1
|
O'Donoghue LT, Murphy EG. Nondairy food applications of whey and milk permeates: Direct and indirect uses. Compr Rev Food Sci Food Saf 2023; 22:2652-2677. [PMID: 37070222 DOI: 10.1111/1541-4337.13157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Permeates are generated in the dairy industry as byproducts from the production of high-protein products (e.g., whey or milk protein isolates and concentrates). Traditionally, permeate was disposed of as waste or used in animal feed, but with the recent move toward a "zero waste" economy, these streams are being recognized for their potential use as ingredients, or as raw materials for the production of value-added products. Permeates can be added directly into foods such as baked goods, meats, and soups, for use as sucrose or sodium replacers, or can be used in the production of prebiotic drinks or sports beverages. In-direct applications generally utilize the lactose present in permeate for the production of higher value lactose derivatives, such as lactic acid, or prebiotic carbohydrates such as lactulose. However, the impurities present, short shelf life, and difficulty handling these streams can present challenges for manufacturers and hinder the efficiency of downstream processes, especially compared to pure lactose solutions. In addition, the majority of these applications are still in the research stage and the economic feasibility of each application still needs to be investigated. This review will discuss the wide variety of nondairy, food-based applications of milk and whey permeates, with particular focus on the advantages and disadvantages associated with each application and the suitability of different permeate types (i.e., milk, acid, or sweet whey).
Collapse
Affiliation(s)
| | - Eoin G Murphy
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
2
|
Wang Z, Qi J, Goddard JM. Concentrated sugar solutions protect lactase from thermal inactivation. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Damin BIS, Kovalski FC, Fischer J, Piccin JS, Dettmer A. Challenges and perspectives of the β-galactosidase enzyme. Appl Microbiol Biotechnol 2021; 105:5281-5298. [PMID: 34223948 DOI: 10.1007/s00253-021-11423-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
The enzyme β-galactosidase has great potential for application in the food and pharmaceutical industries due to its ability to perform the hydrolysis of lactose, a disaccharide present in milk and in dairy by-products. It can be used in free form, in batch processes, or in immobilized form, which allows continuous operation and provides greater enzymatic stability. The choice of method and support for enzyme immobilization is essential, as the performance of the biocatalyst is strongly influenced by the properties of the material used and by the interaction mechanisms between support and enzyme. Therefore, this review showed the main enzyme immobilization techniques, and the most used supports for the constitution of biocatalysts. Also, materials with the potential for immobilization of β-galactosidases and the importance of their biotechnological application are presented. KEY POINTS: • The main methods of immobilization are physical adsorption, covalent bonding, and crosslinking. • The structural conditions of the supports are determining factors in the performance of the biocatalysts. • Enzymatic hydrolysis plays an important role in the biotechnology industry.
Collapse
Affiliation(s)
- B I S Damin
- Faculty of Agronomy and Veterinary Medicine (FAMV), Postgraduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - F C Kovalski
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - J Fischer
- Institute of Exact Sciences and Geosciences (ICEG), Chemical Course, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - J S Piccin
- Faculty of Agronomy and Veterinary Medicine (FAMV), Postgraduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - A Dettmer
- Faculty of Agronomy and Veterinary Medicine (FAMV), Postgraduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
4
|
Mangiagalli M, Lotti M. Cold-Active β-Galactosidases: Insight into Cold Adaption Mechanisms and Biotechnological Exploitation. Mar Drugs 2021; 19:md19010043. [PMID: 33477853 PMCID: PMC7832830 DOI: 10.3390/md19010043] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/22/2023] Open
Abstract
β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosaccharides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an acceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently low-temperature environments. While mesophilic β-galactosidases are broadly studied and employed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although they may prove very useful in biotechnological processes at low temperature. This review covers several issues related to cold-active β-galactosidases, including their classification, structure and molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on the production of lactose-free dairy products as well as on the valorization of cheese whey and the synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.
Collapse
|
5
|
Abd El-Salam BA, Ibrahim OA, Amer AE. Efficient enzymatic conversion of lactose in milk using fungal β-galactosidase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Simultaneous hydrolysis of cheese whey and lactulose production catalyzed by β-galactosidase from Kluyveromyces lactis NRRL Y1564. Bioprocess Biosyst Eng 2020; 43:711-722. [DOI: 10.1007/s00449-019-02270-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
|
7
|
Bilal M, Iqbal HMN. Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities - A review. Food Res Int 2019; 123:226-240. [PMID: 31284972 DOI: 10.1016/j.foodres.2019.04.066] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023]
Abstract
Over the past few years, food waste has intensified much attention from the local public, national and international organizations as well as a wider household territory due to increasing environmental, social and economic concerns, climate change and scarcity of fossil fuel resources. On one aspect, food-processing waste represents a substantial ecological burden. On the other hand, these waste streams are rich in carbohydrates, proteins, and lipids, thus hold significant potential for biotransformation into an array of high-value compounds. Indeed, the high sugar, protein, and fat content render food waste streams as attractive feedstocks for enzymatic valorization given the plentiful volumes generated annually. Enzymes as industrial biocatalysts offer unique advantages over traditional chemical processes with regard to eco-sustainability, and process efficiency. Herein, an effort has been made to delineate immobilized enzyme-driven valorization of food waste streams into marketable products such as biofuels, bioactive compounds, biodegradable plastics, prebiotics, sweeteners, rare sugars, surfactants, etc. Current challenges and prospects are also highlighted with respect to the development of industrially adaptable biocatalytic systems to achieve the ultimate objectives of sustainable manufacturing combined with minimum waste generation. Applications-based strategies to enzyme immobilization are imperative to design cost-efficient and sustainable industrially applicable biocatalysts. With a deeper apprehension of support material influences, and analyzing the extreme environment, enzymes might have significant potential in improving the overall sustainability of food processing.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
8
|
Food Industrial Production of Monosaccharides Using Microbial, Enzymatic, and Chemical Methods. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most monosaccharides in nature are hexoses, which have six carbon atoms; the most well-known hexose is d-glucose. Various hexoses with distinct characteristics can be produced from inexpensive polysaccharides for applications in the food industry. Therefore, identification of the health-related functions of hexose will facilitate the consumption of hexoses in food products to improve quality of life. The hexoses available in foods include N-acetyl glucosamine, d-glucosamine, d-fructose, d-mannose, d-galactose, other d-hexoses, and l-hexoses. Here, an updated overview of food industrial production methods for natural hexoses by microbial, enzymatic, and chemical methods is provided.
Collapse
|
9
|
Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. NPJ Sci Food 2018; 2:19. [PMID: 31304269 PMCID: PMC6550151 DOI: 10.1038/s41538-018-0028-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022] Open
Abstract
Food processing generates byproduct and waste streams rich in lipids, carbohydrates, and proteins, which contribute to its negative environmental impact. However, these compounds hold significant economic potential if transformed into revenue streams such as biofuels and ingredients. Indeed, the high protein, sugar, and fat content of many food waste streams makes them ideal feedstocks for enzymatic valorization. Compared to synthetic catalysts, enzymes have higher specificity, lower energy requirement, and improved environmental sustainability in performing chemical transformations, yet their poor stability and recovery limits their performance in their native state. This review article surveys the current state-of-the-art in enzyme stabilization & immobilization technologies, summarizes opportunities in enzyme-catalyzed valorization of waste streams with emphasis on streams rich in mono- and disaccharides, polysaccharides, lipids, and proteins, and highlights challenges and opportunities in designing commercially translatable immobilized enzyme systems towards the ultimate goals of sustainable food production and reduced food waste.
Collapse
|
10
|
Immobilization and some properties of commercial enzyme preparation for production of lactulose-based oligosaccharides. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Satar R, Ansari SA. Functionalized agarose as an effective and novel matrix for immobilizing Cicer arietinum β-galactosidase and its application in lactose hydrolysis. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170342s20160107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Rukhsana Satar
- Ibn Sina National College for Medical Sciences, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Ibn Sina National College for Medical Sciences, Saudi Arabia; King Abdulaziz University, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Abstract
Beta galactosidases (BGALs) are glycosyl hydrolases that remove terminal β-D-galactosyl residues from β-D-galactosides. There are 17 predicted BGAL genes in the genomes of both Arabidopsis (BGAL1-17) and tomato (TBG1-17). All tested BGALs have BGAL activity but their distinct expression profiles and ancient phylogenetic separation indicates that these enzymes fulfil diverse, non-redundant roles in plant biology. The majority of these BGALs are predicted to have signal peptide and thought to act during cell wall-related biological processes. Interestingly, deletion of BGAL6 and BGAL10 in Arabidopsis causes reduced mucilage release during seed imbibition and shorter siliques respectively, whereas TBG4 depletion by RNAi decreases in fruit softening in tomato. The majority of plant BGALs remain to be characterized.
Collapse
|
13
|
Machado JR, Behling MB, Braga ARC, Kalil SJ. β-Galactosidase production using glycerol and byproducts: Whey and residual glycerin. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1100363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Evaluation of the cold-active Pseudoalteromonas haloplanktis β-galactosidase enzyme for lactose hydrolysis in whey permeate as primary step of d-tagatose production. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Osman A, Symeou S, Trisse V, Watson KA, Tzortzis G, Charalampopoulos D. Synthesis of prebiotic galactooligosaccharides from lactose using bifidobacterial β-galactosidase (BbgIV) immobilised on DEAE-Cellulose, Q-Sepharose and amino-ethyl agarose. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Kang BC. Analysis of an Immobilized β-Galactosidase Reactor with Competitive Product Inhibition Kinetics. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.12.1471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Mohy Eldin MS, El-Aassar MR, El. Zatahry AA, Al-Sabah MMB. Covalent Immobilization of β-Galactosidase onto Amino-Functionalized Polyvinyl Chloride Microspheres: Enzyme Immobilization and Characterization. ADVANCES IN POLYMER TECHNOLOGY 2013. [DOI: 10.1002/adv.21379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. S. Mohy Eldin
- Polymer Materials Research Department; Advanced Technology and New Materials Research Institute; City for Scientific Research and Technology Applications; New Borg El-Arab City 21934 Alexandria Egypt
| | - M. R. El-Aassar
- Polymer Materials Research Department; Advanced Technology and New Materials Research Institute; City for Scientific Research and Technology Applications; New Borg El-Arab City 21934 Alexandria Egypt
| | - A. A. El. Zatahry
- Polymer Materials Research Department; Advanced Technology and New Materials Research Institute; City for Scientific Research and Technology Applications; New Borg El-Arab City 21934 Alexandria Egypt
| | - M. M. B. Al-Sabah
- Department of Chemistry; Faculty of Science, Al-Azhar University; Cairo Egypt
| |
Collapse
|
18
|
Bernal C, Sierra L, Mesa M. Design of β-galactosidase/silica biocatalysts: Impact of the enzyme properties and immobilization pathways on their catalytic performance. Eng Life Sci 2013. [DOI: 10.1002/elsc.201300001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Claudia Bernal
- Grupo Ciencia de los Materiales; Instituto de Química; Universidad de Antioquia; Medellín Colombia
| | - Ligia Sierra
- Grupo Ciencia de los Materiales; Instituto de Química; Universidad de Antioquia; Medellín Colombia
| | - Monica Mesa
- Grupo Ciencia de los Materiales; Instituto de Química; Universidad de Antioquia; Medellín Colombia
| |
Collapse
|
19
|
Choonia HS, Lele S. Three phase partitioning of β-galactosidase produced by an indigenous Lactobacillus acidophilus isolate. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Biochemical characterization and kinetic comparison of encapsulated haze removing acidophilic xylanase with partially purified free xylanase isolated from Aspergillus flavus MTCC 9390. Journal of Food Science and Technology 2013. [DOI: 10.1007/s13197-013-1013-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Immobilisation and stabilisation of β-galactosidase from Kluyveromyces lactis using a glyoxyl support. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2012.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Immobilization of β-galactosidase on modified polypropilene membranes. Int J Biol Macromol 2012; 51:710-9. [DOI: 10.1016/j.ijbiomac.2012.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/28/2012] [Accepted: 07/31/2012] [Indexed: 11/24/2022]
|
23
|
Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae β galactosidase. FOOD AND BIOPRODUCTS PROCESSING 2012. [DOI: 10.1016/j.fbp.2011.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Abstract
Whey, the liquid remaining after milk fat and casein have been separated from whole milk, is one of the major disposal problems of the dairy industry, and demands simple and economical solutions. In view of the fast developments in biotechnological techniques, alternatives of treating whey by transforming lactose present in it to value added products have been actively explored. Whey can be used directly as a substrate for the growth of different microorganisms to obtain various products such as ethanol, single-cell protein, enzymes, lactic acid, citric acid, biogas and so on. In this review, a comprehensive and illustrative survey is made to elaborate the various biotechnological innovations/techniques applied for the effective utilization of whey for the production of different bioproducts.
Collapse
Affiliation(s)
- Parmjit S Panesar
- Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148 106, Punjab, India.
| | | |
Collapse
|
25
|
Freitas FF, Marquez LD, Ribeiro GP, Brandão GC, Cardoso VL, Ribeiro EJ. A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Katrolia P, Yan Q, Jia H, Li Y, Jiang Z, Song C. Molecular cloning and high-level expression of a β-galactosidase gene from Paecilomyces aerugineus in Pichia pastoris. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Braga ARC, Gomes PA, Kalil SJ. Formulation of Culture Medium with Agroindustrial Waste for β-Galactosidase Production from Kluyveromyces marxianus ATCC 16045. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0511-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Panesar PS, Kumari S, Panesar R. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries. Enzyme Res 2010; 2010:473137. [PMID: 21234407 PMCID: PMC3014700 DOI: 10.4061/2010/473137] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/22/2010] [Accepted: 11/21/2010] [Indexed: 11/20/2022] Open
Abstract
The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry.
Collapse
Affiliation(s)
- Parmjit S. Panesar
- Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148 106, India
| | - Shweta Kumari
- Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148 106, India
| | - Reeba Panesar
- Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148 106, India
| |
Collapse
|
29
|
Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Haser R, Aghajari N. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a beta-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Res Microbiol 2010; 161:515-25. [PMID: 20472057 DOI: 10.1016/j.resmic.2010.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
The gene encoding beta-galactosidase from dairy Streptococcus thermophilus strain LMD9 was cloned, sequenced and expressed in Escherichia coli. The recombinant enzyme was purified and showed high specific activity of 464 U/mg. This protein displays a homotetrameric arrangement composed of four 118 kDa monomers. Monitoring of the activity showed that this enzyme was optimally active at a wide range of temperatures (25-40 degrees C) and at pH from 6.5 to 7.5. Immobilization of the recombinant E. coli in alginate beads clearly enhanced the enzyme activity at various temperatures, including 4 and 50 degrees C, and at pH values from 4.0 to 8.5. Stability studies indicated that this biocatalyst has high stability within a broad range of temperatures and pH. This stability was improved not only by addition of 1 mM of Mn(2+) and 1.2 mM Mg(2+), but essentially through immobilization. The remarkable bioconversion rates of lactose in milk and whey at different temperatures revealed the attractive catalytic efficiency of this enzyme, thus promoting its use for lactose hydrolysis in milk and other dairy products.
Collapse
Affiliation(s)
- Moez Rhimi
- Laboratoire de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086-CNRS/Université de Lyon, IFR128 BioSciences Gerland - Lyon Sud, 7 Passage du Vercors, F-69367 Lyon cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Encapsulation of β-galactosidase from Aspergillus oryzae based on “fish-in-net” approach with molecular imprinting technique. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
|
32
|
|
33
|
|
34
|
Kosseva MR, Panesar PS, Kaur G, Kennedy JF. Use of immobilised biocatalysts in the processing of cheese whey. Int J Biol Macromol 2009; 45:437-47. [DOI: 10.1016/j.ijbiomac.2009.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/04/2009] [Accepted: 09/11/2009] [Indexed: 11/16/2022]
|
35
|
Demirhan E, Özbek B. A MODELING STUDY ON HYDROLYSIS OF LACTOSE RECOVERED FROM WHEY AND β-GALACTOSIDASE STABILITY UNDER SONIC TREATMENT. CHEM ENG COMMUN 2009. [DOI: 10.1080/00986440802589529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Demirhan E, Apar DK, Özbek B. EFFECT OF IMPELLER SPEED AND VISCOSITY ON WHEY LACTOSE HYDROLYSIS AND β-GALACTOSIDASE STABILITY. CHEM ENG COMMUN 2007. [DOI: 10.1080/00986440701293298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
PANESAR REEBA, PANESAR PARMJITS, SINGH RAMS, BERA MANAVB. APPLICABILITY OF ALGINATE ENTRAPPED YEAST CELLS FOR THE PRODUCTION OF LACTOSE-HYDROLYZED MILK. J FOOD PROCESS ENG 2007. [DOI: 10.1111/j.1745-4530.2007.00127.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
|
39
|
Makowski K, Białkowska A, Szczesna-Antczak M, Kalinowska H, Kur J, Cieśliński H, Turkiewicz M. Immobilized preparation of cold-adapted and halotolerant Antarctic β-galactosidase as a highly stable catalyst in lactose hydrolysis. FEMS Microbiol Ecol 2007; 59:535-42. [PMID: 17059485 DOI: 10.1111/j.1574-6941.2006.00208.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A cold-active beta-galactosidase of Antarctic marine bacterium Pseudoalteromonas sp. 22b was synthesized by an Escherichia coli transformant harboring its gene and immobilized on glutaraldehyde-treated chitosan beads. Unlike the soluble enzyme the immobilized preparation was not inhibited by glucose, its apparent optimum temperature for activity was 10 degrees C higher (50 vs. 40 degrees C, respectively), optimum pH range was wider (pH 6-9 and 6-8, respectively) and stability at 50 degrees C was increased whilst its pH-stability remained unchanged. Soluble and immobilized preparations of Antarctic beta-galactosidase were active and stable in a broad range of NaCl concentrations (up to 3 M) and affected neither by calcium ions nor by galactose. The activity of immobilized beta-galactosidase was maintained for at least 40 days of continuous lactose hydrolysis at 15 degrees C and its shelf life at 4 degrees C exceeded 12 months. Lactose content in milk was reduced by more than 90% over a temperature range of 4-30 degrees C in continuous and batch systems employing the immobilized enzyme.
Collapse
Affiliation(s)
- Krzysztof Makowski
- Institute of Technical Biochemistry, Technical University of Lodz, Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
40
|
Modeling of the simultaneous hydrolysis–ultrafiltration of whey permeate by a thermostable β-galactosidase from Aspergillus niger. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2005.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Abstract
Abstractβ-galactosidase from Penicillium canescens was immobilized on chitosan, sepharose-4B, foamable polyurethane and some other carriers. The highest yield of immobilization (up to 98%) was obtained by using chitosan as a carrier. The optimum pH and temperature were not significantly altered by immobilization. High stability of immobilized β-galactosidase during storage was demonstrated. Efficient lactose saccharification (over 90%) in whey was achieved by using immobilized β-galactosidase.
Collapse
|
42
|
Kinetic models of activity for β-galactosidases: influence of pH, ionic concentration and temperature. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Roy I, Gupta MN. Lactose hydrolysis by Lactozym™ immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 2003. [DOI: 10.1016/s0032-9592(03)00086-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Ferreira L, Souza Jr M, Trierweiler J, Hitzmann B, Folly R. Analysis of experimental biosensor/FIA lactose measurements. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2003. [DOI: 10.1590/s0104-66322003000100003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
|