1
|
Shen D, Panjwani S, Spetsieris K. Digital application for drug product potency target evaluation in biopharmaceutical manufacturing. Biotechnol Prog 2024; 40:e3461. [PMID: 38558405 DOI: 10.1002/btpr.3461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Biopharmaceutical manufacturing entails a series of highly regulated steps. The manufacturing of safe and efficacious drug product (DP) requires testing of critical quality attributes (CQAs) against specification limits. DP potency concentration, which measures the dosage strength of a particular DP, is a CQA of great interest. In order to minimize the DP potency out-of-specification (OOS) risk, sterile fill finish (SFF) process adjustments may be needed. Varying the potency targets can be one such process adjustment. To facilitate such evaluation, data acquisition and statistical calculations are required. Regularly conducting the OOS risk assessment manually using commercial statistical software can be tedious, error-prone, and impractical, especially when several alternate potency targets are under consideration. In this work, the development of a novel framework for OOS risk assessment and deployment of cloud-based statistical software application to facilitate the risk assessment are presented. This application is intended to streamline the assessment of alternate potency targets for DP in biologics manufacturing. The major aspects of this potency targeting application development are presented in detail. Specifically, data sources, pipeline, application architecture, back-end and front-end development as well as application verification are discussed. Finally, several use cases are presented to highlight the application's utility in biologics manufacturing.
Collapse
Affiliation(s)
- Darrick Shen
- Bayer Pharmaceuticals, Berkeley, California, USA
| | | | | |
Collapse
|
2
|
Sampathkumar K, Kerwin BA. Roadmap for Drug Product Development and Manufacturing of Biologics. J Pharm Sci 2024; 113:314-331. [PMID: 37944666 DOI: 10.1016/j.xphs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Therapeutic biology encompasses different modalities, and their manufacturing processes may be vastly different. However, there are many similarities that run across the different modalities during the drug product (DP) development process and manufacturing. Similarities include the need for Quality Target Product Profile (QTTP), analytical development, formulation development, container/closure studies, drug product process development, manufacturing and technical requirements set out by numerous regulatory documents such as the FDA, EMA, and ICH for pharmaceuticals for human use and other country specific requirements. While there is a plethora of knowledge on studies needed for development of a drug product, there is no specific guidance set out in a phase dependent manner delineating what studies should be completed in alignment with the different phases of clinical development from pre-clinical through commercialization. Because of this reason, we assembled a high-level drug product development and manufacturing roadmap. The roadmap is applicable across the different modalities with the intention of providing a unified framework from early phase development to commercialization of biologic drug products.
Collapse
Affiliation(s)
- Krishnan Sampathkumar
- SSK Biosolutions LLC, 14022 Welland Terrace, North Potomac, MD 20878, USA; Currently at Invetx, Inc., One Boston Place, Suite 3930, 201 Washington Street, Boston, MA 02108, USA
| | - Bruce A Kerwin
- Kerwin BioPharma Consulting LLC, 14138 Farmview Ln NE, Bainbridge Island, WA 98110, USA; Coriolis Scientific Advisory Board, Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
3
|
Moino C, Artusio F, Pisano R. Shear stress as a driver of degradation for protein-based therapeutics: More accomplice than culprit. Int J Pharm 2024; 650:123679. [PMID: 38065348 DOI: 10.1016/j.ijpharm.2023.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
Protein degradation is a major concern for protein-based therapeutics. It may alter the biological activity of the product and raise the potential for undesirable effects on the patients. Among the numerous drivers of protein degradation, shear stress has been the focus around which much work has revolved since the 1970s. In the pharmaceutical realm, the product is often processed through several unit operations, which include mixing, pumping, filtration, filling, and atomization. Nonetheless, the drug might be exposed to significant shear stresses, which might cooperatively contribute to product degradation, together with interfacial stress. This review presents fundamentals of shear stress about protein structure, followed by an overview of the drivers of product degradation. The impact of shear stress on protein stability in different unit operations is then presented, and recommendations for limiting the adverse effects on the biopharmaceutical formulations are outlined. Finally, several devices used to explore the effects of shear stress are discussed.
Collapse
Affiliation(s)
- Camilla Moino
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy
| | - Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy.
| |
Collapse
|
4
|
Wang Y, Shen J, Zou B, Zhang L, Xu X, Wu C. Determination of the critical pH for unfolding water-soluble cod protein and its effect on encapsulation capacities. Food Res Int 2023; 174:113621. [PMID: 37986474 DOI: 10.1016/j.foodres.2023.113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Hydrophobic polyphenols, with a variety of physiological activities, are often practically limited due to their low water solubility and chemical instability, among which curcumin (Cur) is a representative hydrophobic polyphenol. To improve Cur, the cod protein (CP)-Cur composite particles (CP-Cur) were successfully prepared using the pH-shift method, but this pH-shift method (7-12-7) required a higher pH, which limited application and increased cost. The critical pH of CP structure unfolding during pH-shift and its encapsulation effect on Cur were investigated in this paper. During the pH-shift process, the critical pH of the structural unfolding of CP was pH 10, and the degree of protein structure unfolding was higher, which was attributed to the increasing electrostatic repulsion, and the weakened hydrogen bond and hydrophobic interaction. The encapsulation efficiency of CP-Cur formed after pH 10-shift was higher than that formed after pH 9.8-shift, which increased by 22.17 %. At pH 9.8, the binding sites in CP reached saturation at the molar ratio of 10, while at pH 10 and 10.2, the binding sites in CP both reached saturation at the molar ratio of 14, also indicating that the protein treated with critical pH could bind more Cur. The binding between Cur and CP was mostly hydrophobic interaction, accompanied by hydrogen bonding and electrostatic interactions. The above results verified the necessity of critical pH in the experiment, indicating that critical pH could indeed improve the encapsulation effect and obtain a higher encapsulation efficiency. This work will help improve the large-scale application of hydrophobic functional substances in production.
Collapse
Affiliation(s)
- Yuying Wang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Jing Shen
- Ningjin Market Supervision Administration, Dezhou 253400, China
| | - Bowen Zou
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Ling Zhang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Xianbing Xu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Chao Wu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China.
| |
Collapse
|
5
|
Ehrit J, Gräwert TW, Göddeke H, Konarev PV, Svergun DI, Nagel N. Small-angle x-ray scattering investigation of the integration of free fatty acids in polysorbate 20 micelles. Biophys J 2023; 122:3078-3088. [PMID: 37340636 PMCID: PMC10432221 DOI: 10.1016/j.bpj.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
A critical quality attribute for liquid formulations is the absence of visible particles. Such particles may form upon polysorbate hydrolysis resulting in release of free fatty acids into solution followed by precipitation. Strategies to avoid this effect are of major interest for the pharmaceutical industry. In this context, we investigated the structural organization of polysorbate micelles alone and upon addition of the fatty acid myristic acid (MA) by small-angle x-ray scattering. Two complementary approaches using a model of polydisperse core-shell ellipsoidal micelles and an ensemble of quasiatomistic micelle structures gave consistent results well describing the experimental data. The small-angle x-ray scattering data reveal polydisperse mixtures of ellipsoidal micelles containing about 22-35 molecules per micelle. The addition of MA at concentrations up to 100 μg/mL reveals only marginal effects on the scattering data. At the same time, addition of high amounts of MA (>500 μg/mL) increases the average sizes of the micelles indicating that MA penetrates into the surfactant micelles. These results together with molecular modeling shed light on the polysorbate contribution to fatty acid solubilization preventing or delaying fatty acid particle formation.
Collapse
Affiliation(s)
- Jörg Ehrit
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Tobias W Gräwert
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Hendrik Göddeke
- Computational Drug Discovery, Small Molecule Therapeutics & Platform Technologies, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Petr V Konarev
- A. V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Сrystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany.
| | - Norbert Nagel
- Analytical Research and Development, Global Technical Centers, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany.
| |
Collapse
|
6
|
Wang K, Chen K. Direct Assessment of Oligomerization of Chemically Modified Peptides and Proteins in Formulations using DLS and DOSY-NMR. Pharm Res 2023; 40:1329-1339. [PMID: 36627448 DOI: 10.1007/s11095-022-03468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Protein higher order structure (HOS) including the oligomer distribution can be critical for efficacy, safety and stability of drug products (DP). Oligomerization is particularly relevant to chemically modified protein therapeutics that have an extended pharmacokinetics profile. Therefore, the direct assessment of protein oligomerization in drug formulation is desired for quality assurance and control. METHODS Here, two non-invasive methods, dynamic light scattering (DLS) and diffusion ordered spectroscopy (DOSY) NMR, were applied to measure translational diffusion coefficients (Ddls and Dnmr) of proteins in formulated drug products. The hydrodynamic molecular weights (MWhd), similar to hydrodynamic size, of protein therapeutics were derived based on a log(Ddls) vs log(MWhd) correlation model established using protein standards. RESULTS An exponent value of -0.40 ± 0.01 was established for DLS measured log(D) vs. log(MWhd) using protein standards and a theoretical exponent value of -0.6 was used for unstructured polyethylene glycol (PEG) chains. The analysis of DLS derived MWhd of the primary species showed the fatty acid linked glucagon-like peptide 1 (GLP-1) was in different oligomer states, but the fatty acid linked insulin and PEG linked proteins were in monomer states. Nevertheless, equilibrium and exchange between oligomers in formulations were universal and clearly evidenced from DOSY-NMR for all drugs except peginterferon alfa-2a. CONCLUSION The correlation models of log(D) vs. log(MWhd) could be a quick and efficient way to predict MWhd of protein, which directly informs on the state of protein folding and oligomerization in formulation.
Collapse
Affiliation(s)
- Kai Wang
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
7
|
Analysis of the Shear Stresses in a Filling Line of Parenteral Products: The Role of Tubing. Processes (Basel) 2023. [DOI: 10.3390/pr11030833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Parenteral products appear to be sensitive to process conditions in bioprocessing steps, such as interfacial stress and shear stress. The combination of these elements is widely believed and proven to influence product stability, but the defined roles of these players in the product damage process have not yet been identified. The present work addresses a current industrial problem, by focusing on the analysis of shear stress on protein-based therapeutics flowing in tubing by means of Computational Fluid Dynamics simulations. The purpose of this article is not to pinpoint the mechanism triggering the damage of the product, but it represents the first step towards wider experimental investigations and introduces a new strategy to quantify the average shear stress. The field of scale-down approaches, used to scale the commercial process down to the laboratory level, is also explored. Since quality control is critical in the pharmaceutical realm, it is essential that the scale-down approach preserves the same stress exposure as the commercial scale, which in the present work is considered to be that resulting from shear effects. Therefore, a new approach for scaling down the commercial process is proposed, which has been compared with traditional approaches and shown to provide greater representativeness between the two scales.
Collapse
|
8
|
Nakach M, Amine C, Pellet C, Bensaid F, Authelin JR, Wils P. Mixing of Monoclonal Antibody Formulated Drug Substance Solutions in Square Disposable Vessels. J Pharm Sci 2022; 111:2799-2813. [DOI: 10.1016/j.xphs.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
9
|
A Gibbons L, Rafferty C, Robinson K, Abad M, Maslanka F, Le N, Mo J, Clark K, Madden F, Hayes R, McCarthy B, Rode C, O'Mahony J, Rea R, O'Mahony Hartnett C. Raman based chemometric model development for glycation and glycosylation real time monitoring in a manufacturing scale CHO cell bioreactor process. Biotechnol Prog 2021; 38:e3223. [PMID: 34738336 DOI: 10.1002/btpr.3223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022]
Abstract
The Quality by Design (QbD) approach to the production of therapeutic monoclonal antibodies (mAbs) emphasizes an understanding of the production process ensuring product quality is maintained throughout. Current methods for measuring critical quality attributes (CQAs) such as glycation and glycosylation are time and resource intensive, often, only tested offline once per batch process. Process analytical technology (PAT) tools such as Raman spectroscopy combined with chemometric modeling can provide real time measurements process variables and are aligned with the QbD approach. This study utilizes these tools to build partial least squares (PLS) regression models to provide real time monitoring of glycation and glycosylation profiles. In total, seven cell line specific chemometric PLS models; % mono-glycated, % non-glycated, % G0F-GlcNac, % G0, % G0F, % G1F, and % G2F were considered. PLS models were initially developed using small scale data to verify the capability of Raman to measure these CQAs effectively. Accurate PLS model predictions were observed at small scale (5 L). At manufacturing scale (2000 L) some glycosylation models showed higher error, indicating that scale may be a key consideration in glycosylation profile PLS model development. Model robustness was then considered by supplementing models with a single batch of manufacturing scale data. This data addition had a significant impact on the predictive capability of each model, with an improvement of 77.5% in the case of the G2F. The finalized models show the capability of Raman as a PAT tool to deliver real time monitoring of glycation and glycosylation profiles at manufacturing scale.
Collapse
Affiliation(s)
- Luke A Gibbons
- BioTherapeutics Development, Janssen Sciences Ireland UC, Cork, Ireland.,Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Carl Rafferty
- BioTherapeutics Development, Janssen Sciences Ireland UC, Cork, Ireland
| | - Kerry Robinson
- Analytical Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Malvern, Pennsylvania, USA
| | - Marta Abad
- BioTherapeutics Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Malvern, Pennsylvania, USA
| | - Francis Maslanka
- BioTherapeutics Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Malvern, Pennsylvania, USA
| | - Nikky Le
- BioTherapeutics Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Malvern, Pennsylvania, USA
| | - Jingjie Mo
- Analytical Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Malvern, Pennsylvania, USA
| | - Kevin Clark
- BioTherapeutics Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Malvern, Pennsylvania, USA
| | - Fiona Madden
- BioTherapeutics Development, Janssen Sciences Ireland UC, Cork, Ireland
| | - Ronan Hayes
- BioTherapeutics Development, Janssen Sciences Ireland UC, Cork, Ireland
| | - Barry McCarthy
- BioTherapeutics Development, Janssen Sciences Ireland UC, Cork, Ireland
| | - Christopher Rode
- BioTherapeutics Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Malvern, Pennsylvania, USA
| | - Jim O'Mahony
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Rosemary Rea
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | |
Collapse
|
10
|
Das TK, Sreedhara A, Colandene JD, Chou DK, Filipe V, Grapentin C, Searles J, Christian TR, Narhi LO, Jiskoot W. Stress Factors in Protein Drug Product Manufacturing and Their Impact on Product Quality. J Pharm Sci 2021; 111:868-886. [PMID: 34563537 DOI: 10.1016/j.xphs.2021.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
Injectable protein-based medicinal products (drug products, or DPs) must be produced by using sterile manufacturing processes to ensure product safety. In DP manufacturing the protein drug substance, in a suitable final formulation, is combined with the desired primary packaging (e.g., syringe, cartridge, or vial) that guarantees product integrity and enables transportation, storage, handling and clinical administration. The protein DP is exposed to several stress conditions during each of the unit operations in DP manufacturing, some of which can be detrimental to product quality. For example, particles, aggregates and chemically-modified proteins can form during manufacturing, and excessive amounts of these undesired variants might cause an impact on potency or immunogenicity. Therefore, DP manufacturing process development should include identification of critical quality attributes (CQAs) and comprehensive risk assessment of potential protein modifications in process steps, and the relevant steps must be characterized and controlled. In this commentary article we focus on the major unit operations in protein DP manufacturing, and critically evaluate each process step for stress factors involved and their potential effects on DP CQAs. Moreover, we discuss the current industry trends for risk mitigation, process control including analytical monitoring, and recommendations for formulation and process development studies, including scaled-down runs.
Collapse
Affiliation(s)
- Tapan K Das
- Bristol Myers Squibb, Biologics Development, New Brunswick, New Jersey 08903, USA.
| | | | - James D Colandene
- GlaxoSmithKline, Biopharmaceutical Product Sciences, 1250 S Collegeville Road, Collegeville, PA 19425, USA
| | - Danny K Chou
- Compassion BioSolution, LLC, Lomita, CA 90717, USA
| | | | - Christoph Grapentin
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, 4057 Basel, Switzerland
| | - Jim Searles
- Pfizer Inc., Biotherapeutics Pharmaceutical Sciences Research and Development, 875 Chesterfield Pkwy W, Chesterfield, MO 63017 USA
| | | | | | - Wim Jiskoot
- Leiden University, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, the Netherlands; Coriolis Pharma, Martinsried, Germany
| |
Collapse
|
11
|
Pharmaceutical Excipients Enhance Iron-Dependent Photo-Degradation in Pharmaceutical Buffers by near UV and Visible Light: Tyrosine Modification by Reactions of the Antioxidant Methionine in Citrate Buffer. Pharm Res 2021; 38:915-930. [PMID: 33881737 DOI: 10.1007/s11095-021-03042-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the effect of excipients, including sugars and amino acids, on photo-degradation reactions in pharmaceutical buffers induced by near UV and visible light. METHODS Solutions of citrate or acetate buffers, containing 1 or 50 μM Fe3+, the model peptides methionine enkephalin (MEn), leucine enkephalin (LEn) or proctolin peptide (ProP), in the presence of commonly used amino acids or sugars, were photo-irradiated with near UV or visible light. The oxidation products were analyzed by reverse-phase HPLC and HPLC-MS/MS. RESULTS The sugars mannitol, sucrose and trehalose, and the amino acids Arg, Lys, and His significantly promote the oxidation of peptide Met to peptide Met sulfoxide. These excipients do not increase the yields of hydrogen peroxide, suggesting that other oxidants such as peroxyl radicals are responsible for the oxidation of peptide Met. The addition of free Met reduces the oxidation of peptide Met, but, in citrate buffer, causes the addition of Met oxidation products to Tyr residues of the target peptides. CONCLUSIONS Commonly used excipients enhance the light-induced oxidation of amino acids in model peptides.
Collapse
|
12
|
Multivariate Monitoring Workflow for Formulation, Fill and Finish Processes. Bioengineering (Basel) 2020; 7:bioengineering7020050. [PMID: 32503165 PMCID: PMC7356889 DOI: 10.3390/bioengineering7020050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022] Open
Abstract
Process monitoring is a critical task in ensuring the consistent quality of the final drug product in biopharmaceutical formulation, fill, and finish (FFF) processes. Data generated during FFF monitoring includes multiple time series and high-dimensional data, which is typically investigated in a limited way and rarely examined with multivariate data analysis (MVDA) tools to optimally distinguish between normal and abnormal observations. Data alignment, data cleaning and correct feature extraction of time series of various FFF sources are resource-intensive tasks, but nonetheless they are crucial for further data analysis. Furthermore, most commercial statistical software programs offer only nonrobust MVDA, rendering the identification of multivariate outliers error-prone. To solve this issue, we aimed to develop a novel, automated, multivariate process monitoring workflow for FFF processes, which is able to robustly identify root causes in process-relevant FFF features. We demonstrate the successful implementation of algorithms capable of data alignment and cleaning of time-series data from various FFF data sources, followed by the interconnection of the time-series data with process-relevant phase settings, thus enabling the seamless extraction of process-relevant features. This workflow allows the introduction of efficient, high-dimensional monitoring in FFF for a daily work-routine as well as for continued process verification (CPV).
Collapse
|
13
|
Hebbi V, Roy S, Rathore AS, Shukla A. Modeling and prediction of excipient and pH drifts during ultrafiltration/diafiltration of monoclonal antibody biotherapeutic for high concentration formulations. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
|
15
|
Lebedeva NS, Yurina ES, Gubarev YA, Koifman OI. Effect of macrocyclic compounds to protein aggregation. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00947-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Jain D, Mahammad SS, Singh PP, Kodipyaka R. A review on parenteral delivery of peptides and proteins. Drug Dev Ind Pharm 2019; 45:1403-1420. [DOI: 10.1080/03639045.2019.1628770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Divisha Jain
- Custom Pharma Services (CPS), Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - S. Shahe Mahammad
- Custom Pharma Services (CPS), Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Pirthi Pal Singh
- Custom Pharma Services (CPS), Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Ravinder Kodipyaka
- Custom Pharma Services (CPS), Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| |
Collapse
|
17
|
High performance liquid chromatography (HPLC) based direct and simultaneous estimation of excipients in biopharmaceutical products. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:118-126. [DOI: 10.1016/j.jchromb.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
|
18
|
Lyophilization: Process Design, Robustness, and Risk Management. CHALLENGES IN PROTEIN PRODUCT DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-90603-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Brückl L, Schröder T, Scheler S, Hahn R, Sonderegger C. The Effect of Shear on the Structural Conformation of rhGH and IgG1 in Free Solution. J Pharm Sci 2016; 105:1810-1818. [DOI: 10.1016/j.xphs.2016.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 10/21/2022]
|
20
|
Abdolvahab MH, Fazeli A, Halim A, Sediq AS, Fazeli MR, Schellekens H. Immunogenicity of Recombinant Human Interferon Beta-1b in Immune-Tolerant Transgenic Mice Corresponds with the Biophysical Characteristics of Aggregates. J Interferon Cytokine Res 2016; 36:247-57. [PMID: 26835734 DOI: 10.1089/jir.2015.0108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Determining to what extent biophysical characteristics of aggregates affect immunogenicity of therapeutic interferon beta-1b. Three recombinant human interferon beta-1b (rhIFNβ-1b) samples with different levels of aggregates generated by copper oxidation, thermal stress, or left untreated, as well as Avonex(®) drug substance and Betaferon(®) drug product, were injected intraperitoneally in nontransgenic and interferon beta transgenic FVB/N mice 5 times per week for 3 weeks. Antibodies against interferon beta were measured using enzyme-linked immunosorbent assay. UV and fluorescence spectroscopy, dynamic light scattering, size exclusion chromatography, reversed-phase high-performance liquid chromatography (RP-HPLC), fluid imaging microscopy, and resonant mass measurement, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, were used to characterize and quantitate aggregates in the 3 rhIFNβ preparations, to correlate biophysical characteristics with immunogenicity. In immune-tolerant interferon beta transgenic FVB/N mice, Betaferon drug product showed the highest immunogenicity, while Avonex drug substance showed the lowest level of immunogenicity. Of the 3 forms of rhIFNβ-1b, copper-oxidized rhIFNβ-1b showed lower immunogenicity than thermally stressed rhIFNβ-1b, despite containing larger aggregates. Both copper-oxidized rhIFNβ-1b and thermally stressed rhIFNβ-1b exhibited changes in protein structure as shown using fluorescence spectroscopy and RP-HPLC. Nontransgenic, nonimmune-tolerant FVB/N mice generated high antibody titers against all interferon beta samples tested. The level of immunogenicity and the breaking of tolerance in FVB/N transgenic mice are not only related to the level of aggregation but also depend on the size and structure of the aggregates.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- 1 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht, The Netherlands
| | - Ahmad Fazeli
- 2 Department of Research and Development, Zistdaru Danesh Co. Ltd. , Tehran, Iran
| | - Andhyk Halim
- 1 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht, The Netherlands
| | - Ahmad S Sediq
- 3 Division of Drug Delivery Technology, Gorlaeus Laboratories, Leiden Centre for Drug Research (LACDR), Leiden University , Leiden, The Netherlands
| | - Mohammad Reza Fazeli
- 4 Department of Drug and Food Control, Faculty of Pharmacy and Pharmaceutical Quality Assurance Research Centre, Tehran University of Medical Sciences , Tehran, Iran
| | - Huub Schellekens
- 1 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht, The Netherlands
| |
Collapse
|
21
|
Allmendinger A, Mueller R, Huwyler J, Mahler HC, Fischer S. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material. J Pharm Sci 2015; 104:3319-29. [DOI: 10.1002/jps.24561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 02/02/2023]
|
22
|
High Throughput Fluorescence Assay to Detect Aggregation During Biologics Formulation Development. J Pharm Innov 2015. [DOI: 10.1007/s12247-014-9211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Raynal B, Lenormand P, Baron B, Hoos S, England P. Quality assessment and optimization of purified protein samples: why and how? Microb Cell Fact 2014; 13:180. [PMID: 25547134 PMCID: PMC4299812 DOI: 10.1186/s12934-014-0180-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/10/2014] [Indexed: 01/27/2023] Open
Abstract
Purified protein quality control is the final and critical check-point of any protein production process. Unfortunately, it is too often overlooked and performed hastily, resulting in irreproducible and misleading observations in downstream applications. In this review, we aim at proposing a simple-to-follow workflow based on an ensemble of widely available physico-chemical technologies, to assess sequentially the essential properties of any protein sample: purity and integrity, homogeneity and activity. Approaches are then suggested to optimize the homogeneity, time-stability and storage conditions of purified protein preparations, as well as methods to rapidly evaluate their reproducibility and lot-to-lot consistency.
Collapse
Affiliation(s)
- Bertrand Raynal
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| | - Pascal Lenormand
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| | - Bruno Baron
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| | - Sylviane Hoos
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| | - Patrick England
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| |
Collapse
|
24
|
Liu L, Qi W, Schwartz DK, Randolph TW, Carpenter JF. The effects of excipients on protein aggregation during agitation: an interfacial shear rheology study. J Pharm Sci 2013; 102:2460-70. [PMID: 23712900 DOI: 10.1002/jps.23622] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 11/07/2022]
Abstract
We investigated the effects of excipients in solutions of keratinocyte growth factor 2 (KGF-2) on protein aggregation during agitation as well as on interfacial shear rheology at the air-water interface. Samples were incubated with or without agitation, and in the presence or absence of the excipients heparin, sucrose, or polysorbate 80 (PS80). The effect of excipients on the extent of protein aggregation was determined by UV-visible spectroscopy and micro-flow imaging. Interfacial shear rheology was used to detect the gelation time and strength of protein gels at the air-water interface. During incubation, protein particles of size ≥1 μm and insoluble aggregates formed faster for KGF-2 solutions subjected to agitation. Addition of either heparin or sucrose promoted protein aggregation during agitation. In contrast, PS80 substantially inhibited agitation-induced KGF-2 aggregation but facilitated protein particulate formation in quiescent solutions. The combination of PS80 and heparin or sucrose completely prevented protein aggregation during both nonagitated and agitated incubations. Interfacial rheological measurements showed that KGF-2 in buffer alone formed an interfacial gel within a few minutes. In the presence of heparin, KGF-2 interfacial gels formed too quickly for gelation time to be determined. KGF-2 formed gels in about 10 min in the presence of sucrose. The presence of PS80 in the formulation inhibited gelation of KGF-2. Furthermore, the interfacial gels formed by the protein in the absence of PS80 were reversible when PS80 was added to the samples after gelation. Therefore, there is a correspondence between formulations that exhibited interfacial gelation and formulations that exhibited agitation-induced aggregation.
Collapse
Affiliation(s)
- Lu Liu
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
25
|
Legler PM, Zabetakis D, Anderson GP, Lam A, Hol WGJ, Goldman ER. Structure of a low-melting-temperature anti-cholera toxin: llama V(H)H domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:90-3. [PMID: 23385744 DOI: 10.1107/s1744309112050750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/13/2012] [Indexed: 01/29/2023]
Abstract
Variable heavy domains derived from the heavy-chain-only antibodies found in camelids (V(H)H domains) are known for their thermal stability. Here, the structure of A9, an anti-cholera toxin V(H)H domain (K(d) = 77 ± 5 nM) that has an unusually low melting temperature of 319.9 ± 1.6 K, is reported. The CDR3 residues of A9 form a β-hairpin that is directed away from the former V(H)-V(L) interfacial surface, exposing hydrophobic residues to the solvent. A DALI structural similarity search showed that this CDR3 conformation is uncommon.
Collapse
Affiliation(s)
- Patricia M Legler
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 2011; 63:1118-59. [PMID: 21855584 DOI: 10.1016/j.addr.2011.07.006] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to demonstrate the critical importance of understanding protein-excipient interactions as a key step in the rational design of formulations to stabilize and deliver protein-based therapeutic drugs and vaccines. Biophysical methods used to examine various molecular interactions between solutes and protein molecules are discussed with an emphasis on applications to pharmaceutical excipients in terms of their effects on protein stability. Key mechanisms of protein-excipient interactions such as electrostatic and cation-pi interactions, preferential hydration, dispersive forces, and hydrogen bonding are presented in the context of different physical states of the formulation such as frozen liquids, solutions, gels, freeze-dried solids and interfacial phenomenon. An overview of the different classes of pharmaceutical excipients used to formulate and stabilize protein therapeutic drugs is also presented along with the rationale for use in different dosage forms including practical pharmaceutical considerations. The utility of high throughput analytical methodologies to examine protein-excipient interactions is presented in terms of expanding formulation design space and accelerating experimental timelines.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
27
|
Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice. Pharm Res 2011; 28:2393-402. [PMID: 21544687 PMCID: PMC3170469 DOI: 10.1007/s11095-011-0451-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 04/08/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE To study the effect of oxidation on the structure of recombinant human interferon beta-1a (rhIFNβ-1a) and its immunogenicity in wild-type and immune-tolerant transgenic mice. METHODS Untreated rhIFNβ-1a was degraded by metal-catalyzed oxidation, H(2)O(2)-mediated oxidation, and guanidine-mediated unfolding/refolding. Four rhIFNβ-1a preparations with different levels of oxidation and aggregation were injected intraperitoneally in mice 15× during 3 weeks. Both binding and neutralizing antibodies were measured. RESULTS All rhIFNβ-1a preparations contained substantial amounts of aggregates. Metal-catalyzed oxidized rhIFNβ-1a contained high levels of covalent aggregates as compared with untreated rhIFNβ-1a. H(2)O(2)-treated rhIFNβ-1a showed an increase in oligomer and unrecovered protein content by HP-SEC; RP-HPLC revealed protein oxidation. Guanidine-treated rhIFNβ-1a mostly consisted of dimers and oligomers and some non-covalent aggregates smaller in size than those in untreated rhIFNβ-1a. All degraded samples showed alterations in tertiary protein structure. Wild-type mice showed equally high antibody responses against all preparations. Transgenic mice were discriminative, showing elevated antibody responses against both metal-catalyzed oxidized and H(2)O(2)-treated rhIFNβ-1a as compared to untreated and guanidine-treated rhIFNβ-1a. CONCLUSIONS Oxidation-mediated aggregation increased the immunogenicity of rhIFNβ-1a in transgenic mice, whereas aggregated preparations devoid of measurable oxidation levels were hardly immunogenic.
Collapse
|
28
|
Jiang G, Thummala A, Wadhwa MVS. Applications of Statistical Regression and Modeling in Fill–Finish Process Development of Structurally Related Proteins. J Pharm Sci 2011; 100:464-81. [DOI: 10.1002/jps.22296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/05/2010] [Accepted: 06/11/2010] [Indexed: 01/31/2023]
|
29
|
Zhang L, Moo-Young M, Chou CP. Molecular manipulation associated with disulfide bond formation to enhance the stability of recombinant therapeutic protein. Protein Expr Purif 2011; 75:28-39. [PMID: 20719248 DOI: 10.1016/j.pep.2010.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 11/17/2022]
Abstract
Cys²⁷ in the extracellular domain of human CD83 (hCD83ext), a potential therapeutic protein, was identified as a target for molecular manipulation. Two Escherichia coli strains of BL21(DE3) and Origami B(DE3), respectively, with a reducing and an oxidative cytoplasm were used as the expression host to produce the Cys²⁷ mutants. It was observed that Cys²⁷ was involved in the in vivo formation of intramolecular disulfide bonds when hCD83ext was expressed in Origami B(DE3). The Origami-derived protein products had a higher tendency than the BL21-derived counterparts for multimerization via the in vitro formation of intermolecular disulfide bonds. Various analyses were conducted to identify the structural differences among these mutant variants. Most importantly, molecular stability was enhanced by the Cys²⁷ mutations since the Cys²⁷ mutants derived from either BL21 or Origami were much less susceptible to degradation compared to wild-type hCD83ext. This study highlights the implications of aberrant disulfide bond formation on the production of therapeutic proteins.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
30
|
Effects of shear on proteins in solution. Biotechnol Lett 2010; 33:443-56. [PMID: 21086151 DOI: 10.1007/s10529-010-0469-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/03/2010] [Indexed: 12/13/2022]
|
31
|
Narváez-Reinaldo JJ, Barba I, González-López J, Tunnacliffe A, Manzanera M. Rapid method for isolation of desiccation-tolerant strains and xeroprotectants. Appl Environ Microbiol 2010; 76:5254-62. [PMID: 20562279 PMCID: PMC2916496 DOI: 10.1128/aem.00855-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
A novel biotechnological process has been developed for the isolation of desiccation-tolerant microorganisms and their xeroprotectants, i.e., compatible solutes involved in long-term stability of biomolecules in the dry state. Following exposure of soil samples to chloroform, we isolated a collection of desiccation-tolerant microorganisms. This collection was screened for the production of xeroprotectants by a variation of the bacterial milking (osmotic downshock) procedure and by a novel air-drying/rehydration ("dry milking") incubation method. The resultant solutes were shown to protect both proteins and living cells against desiccation damage, thereby validating them as xeroprotectants. Nuclear magnetic resonance (NMR) analytical studies were performed to identify the xeroprotectants; synthetic mixtures of these compounds were shown to perform similarly to natural isolates in drying experiments with proteins and cells. This new approach has biotechnological and environmental implications for the identification of new xeroprotectants of commercial and therapeutic value.
Collapse
Affiliation(s)
- J. J. Narváez-Reinaldo
- Institute of Water Research and Department of Microbiology, University of Granada, Granada, Spain, Laboratory of Experimental Cardiology, Heart Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - I. Barba
- Institute of Water Research and Department of Microbiology, University of Granada, Granada, Spain, Laboratory of Experimental Cardiology, Heart Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - J. González-López
- Institute of Water Research and Department of Microbiology, University of Granada, Granada, Spain, Laboratory of Experimental Cardiology, Heart Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - A. Tunnacliffe
- Institute of Water Research and Department of Microbiology, University of Granada, Granada, Spain, Laboratory of Experimental Cardiology, Heart Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - M. Manzanera
- Institute of Water Research and Department of Microbiology, University of Granada, Granada, Spain, Laboratory of Experimental Cardiology, Heart Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Solá RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 2010; 24:9-21. [PMID: 20055529 DOI: 10.2165/11530550-000000000-00000] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During their development and administration, protein-based drugs routinely display suboptimal therapeutic efficacies due to their poor physicochemical and pharmacological properties. These innate liabilities have driven the development of molecular strategies to improve the therapeutic behavior of protein drugs. Among the currently developed approaches, glycoengineering is one of the most promising, because it has been shown to simultaneously afford improvements in most of the parameters necessary for optimization of in vivo efficacy while allowing for targeting to the desired site of action. These include increased in vitro and in vivo molecular stability (due to reduced oxidation, cross-linking, pH-, chemical-, heating-, and freezing-induced unfolding/denaturation, precipitation, kinetic inactivation, and aggregation), as well as modulated pharmacodynamic responses (due to altered potencies from diminished in vitro enzymatic activities and altered receptor binding affinities) and improved pharmacokinetic profiles (due to altered absorption and distribution behaviors, longer circulation lifetimes, and decreased clearance rates). This article provides an account of the effects that glycosylation has on the therapeutic efficacy of protein drugs and describes the current understanding of the mechanisms by which glycosylation leads to such effects.
Collapse
Affiliation(s)
- Ricardo J Solá
- Laboratory for Applied Biochemistry and Biotechnology, Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931-3346, USA.
| | | |
Collapse
|
33
|
Changes of protein solutions during storage: a study of albumin pharmaceutical preparations. Biotechnol Appl Biochem 2010; 55:121-30. [DOI: 10.1042/ba20090239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res 2010; 27:544-75. [PMID: 20143256 DOI: 10.1007/s11095-009-0045-6] [Citation(s) in RCA: 755] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/27/2009] [Indexed: 12/16/2022]
Abstract
In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al., Pharm. Res. 6:903-918, 1989), which has been widely referenced ever since. At the time, recombinant protein therapy was still in its infancy. This review summarizes the advances that have been made since then regarding protein stabilization and formulation. In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability.
Collapse
|
35
|
Li G, Kasha PC, Late S, Banga AK. Application of hanging drop technique to optimize human IgG formulations. J Pharm Pharmacol 2010; 62:125-31. [DOI: 10.1211/jpp.62.01.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The purpose of this work is to assess the hanging drop technique in screening excipients to develop optimal formulations for human immunoglobulin G (IgG).
Methods
A microdrop of human IgG and test solution hanging from a cover slide and undergoing vapour diffusion was monitored by a stereomicroscope. Aqueous solutions of IgG in the presence of different pH, salt concentrations and excipients were prepared and characterized.
Key findings
Low concentration of either sodium/potassium phosphate or McIlvaine buffer favoured the solubility of IgG. Addition of sucrose favoured the stability of this antibody while addition of NaCl caused more aggregation. Antimicrobial preservatives were also screened and a complex effect at different buffer conditions was observed. Dynamic light scattering, differential scanning calorimetry and size exclusion chromatography studies were performed to further validate the results.
Conclusions
In conclusion, hanging drop is a very easy and effective approach to screen protein formulations in the early stage of formulation development.
Collapse
Affiliation(s)
- Guohua Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| | - Purna C Kasha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| | - Sameer Late
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| | - Ajay K Banga
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| |
Collapse
|
36
|
Giammaria D, Cinque B, Di Lodovico D, Savastano MC, Cifone MG, Spadea L. Anti-vascular endothelial growth factor activity in the bevacizumab and triamcinolone acetonide combination for intravitreal use. Eur J Ophthalmol 2009; 19:842-7. [PMID: 19787607 DOI: 10.1177/112067210901900525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To find out if the combination for intravitreal use of the antibody bevacizumab (AvastinTM; Genentech, Inc., San Francisco, CA) and triamcinolone acetonide (TA) (Kenacort; Bristol-Myers Squibb, Anagni, Italy) could affect over time the anti -vascular endothelial growth factor (VEGF) activity of bevacizumab. METHODS Two different combined preparations were obtained, drawing up together 1.25 mg/0.05 mL of bevacizumab and 2 mg/0.05 mL (B+TA(2mg)) or 4 mg/0.05 mL (B+TA(4mg)) of TA into insulin syringes with 29-G needle. Control preparations were obtained with bevacizumab and an injectable solution (B). The syringes were stored refrigerated at 4 degrees C. The bevacizumab concentration was measured, through its binding to VEGF-165 isoform, at 48 hours and at 1 week. RESULTS No preparations showed statistically significant changes in bevacizumab concentration with time (p=0.74 for B+T(2mg), p=0.92 for B+T(4mg), p=0.57 for B). The B+TA(2mg) preparations showed a larger percentage of degradation of bevacizumab than the B+TA(4mg) preparations (28.4% versus 17.6% at 48 hours; 26.4% versus 18% at 1 week). The B control preparations showed the lowest drug degradation: 9.6% at 48 hours and 14.8% at 1 week. CONCLUSIONS After storage at 4 degrees C for 48 hours and 1 week, the combined preparations showed a larger reduction in bevacizumab concentration than the control preparations. No significant change was observed with the length of storage. The preparations obtained mixing 4 mg/0.05 mL of TA and 1.25 mg/0.05 mL of bevacizumab maintained the highest anti-VEGF activity over time.
Collapse
Affiliation(s)
- Daniele Giammaria
- Department of Surgical Sciences, Eye Clinic, University of L'Aquila, L'Aquila - Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Rathore AS. Follow-on protein products: scientific issues, developments and challenges. Trends Biotechnol 2009; 27:698-705. [PMID: 19846228 DOI: 10.1016/j.tibtech.2009.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Scientific and regulatory issues around approval of follow-on protein products, referred to as biosimilars in Europe, have been a topic of great interest and debate recently. The central issue is our limited understanding of how the different quality attributes of a product have an impact on its safety and efficacy. Crucial gaps in our knowledge include a lack of standardization in the way in which data are collected, analyzed and reported, and limitations in the ability of non-clinical tools for predicting clinical safety and efficacy. Complexity of protein products with respect to the numerous quality attributes and complexity of the biotechnology processes and the raw materials add to the challenges. In this paper, recommendations are presented to help at least partially alleviate these challenges.
Collapse
Affiliation(s)
- Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
38
|
Estey T, Vessely C, Randolph TW, Henderson I, Braun LJ, Nayar R, Carpenter JF. Evaluation of chemical degradation of a trivalent recombinant protein vaccine against botulinum neurotoxin by LysC peptide mapping and MALDI-TOF mass spectrometry. J Pharm Sci 2009; 98:2994-3012. [PMID: 18781606 DOI: 10.1002/jps.21543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vaccines utilizing recombinant protein antigens typically require an adjuvant to enhance immune response in the recipients. However, the consequences of antigen binding to adjuvant on both the short- and long-term stability of the protein remain poorly defined. In our companion paper (Vessely et al., in press, J Pharm Sci), we characterized the effects of binding to adjuvant on the conformation and thermodynamic stability of three antigen variants for botulinum vaccines: rBoNTA(H(c)), rBoNTB(H(c)), and rBoNTE(H(c)). In the current study, we evaluated the effect of binding to adjuvant (Alhydrogel, aluminum hydroxide) on chemical stability of these antigens during long-term storage in aqueous suspension. We developed methods that employ LysC peptide mapping in conjunction with MALDI-TOF mass spectrometry. Peptide maps were developed for the proteins for a vaccine formulation of rBoNTE(H(c)) as well as a trivalent rBoNT(H(c)) vaccine formulation. This method provided high sequence coverage for the proteins in part due to the implementation of a postdigestion elution fractionation method during sample preparation, and was also successfully utilized to evaluate the chemical integrity of adjuvant-bound rBoNT(H(c)) protein antigens. We found that all three of the rBoNT(H(c)) proteins were susceptible to degradation via both oxidation and deamidation. In many cases, such reactions occurred earlier with the adjuvant-bound protein formulations when compared to the proteins in control samples that were not bound to adjuvant. Additionally, some chemical modifications were found in the adjuvant-bound protein formulations but were not detected in the unbound solution controls. Our studies indicate that binding to aluminum-based adjuvants can impact the chemical stability and/or the chemical degradation pathways of protein during long-term storage in aqueous suspension. Furthermore, the methods we developed should be widely useful for assessing chemical stability of adjuvant-bound recombinant protein antigens.
Collapse
Affiliation(s)
- Tia Estey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, SOP-215, Campus Box C238, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Deechongkit S, Wen J, Narhi LO, Jiang Y, Park SS, Kim J, Kerwin BA. Physical and biophysical effects of polysorbate 20 and 80 on darbepoetin alfa. J Pharm Sci 2009; 98:3200-17. [DOI: 10.1002/jps.21740] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Jorgensen L, Hostrup S, Moeller EH, Grohganz H. Recent trends in stabilising peptides and proteins in pharmaceutical formulation – considerations in the choice of excipients. Expert Opin Drug Deliv 2009; 6:1219-30. [DOI: 10.1517/17425240903199143] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Abstract
In recent decades, protein-based therapeutics have substantially expanded the field of molecular pharmacology due to their outstanding potential for the treatment of disease. Unfortunately, protein pharmaceuticals display a series of intrinsic physical and chemical instability problems during their production, purification, storage, and delivery that can adversely impact their final therapeutic efficacies. This has prompted an intense search for generalized strategies to engineer the long-term stability of proteins during their pharmaceutical employment. Due to the well known effect that glycans have in increasing the overall stability of glycoproteins, rational manipulation of the glycosylation parameters through glycoengineering could become a promising approach to improve both the in vitro and in vivo stability of protein pharmaceuticals. The intent of this review is therefore to further the field of protein glycoengineering by increasing the general understanding of the mechanisms by which glycosylation improves the molecular stability of protein pharmaceuticals. This is achieved by presenting a survey of the different instabilities displayed by protein pharmaceuticals, by addressing which of these instabilities can be improved by glycosylation, and by discussing the possible mechanisms by which glycans induce these stabilization effects.
Collapse
Affiliation(s)
- Ricardo J Solá
- Laboratory for Applied Biochemistry and Biotechnology, Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Facundo Bueso Bldg., Lab-215, PO Box 23346, San Juan, Puerto Rico 00931-3346
| | | |
Collapse
|
42
|
Karasev AV, Fitzmaurice WP, Turpen TH, Palmer KE. Display of peptides on the surface of tobacco mosaic virus particles. Curr Top Microbiol Immunol 2009; 332:13-31. [PMID: 19401819 PMCID: PMC7122513 DOI: 10.1007/978-3-540-70868-1_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this review, we focus on the potential that tobacco mosaic virus (TMV) has as a carrier for immunogenic epitopes, and the factors that must be considered in order to bring products based on this platform to the market. Large Scale Biology Corporation developed facile and scaleable methods for manufacture of candidate peptide display vaccines based on TMV. We describe how rational design of peptide vaccines can improve the manufacturability of particular TMV products. We also discuss downstream processing and purification of the vaccine products, with particular attention to the metrics that a product must attain in order to meet criteria for regulatory approval as injectable biologics.
Collapse
Affiliation(s)
- Alexander V. Karasev
- Department of Plant, Soil & Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 USA
| | | | | | | |
Collapse
|
43
|
Zhang L, Moo-Young M, Chou CP. Stability improvement of a therapeutic protein by reducing agent pretreatment. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Kerwin BA. Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J Pharm Sci 2008; 97:2924-35. [DOI: 10.1002/jps.21190] [Citation(s) in RCA: 498] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Mahler HC, Printz M, Kopf R, Schuller R, Müller R. Behaviour of Polysorbate 20 During Dialysis, Concentration and Filtration Using Membrane Separation Techniques. J Pharm Sci 2008; 97:764-74. [PMID: 17688279 DOI: 10.1002/jps.21029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During formulation development of a therapeutic protein, combinations of buffers, pH and excipients need to be tested. As the protein bulk solution used for formulation development usually contains a buffer component at a defined pH and potentially one or more excipients already, this bulk requires to be processed. In case low concentrations of non-ionic surfactants, for example polysorbate 20, are already present in the bulk, the surfactant needs to be removed in lab-scale for further development use. The scope of the work was to study the behaviour of low concentrations of polysorbate 20 during membrane separation processes. The first part focuses on evaluating the behaviour of polysorbate 20 during a dialysis process, whereas the second part analyses concentration changes of polysorbate during a membrane concentration process using a stirred cell. The third part analyses potential membrane absorption of polysorbate at sterilizing-grade filters. In conclusion, it was found that polysorbate could not be significantly reduced during a dialysis process and accumulated during a membrane concentration process in unreproducable manner. During sterile filtration, no significant influence on the concentration of polysorbate was measurable. In any case, it is recommendable to quantify the concentration of polysorbate during critical membrane process steps in pharmaceutical industry.
Collapse
Affiliation(s)
- Hanns-Christian Mahler
- F. Hoffmann-La Roche Ltd., Formulation R&D Biologics, Pharmaceutical and Analytical R&D, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
46
|
Pothiwong W, Laorpaksa A, Pirarat N, Sirisawadi S, Intarapanya J, Jianmongkol S. Autoxidation of brain homogenates from various animals as measured by thiobarbituric acid assay. J Pharmacol Toxicol Methods 2007; 56:336-8. [PMID: 17897844 DOI: 10.1016/j.vascn.2007.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 08/21/2007] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The TBARS assay has been well recognized for determination of lipid peroxidation and oxidative injury in biological samples including brain homogenates. In general, the homogenates are freshly prepared using rat brains as the tissue sources. In this study, we compared the rates of spontaneous lipid peroxidation in brain homogenates obtained from bovine, canine, hen, rat, and swine. In addition, the influences of lyophilization process and storage time up to six months at -20 degrees C without the freeze-thaw cycle were also determined in the swine brain preparations. METHODS The standard assay for thiobarbituric acid-reactive substances (TBARS) was performed at 37 degrees C, using spectrophotometry to quantify the malondialdehyde (MDA) content. RESULTS Rat brain homogenate exhibited the highest autoxidation rate (0.128+/-0.002 microM/min) whereas the bovine brain exhibited the lowest rate (0.032+/-0.001 microM/min). Swine brain homogenate could be kept at -20 degrees C up to 3 months without a significant increase in rate of autoxidation. Lyophilization caused a significant increase in the autoxidation rate of brain homogenate. However, the autoxidation rates of the lyophilized preparation were quite comparable throughout the six-month freezing time. DISCUSSION Swine brain was a good candidate for tissue source in the TBARS reaction. The homogenate could be kept in the lyophilized form under the storage condition at -20 degrees C without the freeze-thaw cycle in the dark for at least six months.
Collapse
Affiliation(s)
- Wimon Pothiwong
- Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
47
|
Han Y, Jin BS, Lee SB, Sohn Y, Joung JW, Lee JH. Effects of sugar additives on protein stability of recombinant human serum albumin during lyophilization and storage. Arch Pharm Res 2007; 30:1124-31. [DOI: 10.1007/bf02980247] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Sharma B. Immunogenicity of therapeutic proteins. Part 3: Impact of manufacturing changes. Biotechnol Adv 2007; 25:325-31. [PMID: 17337334 DOI: 10.1016/j.biotechadv.2007.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1899] [Revised: 12/30/1899] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
Immunogenicity of biopharmaceuticals relates to the intrinsic complexity of proteins as well as the complexities of the manufacturing process. The manufacture of biopharmaceuticals involves a number of complex processing steps designed to create a highly pure, stable, safe, and effective product. The process often lasts many months and can be divided into seven stages - host cell development, master cell bank establishment, protein production, purification, analysis, formulation, and storage and handling. Even minor variations at any of these stages can lead to clinically relevant changes in efficacy and/or safety of the end product. Due to the complexity of the process and the inherently unstable nature of proteins outside the body, compositional changes can occur, leading to decreased biological activity, alteration of molecular structure, and possible increased risk of host immune responses following administration. Examples are discussed whereby immunogenicity associated with some of these changes has occurred with potentially serious clinical consequences.
Collapse
Affiliation(s)
- Basant Sharma
- Pharmaceutical Technology, Global Biologics Supply Chain LLC, HTD 6-2, Horsham, PA 19044, USA.
| |
Collapse
|
49
|
Tian F, Middaugh CR, Offerdahl T, Munson E, Sane S, Rytting JH. Spectroscopic evaluation of the stabilization of humanized monoclonal antibodies in amino acid formulations. Int J Pharm 2007; 335:20-31. [PMID: 17141436 DOI: 10.1016/j.ijpharm.2006.10.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 10/23/2006] [Indexed: 11/23/2022]
Abstract
The protective effects of amino acids on stabilizing protein secondary structure were evaluated using diffuse reflectance FTIR spectroscopy, and interactions between proteins and arginine were detected using solid-state NMR spectroscopy. Upon freeze-drying, excipient-free anti-CD11a and anti-IgE antibodies underwent significant changes in their secondary structures. For both antibodies, the amount of intermolecular beta-sheet substantially increased and the native conformation of intramolecular beta-sheet content decreased considerably. The addition of amino acids to the formulations reduced protein secondary structure alterations in a concentration-dependent manner. Histidine and arginine appeared to be the most protective excipients (of the amino acids studied) in inhibiting protein secondary structural changes. Solid-state NMR illustrated that non-covalent interactions (e.g., hydrogen bonding, ion-dipole interactions) were formed between the arginine side chain and the protein. Glycine is the least effective additive of those studied in preventing secondary structure changes upon freeze-drying. Despite secondary structural changes, freeze-dried protein in the presence and absence of amino acids refolded back into its native conformation upon reconstitution in water.
Collapse
Affiliation(s)
- Fei Tian
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Tom Offerdahl
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Eric Munson
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Samir Sane
- Genentech Inc., San Francisco, CA, Unites States
| | - J Howard Rytting
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States.
| |
Collapse
|
50
|
Arakawa T, Tsumoto K, Kita Y, Chang B, Ejima D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 2007; 33:587-605. [PMID: 17357829 DOI: 10.1007/s00726-007-0506-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Amino acids are widely used in biotechnology applications. Since amino acids are natural compounds, they can be safely used in pharmaceutical applications, e.g., as a solvent additive for protein purification and as an excipient for protein formulations. At high concentrations, certain amino acids are found to raise intra-cellular osmotic pressure and adjust to the high salt concentrations of the surrounding medium. They are called "compatible solutes", since they do not affect macromolecular function. Not only are they needed to increase the osmotic pressure, they are known to increase the stability of the proteins. Sucrose, glycerol and certain amino acids were used to enhance the stability of unstable proteins after isolation from natural environments. The mechanism of the action of these protein-stabilizing amino acids is relatively well understood. On the contrary, arginine was accidentally discovered as a useful reagent for assisting in the refolding of recombinant proteins. This effect of arginine was ascribed to its ability to suppress aggregation of the proteins during refolding, thereby increasing refolding efficiency. By the same mechanism, arginine now finds much wider applications than previously anticipated in the research and development of proteins, in particular in pharmaceutical applications. For example, arginine solubilizes proteins from loose inclusion bodies, resulting in efficient production of active proteins. Arginine suppresses protein-protein interactions in solution and also non-specific adsorption to gel permeation chromatography columns. Arginine facilitates elution of bound proteins from various column resins, including Protein-A or dye affinity columns and hydrophobic interaction columns. This review covers various biotechnology applications of amino acids, in particular arginine.
Collapse
Affiliation(s)
- T Arakawa
- Alliance Protein Laboratories, Thousand Oaks, CA, USA.
| | | | | | | | | |
Collapse
|