1
|
Liu P, Ewald J, Galvez JH, Head J, Crump D, Bourque G, Basu N, Xia J. Ultrafast functional profiling of RNA-seq data for nonmodel organisms. Genome Res 2021; 31:713-720. [PMID: 33731361 PMCID: PMC8015844 DOI: 10.1101/gr.269894.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/18/2021] [Indexed: 12/02/2022]
Abstract
Computational time and cost remain a major bottleneck for RNA-seq data analysis of nonmodel organisms without reference genomes. To address this challenge, we have developed Seq2Fun, a novel, all-in-one, ultrafast tool to directly perform functional quantification of RNA-seq reads without transcriptome de novo assembly. The pipeline starts with raw read quality control: sequencing error correction, removing poly(A) tails, and joining overlapped paired-end reads. It then conducts a DNA-to-protein search by translating each read into all possible amino acid fragments and subsequently identifies possible homologous sequences in a well-curated protein database. Finally, the pipeline generates several informative outputs including gene abundance tables, pathway and species hit tables, an HTML report to visualize the results, and an output of clean reads annotated with mapped genes ready for downstream analysis. Seq2Fun does not have any intermediate steps of file writing and loading, making I/O very efficient. Seq2Fun is written in C++ and can run on a personal computer with a limited number of CPUs and memory. It can process >2,000,000 reads/min and is >120 times faster than conventional workflows based on de novo assembly, while maintaining high accuracy in our various test data sets.
Collapse
Affiliation(s)
- Peng Liu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Jessica Ewald
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Jose Hector Galvez
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Canadian Center for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Jessica Head
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Canadian Center for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
2
|
Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. Br J Nutr 2015; 114:1766-73. [PMID: 26388416 DOI: 10.1017/s0007114515003517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
n-3 PUFA such as EPA and DHA as well as oestrogen have been reported to decrease blood levels of cholesterol, but their underlying mechanism is unclear. The purpose of this study was to determine the effects of the combination of n-3 PUFA supplementation and oestrogen injection on hepatic cholesterol metabolism. Rats were fed a modified AIN-93G diet with 0, 1 or 2 % n-3 PUFA (EPA+DHA) relative to the total energy intake for 12 weeks. Rats were surgically ovariectomised at week 8, and, after 1-week recovery, rats were injected with 17β-oestradiol-3-benzoate (E2) or maize oil for the last 3 weeks. Supplementation with n-3 PUFA and E2 injection significantly increased the ratio of the hepatic expression of phosphorylated AMP activated protein kinase (p-AMPK):AMP activated protein kinase (AMPK) and decreased sterol regulatory element-binding protein-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase and proprotein convertase subtilisin/kexin type 9. Supplementation with n-3 PUFA increased hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), sterol 12α-hydroxylase (CYP8B1) and sterol 27-hydroxylase (CYP27A1); however, E2 injection decreased CYP7A1 and CYP8B1 but not CYP27A1. Additionally, E2 injection increased hepatic expression of oestrogen receptor-α and β. In conclusion, n-3 PUFA supplementation and E2 injection had synergic hypocholesterolaemic effects by down-regulating hepatic cholesterol synthesis (n-3 PUFA and oestrogen) and up-regulating bile acid synthesis (n-3 PUFA) in ovariectomised rats.
Collapse
|
3
|
Søfteland L, Kirwan JA, Hori TSF, Størseth TR, Sommer U, Berntssen MHG, Viant MR, Rise ML, Waagbø R, Torstensen BE, Booman M, Olsvik PA. Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Food Chem Toxicol 2014; 73:157-74. [PMID: 25193261 DOI: 10.1016/j.fct.2014.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/17/2022]
Abstract
Increasing use of plant feed ingredients may introduce contaminants not previously associated with farming of salmonids, such as pesticides and PAHs from environmental sources or from thermal processing of oil seeds. To screen for interaction effects of contaminants newly introduced in salmon feeds, Atlantic salmon primary hepatocytes were used. The xCELLigence cytotoxicity system was used to select optimal dosages of the PAHs benzo(a)pyrene and phenanthrene, the pesticides chlorpyrifos and endosulfan, and combinations of these. NMR and MS metabolic profiling and microarray transcriptomic profiling was used to identify novel biomarkers. Lipidomic and transcriptomic profiling suggested perturbation of lipid metabolism, as well as endocrine disruption. The pesticides gave the strongest responses, despite having less effect on cell viability than the PAHs. Only weak molecular responses were detected in PAH-exposed hepatocytes. Chlorpyrifos suppressed the synthesis of unsaturated fatty acids. Endosulfan affected steroid hormone synthesis, while benzo(a)pyrene disturbed vitamin D3 metabolism. The primary mixture effect was additive, although at high concentrations the pesticides acted in a synergistic fashion to decrease cell viability and down-regulate CYP3A and FABP4 transcription. This work highlights the usefulness of 'omics techniques and multivariate data analysis to investigate interactions within mixtures of contaminants with different modes of action.
Collapse
Affiliation(s)
- Liv Søfteland
- National Institute of Nutrition and Seafood Research, Norway.
| | | | - Tiago S F Hori
- Department of Ocean Sciences, Memorial University of Newfoundland, Canada
| | | | - Ulf Sommer
- School of Biosciences, University of Birmingham, UK
| | | | - Mark R Viant
- School of Biosciences, University of Birmingham, UK
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, Canada
| | - Rune Waagbø
- National Institute of Nutrition and Seafood Research, Norway
| | | | - Marije Booman
- Department of Ocean Sciences, Memorial University of Newfoundland, Canada
| | - Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Norway
| |
Collapse
|
4
|
Bie J, Wang J, Marqueen KE, Osborne R, Kakiyama G, Korzun W, Ghosh SS, Ghosh S. Liver-specific cholesteryl ester hydrolase deficiency attenuates sterol elimination in the feces and increases atherosclerosis in ldlr-/- mice. Arterioscler Thromb Vasc Biol 2013; 33:1795-802. [PMID: 23744992 DOI: 10.1161/atvbaha.113.301634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Liver is the major organ responsible for the final elimination of cholesterol from the body either as biliary cholesterol or as bile acids. Intracellular hydrolysis of lipoprotein-derived cholesteryl esters (CEs) is essential to generate the free cholesterol required for this process. Earlier, we demonstrated that overexpression of human CE hydrolase (Gene symbol CES1) increased bile acid synthesis in human hepatocytes and enhanced reverse cholesterol transport in mice. The objective of the present study was to demonstrate that liver-specific deletion of its murine ortholog, Ces3, would decrease cholesterol elimination from the body and increase atherosclerosis. APPROACH AND RESULTS Liver-specific Ces3 knockout mice (Ces3-LKO) were generated, and Ces3 deficiency did not affect the expression of genes involved in cholesterol homeostasis and free cholesterol or bile acid transport. The effects of Ces3 deficiency on the development of Western diet-induced atherosclerosis were examined in low density lipoprotein receptor knock out(-/-) mice. Despite similar plasma lipoprotein profiles, there was increased lesion development in low density lipoprotein receptor knock out(-/-)Ces3-LKO mice along with a significant decrease in the bile acid content of bile. Ces3 deficiency significantly reduced the flux of cholesterol from [(3)H]-CE-labeled high-density lipoproteins to feces (as free cholesterol and bile acids) and decreased total fecal sterol elimination. CONCLUSIONS Our results demonstrate that hepatic Ces3 modulates the hydrolysis of lipoprotein-delivered CEs and thereby regulates free cholesterol and bile acid secretion into the feces. Therefore, its deficiency results in reduced cholesterol elimination from the body, leading to significant increase in atherosclerosis. Collectively, these data establish the antiatherogenic role of hepatic CE hydrolysis.
Collapse
Affiliation(s)
- Jinghua Bie
- Department of Internal Medicine, VCU Medical Center, Richmond, VA 23298-0050, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gao S, Han X, Fu J, Yuan X, Sun X, Li Q. Influence of chronic stress on the compositions of hepatic cholesterol and triglyceride in male Wistar rats fed a high fat diet. Hepatol Res 2012; 42:686-95. [PMID: 22321167 DOI: 10.1111/j.1872-034x.2011.00961.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM We determined the influence of chronic stress (CS) on the compositions of hepatic cholesterol and triglyceride (TG) in rats fed a high fat diet (HFD). METHODS Male Wistar rats were fed either a standard diet or a HFD and half of the HFD fed rats were given CS (electric foot shock assisted with noise) for 8 weeks. RESULTS Compared with the control group, the levels of hepatic total cholesterol (TC) and TG were significantly elevated in the HFD and HFD with chronic stress (HFD+CS) groups, and the more severe elevations of them were found in the HFD group. Inversely, the more severe elevations of hepatic water-soluble parts of TC and TG were found in the HFD+CS group, as the elevations of low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol in liver and serum, tumor necrosis factor-α, interleukin-1β and malondialdehyde in liver. Meanwhile, downregulated mRNA expressions of hepatic liver X receptor-α (LXR-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were also more severe in the HFD+CS group. CONCLUSION CS can aggravate the high levels of water-soluble compositions of hepatic TC and TG induced by HFD as it aggravates hepatic inflammation and oxidative stress; in spite of that, however, it cannot further promote hepatic lipidosis. This is consistent with the downregulated mRNA expressions of LXR-α and PPAR-γ.
Collapse
Affiliation(s)
- Siyuan Gao
- Department of Physiology, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
6
|
The mechanism of the cholesterol-lowering effect of water-insoluble fish protein in ovariectomised rats. Br J Nutr 2009; 102:816-24. [PMID: 19335928 DOI: 10.1017/s0007114509316153] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of the present study was to investigate whether water-insoluble fish protein (IFP) from Alaska pollock (Theragra chalcogramma) prevents hypercholesterolaemia induced by ovarian hormone deficiency. Wistar female rats, aged 6 months, were subjected to sham-operation or ovariectomy, and fed a cholesterol-free diet containing casein or IPF as a protein source for 28 d. Body-weight gain and food intake increased in the ovariectomised rats as compared with the sham-operated rats. Plasma total cholesterol concentration was decreased and faecal bile acid excretion was increased by IFP in the ovariectomised rats, but not in the sham-operated rats. Plasma homocysteine concentration was decreased by IFP in the ovariectomised rats, but not in the sham-operated rats. Liver lipids and liver cholesterol concentrations were increased and cholesterol 7alpha-hydroxylase (CYP7A1) activity was decreased by ovariectomy, but not by diet. Bile acid content and the ratio of cholic acid groups to chenodeoxycholic acid groups in bile were increased by ovariectomy, but decreased by IFP. Bile acid content in the small intestine was increased by IFP in the ovariectomised rats, but not in the sham-operated rats. 3-Hydroxy-3-methylglutaryl-CoA reductase and microsomal TAG transfer protein mRNA levels were decreased by ovariectomy and IFP, whereas LDL-receptor mRNA level was decreased by ovariectomy but unaffected by diet. Thus, the preventive effect of IFP on the ovarian hormone deficiency-associated increase in plasma cholesterol concentration seems to be mediated by accelerated faecal excretion of bile acids, coupled with an increase in the intestinal pool of bile acids.
Collapse
|
7
|
Hoffmann JL, Torontali SP, Thomason RG, Lee DM, Brill JL, Price BB, Carr GJ, Versteeg DJ. Hepatic gene expression profiling using Genechips in zebrafish exposed to 17alpha-ethynylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 79:233-46. [PMID: 16872691 DOI: 10.1016/j.aquatox.2006.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 05/11/2023]
Abstract
Genomic, proteomic, and metabolomic technologies continue to receive increasing interest from environmental toxicologists. This interest is due to the great potential of these technologies to identify detailed modes of action and to provide assistance in the evaluation of a contaminant's risk to aquatic organisms. Our experimental model is the zebrafish (Danio rerio) exposed to reference endocrine disrupting compounds in order to investigate compound-induced changes in gene transcript profiles. Adult, female zebrafish were exposed to 0, 15, 40, and 100ng/L of 17alpha-ethynylestradiol (EE2) and concentration and time-dependent changes in hepatic gene expression were examined using Affymetrix GeneChip Zebrafish Genome Microarrays. At 24, 48, and 168h, fish were sacrificed and liver mRNA was extracted for gene expression analysis (24 and 168h only). In an effort to link gene expression changes to effects on higher levels of biological organization, body and ovary weights were measured and blood was collected for measurement of plasma steroid hormones (17beta-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. EE2 exposure significantly affected gene expression, GSI, E2, T, and VTG. We observed 1622 genes that were significantly affected (p< or =0.001) in a concentration-dependent manner by EE2 exposure at either 24 or 168h. Gene ontology (GO) analysis revealed that EE2 exposure affected genes involved in hormone metabolism, vitamin A metabolism, steroid binding, sterol metabolism, and cell growth. Plasma VTG was significantly increased at 24, 48, and 168h (p< or =0.05) at 40 and 100ng/L and at 15ng/L at 168h. E2 and T were significantly reduced following EE2 exposure at 48 and 168h. GSI was decreased in a concentration-dependent manner at 168h. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to estrogenic substances. Future work will evaluate the use of these genes in zebrafish exposed to weak estrogens to determine if these genes are indicative of exposure to estrogens with varying potencies.
Collapse
Affiliation(s)
- J L Hoffmann
- Miami Valley Innovation Center, The Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lemieux C, Phaneuf D, Labrie F, Giguère V, Richard D, Deshaies Y. Estrogen receptor alpha-mediated adiposity-lowering and hypocholesterolemic actions of the selective estrogen receptor modulator acolbifene. Int J Obes (Lond) 2006; 29:1236-44. [PMID: 15925950 DOI: 10.1038/sj.ijo.0803014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The selective estrogen receptor (ER) modulator (SERM) acolbifene (ACOL), a potent and pure antiestrogen in the mammary gland and uterus, exerts beneficial pro-estrogenic actions on energy balance, insulin sensitivity and lipid metabolism. ACOL binds ERs alpha and beta, both of which have been involved in the metabolic actions of estrogen. This study aimed at determining the identity of the ER involved in the beneficial metabolic actions of ACOL. DESIGN AND MEASUREMENTS ACOL was administered for 4 weeks to male and female wild-type and ERalpha knockout (KO) mice, and indices of energy balance as well as plasma and liver lipid concentrations were determined. RESULTS ERalpha KO mice were heavier, gained more fat mass and had larger adipose depots than their wild-type counterparts. In both genders, ACOL decreased fat gain (50%) and white adipose tissue mass in male and female wild-type, but not in ERalpha KO mice. ACOL reduced plasma cholesterol in female wild-type mice (-27%), whereas the compound remained ineffective in their ERalpha KO counterparts. Plasma triglycerides were unaffected by ACOL. Finally, ACOL decreased liver cholesterol and triglyceride concentrations only in wild-type female animals. CONCLUSION The beneficial metabolic actions of the SERM ACOL on adiposity and on plasma and liver lipids are entirely due to its interaction with the ERalpha.
Collapse
Affiliation(s)
- C Lemieux
- Department of Anatomy and Physiology, Faculty of Medicine, Laval Hospital Research Center, Laval University, Quebec City, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Bravo E, Cantafora A, Avella M, Botham KM. Metabolism of chylomicron cholesterol is delayed by estrogen. An in vivo study in the rat. Exp Biol Med (Maywood) 2001; 226:112-8. [PMID: 11446434 DOI: 10.1177/153537020122600208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to test the effects of estrogen on the clearance of cholesterol of dietary origin from the blood and its elimination from the body via the bile in an in vivo animal model, the fate of radioactivity from intravenously injected [3H]cholesterol-labeled chylomicrons was investigated in the rat. The labeled lipoproteins were administered intrajugularly to male rats previously given 17alpha ethinyl estradiol or the vehicle only, and the removal of the radioactivity from the blood and its uptake by the liver and secretion into bile was determined. Experiments were carried out in animals with or without prior drainage (20 hr) of the pool of bile acids in the enterohepatic circulation, to take account of the different demands of the liver for cholesterol in the two conditions. In rats without biliary drainage, estrogen treatment decreased the rate of removal of radioactivity from the blood by about 30% and the recovery of cholesterol in the liver by about 50% in the first 30 min after injection of the labeled chylomicrons. After biliary drainage, however, the recovery of label in the liver after 90 min was similar in estrogen-treated and control animals, although its secretion into bile was markedly reduced in the estrogen-treated group (total biliary secretion in 90 min was 26% of the value found in control rats). In addition, the apolipoprotein E (aopE) content of the serum total lipoproteins was markedly reduced by estrogen. These results provide direct evidence indicating that estrogen retards the elimination of dietary cholesterol from the body via the bile in the rat, and this is likely to be mainly due to a reduced level of apoE in chylomicrons. In view of this, we suggest that the hypothesis that estrogen increases the hepatic uptake of chylomicron cholesterol, and its excretion in the bile during contraceptive and hormone replacement therapy should be re-examined.
Collapse
Affiliation(s)
- E Bravo
- Istituto Superiore di Saníta, Laboratory of Metabolism and Pathological Biochemistry, Rome, Italy.
| | | | | | | |
Collapse
|