1
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
2
|
Zhang N, Zhou Q, Fan D, Xiao J, Zhao Y, Cheng KW, Wang M. Novel roles of hydrocolloids in foods: Inhibition of toxic maillard reaction products formation and attenuation of their harmful effects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Yahia D, El-Amir YO, Rushdi M. Mancozeb fungicide-induced genotoxic effects, metabolic alterations, and histological changes in the colon and liver of Sprague Dawley rats. Toxicol Ind Health 2019; 35:265-276. [PMID: 30983557 DOI: 10.1177/0748233719834150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study was designed to evaluate genotoxic markers of mancozeb exposure and withdrawal in colon and liver tissues together with histological changes in the gastrointestinal tract of Sprague Dawley rats. Thirty rats were divided into three equal groups; group I: treatment, 250 mg/kg mancozeb dissolved in corn oil administered twice weekly for 7 weeks; group II: withdrawal, the same treatment as group I after which animals were untreated for 5 weeks; group III: control, administered corn oil on the same schedule as group I for 7 weeks. All administrations were by oral gavage. Serum samples were analyzed for biochemical parameters. The comet assay and histopathological examinations were done on liver and colon specimens. The results demonstrated that mancozeb exposure caused significant increases in triglycerides and total cholesterol accompanied by decreases in glucose levels, with extensive DNA damage in liver and colon together with pathological changes in stomach, colon, and liver. Mancozeb withdrawal for 5 weeks improved the lipid and glucose profiles and decreased the degree of DNA damage and changes in the architecture of the stomach, colon, and liver. We concluded that discontinuing exposure to mancozeb fungicide for 5 weeks could ameliorate the adverse effects induced by 7 weeks of exposure to mancozeb. A longer withdrawal time may further reduce the observed genotoxicity.
Collapse
Affiliation(s)
- Doha Yahia
- 1 Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Yasmin O El-Amir
- 2 Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.,3 Department of Medical laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Mahmoud Rushdi
- 4 Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Kirkland D, Uno Y, Luijten M, Beevers C, van Benthem J, Burlinson B, Dertinger S, Douglas GR, Hamada S, Horibata K, Lovell DP, Manjanatha M, Martus HJ, Mei N, Morita T, Ohyama W, Williams A. In vivo genotoxicity testing strategies: Report from the 7th International workshop on genotoxicity testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403035. [PMID: 31699340 DOI: 10.1016/j.mrgentox.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022]
Abstract
The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster, LS24 0AS, United Kingdom.
| | - Yoshifumi Uno
- Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama, 335-8505, Japan
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Carol Beevers
- Exponent International Ltd., The Lenz, Hornbeam Park, Harrogate, HG2 8RE, United Kingdom
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Brian Burlinson
- Envigo, Huntingdon, Cambridgeshire, PE28 4HS, United Kingdom
| | | | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | - Shuichi Hamada
- LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan
| | - Katsuyoshi Horibata
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - David P Lovell
- St George's Medical School, University of London, London, SW17 0RE, United Kingdom
| | | | | | - Nan Mei
- US FDA, National Center for Toxicological Research, Jefferson, AR, USA
| | - Takeshi Morita
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Wakako Ohyama
- Yakult Honsha Co., Ltd., 5-11, Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Andrew Williams
- Environmental Health Science Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| |
Collapse
|
5
|
Liu X, Zhang T, Li X, Zhao G, Xie F. Effects of 2-amino-9H-pyrido[2,3-b]indole (AαC) metabolic bio-activation on oxidative DNA damage in human hepatoma G2 (HepG2) cells. Toxicol Mech Methods 2017; 28:230-237. [DOI: 10.1080/15376516.2017.1391363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xianjun Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Tingting Zhang
- Technology Center of Henan Tobacco Industrial Co., Ltd, Zhengzhou, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ge Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
6
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
7
|
Høie AH, Svendsen C, Brunborg G, Glatt H, Alexander J, Meinl W, Husøy T. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:709-14. [PMID: 26270892 PMCID: PMC5042101 DOI: 10.1002/em.21963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
The food processing contaminants 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 5-hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N-hydroxy-PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild-type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N-hydroxy-PhIP and HMF in vivo.
Collapse
Affiliation(s)
- Anja Hortemo Høie
- Department of Food, Water and Cosmetics, Division of Environmental MedicineNorwegian Institute of Public HealthOsloNorway
| | - Camilla Svendsen
- Department of Food, Water and Cosmetics, Division of Environmental MedicineNorwegian Institute of Public HealthOsloNorway
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental MedicineNorwegian Institute of Public HealthOsloNorway
| | - Hansruedi Glatt
- Department of Nutritional ToxicologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
- Department of Food SafetyFederal Institute for Risk AssessmentBerlinGermany
| | - Jan Alexander
- Office of the Director‐GeneralNorwegian Institute of Public HealthOsloNorway
| | - Walter Meinl
- Department of Nutritional ToxicologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
| | - Trine Husøy
- Department of Food, Water and Cosmetics, Division of Environmental MedicineNorwegian Institute of Public HealthOsloNorway
| |
Collapse
|
8
|
Zhang TT, Zhao G, Li X, Xie FW, Liu HM, Xie JP. Genotoxic and oxidative stress effects of 2-amino-9H-pyrido[2,3-b]indole in human hepatoma G2 (HepG2) and human lung alveolar epithelial (A549) cells. Toxicol Mech Methods 2015; 25:212-22. [DOI: 10.3109/15376516.2015.1025345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Manjanatha MG, Bishop ME, Pearce MG, Kulkarni R, Lyn-Cook LE, Ding W. Genotoxicity of doxorubicin in F344 rats by combining the comet assay, flow-cytometric peripheral blood micronucleus test, and pathway-focused gene expression profiling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:24-34. [PMID: 24155181 DOI: 10.1002/em.21822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
Doxorubicin (DOX) is an antineoplastic drug effective against many human malignancies. DOX's clinical efficacy is greatly limited because of severe cardiotoxicity. To evaluate if DOX is genotoxic in the heart, ~7-week-old, male F344 rats were administered intravenously 1, 2, and 3 mg/kg bw DOX at 0, 24, 48, and 69 hr and the Comet assays in heart, liver, kidney, and testis and micronucleus (MN) assay in the peripheral blood (PB) erythrocytes using flow cytometry were conducted. Rats were euthanized at 72 hr and PB was removed for the MN assay and single cells were isolated from multiple tissues for the Comet assays. None of the doses of DOX induced a significant DNA damage in any of the tissues examined by the alkaline Comet assay. Contrastingly, the glycosylase enzymes-modified Comet assay showed a significant dose dependent increase in the oxidative DNA damage in the cardiac tissue (P ≤ 0.05). In the liver, only the top dose induced significant increase in the oxidative DNA damage (P ≤ 0.05). The histopathology showed no severe cardiotoxicity but non-neoplastic lesions were present in both untreated and treated samples. A severe toxicity likely occurred in the bone marrow because no viable reticulocytes could be screened for the MN assay. Gene expression profiling of the heart tissues showed a significant alteration in the expression of 11 DNA damage and repair genes. These results suggest that DOX is genotoxic in the heart and the DNA damage may be induced primarily via the production of reactive oxygen species.
Collapse
Affiliation(s)
- Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | | |
Collapse
|
10
|
Barcelos GRM, Grotto D, Serpeloni JM, Aissa AF, Antunes LMG, Knasmüller S, Barbosa F. Bixin and norbixin protect against DNA-damage and alterations of redox status induced by methylmercury exposure in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:535-541. [PMID: 22847942 DOI: 10.1002/em.21715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
Populations in the Amazon are exposed to organic mercury via consumption of contaminated foods. These ethnic groups consume a specific plant seed "annatto" which contains certain carotenoids. The aim of this study was to find out if these compounds (bixin, BIX and norbixin, NOR), protect against DNA-damage caused by the metal. Therefore, rats were treated orally with methylmercury (MeHg) and with the carotenoids under conditions that are relevant to humans. The animals were treated either with MeHg (30 μg/kg/bw/day), BIX (0.1-10 mg/kg/bw/day), NOR (0.01-1.0 mg/kg/bw/day) or combinations of the metal compound and the carotenoids consecutively for 45 days. Subsequently, the glutathione levels (GSH) and the activity of catalase were determined, and DNA-damage was measured in hepatocytes and leukocytes using single cell gel electrophoresis assays. Treatment with the metal alone caused a decrease in the GSH levels (35%) and induced DNA damage, which resulted in increased DNA migration after electrophoresis in liver and blood cells, whereas no effects were seen with the carotenoids alone. When BIX or NOR were given in combination with organic mercury, the intermediate and the highest concentrations of the carotenoids (1.0 and 10.0 mg/kg/bw/day BIX and 0.1 and 1.0 mg/kg/bw/day NOR) protected against DNA-damage. Furthermore, we found with both carotenoids, a moderate increase in the GSH levels in both metal-treated and untreated animals, while the activities of catalase remained unchanged. Our results indicate that consumption of BIX and NOR may protect humans against the adverse health effects caused by exposure to organic mercury.
Collapse
Affiliation(s)
- Gustavo Rafael Mazzaron Barcelos
- Departament of Clinical, Toxicologic and Bromatologic Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
XUE Z, YU W, LIU Z, WU M, WANG J. INDUCTION OF APOPTOSIS IN CERVIX NEOPLASMS HeLa CELLS BY A RAPESEED PEPTIDE HYDROLYSATE FRACTION. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00451.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Rothfuss A, O'Donovan M, De Boeck M, Brault D, Czich A, Custer L, Hamada S, Plappert-Helbig U, Hayashi M, Howe J, Kraynak AR, van der Leede BJ, Nakajima M, Priestley C, Thybaud V, Saigo K, Sawant S, Shi J, Storer R, Struwe M, Vock E, Galloway S. Collaborative study on fifteen compounds in the rat-liver Comet assay integrated into 2- and 4-week repeat-dose studies. Mutat Res 2010; 702:40-69. [PMID: 20656055 DOI: 10.1016/j.mrgentox.2010.07.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/14/2010] [Accepted: 06/24/2010] [Indexed: 11/28/2022]
Abstract
A collaborative trial was conducted to evaluate the possibility of integrating the rat-liver Comet assay into repeat-dose toxicity studies. Fourteen laboratories from Europe, Japan and the USA tested fifteen chemicals. Two chemicals had been previously shown to induce micronuclei in an acute protocol, but were found negative in a 4-week Micronucleus (MN) Assay (benzo[a]pyrene and 1,2-dimethylhydrazine; Hamada et al., 2001); four genotoxic rat-liver carcinogens that were negative in the MN assay in bone marrow or blood (2,6-dinitrotoluene, dimethylnitrosamine, 1,2-dibromomethane, and 2-amino-3-methylimidazo[4,5-f]quinoline); three compounds used in the ongoing JaCVAM (Japanese Center for the Validation of Alternative Methods) validation study of the acute liver Comet assay (2,4-diaminotoluene, 2,6-diaminotoluene and acrylamide); three pharmaceutical-like compounds (chlordiazepoxide, pyrimethamine and gemifloxacin), and three non-genotoxic rodent liver carcinogens (methapyrilene, clofibrate and phenobarbital). Male rats received oral administrations of the test compounds, daily for two or four weeks. The top dose was meant to be the highest dose producing clinical signs or histopathological effects without causing mortality, i.e. the 28-day maximum tolerated dose. The liver Comet assay was performed according to published recommendations and following the protocol for the ongoing JaCVAM validation trial. Laboratories provided liver Comet assay data obtained at the end of the long-term (2- or 4-week) studies together with an evaluation of liver histology. Most of the test compounds were also investigated in the liver Comet assay after short-term (1-3 daily) administration to compare the sensitivity of the two study designs. MN analyses were conducted in bone marrow or peripheral blood for most of the compounds to determine whether the liver Comet assay could complement the MN assay for the detection of genotoxins after long-term treatment. Most of the liver genotoxins were positive and the three non-genotoxic carcinogens gave negative result in the liver Comet assay after long-term administration. There was a high concordance between short- and long-term Comet assay results. Most compounds when tested up to the maximum tolerated dose were correctly detected in both short- and long-term studies. Discrepant results were obtained with 2,6 diaminotoluene (negative in the short-term, but positive in the long-term study), phenobarbital (positive in the short-term, but negative in the long-term study) and gemifloxacin (positive in the short-term, but negative in the long-term study). The overall results indicate that the liver Comet assay can be integrated within repeat-dose toxicity studies and efficiently complements the MN assay in detecting genotoxins. Practical aspects of integrating genotoxicity endpoints into repeat-dose studies were evaluated, e.g. by investigating the effect of blood sampling, as typically performed during toxicity studies, on the Comet and MN assays. The bleeding protocols used here did not affect the conclusions of the Comet assay or of the MN assays in blood and bone marrow. Although bleeding generally increased reticulocyte frequencies, the sensitivity of the response in the MN assay was not altered. These findings indicate that all animals in a toxicity study (main-study animals as well as toxicokinetic (TK) satellite animals) could be used for evaluating genotoxicity. However, possible logistical issues with scheduling of the necropsies and the need to conduct electrophoresis promptly after tissue sampling suggest that the use of TK animals could be simpler. The data so far do not indicate that liver proliferation or toxicity confound the results of the liver Comet assay. As was also true for other genotoxicity assays, criteria for evaluation of Comet assay results and statistical analyses differed among laboratories. Whereas comprehensive advice on statistical analysis is available in the literature, agreement is needed on applying consistent criteria.
Collapse
Affiliation(s)
- Andreas Rothfuss
- Bayer Schering Pharma AG, Nonclinical Drug Safety, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Saito J, Fukushima H, Nagase H. Inhibitory effect of magnolol on Trp-P-2-induced DNA damage in various organs in mice. Phytother Res 2009; 23:901-5. [PMID: 19140158 DOI: 10.1002/ptr.2748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Magnolol has been reported to strongly inhibit the mutagenicity induced by indirect mutagens in the Ames test as well as the clastogenicity induced by benzo(a)pyrene (B(a)P) in the mice micronucleus test. Here, we evaluated the inhibitory effect of magnolol on the DNA damage induced by 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in various organs using the mice alkaline single cell gel electrophoresis (SCG) assay. Animals were treated with a single oral administration of magnolol (0.01, 0.1, 1, 10, and 100 mg/kg), followed by a single intraperitoneal injection of Trp-P-2 (10 mg/kg). The liver, lung, and kidney were removed at 3 h after treatment and used in SCG assay. The results indicated that magnolol inhibited Trp-P-2-induced DNA damage in various organs. To elucidate the mechanism of this inhibitory effect against Trp-P-2, we investigated the inhibitory effect of magnolol on in vivo CYP1A2 activity using the zoxazolamine paralysis test. Magnolol significantly prolonged zoxazolamine paralysis time and showed an inhibitory effect on in vivo CYP1A2 activity. These results indicate that magnolol has an inhibitory effect on the DNA damage induced by Trp-P-2 in various organs in vivo. This inhibitory mechanism is considered due to in vivo CYP1A2 inhibition.
Collapse
Affiliation(s)
- Junichiro Saito
- Drug Safety Research Laboratories, Astellas Pharma Inc. 2-1-6, Kashima, Yodogawa-ku, Osaka, 532-8514, Japan.
| | | | | |
Collapse
|
14
|
Guo L, Yang JY, Wu CF. Oxidative DNA damage induced by ethanol in mouse peripheral leucocytes. Basic Clin Pharmacol Toxicol 2008; 103:222-7. [PMID: 18684230 DOI: 10.1111/j.1742-7843.2008.00258.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is suggested that reactive oxygen species produced during ethanol intake may induce oxidative DNA damage. The present study, by the use of single cell gel electrophoresis (comet assay), investigated the potential genotoxicity of acute and long-term ethanol administration in mouse peripheral leucocytes. Urinary 8-hydroxy-2'-deoxyguanosine and total antioxidant capacity and reactive oxygen species in whole blood were also detected. Acute or long-term administration of ethanol, at the dose of 2.5 or 5.0 g/kg intraperitoneally, for 30 days, could induce significant DNA damage in peripheral leucocytes, which could be repaired at least 3 days after ethanol withdrawal in long-term ethanol treatment. A significant increase of urinary 8-hydroxy-2'-deoxyguanosine and generations of reactive oxygen species in whole blood after ethanol administration were observed, which demonstrated the ethanol-induced oxidative DNA damage. Interestingly, it was found that the total antioxidant capacity was significantly increased in whole blood after long-term ethanol administration compared to the control group, which suggested enhancement in the activities of the antioxidative defence system against oxidative tissue damage caused by excessive ethanol consumption. Thus, the present studies provide a clear evidence that ethanol induced DNA damage in peripheral leucocytes, which might result from ethanol-induced oxidative stress in the body.
Collapse
Affiliation(s)
- Lei Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | | | | |
Collapse
|
15
|
Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:114-32. [DOI: 10.1016/j.mrgentox.2008.05.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/03/2008] [Accepted: 05/09/2008] [Indexed: 11/24/2022]
|
16
|
Kirkland D, Kasper P, Müller L, Corvi R, Speit G. Recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests: A follow-up to an ECVAM workshop. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 653:99-108. [DOI: 10.1016/j.mrgentox.2008.03.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/17/2008] [Accepted: 03/28/2008] [Indexed: 12/27/2022]
|
17
|
Zhang QH, Wu CF, Duan L, Yang JY. Protective effects of total saponins from stem and leaf of Panax ginseng against cyclophosphamide-induced genotoxicity and apoptosis in mouse bone marrow cells and peripheral lymphocyte cells. Food Chem Toxicol 2008; 46:293-302. [PMID: 17904265 DOI: 10.1016/j.fct.2007.08.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 07/26/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cyclophosphamide (CP), commonly used anti-cancer, induces oxidative stress and is cytotoxic to normal cells. It is very important to choice the protective agent combined CP to reduce the side effects in cancer treatment. Ginsenosides are biological active constituents of Panax ginseng C.A. Meyer that acts as the tonic agent for the cancer patients to reduce the side effects in the clinic application. Because CP is a pro-oxidant agent and induces oxidative stress by the generation of free radicals to decrease the activities of anti-oxidant enzymes, the protective effects of the total saponins from stem and leaf of P. ginseng C.A. Meyer (TSPG) act as an anti-oxidant agent against the decreased anti-oxidant enzymes, the genotoxicity and apoptosis induced by CP was carried out. METHODS The alkaline single cell gel electrophoresis was employed to detect DNA damage; flow cytometry assay and AO/EB staining assay were employed to measure cell apoptosis; the enzymatic anti-oxidants (T-SOD, CAT and GPx) and non-enzymatic anti-oxidant (GSH) were measured by the various colorimetric methods. RESULTS CP induced the significant DNA damage in mouse peripheral lymphocytes in time- and dose-dependent manners, inhibited the activities of T-SOD, GPx and CAT, and decreased the contents of GSH in mouse blood, triggered bone marrow cell apoptosis at 6 and 12h. TSPG significantly reduced CP-induced DNA damages in bone marrow cells and peripheral lymphocyte cells, antagonized CP-induced reduction of T-SOD, GPx, CAT activities and the GSH contents, decreased the bone marrow cell apoptosis induced by CP. CONCLUSIONS TSPG, significantly reduced the genotoxicity of CP in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptotic cell number induced by CP in bone marrow cells. The effects of TSPG on T-SOD, GPx, CAT activities and GSH contents might partially contribute to its protective effects on CP-induced cell toxicities.
Collapse
Affiliation(s)
- Qiu Hua Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | | | | | | |
Collapse
|
18
|
Guo L, Wang LH, Sun B, Yang JY, Zhao YQ, Dong YX, Spranger MI, Wu CF. Direct in vivo evidence of protective effects of grape seed procyanidin fractions and other antioxidants against ethanol-induced oxidative DNA damage in mouse brain cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5881-91. [PMID: 17567031 DOI: 10.1021/jf070440a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ethanol is a principle ingredient of alcoholic beverages with potential neurotoxicity and carcinogenicity, and the ethanol-associated oxidative DNA damage in the central nervous system is well documented. The present work studied the possible protective effects of grape seed oligomer and polymer procyanidin fractions against ethanol-induced toxicity and compared these with resveratrol and other well-known antioxidants (ascorbic acid and vitamin E). By using the single cell gel electrophoresis (comet assay), a simple and sensitive technique for genotoxicity studies, the potential genotoxicity of acute and chronic ethanol administration in the different brain regions was investigated. Acute ethanol administration, at the dose of 2.5 or 5.0 g kg(-1) i.p., could induce significant DNA damage in cerebellum and hippocampus. Chronic administration of ethanol at the dose of 2.5 or 5.0 g kg-1 p.o. for 30 days could induce significant DNA damage in cerebellum, hippocampus, hypothalamus, and cortex, which could be auto-repaired at least 3 days after ethanol withdrawal. Oral administration of grape seed oligomer and polymer procyanidins and resveratrol (25, 50, and 100 mg kg(-1)) for 3 days before acute ethanol (5.0 g kg(-1), i.p.) or repeated administration of these substances together with ethanol (5.0 g kg(-1), p.o.) for 30 consecutive days could significantly inhibit DNA damage in brain cells induced by ethanol. As compared, ascorbic acid (50, 100, and 200 mg kg(-1)) and vitamin E (100, 200, and 400 mg kg(-1)) could also present protective effects on ethanol-induced DNA damage. Furthermore, the concentrations of ethanol and acetaldehyde in brain regions of the mice were detected by gas chromatography after administration of ethanol plus antioxidants. All of the results indicated that ethanol could induce region-specific oxidative DNA damage in which the cerebellum and hippocampus were more vulnerable, but intake of grape seed procyanidins or other natural antioxidants could protect the brain against ethanol-induced genotoxicity.
Collapse
Affiliation(s)
- Lei Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Watanabe T, Tomiyama T, Nishijima S, Kanda Y, Murahashi T, Hirayama T. Evaluation of Genotoxicity of 3-Amino-, 3-Acetylamino- and 3-Nitrobenzanthrone Using the Ames/Salmonella Assay and the Comet Assay. ACTA ACUST UNITED AC 2005. [DOI: 10.1248/jhs.51.569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Yuka Kanda
- Department of Public Health, Kyoto Pharmaceutical University
| | | | | |
Collapse
|
20
|
Mattioli F, Garbero C, Gosmar M, Manfredi V, Carrozzino R, Martelli A, Brambilla G. DNA fragmentation, DNA repair and apoptosis induced in primary rat hepatocytes by dienogest, dydrogesterone and 1,4,6-androstatriene-17β-ol-3-one acetate. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 564:21-9. [PMID: 15474407 DOI: 10.1016/j.mrgentox.2004.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 06/17/2004] [Accepted: 07/16/2004] [Indexed: 10/26/2022]
Abstract
Four steroids that share the 17-hydroxy-3-oxopregna-4,6-diene structure - cyproterone acetate, chlormadinone acetate, megestrol acetate, and potassium canrenoate - have been shown previously to behave with different potency as liver-specific genotoxic agents, the response being markedly higher in female than in male rats, but similar in humans of both genders. In this study, performed to better define the relationship between chemical structure and genotoxicity, dydrogesterone (DGT) with double bonds C4=C5 and C6=C7, dienogest (DNG) with double bonds C4=C5 and C9=C10, and 1,4,6-androstatriene-17beta-ol-3-one acetate (ADT) with double bonds C1=C2, C4=C5 and C6=C7, were compared with cyproterone acetate (CPA) for their ability to induce DNA fragmentation and DNA repair synthesis in primary cultures of hepatocytes from three rats of each sex. At subtoxic concentrations, ranging from 10 to 90 microM, all four steroids consistently induced a dose-dependent increase of DNA fragmentation, which in all cases was higher in females than in males; their DNA damaging potency decreased in the order CPA > DNG > ADT > DGT. Under the same experimental conditions, the responses provided by the DNA repair-synthesis assay were positive or inconclusive in hepatocytes from female rats and consistently negative in hepatocytes from male rats. In the induction of apoptotic cells, examined in primary hepatocytes from female rats, CPA was more active than ADT and DGT, and DNG was inactive. Considered as a whole these findings suggest that a liver-specific genotoxic effect more marked in female than in male rats might be a common property of steroids with two or three double bonds.
Collapse
Affiliation(s)
- Francesca Mattioli
- Department of Internal Medicine, Division of Clinical Pharmacology and Toxicology, University of Genoa, Viale Benedetto XV 2, I-16132 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Majer BJ, Kassie F, Sasaki Y, Pfau W, Glatt H, Meinl W, Darroudi F, Knasmüller S. Investigation of the genotoxic effects of 2-amino-9H-pyrido[2,3-b]indole in different organs of rodents and in human derived cells. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 802:167-73. [PMID: 15036008 DOI: 10.1016/j.jchromb.2003.10.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim of the present study was the investigation of the genotoxicity of amino-alpha-carboline (AalphaC) in human derived cells and of its organ-specific effects in laboratory rodents. This heterocyclic amine (HA) is contained in fried meat and fish in higher concentrations than most other cooked food mutagens. In the present experiments, AalphaC caused dose-dependent induction of micronuclei in the human derived hepatoma cell line HepG2 at concentrations > or =50 microM. In contrast, no significant effects were seen in Hep3B, another human hepatoma cell line, which may be explained by the concurrent lower activity of sulfotransferase (SULT), an enzyme playing a key role in the activation of AalphaC. A positive result was also obtained in the single cell gel electrophoresis (SCGE) assay in peripheral human lymphocytes, but the effect was only significant at the highest concentration (1000 microM). In Fischer F344 rats and ICR mice, the liver was the main target organ for the formation of DNA adducts (at > or =50 mg/kg bw), and in lungs and colon substantially lower levels were detected. Identical organ specificity as in the DNA adduct measurements was seen in SCGE assays with rats, whereas in mice the most pronounced induction of DNA migration was observed in the colon. Comparison of our results with data from earlier experiments indicate that the genotoxic potency of AalphaC is equal to that of other HAs, which are contained in human foods in much smaller amounts. Therefore, our findings can be taken as an indication that the human health risk caused by exposure to AalphaC is higher than that of other HAs that are formed during the cooking of meat and fish.
Collapse
Affiliation(s)
- B J Majer
- Institute of Cancer Research, University of Vienna, Borschkegasse 8A, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wada S, Kurahayashi H, Kobayashi Y, Funayama T, Yamamoto K, Natsuhori M, Ito N. The relationship between cellular radiosensitivity and radiation-induced DNA damage measured by the comet assay. J Vet Med Sci 2003; 65:471-7. [PMID: 12736429 DOI: 10.1292/jvms.65.471] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between deoxyribonucleic acid (DNA) damage and the cell death induced by gamma-irradiation was examined in three kinds of cells, Chinese hamster ovary fibroblast CHO-K1, human melanoma HMV-II and mouse leukemia L5178Y. Cell survival was determined by a clonogenic assay. The induction and rejoining of DNA strand breaks induced by radiation were measured by the alkaline and neutral comet assays. L5178Y cells were the most radiosensitive, while CHO-K1 cells and HMV-II cells were radioresistant. There was an inverse relationship between the survival fraction at 2 Gy (SF2) and the yield of initial DNA strand breaks per unit dose under the alkaline condition for the comet assay, and also a relationship between SF2 and the residual DNA strand breaks (for 4 hr after irradiation) under the neutral condition for the comet assay, the latter being generally considered to be relative to cellular radiosensitivity. In the present analysis, it was considered that the alkaline condition for the comet assay was optimal for evaluating the initial DNA strand breaks, while the neutral condition was optimal for evaluating the residual DNA strand breaks. Since the comet assay is simpler and more rapid than other methods for detecting radiation-induced DNA damage, this assay appears to be a useful predictive assay for evaluating cellular clonogenic radiosensitivity of tumor cells.
Collapse
Affiliation(s)
- Seiichi Wada
- Biotechnology Laboratory, JAERI-Takasaki, Watanuki-machi, Gunma, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Robbiano L, Carrozzino R, Bacigalupo M, Corbu C, Brambilla G. Correlation between induction of DNA fragmentation in urinary bladder cells from rats and humans and tissue-specific carcinogenic activity. Toxicology 2002; 179:115-28. [PMID: 12204548 DOI: 10.1016/s0300-483x(02)00354-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven chemicals, six of which are known to induce epithelial neoplasms of the urinary bladder in rats, were assayed for their ability to induce DNA damage in primary cultures of rat and human cells from urinary bladder mucosa, and in urinary bladder, liver and kidney of intact rats. Significant dose-dependent increases of DNA fragmentation, as measured by the Comet assay, were obtained in cells from both rats and humans with the following concentrations of five test compounds: 2-naphthylamine and N-nitrosodi-n-butylamine 0.5 and 1 mM, phenacetin 2 and 4 mM, cyclophosphamide from 2 to 8 mM, and o-toluidine 16 and 32 mM. Nitrilotriacetic acid (1-4 mM), a rat bladder carcinogen, and 4-aminobiphenyl (0.125-0.5 mM), a bladder carcinogen in humans but not in rats, gave a weak positive response in rats cells and a more marked response in humans cells. In terms of DNA-damaging potency, 4-aminobiphenyl, cyclophosphamide, phenacetin and 4 nitrilotriacetic acid were more active in human than in rat cells, whereas the converse occurred with 2-naphthylamine. Consistently with the results observed in vitro statistically significant dose-dependent increases in the average frequency of DNA breaks were detected in the urinary bladder mucosa of rats given p.o. single doses corresponding to 14 and 12 LD50 of six of the seven test compounds; the only one which gave a substantially negative response was 4-aminobiphenyl. With the exception of N-nitrosodi-n-butylamine which caused DNA damage in liver and of phenacetin and nitrilotriacetic acid which caused damage in kidney in agreement with their tumorigenic activity, any substantial evidence of DNA lesions in these two organs was absent in rats treated with 12 LD50 of the other 4 test compounds. These findings give evidence that urinary bladder genotoxic carcinogens may be identified by the DNA damage/Comet assay using as targets cells of urinary bladder mucosa, and show that the effect may be quantitatively different in cells from rats and from human donors.
Collapse
Affiliation(s)
- Luigi Robbiano
- Department of Internal Medicine, Division of Clinical Pharmacology and Toxicology, University of Genoa, Viale Benedetto XV, 2, I-16132 Genoa, Italy
| | | | | | | | | |
Collapse
|
24
|
Cortés E, González C, Betancourt M, Ortiz R. Assessment of DNA damage in spleen, bone marrow, and peripheral blood from malnourished rats by single cell gel electrophoresis assay. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 2001; 21:231-47. [PMID: 11301418 DOI: 10.1002/tcm.1012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Severe malnutrition is widely distributed throughout the world and exhibits a high prevalence in developing countries. Experimental malnutrition models have been useful to study the effects of malnutrition at early ages. The purpose of this study was to determine if severe malnutrition induced during lactation in rats increases DNA damage in spleen, peripheral blood, and bone marrow cells, as well as in isolated lymphocytes or lymphoid cells from the same tissues. These cells were obtained from malnourished rats at weaning (21 days of age). DNA damage was estimated by using the alkaline single cell electrophoresis assay. The results obtained in this study indicate that malnutrition is associated with a significant increase in DNA damage in all cell types that were studied in malnourished rats. The analysis of the length of DNA migration and dispersion coefficient showed that some cell types were more susceptible to DNA damage related with malnutrition. The damage observed could be due to the deficiency of several essential nutrients required for protein synthesis that are associated with DNA integrity, impaired DNA repair mechanisms, and/or to the unavailability of molecules necessary to protect the cells against DNA oxidative damage. This damage may produce negative effects for the further development of the organism, since bone marrow is the main site of hematopoiesis and spleen is an important lymphopoietic organ. Also, the increased level of DNA damage in peripheral blood lymphocytes and leukocytes could be related to negative effects such as a deficient immune response.
Collapse
Affiliation(s)
- E Cortés
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. México
| | | | | | | |
Collapse
|
25
|
Sasaki YF, Sekihashi K, Izumiyama F, Nishidate E, Saga A, Ishida K, Tsuda S. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and U.S. NTP Carcinogenicity Database. Crit Rev Toxicol 2000; 30:629-799. [PMID: 11145306 DOI: 10.1080/10408440008951123] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The comet assay is a microgel electrophoresis technique for detecting DNA damage at the level of the single cell. When this technique is applied to detect genotoxicity in experimental animals, the most important advantage is that DNA lesions can be measured in any organ, regardless of the extent of mitotic activity. The purpose of this article is to summarize the in vivo genotoxicity in eight organs of the mouse of 208 chemicals selected from International Agency for Research on Cancer (IARC) Groups 1, 2A, 2B, 3, and 4, and from the U.S. National Toxicology Program (NTP) Carcinogenicity Database, and to discuss the utility of the comet assay in genetic toxicology. Alkylating agents, amides, aromatic amines, azo compounds, cyclic nitro compounds, hydrazines, halides having reactive halogens, and polycyclic aromatic hydrocarbons were chemicals showing high positive effects in this assay. The responses detected reflected the ability of this assay to detect the fragmentation of DNA molecules produced by DNA single strand breaks induced chemically and those derived from alkali-labile sites developed from alkylated bases and bulky base adducts. The mouse or rat organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Therefore, organ-specific genotoxicity was necessary but not sufficient for the prediction of organ-specific carcinogenicity. It would be expected that DNA crosslinkers would be difficult to detect by this assay, because of the resulting inhibition of DNA unwinding. The proportion of 10 DNA crosslinkers that was positive, however, was high in the gastrointestinal mucosa, stomach, and colon, but less than 50% in the liver and lung. It was interesting that the genotoxicity of DNA crosslinkers could be detected in the gastrointestinal organs even though the agents were administered intraperitoneally. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative nongenotoxic (Ames test-negative) carcinogens. The Ames test is generally used as a first screening method to assess chemical genotoxicity and has provided extensive information on DNA reactivity. Out of 208 chemicals studied, 117 are Ames test-positive rodent carcinogens, 43 are Ames test-negative rodent carcinogens, and 30 are rodent noncarcinogens (which include both Ames test-positive and negative noncarcinogens). High positive response ratio (110/117) for rodent genotoxic carcinogens and a high negative response ratio (6/30) for rodent noncarcinogens were shown in the comet assay. For Ames test-negative rodent carcinogens, less than 50% were positive in the comet assay, suggesting that the assay, which detects DNA lesions, is not suitable for identifying nongenotoxic carcinogens. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. This assay had a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic noncarcinogens, suggesting that the comet assay can be used to evaluate the in vivo genotoxicity of in vitro genotoxic chemicals. For chemicals whose in vivo genotoxicity has been tested in multiple organs by the comet assay, published data are summarized with unpublished data and compared with relevant genotoxicity and carcinogenicity data. Because it is clear that no single test is capable of detecting all relevant genotoxic agents, the usual approach should be to carry out a battery of in vitro and in vivo tests for genotoxicity. The conventional micronucleus test in the hematopoietic system is a simple method to assess in vivo clastogenicity of chemicals. Its performance is related to whether a chemical reaches the hematopoietic system. Among 208 chemicals studied (including 165 rodent carcinogens), 54 rodents carcinogens do not induce micronuclei in mouse hematopoietic system despite the positive finding with one or two in vitro tests. Forty-nine of 54 rodent carcinogens that do not induce micronuclei were positive in the comet assay, suggesting that the comet assay can be used as a further in vivo test apart from the cytogenetic assays in hematopoietic cells. In this review, we provide one recommendation for the in vivo comet assay protocol based on our own data.
Collapse
Affiliation(s)
- Y F Sasaki
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Hachinohe, Aomori, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chun HS, Kuzmicky PA, Kado NY, Rice RH. Toxicity of Trp-P-2 to cultured human and rat keratinocytes. Chem Biol Interact 2000; 127:237-53. [PMID: 10967320 DOI: 10.1016/s0009-2797(00)00182-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Keratinocytes cultured from human and rat epidermis exhibited strongly divergent sensitivities to toxicity from the heterocyclic amine food mutagen Trp-P-2. To find a biochemical basis for this difference, the cultured cells were compared in their expression of phase 1 and 2 biotransformation activities, mutagenic activation and macromolecular adducts. The human and early passage rat cells expressed similar levels of ethoxyresorufin O-deethylase and N-acetyl transferase activities, their microsomes were similarly active in inducing bacterial mutagenesis when incubated with Trp-P-2, and the keratinocytes accumulated similar levels of DNA adducts over a 4-day treatment period. However, the human cells expressed an order of magnitude higher cytosolic glutathione S-transferase activity than the rat cells, likely providing enhanced protection. Late passage rat epidermal cells were insensitive to Trp-P-2 toxicity, attributable to their rapid loss of measured cytochrome P450 activity. Rat esophageal and fore-stomach epithelial cells resembled late passage rat epidermal cells in their lack of sensitivity to Trp-P-2 toxicity and lack of P450 activity. Human esophageal epithelial cells expressed substantial P450 activity but, in contrast to human epidermal cells, were sensitive to Trp-P-2 toxicity. Thus keratinocytes provide a valuable system in which to examine the basis for species- and tissue-specific differences in toxicity from this carcinogenic heterocyclic amine.
Collapse
Affiliation(s)
- H S Chun
- Department of Environmental Toxicology, One Shields Avenue, University of California, Davis, CA 95616-8588, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Colorectal cancer is one of the most common internal malignancies in Western society. The cause of this disease appears to be multifactorial and involves genetic as well as environmental aspects. The human colon is continuously exposed to a complex mixture of compounds, which is either of direct dietary origin or the result of digestive, microbial and excretory processes. In order to establish the mutagenic burden of the colorectal mucosa, analysis of specific compounds in feces is usually preferred. Alternatively, the mutagenic potency of fecal extracts has been determined, but the interpretation of these more integrative measurements is hampered by methodological shortcomings. In this review, we focus on exposure of the large bowel to five different classes of fecal mutagens that have previously been related to colorectal cancer risk. These include heterocyclic aromatic amines (HCA) and polycyclic aromatic hydrocarbons (PAH), two exogenous factors that are predominantly ingested as pyrolysis products present in food and (partially) excreted in the feces. Additionally, we discuss N-nitroso-compounds, fecapentaenes and bile acids, all fecal constituents (mainly) of endogenous origin. The mutagenic and carcinogenic potency of the above mentioned compounds as well as their presence in feces, proposed mode of action and potential role in the initiation and promotion of human colorectal cancer are discussed. The combined results from in vitro and in vivo research unequivocally demonstrate that these classes of compounds comprise potent mutagens that induce many different forms of genetic damage and that particularly bile acids and fecapentaenes may also affect the carcinogenic process by epigenetic mechanisms. Large inter-individual differences in levels of exposures have been reported, including those in a range where considerable genetic damage can be expected based on evidence from animal studies. Particularly, however, exposure profiles of PAH and N-nitroso compounds (NOC) have to be more accurately established to come to a risk evaluation. Moreover, lack of human studies and inconsistency between epidemiological data make it impossible to describe colorectal cancer risk as a result of specific exposures in quantitative terms, or even to indicate the relative importance of the mutagens discussed. Particularly, the polymorphisms of genes involved in the metabolism of heterocyclic amines are important determinants of carcinogenic risk. However, the present knowledge of gene-environment interactions with regard to colorectal cancer risk is rather limited. We expect that the introduction of DNA chip technology in colorectal cancer epidemiology will offer new opportunities to identify combinations of exposures and genetic polymorphisms that relate to increased cancer risk. This knowledge will enable us to improve epidemiological study design and statistical power in future research.
Collapse
Affiliation(s)
- T M de Kok
- Department of Health Risk Analysis and Toxicology, University of Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands.
| | | |
Collapse
|
28
|
Tsuda S, Matsusaka N, Madarame H, Miyamae Y, Ishida K, Satoh M, Sekihashi K, Sasaki YF. The alkaline single cell electrophoresis assay with eight mouse organs: results with 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers. Mutat Res 2000; 467:83-98. [PMID: 10771273 DOI: 10.1016/s1383-5718(00)00014-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The genotoxicity of 22 mono-functional alkylating agents (including 9 dialkyl N-nitrosoamines) and 10 DNA crosslinkers selected from IARC (International Agency for Research on Cancer) groups 1, 2A, and 2B was evaluated in eight mouse organs with the alkaline single cell gel electrophoresis (SCGE) (comet) assay. Groups of four mice were treated once intraperitoneally at the dose at which micronucleus tests had been conducted, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and/or 24 h later. All chemicals were positive in the SCGE assay in at least one organ. Of the 22 mono-functional alkylating agents, over 50% were positive in all organs except the brain and bone marrow. The two subsets of mono-functional alkylating agents differed in their bone marrow genotoxicity: only 1 of the 9 dialkyl N-nitrosoamines was positive in bone marrow as opposed to 8 of the 13 other alkylating agents, reflecting the fact that dialkyl N-nitrosoamines are poor micronucleus inducers in hematopoietic cells. The two groups of mono-functional alkylating agents also differ in hepatic carcinogenicity in spite of the fact that they are similar in hepatic genotoxicity. While dialkyl N-nitrosoamines produce tumors primarily in mouse liver, only one (styrene-7,8-oxide) out of 10 of the other type of mono-functional alkylating agents is a mouse hepatic carcinogen. Taking into consideration our previous results showing high concordance between hepatic genotoxicity and carcinogenicity for aromatic amines and azo compounds, a possible explanation for the discrepancy might be that chemicals that require metabolic activation show high concordance between genotoxicity and carcinogenicity in the liver. A high percent of the 10 DNA crosslinkers were positive in the SCGE assay in the gastrointestinal mucosa, but less than 50% were positive in the liver and lung. In this study, we allowed 10 min alkali-unwinding to obtain low and stable control values. Considering that DNA crosslinking lesions can be detected as lowering of not only positive but also negative control values, low control values by short alkali-treatment might make it difficult to detect DNA crosslinking lesions. In conclusion, although both mono-functional alkylating agents and DNA crosslinkers are genotoxic in mouse multiple organs, the genotoxicity of DNA crosslinkers can be detected in the gastrointestinal organs even though they were given intraperitoneally followed by the short alkali-treatment.
Collapse
Affiliation(s)
- S Tsuda
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsuda S, Matsusaka N, Madarame H, Ueno S, Susa N, Ishida K, Kawamura N, Sekihashi K, Sasaki YF. The comet assay in eight mouse organs: results with 24 azo compounds. Mutat Res 2000; 465:11-26. [PMID: 10708965 DOI: 10.1016/s1383-5718(99)00199-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genotoxicity of 24 azo compounds selected from IARC (International Agency for Research on Cancer) groups 2A, 2B, and 3 were determined by the comet (alkaline single cell gel electrophoresis, SCG) assay in eight mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8, and 24 h after treatment. For the 17 azo compounds, the assay was positive in at least one organ; (1) 14 and 12 azo compounds induced DNA damage in the colon and liver, respectively, (2) the genotoxic effect of most of them was greatest in the colon, and (3) there were high positive responses in the gastrointestinal organs, but those organs are not targets for carcinogenesis. One possible explanation for this discrepancy is that the assay detects DNA damage induced shortly after administration of a relatively high dose, while carcinogenicity is detected after long treatment with relatively low doses. The metabolic enzymes may become saturated following high doses and the rates and pathways of metabolic activation and detoxification may differ following high single doses vs. low long-term doses. Furthermore, considering that spontaneous colon tumors are very rare in rats and mice, the ability to detect tumorigenic effects in the colon of those animals might be lower than the ability to detect genotoxic events in the comet assay. The in vivo comet assay, which has advantage of reflecting test chemical absorption, distribution, and excretion as well as metabolism, should be effective for estimating the risk posed by azo dyes to humans in spite of the difference in dosage regimen.
Collapse
Affiliation(s)
- S Tsuda
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sasaki YF, Fujikawa K, Ishida K, Kawamura N, Nishikawa Y, Ohta S, Satoh M, Madarame H, Ueno S, Susa N, Matsusaka N, Tsuda S. The alkaline single cell gel electrophoresis assay with mouse multiple organs: results with 30 aromatic amines evaluated by the IARC and U.S. NTP. Mutat Res 1999; 440:1-18. [PMID: 10095124 DOI: 10.1016/s1383-5718(99)00006-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.
Collapse
Affiliation(s)
- Y F Sasaki
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Tamonoki Uwanotai 16-1, Hachinohe, Aomori 039-11, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tsuda S, Kosaka Y, Murakami M, Matsuo H, Matsusaka N, Taniguchi K, Sasaki YF. Detection of nivalenol genotoxicity in cultured cells and multiple mouse organs by the alkaline single-cell gel electrophoresis assay. Mutat Res 1998; 415:191-200. [PMID: 9714801 DOI: 10.1016/s1383-5718(98)00068-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We tested the genotoxicity of nivalenol (NIV), a potent toxic trichothecene from Fusarium nivale, in cultured CHO cells and in several mouse organs and tissues (liver, kidney, thymus, bone marrow and mucosa of stomach, jejunum, and colon) using the alkaline single-cell gel electrophoresis (SCG, or Comet) assay. NIV at 50 and 100 micrograms/ml damaged the nuclear DNA of CHO cells in the absence of S9 mix, showing that NIV was a direct mutagen. In an in vivo study, mice were sacrificed 2, 4, and 8 h after either oral (20 mg/kg) or intraperitoneal (3.7 mg/kg) administration of NIV. DNA damage was measured by the SCG assay as modified by us. After oral dosing, DNA damage appeared in the kidney and bone marrow at 2 h (returning to almost control level within the following 2 h), and in the stomach, jejunum, and colon at 2, 4, and 8 h, respectively. Liver and thymus DNA were not damaged. After intraperitoneal injection, no DNA damage appeared in any of the organs or tissues tested except for the colon, where extensive DNA damage was observed, as in the oral study, at 8 h. For histopathological examination, mice were sacrificed 2, 4, and 8 h after oral (20 mg/kg) administration of NIV. No necrotic changes were detected in any of the organs where NIV yielded statistically significant DNA damage. To measure the effect of NIV on transport activity in mice, 10 ml/kg (same volume as NIV treatments) of 1% brilliant blue FCF (BB) was administered orally. Thirty minutes later, the BB reached the colon, and simultaneous oral administration of NIV (20 mg/kg, dissolved in 10 ml BB solution) did not affect the dye transport rate. Thus, the strong yet delayed damage to colon DNA may follow from a systemic absorption rather than a topical effect. As a direct mutagen, NIV showed organ specific genotoxicity in mice in time and intensity.
Collapse
Affiliation(s)
- S Tsuda
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Sasaki YF, Saga A, Yoshida K, Su YQ, Ohta T, Matsusaka N, Tsuda S. Colon-specific genotoxicity of heterocyclic amines detected by the modified alkaline single cell gel electrophoresis assay of multiple mouse organs. Mutat Res 1998; 414:9-14. [PMID: 9630478 DOI: 10.1016/s1383-5718(98)00033-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The in vivo genotoxicity of five heterocyclic amines-Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg), and PhIP (40 mg/kg)-in the mucosa of gastrointestinal and urinary tract organs (stomach, duodenum, jejunum, ileum, colon, and bladder) was studied by the alkaline single cell gel electrophoresis (SCG) (Comet) assay. Male CD-1 mice were sacrificed 1, 3, and 8 h after intraperitoneal injection. All the heterocyclic amines studied yielded statistically significant DNA damage in the colon but not the small intestine (duodenum, jejunum, and ileum) or urinary bladder. In this study, five heterocyclic amines were injected intraperitoneally to avoid the consequences of ingestion. Thus, the extensive damage to colon DNA was concluded to be due, at least in part, to a systemic effect.
Collapse
Affiliation(s)
- Y F Sasaki
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Tamonoki Uwanotai 16-1, Hachinohe, Aomori 039-11, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sasaki YF, Nishidate E, Su YQ, Matsusaka N, Tsuda S, Susa N, Furukawa Y, Ueno S. Organ-specific genotoxicity of the potent rodent bladder carcinogens o-anisidine and p-cresidine. Mutat Res 1998; 412:155-60. [PMID: 9539969 DOI: 10.1016/s1383-5718(97)00183-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used a modification of the alkaline single-cell gel electrophoresis (SCG) (Comet) assay to evaluate the in vivo genotoxicity of two potent rodent bladder carcinogens, o-anisidine and p-cresidine, in mouse liver, lung, kidney, brain, and bone marrow, and in the mucosa of stomach, colon, and bladder. Male CD-1 mice (8 weeks old) were sacrificed 3 and 24 h after oral administration of o-anisidine at 690 mg/kg or p-cresidine at 595 mg/kg. Both chemicals were dissolved in olive oil. Both chemicals yielded statistically significant DNA damage in bladder mucosa 3 and 24 h after treatment. o-Anisidine yielded DNA damage in the colon at 3 h, but not at 24 h. No significant effects were observed in any other organs. Our results suggest the importance of the urinary bladder as a sentinel organ for evaluating chemical genotoxicity in rodents.
Collapse
Affiliation(s)
- Y F Sasaki
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Aomori, Japan.
| | | | | | | | | | | | | | | |
Collapse
|