characterized by spindle cell formation and vascularization. Infection with KS-associated herpesvirus (KSHV) is consistently observed in all forms of KS. Spindle cell formation can be replicated in vitro by infection of dermal microvascular endothelial cells (DMVEC) with KSHV. To study the molecular mechanism of this transformation, we compared RNA expression profiles of KSHV-infected and mock-infected DMVEC. Induction of several proto-oncogenes was observed, particularly the receptor tyrosine kinase c-kit. Consistent with increased c-Kit expression, KHSV-infected DMVEC displayed enhanced proliferation in response to the c-Kit ligand, stem cell factor (SCF). Inhibition of c-Kit activity with either a pharmacological inhibitor of c-Kit (STI 571) or a dominant-negative c-Kit protein reversed SCF-dependent proliferation. Importantly, inhibition of c-Kit signal transduction reversed the KSHV-induced morphological transformation of DMVEC. Furthermore, overexpression studies showed that c-Kit was sufficient to induce spindle cell formation. Together, these data demonstrate an essential role for c-Kit in KS tumorigenesis and reveal a target for pharmacological intervention.
Collapse
Affiliation(s)
- Ashlee V Moses
- Vaccine and Gene Therapy Institute, Portland, Oregon 97201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lenz GR, Nash HM. Virogenomics: the future looks bright. Drug Discov Today 2001; 6:879-880. [PMID: 11522513 DOI: 10.1016/s1359-6446(01)01963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- G R. Lenz
- NeoGenesis Drug Discovery, Cambridge, MA, USA
| | | |
Collapse
|