1
|
Yuan Y, Zhao Y. The role of quantitative EEG biomarkers in Alzheimer's disease and mild cognitive impairment: applications and insights. Front Aging Neurosci 2025; 17:1522552. [PMID: 40336944 PMCID: PMC12055827 DOI: 10.3389/fnagi.2025.1522552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathological accumulation of amyloid plaques and hyperphosphorylated tau proteins, leading to disruptions in synaptic transmission and neural circuit alterations. Despite advancements in therapies to delay disease progression, there is a pressing need for simple, non-invasive, and accessible biomarkers to evaluate their effectiveness. Quantitative electroencephalography (qEEG), a computational method for quantifying brain electrical activity, is increasingly applied in AD research. We highlight the application of qEEG biomarkers, including power spectrum analysis (oscillatory activity within frequency bands), functional connectivity (coherent neural couplings) and effective connectivity (directional neural interactions), microstates (brief, stable states of the brain network), and non-linear analyses (e.g., entropy and EEG network analysis). These biomarkers can reflect real-time neural dynamics, making them ideal tools for diagnosis and monitoring the progression AD and mild cognitive impairment (MCI). It has been shown that decreased α power and increased θ power within the qEEG spectrum correlate with enhanced AD severity. Data from microstate analysis have demonstrated significant variations in temporal dynamics in patients with AD. Non-linear measures, such as entropy, have identified marked reductions in neural complexity in AD and MCI patients, indicating that they may serve as early diagnostic markers. Compared to traditional neuroimaging techniques, such as magnetic resonance imaging (MRI) or positron emission tomography (PET), qEEG is known to be cost-effective and facilitates real-time monitoring. Overall, qEEG biomarkers are promising for advancing AD research due to their non-invasive nature, affordability, and ability to capture real-time neural activity. Integrating qEEG with multimodal neuroimaging and clinical profiles may facilitate earlier identification and precision therapies. Future research should focus on standardizing protocols, validating biomarkers across diverse cohorts, and exploring their potential in large-scale clinical trials.
Collapse
Affiliation(s)
| | - Yang Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Gaubert S, Garces P, Hipp J, Bruña R, Lopéz ME, Maestu F, Vaghari D, Henson R, Paquet C, Engemann DA. Exploring the neuromagnetic signatures of cognitive decline from mild cognitive impairment to Alzheimer's disease dementia. EBioMedicine 2025; 114:105659. [PMID: 40153923 PMCID: PMC11995804 DOI: 10.1016/j.ebiom.2025.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/13/2025] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Developing non-invasive and affordable biomarkers to detect Alzheimer's disease (AD) at a prodromal stage is essential, particularly in the context of new disease-modifying therapies. Mild cognitive impairment (MCI) is a critical stage preceding dementia, but not all patients with MCI will progress to AD. This study explores the potential of magnetoencephalography (MEG) to predict cognitive decline from MCI to AD dementia. METHODS We analysed resting-state MEG data from the BioFIND dataset including 117 patients with MCI among whom 64 developed AD dementia (AD progression), while 53 remained cognitively stable (stable MCI), using spectral analysis. Logistic regression models estimated the additive explanation of selected clinical, MEG, and MRI variables for AD progression risk. We then built a high-dimensional classification model to combine all modalities and variables of interest. FINDINGS MEG 16-38Hz spectral power, particularly over parieto-occipital magnetometers, was significantly reduced in the AD progression group. In logistic regression models, decreased MEG 16-38Hz spectral power and reduced hippocampal volume/total grey matter ratio on MRI were independently linked to higher AD progression risk. The data-driven classification model confirmed, among other factors, the complementary information of MEG covariance (AUC = 0.74, SD = 0.13) and MRI cortical volumes (AUC = 0.77, SD = 0.14) to predict AD progression. Combining all inputs led to markedly improved classification scores (AUC = 0.81, SD = 0.12). INTERPRETATION These findings highlight the potential of spectral power and covariance as robust non-invasive electrophysiological biomarkers to predict AD progression, complementing other diagnostic measures, including cognitive scores and MRI. FUNDING This work was supported by: Fondation pour la Recherche Médicale (grant FDM202106013579).
Collapse
Affiliation(s)
- Sinead Gaubert
- Université Paris Cité, Inserm UMRS 1144 Therapeutic Optimization in Neuropsychopharmacology, Paris, France; Cognitive Neurology Center, GHU.Nord APHP Hôpital Lariboisière Fernand Widal, Paris, France.
| | - Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, 28223, Madrid, Spain; Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Eugenia Lopéz
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, 28223, Madrid, Spain; Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Maestu
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, 28223, Madrid, Spain; Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Richard Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, UK; Department of Psychiatry, University of Cambridge, UK
| | - Claire Paquet
- Université Paris Cité, Inserm UMRS 1144 Therapeutic Optimization in Neuropsychopharmacology, Paris, France; Cognitive Neurology Center, GHU.Nord APHP Hôpital Lariboisière Fernand Widal, Paris, France
| | - Denis-Alexander Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
3
|
Sato K, Hitomi T, Kobayashi K, Matsuhashi M, Shimotake A, Kuzuya A, Kinoshita A, Matsumoto R, Takechi H, Sugi T, Nishida S, Takahashi R, Ikeda A. Electroencephalography can Ubiquitously Delineate the Brain Dysfunction of Neurodegenerative Dementia by Both Visual and Automatic Analysis Methods: A Preliminary Study. Clin EEG Neurosci 2025; 56:185-196. [PMID: 39363628 DOI: 10.1177/15500594241283512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Introduction: The aim was to examine the differences in electroencephalography (EEG) findings by visual and automated quantitative analyses between Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD). Methods: EEG data of 20 patients with AD and 24 with DLB/PDD (12 DLB and 12 PDD) were retrospectively analyzed. Based on the awake EEG, the posterior dominant rhythm frequency and proportion of patients who showed intermittent focal and diffuse slow waves (IDS) were visually and automatically compared between the AD and DLB/PDD groups. Results: On visual analysis, patients with DLB/PDD showed a lower PDR frequency than patients with AD. In patients with PDR <8 Hz and occipital slow waves or patients with PDR <8 Hz and IDS, DLB/PDD was highly suspected (PPV 100%) and AD was unlikely (PPV 0%). On automatic analysis, the findings of the PDR were similar to those on visual analysis. Comparisons between visual and automatic analysis showed an overlap in the focal slow wave commonly detected by both methods in 10 of 44 patients, and concordant presence or absence of IDS in 29 of 43 patients. With respect to PDR <8 Hz and the combination of PDR <8 Hz and IDS, PPV and NPV in DLB/PDD and AD were not different between visual and automatic analysis. Conclusions: As the noninvasive, widely available clinical tool of low expense, visual analysis of EEG findings provided highly sufficient information to delineate different brain dysfunction in AD and DLB/PDD, and automatic EEG analysis could support visual analysis especially about PD.
Collapse
Affiliation(s)
- Kei Sato
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Kuzuya
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayae Kinoshita
- School of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hajime Takechi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Geriatrics and Cognitive Disorders, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takenao Sugi
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Saga University, Saga, Japan
| | - Shigeto Nishida
- Department of Information and Communication Engineering, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Aslan E, Özüpak Y. Comparison of machine learning algorithms for automatic prediction of Alzheimer disease. J Chin Med Assoc 2025; 88:98-107. [PMID: 39965789 DOI: 10.1097/jcma.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Alzheimer disease is a progressive neurological disorder marked by irreversible memory loss and cognitive decline. Traditional diagnostic tools, such as intracranial volume assessments, electroencephalography (EEG) signals, and brain magnetic resonance imaging (MRI), have shown utility in detecting the disease. However, artificial intelligence (AI) offers promise for automating this process, potentially enhancing diagnostic accuracy and accessibility. METHODS In this study, various machine learning models were used to detect Alzheimer disease, including K-nearest neighbor regression, support vector machines (SVM), AdaBoost regression, and logistic regression. A neural network was constructed and validated using data from 150 participants in the University of Washington's Alzheimer's Disease Research Center (Open Access Imaging Studies Series [OASIS] dataset). Cross-validation was also performed on the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset to assess the robustness of the models. RESULTS Among the models tested, K-nearest neighbor regression achieved the highest accuracy, reaching 97.33%. The cross-validation on the ADNI dataset further confirmed the effectiveness of the models, demonstrating satisfactory results in screening and diagnosing Alzheimer disease in a community-based sample. CONCLUSION The findings indicate that AI-based models, particularly K-nearest neighbor regression, provide promising accuracy for the early detection of Alzheimer disease. This approach has potential for further development into practical diagnostic tools that could be applied in clinical and community settings.
Collapse
Affiliation(s)
- Emrah Aslan
- Faculty of Engineering and Architecture, Mardin Artuklu University, Mardin, Turkey
| | - Yildirim Özüpak
- Department of Electricity and Energy, Silvan Vocational School, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
5
|
Calvin-Dunn KN, Mcneela A, Leisgang Osse A, Bhasin G, Ridenour M, Kinney JW, Hyman JM. Electrophysiological insights into Alzheimer's disease: A review of human and animal studies. Neurosci Biobehav Rev 2025; 169:105987. [PMID: 39732222 DOI: 10.1016/j.neubiorev.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models. By drawing on findings from these studies, we demonstrate how electrophysiological research has deepened our understanding of AD-related network disruptions, paving the way for targeted therapeutic interventions. Moreover, we underscore the potential of electrophysiological modalities to play a pivotal role in evaluating treatment efficacy. Integrating electrophysiological data with clinical neuroimaging and longitudinal studies holds promise for a more comprehensive understanding of AD, enabling early detection and the development of personalized treatment strategies. This expanded research landscape offers new avenues for unraveling the complexities of AD and advancing therapeutic approaches.
Collapse
Affiliation(s)
- Kirsten N Calvin-Dunn
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, United States.
| | - Adam Mcneela
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States
| | - A Leisgang Osse
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - G Bhasin
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| | - M Ridenour
- Department of Psychology, University of Nevada, Las Vegas, United States
| | - J W Kinney
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - J M Hyman
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| |
Collapse
|
6
|
Ge Y, Yin J, Chen C, Yang S, Han Y, Ding C, Zheng J, Zheng Y, Zhang J. An EEG-based framework for automated discrimination of conversion to Alzheimer's disease in patients with amnestic mild cognitive impairment: an 18-month longitudinal study. Front Aging Neurosci 2025; 16:1470836. [PMID: 39834619 PMCID: PMC11743677 DOI: 10.3389/fnagi.2024.1470836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Background As a clinical precursor to Alzheimer's disease (AD), amnestic mild cognitive impairment (aMCI) bears a considerably heightened risk of transitioning to AD compared to cognitively normal elders. Early prediction of whether aMCI will progress to AD is of paramount importance, as it can provide pivotal guidance for subsequent clinical interventions in an early and effective manner. Methods A total of 107 aMCI cases were enrolled and their electroencephalogram (EEG) data were collected at the time of the initial diagnosis. During 18-month follow-up period, 42 individuals progressed to AD (PMCI), while 65 remained in the aMCI stage (SMCI). Spectral, nonlinear, and functional connectivity features were extracted from the EEG data, subjected to feature selection and dimensionality reduction, and then fed into various machine learning classifiers for discrimination. The performance of each model was assessed using 10-fold cross-validation and evaluated in terms of accuracy (ACC), area under the curve (AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and F1-score. Results Compared to SMCI patients, PMCI patients exhibit a trend of "high to low" frequency shift, decreased complexity, and a disconnection phenomenon in EEG signals. An epoch-based classification procedure, utilizing the extracted EEG features and k-nearest neighbor (KNN) classifier, achieved the ACC of 99.96%, AUC of 99.97%, SEN of 99.98%, SPE of 99.95%, PPV of 99.93%, and F1-score of 99.96%. Meanwhile, the subject-based classification procedure also demonstrated commendable performance, achieving an ACC of 78.37%, an AUC of 83.89%, SEN of 77.68%, SPE of 76.24%, PPV of 82.55%, and F1-score of 78.47%. Conclusion Aiming to explore the EEG biomarkers with predictive value for AD in the early stages of aMCI, the proposed discriminant framework provided robust longitudinal evidence for the trajectory of the aMCI cases, aiding in the achievement of early diagnosis and proactive intervention.
Collapse
Affiliation(s)
- Yingfeng Ge
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jianan Yin
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Caie Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shuo Yang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuduan Han
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chonglong Ding
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaming Zheng
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yifan Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinxin Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Rostamikia M, Sarbaz Y, Makouei S. EEG-based classification of Alzheimer's disease and frontotemporal dementia: a comprehensive analysis of discriminative features. Cogn Neurodyn 2024; 18:3447-3462. [PMID: 39712091 PMCID: PMC11655805 DOI: 10.1007/s11571-024-10152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 12/24/2024] Open
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) are two main types of dementia. These diseases have similar symptoms, and they both may be considered as AD. Early detection of dementia and differential diagnosis between AD and FTD can lead to more effective management of the disease and contributes to the advancement of knowledge and potential treatments. In this approach, several features were extracted from electroencephalogram (EEG) signals of 36 subjects diagnosed with AD, 23 FTD subjects, and 29 healthy controls (HC). Mann-Whitney U-test and t-test methods were employed for the selection of the best discriminative features. The Fp1 channel for FTD patients exhibited the most significant differences compared to AD. In addition, connectivity features in the delta and alpha subbands indicated promising discrimination among these two groups. Moreover, for dementia diagnosis (AD + FTD vs. HC), central brain regions including Cz and Pz channels proved to be determining for the extracted features. Finally, four machine learning (ML) algorithms were utilized for the classification purpose. For differentiating between AD and FTD, and dementia diagnosis, an accuracy of 87.8% and 93.5% were achieved respectively, using the tenfold cross-validation technique and employing support vector machines (SVM) as the classifier.
Collapse
Affiliation(s)
- Mehran Rostamikia
- Biomedical System Modeling Lab, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, University of Tabriz, Tabriz, Iran
| | - Yashar Sarbaz
- Biomedical System Modeling Lab, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, University of Tabriz, Tabriz, Iran
| | - Somaye Makouei
- Biomedical System Modeling Lab, Biomedical Engineering Department, Electrical and Computer Engineering Faculty, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Costanzo M, Cutrona C, Leodori G, Malimpensa L, D'antonio F, Conte A, Belvisi D. Exploring easily accessible neurophysiological biomarkers for predicting Alzheimer's disease progression: a systematic review. Alzheimers Res Ther 2024; 16:244. [PMID: 39497149 PMCID: PMC11533378 DOI: 10.1186/s13195-024-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer disease (AD) remains a significant global health concern. The progression from preclinical stages to overt dementia has become a crucial point of interest for researchers. This paper reviews the potential of neurophysiological biomarkers in predicting AD progression, based on a systematic literature search following PRISMA guidelines, including 55 studies. EEG-based techniques have been predominantly employed, whereas TMS studies are less common. Among the investigated neurophysiological measures, spectral power measurements and event-related potentials-based measures, including P300 and N200 latencies, have emerged as the most consistent and reliable biomarkers for predicting the likelihood of conversion to AD. In addition, TMS-based indices of cortical excitability and synaptic plasticity have also shown potential in assessing the risk of conversion to AD. However, concerns persist regarding the methodological discrepancies among studies, the accuracy of these neurophysiological measures in comparison to established AD biomarkers, and their immediate clinical applicability. Further research is needed to validate the predictive capabilities of EEG and TMS measures. Advancements in this area could lead to cost-effective, reliable biomarkers, enhancing diagnostic processes and deepening our understanding of AD pathophysiology.
Collapse
Affiliation(s)
- Matteo Costanzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy
| | | | - Fabrizia D'antonio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, RM, Italy.
- IRCCS Neuromed, Via Atinense 18, Pozzilli, 86077, IS, Italy.
| |
Collapse
|
9
|
Zandbagleh A, Miltiadous A, Sanei S, Azami H. Beta-to-Theta Entropy Ratio of EEG in Aging, Frontotemporal Dementia, and Alzheimer's Dementia. Am J Geriatr Psychiatry 2024; 32:1361-1382. [PMID: 39004533 DOI: 10.1016/j.jagp.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Aging, frontotemporal dementia (FTD), and Alzheimer's dementia (AD) manifest electroencephalography (EEG) alterations, particularly in the beta-to-theta power ratio derived from linear power spectral density (PSD). Given the brain's nonlinear nature, the EEG nonlinear features could provide valuable physiological indicators of aging and cognitive impairment. Multiscale dispersion entropy (MDE) serves as a sensitive nonlinear metric for assessing the information content in EEGs across biologically relevant time scales. OBJECTIVE To compare the MDE-derived beta-to-theta entropy ratio with its PSD-based counterpart to detect differences between healthy young and elderly individuals and between different dementia subtypes. METHODS Scalp EEG recordings were obtained from two datasets: 1) Aging dataset: 133 healthy young and 65 healthy older adult individuals; and 2) Dementia dataset: 29 age-matched healthy controls (HC), 23 FTD, and 36 AD participants. The beta-to-theta ratios based on MDE vs. PSD were analyzed for both datasets. Finally, the relationships between cognitive performance and the beta-to-theta ratios were explored in HC, FTD, and AD. RESULTS In the Aging dataset, older adults had significantly higher beta-to-theta entropy ratios than young individuals. In the Dementia dataset, this ratio outperformed the beta-to-theta PSD approach in distinguishing between HC, FTD, and AD. The AD participants had a significantly lower beta-to-theta entropy ratio than FTD, especially in the temporal region, unlike its corresponding PSD-based ratio. The beta-to-theta entropy ratio correlated significantly with cognitive performance. CONCLUSION Our study introduces the beta-to-theta entropy ratio using nonlinear MDE for EEG analysis, highlighting its potential as a sensitive biomarker for aging and cognitive impairment.
Collapse
Affiliation(s)
- Ahmad Zandbagleh
- School of Electrical Engineering (AZ), Iran University of Science and Technology, Tehran, Iran
| | - Andreas Miltiadous
- Department of Informatics and Telecommunications (AM), University of Ioannina, Arta, Greece
| | - Saeid Sanei
- Electrical and Electronic Engineering Department (SS), Imperial College London, London, UK
| | - Hamed Azami
- Centre for Addiction and Mental Health (HA), University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Taguas I, Doval S, Maestú F, López-Sanz D. Toward a more comprehensive understanding of network centrality disruption in amnestic mild cognitive impairment: a MEG multilayer approach. Alzheimers Res Ther 2024; 16:216. [PMID: 39385281 PMCID: PMC11462918 DOI: 10.1186/s13195-024-01576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common form of dementia. Its early stage, amnestic Mild Cognitive Impairment (aMCI), is characterized by disrupted information flow in the brain. Previous studies have yielded inconsistent results when using electrophysiological techniques to investigate functional connectivity changes in AD, and a contributing factor may be the study of brain activity divided into frequencies. METHODS Our study aimed to address this issue by employing a cross-frequency approach to compare the functional networks of 172 healthy subjects and 105 aMCI patients. Using magnetoencephalography, we constructed source-based multilayer graphs considering both intra- and inter-frequency functional connectivity. We then assessed changes in network organization through three centrality measures, and combined them into a unified centrality score to provide a comprehensive assessment of centrality disruption in aMCI. RESULTS The results revealed a noteworthy shift in centrality distribution in aMCI patients, both in terms of spatial distribution and frequency. Posterior brain regions decrease synchrony between their high-frequency oscillations and other regions' activity across all frequencies, while anterior regions increase synchrony between their low-frequency oscillations and other regions' activity across all frequencies. Thus, posterior regions reduce their relative importance in favor of anterior regions. CONCLUSIONS Our findings provide valuable insights into the intricate changes that occur in functional brain networks during the early stages of AD, demonstrating that considering the interplays between different frequency bands enhances our understanding of AD network dynamics and setting a precedent for the study of functional networks using a multilayer approach.
Collapse
Affiliation(s)
- Ignacio Taguas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain.
- Department of Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain.
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain.
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, 28240, Spain.
| | - David López-Sanz
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain
| |
Collapse
|
11
|
Ziloochi F, Niazi IK, Amjad I, Cade A, Duehr J, Ghani U, Holt K, Haavik H, Shalchyan V. Investigating the effects of chiropractic care on resting-state EEG of MCI patients. Front Aging Neurosci 2024; 16:1406664. [PMID: 38919600 PMCID: PMC11196806 DOI: 10.3389/fnagi.2024.1406664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Mild cognitive impairment (MCI) is a stage between health and dementia, with various symptoms including memory, language, and visuospatial impairment. Chiropractic, a manual therapy that seeks to improve the function of the body and spine, has been shown to affect sensorimotor processing, multimodal sensory processing, and mental processing tasks. Methods In this paper, the effect of chiropractic intervention on Electroencephalogram (EEG) signals in patients with mild cognitive impairment was investigated. EEG signals from two groups of patients with mild cognitive impairment (n = 13 people in each group) were recorded pre- and post-control and chiropractic intervention. A comparison of relative power was done with the support vector machine (SVM) method and non-parametric cluster-based permutation test showing the two groups could be separately identified with high accuracy. Results The highest accuracy was obtained in beta2 (25-35 Hz) and theta (4-8 Hz) bands. A comparison of different brain areas with the SVM method showed that the intervention had a greater effect on frontal areas. Also, interhemispheric coherence in all regions increased significantly after the intervention. The results of the Wilcoxon test showed that intrahemispheric coherence changes in frontal-occipital, frontal-temporal and right temporal-occipital regions were significantly different in two groups. Discussion Comparison of the results obtained from chiropractic intervention and previous studies shows that chiropractic intervention can have a positive effect on MCI disease and using this method may slow down the progression of mild cognitive impairment to Alzheimer's disease.
Collapse
Affiliation(s)
- Fahimeh Ziloochi
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland, New Zealand
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Riphah International University, Islamabad, Pakistan
| | - Alice Cade
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Jenna Duehr
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Usman Ghani
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Vahid Shalchyan
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
12
|
Sato T, Ochiishi T, Higo-Yamamoto S, Oishi K. Circadian and sleep phenotypes in a mouse model of Alzheimer's disease characterized by intracellular accumulation of amyloid β oligomers. Exp Anim 2024; 73:186-192. [PMID: 38092387 PMCID: PMC11091359 DOI: 10.1538/expanim.23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/06/2023] [Indexed: 05/08/2024] Open
Abstract
Disturbances in sleep-wake and circadian rhythms may reportedly precede the onset of cognitive symptoms in the early stages of Alzheimer's disease (AD); however, the underlying mechanisms of these AD-induced sleep disturbances remain unelucidated. To specifically evaluate the involvement of amyloid beta (Aβ) oligomers in AD-induced sleep disturbances, we examined circadian and sleep phenotypes using an Aβ-GFP transgenic (Aβ-GFP Tg) mouse characterized by intracellular accumulation of Aβ oligomers. The circadian rhythm and free-running period of wheel running activity were identical between Aβ-GFP Tg and littermate wild-type mice. The durations of rapid eye movement (REM) sleep were elongated in Aβ-GFP Tg mice; however, the durations of non-REM sleep and wakefulness were unaffected. The Aβ-GFP Tg mice exhibited shifts in the electroencephalogram (EEG) power spectra toward higher frequencies in the inactive light phase. These findings suggest that the intracellular accumulation of Aβ oligomers might be associated with sleep quality; however, its impact on circadian systems is limited.
Collapse
Affiliation(s)
- Tomoyuki Sato
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoyo Ochiishi
- Molecular Neurobiology Research Group, Biomedical Research Institute (BMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
13
|
Verma P, Ranasinghe K, Prasad J, Cai C, Xie X, Lerner H, Mizuiri D, Miller B, Rankin K, Vossel K, Cheung SW, Nagarajan SS, Raj A. Impaired long-range excitatory time scale predicts abnormal neural oscillations and cognitive deficits in Alzheimer's disease. Alzheimers Res Ther 2024; 16:62. [PMID: 38504361 PMCID: PMC10953266 DOI: 10.1186/s13195-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia, progressively impairing cognitive abilities. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify global abnormal biophysical mechanisms underlying the spatial and spectral electrophysiological patterns in AD, we estimated the parameters of a biophysical spectral graph model (SGM). METHODS SGM is an analytic neural mass model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. Unlike other coupled neuronal mass models, the SGM is linear, available in closed-form, and parameterized by a small set of biophysical interpretable global parameters. This facilitates their rapid and unambiguous inference which we performed here on a well-characterized clinical population of patients with AD (N = 88, age = 62.73 +/- 8.64 years) and a cohort of age-matched controls (N = 88, age = 65.07 +/- 9.92 years). RESULTS Patients with AD showed significantly elevated long-range excitatory neuronal time scales, local excitatory neuronal time scales and local inhibitory neural synaptic strength. The long-range excitatory time scale had a larger effect size, compared to local excitatory time scale and inhibitory synaptic strength and contributed highest for the accurate classification of patients with AD from controls. Furthermore, increased long-range time scale was associated with greater deficits in global cognition. CONCLUSIONS These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the local spectral signatures and cognition in the human brain, and how it might be a parsimonious factor underlying altered neuronal activity in AD. Our findings provide new insights into mechanistic links between abnormal local spectral signatures and global connectivity measures in AD.
Collapse
Affiliation(s)
- Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Kamalini Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
- Surgical Services, Veterans Affairs, San Francisco, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Wang Z, Liu A, Yu J, Wang P, Bi Y, Xue S, Zhang J, Guo H, Zhang W. The effect of aperiodic components in distinguishing Alzheimer's disease from frontotemporal dementia. GeroScience 2024; 46:751-768. [PMID: 38110590 PMCID: PMC10828513 DOI: 10.1007/s11357-023-01041-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Distinguishing between Alzheimer's disease (AD) and frontotemporal dementia (FTD) presents a clinical challenge. Inexpensive and accessible techniques such as electroencephalography (EEG) are increasingly being used to address this challenge. In particular, the potential relevance between aperiodic components of EEG activity and these disorders has gained interest as our understanding evolves. This study aims to determine the differences in aperiodic activity between AD and FTD and evaluate its potential for distinguishing between the two disorders. A total of 88 participants, including 36 patients with AD, 23 patients with FTD, and 29 healthy controls (CN) underwent cognitive assessment and scalp EEG acquisition. Neuronal power spectra were parameterized to decompose the EEG spectrum, enabling comparison of group differences in different components. A support vector machine was employed to assess the impact of aperiodic parameters on the differential diagnosis. Compared with the CN group, both the AD and FTD groups showed varying degrees of increased alpha power (both periodic and raw power) and theta alpha power ratio. At the channel level, theta power (both periodic and raw power) in the frontal regions was higher in the AD group compared to the FTD group, and aperiodic parameters (both exponents and offsets) in the frontal, temporal, central, and parietal regions were higher in the AD group than in the FTD group. Importantly, the inclusion of aperiodic parameters led to improved performance in distinguishing between the two disorders. These findings highlight the significance of aperiodic components in discriminating dementia-related diseases.
Collapse
Affiliation(s)
- Zhuyong Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Anyang Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Jianshen Yu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Pengfei Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Yuewei Bi
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Sha Xue
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China.
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China.
| | - Wangming Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
15
|
Kopčanová M, Tait L, Donoghue T, Stothart G, Smith L, Flores-Sandoval AA, Davila-Perez P, Buss S, Shafi MM, Pascual-Leone A, Fried PJ, Benwell CSY. Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes. Neurobiol Dis 2024; 190:106380. [PMID: 38114048 DOI: 10.1016/j.nbd.2023.106380] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasize the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.
Collapse
Affiliation(s)
- Martina Kopčanová
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK.
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, School of Medical and Dental Sciences, University of Birmingham, UK; Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Thomas Donoghue
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Laura Smith
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Aimee Arely Flores-Sandoval
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paula Davila-Perez
- Rey Juan Carlos University Hospital (HURJC), Department of Clinical Neurophysiology, Móstoles, Madrid, Spain; Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Stephanie Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States of America
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher S Y Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| |
Collapse
|
16
|
García-Carlos CA, Basurto-Islas G, Perry G, Mondragón-Rodríguez S. Meta-Analysis in Transgenic Alzheimer's Disease Mouse Models Reveals Opposite Brain Network Effects of Amyloid-β and Phosphorylated Tau Proteins. J Alzheimers Dis 2024; 99:595-607. [PMID: 38669540 DOI: 10.3233/jad-231365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD. Nevertheless, the variability in hippocampal oscillatory alterations found in different genetic backgrounds and ages remains unclear. Objective To assess the oscillatory alterations in relation to animal developmental age and protein inclusion, amyloid-β (Aβ) load, and abnormally phosphorylated tau (pTau), we reviewed and analyzed the published data on peak power, frequency, and quantification of theta-gamma cross-frequency coupling (modulation index values). Methods To ensure that the search was as current as possible, a systematic review was conducted to locate and abstract all studies published from January 2000 to February 2023 that involved in vivo hippocampal local field potential recording in transgenic mouse models of AD. Results The presence of Aβ was associated with electrophysiological alterations that are mainly reflected in power increases, frequency decreases, and lower modulation index values. Concomitantly, pTau accumulation was associated with electrophysiological alterations that are mainly reflected in power decreases, frequency decreases, and no significant alterations in modulation index values. Conclusions In this study, we showed that electrophysiological parameters are altered from prodromal stages to the late stages of pathology. Thus, we found that Aβ deposition is associated with brain network hyperexcitability, whereas pTau deposition mainly leads to brain network hypoexcitability in transgenic models.
Collapse
Affiliation(s)
- Carlos Antonio García-Carlos
- UNAM Division of Neurosciences, Institute of Cellular Physiology, National Autonomous University of México, México City, México
| | | | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UAQ Centre for Applied Biomedical Research - CIBA, School of Medicine, Autonomous University of Querétaro, Querétaro, México
- CONAHCYT National Council for Science and Technology, México City, México
| |
Collapse
|
17
|
Luppi JJ, Stam CJ, Scheltens P, de Haan W. Virtual neural network-guided optimization of non-invasive brain stimulation in Alzheimer's disease. PLoS Comput Biol 2024; 20:e1011164. [PMID: 38232116 PMCID: PMC10824453 DOI: 10.1371/journal.pcbi.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/29/2024] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.
Collapse
Affiliation(s)
- Janne J. Luppi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Wiesman AI, da Silva Castanheira J, Degroot C, Fon EA, Baillet S, Network QP. Adverse and compensatory neurophysiological slowing in Parkinson's disease. Prog Neurobiol 2023; 231:102538. [PMID: 37832713 PMCID: PMC10872886 DOI: 10.1016/j.pneurobio.2023.102538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Patients with Parkinson's disease (PD) exhibit multifaceted changes in neurophysiological brain activity, hypothesized to represent a global cortical slowing effect. Using task-free magnetoencephalography and extensive clinical assessments, we found that neurophysiological slowing in PD is differentially associated with motor and non-motor symptoms along a sagittal gradient over the cortical anatomy. In superior parietal regions, neurophysiological slowing reflects an adverse effect and scales with cognitive and motor impairments, while across the inferior frontal cortex, neurophysiological slowing is compatible with a compensatory role. This adverse-to-compensatory gradient is sensitive to individual clinical profiles, such as drug regimens and laterality of symptoms; it is also aligned with the topography of neurotransmitter and transporter systems relevant to PD. We conclude that neurophysiological slowing in patients with PD signals both deleterious and protective mechanisms of the disease, from posterior to anterior regions across the cortex, respectively, with functional and clinical relevance to motor and cognitive symptoms.
Collapse
Affiliation(s)
- Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | | | - Clotilde Degroot
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Edward A Fon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Quebec Parkinson Network
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
19
|
Scheijbeler EP, de Haan W, Stam CJ, Twisk JWR, Gouw AA. Longitudinal resting-state EEG in amyloid-positive patients along the Alzheimer's disease continuum: considerations for clinical trials. Alzheimers Res Ther 2023; 15:182. [PMID: 37858173 PMCID: PMC10585755 DOI: 10.1186/s13195-023-01327-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND To enable successful inclusion of electroencephalography (EEG) outcome measures in Alzheimer's disease (AD) clinical trials, we retrospectively mapped the progression of resting-state EEG measures over time in amyloid-positive patients with mild cognitive impairment (MCI) or dementia due to AD. METHODS Resting-state 21-channel EEG was recorded in 148 amyloid-positive AD patients (MCI, n = 88; dementia due to AD, n = 60). Two or more EEG recordings were available for all subjects. We computed whole-brain and regional relative power (i.e., theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz)), peak frequency, signal variability (i.e., theta permutation entropy), and functional connectivity values (i.e., alpha and beta corrected amplitude envelope correlation, theta phase lag index, weighted symbolic mutual information, inverted joint permutation entropy). Whole-group linear mixed effects models were used to model the development of EEG measures over time. Group-wise analysis was performed to investigate potential differences in change trajectories between the MCI and dementia subgroups. Finally, we estimated the minimum sample size required to detect different treatment effects (i.e., 50% less deterioration, stabilization, or 50% improvement) on the development of EEG measures over time, in hypothetical clinical trials of 1- or 2-year duration. RESULTS Whole-group analysis revealed significant regional and global oscillatory slowing over time (i.e., increased relative theta power, decreased beta power), with strongest effects for temporal and parieto-occipital regions. Disease severity at baseline influenced the EEG measures' rates of change, with fastest deterioration reported in MCI patients. Only AD dementia patients displayed a significant decrease of the parieto-occipital peak frequency and theta signal variability over time. We estimate that 2-year trials, focusing on amyloid-positive MCI patients, require 36 subjects per arm (2 arms, 1:1 randomization, 80% power) to detect a stabilizing treatment effect on temporal relative theta power. CONCLUSIONS Resting-state EEG measures could facilitate early detection of treatment effects on neuronal function in AD patients. Their sensitivity depends on the region-of-interest and disease severity of the study population. Conventional spectral measures, particularly recorded from temporal regions, present sensitive AD treatment monitoring markers.
Collapse
Affiliation(s)
- Elliz P Scheijbeler
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands.
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands.
| | - Willem de Haan
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Alida A Gouw
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
20
|
Andrade SM, da Silva-Sauer L, de Carvalho CD, de Araújo ELM, Lima EDO, Fernandes FML, Moreira KLDAF, Camilo ME, Andrade LMMDS, Borges DT, da Silva Filho EM, Lindquist AR, Pegado R, Morya E, Yamauti SY, Alves NT, Fernández-Calvo B, de Souza Neto JMR. Identifying biomarkers for tDCS treatment response in Alzheimer's disease patients: a machine learning approach using resting-state EEG classification. Front Hum Neurosci 2023; 17:1234168. [PMID: 37859768 PMCID: PMC10582524 DOI: 10.3389/fnhum.2023.1234168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a promising treatment for Alzheimer's Disease (AD). However, identifying objective biomarkers that can predict brain stimulation efficacy, remains a challenge. The primary aim of this investigation is to delineate the cerebral regions implicated in AD, taking into account the existing lacuna in comprehension of these regions. In pursuit of this objective, we have employed a supervised machine learning algorithm to prognosticate the neurophysiological outcomes resultant from the confluence of tDCS therapy plus cognitive intervention within both the cohort of responders and non-responders to antecedent tDCS treatment, stratified on the basis of antecedent cognitive outcomes. Methods The data were obtained through an interventional trial. The study recorded high-resolution electroencephalography (EEG) in 70 AD patients and analyzed spectral power density during a 6 min resting period with eyes open focusing on a fixed point. The cognitive response was assessed using the AD Assessment Scale-Cognitive Subscale. The training process was carried out through a Random Forest classifier, and the dataset was partitioned into K equally-partitioned subsamples. The model was iterated k times using K-1 subsamples as the training bench and the remaining subsample as validation data for testing the model. Results A clinical discriminating EEG biomarkers (features) was found. The ML model identified four brain regions that best predict the response to tDCS associated with cognitive intervention in AD patients. These regions included the channels: FC1, F8, CP5, Oz, and F7. Conclusion These findings suggest that resting-state EEG features can provide valuable information on the likelihood of cognitive response to tDCS plus cognitive intervention in AD patients. The identified brain regions may serve as potential biomarkers for predicting treatment response and maybe guide a patient-centered strategy. Clinical Trial Registration https://classic.clinicaltrials.gov/ct2/show/NCT02772185?term=NCT02772185&draw=2&rank=1, identifier ID: NCT02772185.
Collapse
Affiliation(s)
- Suellen Marinho Andrade
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Leandro da Silva-Sauer
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | - Eloise de Oliveira Lima
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Fernanda Maria Lima Fernandes
- Center for Alternative and Renewable Energies (CEAR), Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Maria Eduarda Camilo
- Laboratory of Ergonomics and Health, Department of Physiotherapy, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Daniel Tezoni Borges
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Ana Raquel Lindquist
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rodrigo Pegado
- Department of Physiotherapy, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neurosciences (IIN-ELS), Macaíba, Rio Grande do Norte, Brazil
| | - Seidi Yonamine Yamauti
- Edmond and Lily Safra International Institute of Neurosciences (IIN-ELS), Macaíba, Rio Grande do Norte, Brazil
| | - Nelson Torro Alves
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Bernardino Fernández-Calvo
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Cordoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - José Maurício Ramos de Souza Neto
- Center for Alternative and Renewable Energies (CEAR), Department of Electrical Engineering, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
21
|
Meehan CE, Schantell M, Springer SD, Wiesman AI, Wolfson SL, O'Neill J, Murman DL, Bares SH, May PE, Johnson CM, Wilson TW. Movement-related beta and gamma oscillations indicate parallels and disparities between Alzheimer's disease and HIV-associated neurocognitive disorder. Neurobiol Dis 2023; 186:106283. [PMID: 37683957 PMCID: PMC10545947 DOI: 10.1016/j.nbd.2023.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
People with HIV (PWH) often develop HIV-related neurological impairments known as HIV-associated neurocognitive disorder (HAND), but cognitive dysfunction in older PWH may also be due to age-related disorders such as Alzheimer's disease (AD). Discerning these two conditions is challenging since the specific neural characteristics are not well understood and limited studies have probed HAND and AD spectrum (ADS) directly. We examined the neural dynamics underlying motor processing during cognitive interference using magnetoencephalography (MEG) in 22 biomarker-confirmed patients on the ADS, 22 older participants diagnosed with HAND, and 30 healthy aging controls. MEG data were transformed into the time-frequency domain to examine movement-related oscillatory activity and the impact of cognitive interference on distinct stages of motor programming. Both cognitively impaired groups (ADS/HAND) performed significantly worse on the task (e.g., less accurate and slower reaction time) and exhibited reductions in frontal and cerebellar beta and parietal gamma activity relative to controls. Disease-specific aberrations were also detected such that those with HAND exhibited weaker gamma interference effects than those on the ADS in frontoparietal and motor areas. Additionally, temporally distinct beta interference effects were identified, with ADS participants exhibiting stronger beta interference activity in the temporal cortex during motor planning, along with weaker beta interference oscillations dispersed across frontoparietal and cerebellar cortices during movement execution relative to those with HAND. These results indicate both overlapping and distinct neurophysiological aberrations in those with ADS disorders or HAND in key motor and top-down cognitive processing regions during cognitive interference and provide new evidence for distinct neuropathology.
Collapse
Affiliation(s)
- Chloe E Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
22
|
Chu KT, Lei WC, Wu MH, Fuh JL, Wang SJ, French IT, Chang WS, Chang CF, Huang NE, Liang WK, Juan CH. A holo-spectral EEG analysis provides an early detection of cognitive decline and predicts the progression to Alzheimer's disease. Front Aging Neurosci 2023; 15:1195424. [PMID: 37674782 PMCID: PMC10477374 DOI: 10.3389/fnagi.2023.1195424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
Aims Our aim was to differentiate patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) from cognitively normal (CN) individuals and predict the progression from MCI to AD within a 3-year longitudinal follow-up. A newly developed Holo-Hilbert Spectral Analysis (HHSA) was applied to resting state EEG (rsEEG), and features were extracted and subjected to machine learning algorithms. Methods A total of 205 participants were recruited from three hospitals, with CN (n = 51, MMSE > 26), MCI (n = 42, CDR = 0.5, MMSE ≥ 25), AD1 (n = 61, CDR = 1, MMSE < 25), AD2 (n = 35, CDR = 2, MMSE < 16), and AD3 (n = 16, CDR = 3, MMSE < 16). rsEEG was also acquired from all subjects. Seventy-two MCI patients (CDR = 0.5) were longitudinally followed up with two rsEEG recordings within 3 years and further subdivided into an MCI-stable group (MCI-S, n = 36) and an MCI-converted group (MCI-C, n = 36). The HHSA was then applied to the rsEEG data, and features were extracted and subjected to machine-learning algorithms. Results (a) At the group level analysis, the HHSA contrast of MCI and different stages of AD showed augmented amplitude modulation (AM) power of lower-frequency oscillations (LFO; delta and theta bands) with attenuated AM power of higher-frequency oscillations (HFO; beta and gamma bands) compared with cognitively normal elderly controls. The alpha frequency oscillation showed augmented AM power across MCI to AD1 with a reverse trend at AD2. (b) At the individual level of cross-sectional analysis, implementation of machine learning algorithms discriminated between groups with good sensitivity (Sen) and specificity (Spec) as follows: CN elderly vs. MCI: 0.82 (Sen)/0.80 (Spec), CN vs. AD1: 0.94 (Sen)/0.80 (Spec), CN vs. AD2: 0.93 (Sen)/0.90 (Spec), and CN vs. AD3: 0.75 (Sen)/1.00 (Spec). (c) In the longitudinal MCI follow-up, the initial contrasted HHSA between MCI-S and MCI-C groups showed significantly attenuated AM power of alpha and beta band oscillations. (d) At the individual level analysis of longitudinal MCI groups, deploying machine learning algorithms with the best seven features resulted in a sensitivity of 0.9 by the support vector machine (SVM) classifier, with a specificity of 0.8 yielded by the decision tree classifier. Conclusion Integrating HHSA into EEG signals and machine learning algorithms can differentiate between CN and MCI as well as also predict AD progression at the MCI stage.
Collapse
Affiliation(s)
- Kwo-Ta Chu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Yang-Ming Hospital, Taoyuan, Taiwan
| | - Weng-Chi Lei
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
| | - Ming-Hsiu Wu
- Division of Neurology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Long-Term Care and Health Promotion, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Isobel T. French
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Central University and Academia Sinica, Taipei, Taiwan
| | - Wen-Sheng Chang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Chi-Fu Chang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Norden E. Huang
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
- Key Laboratory of Data Analysis and Applications, First Institute of Oceanography, SOA, Qingdao, China
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Casagrande CC, Rempe MP, Springer SD, Wilson TW. Comprehensive review of task-based neuroimaging studies of cognitive deficits in Alzheimer's disease using electrophysiological methods. Ageing Res Rev 2023; 88:101950. [PMID: 37156399 PMCID: PMC10261850 DOI: 10.1016/j.arr.2023.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
With an aging population, cognitive decline and neurodegenerative disorders are an emerging public health crises with enormous, yet still under-recognized burdens. Alzheimer's disease (AD) is the most common type of dementia, and the number of cases is expected to dramatically rise in the upcoming decades. Substantial efforts have been placed into understanding the disease. One of the primary avenues of research is neuroimaging, and while positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are most common, crucial recent advancements in electrophysiological methods such as magnetoencephalography (MEG) and electroencephalography (EEG) have provided novel insight into the aberrant neural dynamics at play in AD pathology. In this review, we outline task-based M/EEG studies published since 2010 using paradigms probing the cognitive domains most affected by AD, including memory, attention, and executive functioning. Furthermore, we provide important recommendations for adapting cognitive tasks for optimal use in this population and adjusting recruitment efforts to improve and expand future neuroimaging work.
Collapse
Affiliation(s)
- Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
24
|
Berger M, Ryu D, Reese M, McGuigan S, Evered LA, Price CC, Scott DA, Westover MB, Eckenhoff R, Bonanni L, Sweeney A, Babiloni C. A Real-Time Neurophysiologic Stress Test for the Aging Brain: Novel Perioperative and ICU Applications of EEG in Older Surgical Patients. Neurotherapeutics 2023; 20:975-1000. [PMID: 37436580 PMCID: PMC10457272 DOI: 10.1007/s13311-023-01401-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
As of 2022, individuals age 65 and older represent approximately 10% of the global population [1], and older adults make up more than one third of anesthesia and surgical cases in developed countries [2, 3]. With approximately > 234 million major surgical procedures performed annually worldwide [4], this suggests that > 70 million surgeries are performed on older adults across the globe each year. The most common postoperative complications seen in these older surgical patients are perioperative neurocognitive disorders including postoperative delirium, which are associated with an increased risk for mortality [5], greater economic burden [6, 7], and greater risk for developing long-term cognitive decline [8] such as Alzheimer's disease and/or related dementias (ADRD). Thus, anesthesia, surgery, and postoperative hospitalization have been viewed as a biological "stress test" for the aging brain, in which postoperative delirium indicates a failed stress test and consequent risk for later cognitive decline (see Fig. 3). Further, it has been hypothesized that interventions that prevent postoperative delirium might reduce the risk of long-term cognitive decline. Recent advances suggest that rather than waiting for the development of postoperative delirium to indicate whether a patient "passed" or "failed" this stress test, the status of the brain can be monitored in real-time via electroencephalography (EEG) in the perioperative period. Beyond the traditional intraoperative use of EEG monitoring for anesthetic titration, perioperative EEG may be a viable tool for identifying waveforms indicative of reduced brain integrity and potential risk for postoperative delirium and long-term cognitive decline. In principle, research incorporating routine perioperative EEG monitoring may provide insight into neuronal patterns of dysfunction associated with risk of postoperative delirium, long-term cognitive decline, or even specific types of aging-related neurodegenerative disease pathology. This research would accelerate our understanding of which waveforms or neuronal patterns necessitate diagnostic workup and intervention in the perioperative period, which could potentially reduce postoperative delirium and/or dementia risk. Thus, here we present recommendations for the use of perioperative EEG as a "predictor" of delirium and perioperative cognitive decline in older surgical patients.
Collapse
Affiliation(s)
- Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Duke South Orange Zone Room 4315B, Box 3094, Durham, NC, 27710, USA.
- Duke Aging Center, Duke University Medical Center, Durham, NC, USA.
- Duke/UNC Alzheimer's Disease Research Center, Duke University Medical Center, Durham, NC, USA.
| | - David Ryu
- School of Medicine, Duke University, Durham, NC, USA
| | - Melody Reese
- Department of Anesthesiology, Duke University Medical Center, Duke South Orange Zone Room 4315B, Box 3094, Durham, NC, 27710, USA
- Duke Aging Center, Duke University Medical Center, Durham, NC, USA
| | - Steven McGuigan
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
| | - Lisbeth A Evered
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
- Weill Cornell Medicine, New York, NY, USA
| | - Catherine C Price
- Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - David A Scott
- Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, School of Medicine, University of Melbourne, Melbourne, Australia
| | - M Brandon Westover
- Department of Neurology, Beth Israel Deaconess Hospital, Boston, MA, USA
| | - Roderic Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Aoife Sweeney
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- San Raffaele of Cassino, Cassino, FR, Italy
| |
Collapse
|
25
|
Kim NH, Park U, Yang DW, Choi SH, Youn YC, Kang SW. PET-validated EEG-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer's disease. Sci Rep 2023; 13:10299. [PMID: 37365198 DOI: 10.1038/s41598-023-36713-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Developing reliable biomarkers is important for screening Alzheimer's disease (AD) and monitoring its progression. Although EEG is non-invasive direct measurement of brain neural activity and has potentials for various neurologic disorders, vulnerability to noise, difficulty in clinical interpretation and quantification of signal information have limited its clinical application. There have been many research about machine learning (ML) adoption with EEG, but the accuracy of detecting AD is not so high or not validated with Aβ PET scan. We developed EEG-ML algorithm to detect brain Aβ pathology among subjective cognitive decline (SCD) or mild cognitive impairment (MCI) population, and validated it with Aβ PET. 19-channel resting-state EEG and Aβ PET were collected from 311 subjects: 196 SCD(36 Aβ +, 160 Aβ -), 115 MCI(54 Aβ +, 61Aβ -). 235 EEG data were used for training ML, and 76 for validation. EEG features were standardized for age and sex. Multiple important features sets were selected by 6 statistics analysis. Then, we trained 8 multiple machine learning for each important features set. Meanwhile, we conducted paired t-test to find statistically different features between amyloid positive and negative group. The best model showed 90.9% sensitivity, 76.7% specificity and 82.9% accuracy in MCI + SCD (33 Aβ +, 43 Aβ -). Limited to SCD, 92.3% sensitivity, 75.0% specificity, 81.1% accuracy (13 Aβ +, 24 Aβ -). 90% sensitivity, 78.9% specificity and 84.6% accuracy for MCI (20 Aβ +, 19 Aβ -). Similar trends of EEG power have been observed from the group comparison between Aβ + and Aβ -, and between MCI and SCD: enhancement of frontal/ frontotemporal theta; attenuation of mid-beta in centroparietal areas. The present findings suggest that accurate classification for beta-amyloid accumulation in the brain based on QEEG alone could be possible, which implies that QEEG is a promising biomarker for beta-amyloid. Since QEEG is more accessible, cost-effective, and safer than amyloid PET, QEEG-based biomarkers may play an important role in the diagnosis and treatment of AD. We expect specific patterns in QEEG could play an important role to predict future progression of cognitive impairment in the preclinical stage of AD. Further feature engineering and validation with larger dataset is recommended.
Collapse
Affiliation(s)
- Nam Heon Kim
- iMediSync Inc, 15F, 411, Teheran-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Ukeob Park
- iMediSync Inc, 15F, 411, Teheran-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Dong Won Yang
- Department of Neurology, St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seung Wan Kang
- iMediSync Inc, 15F, 411, Teheran-ro, Gangnam-gu, Seoul, Republic of Korea.
- National Standard Reference Data Center for Korean EEG, Seoul National University College of Nursing, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Kopčanová M, Tait L, Donoghue T, Stothart G, Smith L, Sandoval AAF, Davila-Perez P, Buss S, Shafi MM, Pascual-Leone A, Fried PJ, Benwell CS. Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544491. [PMID: 37398162 PMCID: PMC10312609 DOI: 10.1101/2023.06.11.544491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD < HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasise the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.
Collapse
Affiliation(s)
- Martina Kopčanová
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, School of Medical and Dental Sciences, University of Birmingham, UK
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Thomas Donoghue
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Laura Smith
- School of Psychology, University of Kent, Kent, UK
| | - Aimee Arely Flores Sandoval
- Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Paula Davila-Perez
- Rey Juan Carlos University Hospital (HURJC), Department of Clinical Neurophysiology, Móstoles, Madrid, Spain
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Stephanie Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston MA
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher S.Y. Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Tomasello L, Carlucci L, Laganà A, Galletta S, Marinelli CV, Raffaele M, Zoccolotti P. Neuropsychological Evaluation and Quantitative EEG in Patients with Frontotemporal Dementia, Alzheimer's Disease, and Mild Cognitive Impairment. Brain Sci 2023; 13:930. [PMID: 37371408 DOI: 10.3390/brainsci13060930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
This study analyzed the efficacy of EEG resting state and neuropsychological performances in discriminating patients with different forms of dementia, or mild cognitive impairment (MCI), compared with control subjects. Forty-four patients with dementia (nineteen patients with AD, and seven with FTD), eighteen with MCI, and nineteen healthy subjects, matched for age and gender, underwent an extensive neuropsychological test battery and an EEG resting state recording. Results showed greater theta activation in posterior areas in the Alzheimer's disease (AD) and Fronto-Temporal Dementia (FTD) groups compared with the MCI and control groups. AD patients also showed more delta band activity in the temporal-occipital areas than controls and MCI patients. By contrast, the alpha and beta bands did not discriminate among groups. A hierarchical clustering analysis based on neuropsychological and EEG data yielded a three-factor solution. The clusters differed for several neuropsychological measures, as well as for beta and theta bands. Neuropsychological tests were most sensitive in capturing an initial cognitive decline, while increased theta activity was uniquely associated with a substantial worsening of the clinical picture, representing a negative prognostic factor. In line with the Research Domains Framework (RDoC) perspective, the joint use of cognitive and neurophysiological data may provide converging evidence to document the evolution of cognitive skills in at-risk individuals.
Collapse
Affiliation(s)
- Letteria Tomasello
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
- Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Leonardo Carlucci
- Learning Sciences Hub, Department of Humanities, Letters, Cultural Heritage and Educational Studies, Foggia University, 71121 Foggia, Italy
| | - Angelina Laganà
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, 98122 Messina, Italy
| | - Santi Galletta
- Réseau Hospitalier Neuchâtelois (RHNe), Service de Neurologie et Neuroréadaptation, 2000 Neuchâtel, Switzerland
| | - Chiara Valeria Marinelli
- Learning Sciences Hub, Department of Humanities, Letters, Cultural Heritage and Educational Studies, Foggia University, 71121 Foggia, Italy
| | - Massimo Raffaele
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Pierluigi Zoccolotti
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
28
|
Giustiniani A, Danesin L, Bozzetto B, Macina A, Benavides-Varela S, Burgio F. Functional changes in brain oscillations in dementia: a review. Rev Neurosci 2023; 34:25-47. [PMID: 35724724 DOI: 10.1515/revneuro-2022-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
A growing body of evidence indicates that several characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) play a functional role in cognition and could be linked to the progression of cognitive decline in some neurological diseases such as dementia. The present paper reviews previous studies investigating changes in brain oscillations associated to the most common types of dementia, namely Alzheimer's disease (AD), frontotemporal degeneration (FTD), and vascular dementia (VaD), with the aim of identifying pathology-specific patterns of alterations and supporting differential diagnosis in clinical practice. The included studies analysed changes in frequency power, functional connectivity, and event-related potentials, as well as the relationship between electrophysiological changes and cognitive deficits. Current evidence suggests that an increase in slow wave activity (i.e., theta and delta) as well as a general reduction in the power of faster frequency bands (i.e., alpha and beta) characterizes AD, VaD, and FTD. Additionally, compared to healthy controls, AD exhibits alteration in latencies and amplitudes of the most common event related potentials. In the reviewed studies, these changes generally correlate with performances in many cognitive tests. In conclusion, particularly in AD, neurophysiological changes can be reliable early markers of dementia.
Collapse
Affiliation(s)
| | - Laura Danesin
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| | | | - AnnaRita Macina
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy.,Department of Neuroscience, University of Padova, 35128 Padova, Italy.,Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Francesca Burgio
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| |
Collapse
|
29
|
Simfukwe C, Youn YC, Kim MJ, Paik J, Han SH. CNN for a Regression Machine Learning Algorithm for Predicting Cognitive Impairment Using qEEG. Neuropsychiatr Dis Treat 2023; 19:851-863. [PMID: 37077704 PMCID: PMC10106803 DOI: 10.2147/ndt.s404528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose Electroencephalogram (EEG) signals give detailed information on the electrical brain activities occurring in the cerebral cortex. They are used to study brain-related disorders such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). Brain signals obtained using an EEG machine can be a neurophysiological biomarker for early diagnosis of dementia through quantitative EEG (qEEG) analysis. This paper proposes a machine learning methodology to detect MCI and AD from qEEG time-frequency (TF) images of the subjects in an eyes-closed resting state (ECR). Participants and Methods The dataset consisted of 16,910 TF images from 890 subjects: 269 healthy controls (HC), 356 MCI, and 265 AD. First, EEG signals were transformed into TF images using a Fast Fourier Transform (FFT) containing different event-rated changes of frequency sub-bands preprocessed from the EEGlab toolbox in the MATLAB R2021a environment software. The preprocessed TF images were applied in a convolutional neural network (CNN) with adjusted parameters. For classification, the computed image features were concatenated with age data and went through the feed-forward neural network (FNN). Results The trained models', HC vs MCI, HC vs AD, and HC vs CASE (MCI + AD), performance metrics were evaluated based on the test dataset of the subjects. The accuracy, sensitivity, and specificity were evaluated: HC vs MCI was 83%, 93%, and 73%, HC vs AD was 81%, 80%, and 83%, and HC vs CASE (MCI + AD) was 88%, 80%, and 90%, respectively. Conclusion The proposed models trained with TF images and age can be used to assist clinicians as a biomarker in detecting cognitively impaired subjects at an early stage in clinical sectors.
Collapse
Affiliation(s)
- Chanda Simfukwe
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
- Correspondence: Young Chul Youn; Su-Hyun Han, Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea, Email ;
| | - Min-Jae Kim
- Department of Image, Chung-Ang University, Seoul, South Korea
| | - Joonki Paik
- Department of Image, Chung-Ang University, Seoul, South Korea
| | - Su-Hyun Han
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Morabito FC, Ieracitano C, Mammone N. An explainable Artificial Intelligence approach to study MCI to AD conversion via HD-EEG processing. Clin EEG Neurosci 2023; 54:51-60. [PMID: 34889152 DOI: 10.1177/15500594211063662] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An explainable Artificial Intelligence (xAI) approach is proposed to longitudinally monitor subjects affected by Mild Cognitive Impairment (MCI) by using high-density electroencephalography (HD-EEG). To this end, a group of MCI patients was enrolled at IRCCS Centro Neurolesi Bonino Pulejo of Messina (Italy) within a follow-up protocol that included two evaluations steps: T0 (first evaluation) and T1 (three months later). At T1, four MCI patients converted to Alzheimer's Disease (AD) and were included in the analysis as the goal of this work was to use xAI to detect individual changes in EEGs possibly related to the degeneration from MCI to AD. The proposed methodology consists in mapping segments of HD-EEG into channel-frequency maps by means of the power spectral density. Such maps are used as input to a Convolutional Neural Network (CNN), trained to label the maps as "T0" (MCI state) or "T1" (AD state). Experimental results reported high intra-subject classification performance (accuracy rate up to 98.97% (95% confidence interval: 98.68-99.26)). Subsequently, the explainability of the proposed CNN is explored via a Grad-CAM approach. The procedure detected which EEG-channels (i.e., head region) and range of frequencies (i.e., sub-bands) were more active in the progression to AD. The xAI analysis showed that the main information is included in the delta sub-band and that, limited to the analyzed dataset, the highest relevant areas are: the left-temporal and central-frontal lobe for Sb01, the parietal lobe for Sb02, the left-frontal lobe for Sb03 and the left-frontotemporal region for Sb04.
Collapse
Affiliation(s)
- Francesco Carlo Morabito
- DICEAM, 19009University Mediterranea of Reggio Calabria, Via Graziella Feo di Vito, 89124, Reggio Calabria, Italy
| | - Cosimo Ieracitano
- DICEAM, 19009University Mediterranea of Reggio Calabria, Via Graziella Feo di Vito, 89124, Reggio Calabria, Italy
| | - Nadia Mammone
- DICEAM, 19009University Mediterranea of Reggio Calabria, Via Graziella Feo di Vito, 89124, Reggio Calabria, Italy
| |
Collapse
|
31
|
Iannaccone S, Houdayer E, Spina A, Nocera G, Alemanno F. Quantitative EEG for early differential diagnosis of dementia with Lewy bodies. Front Psychol 2023; 14:1150540. [PMID: 37151310 PMCID: PMC10157484 DOI: 10.3389/fpsyg.2023.1150540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Differentiating between the two most common forms of dementia, Alzheimer's dementia and dementia with Lewy bodies (DLB) remains difficult and requires the use of invasive, expensive, and resource-intensive techniques. We aimed to investigate the sensitivity and specificity of electroencephalography quantified using the statistical pattern recognition method (qEEG-SPR) for identifying dementia and DLB. Methods Thirty-two outpatients and 16 controls underwent clinical assessment (by two blinded neurologists), EEG recording, and a 6-month follow-up clinical assessment. EEG data were processed using a qEEG-SPR protocol to derive a Dementia Index (positive or negative) and DLB index (positive or negative) for each participant which was compared against the diagnosis given at clinical assessment. Confusion matrices were used to calculate sensitivity, specificity, and predictive values for identifying dementia and DLB specifically. Results Clinical assessment identified 30 cases of dementia, 2 of which were diagnosed clinically with possible DLB, 14 with probable DLB and DLB was excluded in 14 patients. qEEG-SPR confirmed the dementia diagnosis in 26 out of the 32 patients and led to 6.3% of false positives (FP) and 9.4% of false negatives (FN). qEEG-SPR was used to provide a DLB diagnosis among patients who received a positive or inconclusive result of Dementia index and led to 13.6% of FP and 13.6% of FN. Confusion matrices indicated a sensitivity of 80%, a specificity of 89%, a positive predictive value of 92%, a negative predictive value of 72%, and an accuracy of 83% to diagnose dementia. The DLB index showed a sensitivity of 60%, a specificity of 90%, a positive predictive value of 75%, a negative predictive value of 81%, and an accuracy of 75%. Neuropsychological scores did not differ significantly between DLB and non- DLB patients. Head trauma or story of stroke were identified as possible causes of FP results for DLB diagnosis. Conclusion qEEG-SPR is a sensitive and specific tool for diagnosing dementia and differentiating DLB from other forms of dementia in the initial state. This non-invasive, low-cost, and environmentally friendly method is a promising diagnostic tool for dementia diagnosis which could be implemented in local care settings.
Collapse
Affiliation(s)
- Sandro Iannaccone
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elise Houdayer
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Elise Houdayer,
| | - Alfio Spina
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Nocera
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Alemanno
- Department of Rehabilitation and Functional Recovery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
32
|
Del Percio C, Lopez S, Noce G, Lizio R, Tucci F, Soricelli A, Ferri R, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Marizzoni M, Güntekin B, Yener G, Stocchi F, Vacca L, Frisoni GB, Babiloni C. What a Single Electroencephalographic (EEG) Channel Can Tell us About Alzheimer's Disease Patients With Mild Cognitive Impairment. Clin EEG Neurosci 2023; 54:21-35. [PMID: 36413420 DOI: 10.1177/15500594221125033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abnormalities in cortical sources of resting-state eyes closed electroencephalographic (rsEEG) rhythms recorded by hospital settings (10-20 montage) with 19 scalp electrodes characterized Alzheimer's disease (AD) from preclinical to dementia stages. An intriguing rsEEG application is the monitoring and evaluation of AD progression in large populations with few electrodes in low-cost devices. Here we evaluated whether the above-mentioned abnormalities can be observed from fewer scalp electrodes in patients with mild cognitive impairment due to AD (ADMCI). Clinical and rsEEG data acquired in hospital settings (10-20 montage) from 75 ADMCI participants and 70 age-, education-, and sex-matched normal elderly controls (Nold) were available in an Italian-Turkish archive (PDWAVES Consortium; www.pdwaves.eu). Standard spectral fast fourier transform (FFT) analysis of rsEEG data for individual delta, theta, and alpha frequency bands was computed from 6 monopolar scalp electrodes to derive bipolar C3-P3, C4-P4, P3-O1, and P4-O2 markers. The ADMCI group showed increased delta and decreased alpha power density at the C3-P3, C4-P4, P3-O1, and P4-O2 bipolar channels compared to the Nold group. Increased theta power density for ADMCI patients was observed only at the C3-P3 bipolar channel. Best classification accuracy between the ADMCI and Nold individuals reached 81% (area under the receiver operating characteristic curve) using Alpha2/Theta power density computed at the C3-P3 bipolar channel. Standard rsEEG power density computed from six posterior bipolar channels characterized ADMCI status. These results may pave the way toward diffuse clinical applications in health monitoring of dementia using low-cost EEG systems with a strict number of electrodes in lower- and middle-income countries.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | | | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), 27212Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), 27212Università di Genova, Italy
| | - Francesco Famà
- Clinica neurologica, 9246IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, 9311Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, 9311Sapienza University of Rome, Rome, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, 218502Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab., 218502Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and 27212University of Geneva, Geneva, Switzerland
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", 9311Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| |
Collapse
|
33
|
Tobe M, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka Y, Yamanishi T, Takahashi T. Hub structure in functional network of EEG signals supporting high cognitive functions in older individuals. Front Aging Neurosci 2023; 15:1130428. [PMID: 37139091 PMCID: PMC10149684 DOI: 10.3389/fnagi.2023.1130428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Maintaining high cognitive functions is desirable for "wellbeing" in old age and is particularly relevant to a super-aging society. According to their individual cognitive functions, optimal intervention for older individuals facilitates the maintenance of cognitive functions. Cognitive function is a result of whole-brain interactions. These interactions are reflected in several measures in graph theory analysis for the topological characteristics of functional connectivity. Betweenness centrality (BC), which can identify the "hub" node, i.e., the most important node affecting whole-brain network activity, may be appropriate for capturing whole-brain interactions. During the past decade, BC has been applied to capture changes in brain networks related to cognitive deficits arising from pathological conditions. In this study, we hypothesized that the hub structure of functional networks would reflect cognitive function, even in healthy elderly individuals. Method To test this hypothesis, based on the BC value of the functional connectivity obtained using the phase lag index from the electroencephalogram under the eyes closed resting state, we examined the relationship between the BC value and cognitive function measured using the Five Cognitive Functions test total score. Results We found a significant positive correlation of BC with cognitive functioning and a significant enhancement in the BC value of individuals with high cognitive functioning, particularly in the frontal theta network. Discussion The hub structure may reflect the sophisticated integration and transmission of information in whole-brain networks to support high-level cognitive function. Our findings may contribute to the development of biomarkers for assessing cognitive function, enabling optimal interventions for maintaining cognitive function in older individuals.
Collapse
Affiliation(s)
- Mayuna Tobe
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- *Correspondence: Sou Nobukawa
| | - Kimiko Mizukami
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Kawaguchi
- Department of Nursing, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
| | | | | | | | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
34
|
What a single electroencephalographic (EEG) channel can tell us about patients with dementia due to Alzheimer's disease. Int J Psychophysiol 2022; 182:169-181. [DOI: 10.1016/j.ijpsycho.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
35
|
Rodrigues FR, Papanikolaou A, Holeniewska J, Phillips KG, Saleem AB, Solomon SG. Altered low-frequency brain rhythms precede changes in gamma power during tauopathy. iScience 2022; 25:105232. [PMID: 36274955 PMCID: PMC9579020 DOI: 10.1016/j.isci.2022.105232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative disorders are associated with widespread disruption to brain activity and brain rhythms. Some disorders are linked to dysfunction of the membrane-associated protein Tau. Here, we ask how brain rhythms are affected in rTg4510 mouse model of tauopathy, at an early stage of tauopathy (5 months), and at a more advanced stage (8 months). We measured brain rhythms in primary visual cortex in presence or absence of visual stimulation, while monitoring pupil diameter and locomotion to establish behavioral state. At 5 months, we found increased low-frequency rhythms during resting state in tauopathic animals, associated with periods of abnormally increased neural synchronization. At 8 months, this increase in low-frequency rhythms was accompanied by a reduction of power in the gamma range. Our results therefore show that slower rhythms are impaired earlier than gamma rhythms in this model of tauopathy, and suggest that electrophysiological measurements can track the progression of tauopathic neurodegeneration.
Collapse
Affiliation(s)
- Fabio R. Rodrigues
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Amalia Papanikolaou
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Joanna Holeniewska
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | | | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Samuel G. Solomon
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
36
|
Min JY, Ha SW, Lee K, Min KB. Use of electroencephalogram, gait, and their combined signals for classifying cognitive impairment and normal cognition. Front Aging Neurosci 2022; 14:927295. [PMID: 36158559 PMCID: PMC9490417 DOI: 10.3389/fnagi.2022.927295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Early identification of people at risk for cognitive decline is an important step in delaying the occurrence of cognitive impairment. This study investigated whether multimodal signals assessed using electroencephalogram (EEG) and gait kinematic parameters could be used to identify individuals at risk of cognitive impairment. Methods The survey was conducted at the Veterans Medical Research Institute in the Veterans Health Service Medical Center. A total of 220 individuals volunteered for this study and provided informed consent at enrollment. A cap-type wireless EEG device was used for EEG recording, with a linked-ear references based on a standard international 10/20 system. Three-dimensional motion capture equipment was used to collect kinematic gait parameters. Mild cognitive impairment (MCI) was evaluated by Seoul Neuropsychological Screening Battery-Core (SNSB-C). Results The mean age of the study participants was 73.5 years, and 54.7% were male. We found that specific EEG and gait parameters were significantly associated with cognitive status. Individuals with decreases in high-frequency EEG activity in high beta (25-30 Hz) and gamma (30-40 Hz) bands increased the odds ratio of MCI. There was an association between the pelvic obliquity angle and cognitive status, assessed by MCI or SNSB-C scores. Results from the ROC analysis revealed that multimodal signals combining high beta or gamma and pelvic obliquity improved the ability to discriminate MCI individuals from normal controls. Conclusion These findings support prior work on the association between cognitive status and EEG or gait, and offer new insights into the applicability of multimodal signals to distinguish cognitive impairment.
Collapse
Affiliation(s)
- Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Sang-Won Ha
- Department of Neurology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Kiwon Lee
- Ybrain Research Institute, Seongnam-si, South Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, South Korea
- Medical Research Center, Institute of Health Policy and Management, Seoul National University, Seoul, South Korea
| |
Collapse
|
37
|
Kamal F, Campbell K, Taler V. Effects of the Duration of a Resting-State EEG Recording in Healthy Aging and Mild Cognitive Impairment. Clin EEG Neurosci 2022; 53:443-451. [PMID: 33370162 DOI: 10.1177/1550059420983624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The recording of resting-state EEG may provide a means to predict early cognitive decline associated with mild cognitive impairment (MCI). Previous studies have typically used very short recording times to avoid a confound with drowsiness that may occur in longer recordings. The effects of a longer recording have not however been systematically examined. METHODS Eyes-closed resting-state EEG activity was recorded in 40 older adult participants (20 healthy older adults and 20 people with MCI). The recording period was a relatively long 6 minutes, divided into two equal 3-minute halves to determine if drowsiness will be more apparent as the recording progresses. The participants also completed standardized neuropsychological tasks that assessed global cognition (Montreal Cognitive Assessment) and memory (California Verbal Learning Test, Second Edition). A spectral analysis was performed on both short (2 seconds) and long (8 seconds) segments in both 3-minute halves. RESULTS No differences in power density for any of the EEG frequency bands were found between the 2 halves of the study for either group. There was little evidence of increased drowsiness in the second half of the study even when frequency resolution was increased with the 8-second segmentation. Theta power density was overall larger for people with MCI compared to healthy older adults. A negative correlation was also observed between theta power and global cognition in healthy older adults. CONCLUSIONS The present results indicate that longer resting-state EEG recording can be reliably employed without increased risk of drowsiness.
Collapse
Affiliation(s)
- Farooq Kamal
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Kenneth Campbell
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa Taler
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Bruyère Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Spinelli G, Bakardjian H, Schwartz D, Potier MC, Habert MO, Levy M, Dubois B, George N. Theta Band-Power Shapes Amyloid-Driven Longitudinal EEG Changes in Elderly Subjective Memory Complainers At-Risk for Alzheimer's Disease. J Alzheimers Dis 2022; 90:69-84. [PMID: 36057818 DOI: 10.3233/jad-220204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) includes progressive symptoms spread along a continuum of preclinical and clinical stages. Although numerous studies uncovered the neuro-cognitive changes of AD, very little is known on the natural history of brain lesions and modifications of brain networks in elderly cognitively-healthy memory complainers at risk of AD for carrying pathophysiological biomarkers (amyloidopathy and tauopathy). OBJECTIVE We analyzed resting-state electroencephalography (EEG) of 318 cognitively-healthy subjective memory complainers from the INSIGHT-preAD cohort at the time of their first visit (M0) and two-years later (M24). METHODS Using 18F-florbetapir PET-scanner, subjects were stratified between amyloid negative (A-; n = 230) and positive (A+; n = 88) groups. Differences between A+ and A-were estimated at source-level in each band-power of the EEG spectrum. RESULTS At M0, we found an increase of theta power in the mid-frontal cortex in A+ compared to A-. No significant association was found between mid-frontal theta and the individuals' cognitive performance. At M24, theta power increased in A+ relative to A-individuals in the posterior cingulate cortex and the pre-cuneus. Alpha band revealed a peculiar decremental trend in posterior brain regions in the A+ relative to the A-group only at M24. Theta power increase over the mid-frontal and mid-posterior cortices suggests an hypoactivation of the default-mode network in the A+ individuals and a non-linear longitudinal progression at M24. CONCLUSION We provide the first source-level longitudinal evidence on the impact of brain amyloidosis on the EEG dynamics of a large-scale, monocentric cohort of elderly individuals at-risk for AD.
Collapse
Affiliation(s)
- Giuseppe Spinelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Hovagim Bakardjian
- AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | | | - Marie-Claude Potier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Médecine Nucléaire, Paris, France.,Centre d'Acquisition et Traitement des Images (CATI), http://www.cati-neuroimaging.com
| | - Marcel Levy
- AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Paris, France
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Centre MEG-EEG, CENIR, Paris, France
| | | |
Collapse
|
39
|
Wu T, Sun F, Guo Y, Zhai M, Yu S, Chu J, Yu C, Yang Y. Spatio-Temporal Dynamics of Entropy in EEGS during Music Stimulation of Alzheimer's Disease Patients with Different Degrees of Dementia. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1137. [PMID: 36010801 PMCID: PMC9407451 DOI: 10.3390/e24081137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Music has become a common adjunctive treatment for Alzheimer’s disease (AD) in recent years. Because Alzheimer’s disease can be classified into different degrees of dementia according to its severity (mild, moderate, severe), this study is to investigate whether there are differences in brain response to music stimulation in AD patients with different degrees of dementia. Seventeen patients with mild-to-moderate dementia, sixteen patients with severe dementia, and sixteen healthy elderly participants were selected as experimental subjects. The nonlinear characteristics of electroencephalogram (EEG) signals were extracted from 64-channel EEG signals acquired before, during, and after music stimulation. The results showed the following. (1) At the temporal level, both at the whole brain area and sub-brain area levels, the EEG responses of the mild-to-moderate patients showed statistical differences from those of the severe patients (p < 0.05). The nonlinear characteristics during music stimulus, including permutation entropy (PmEn), sample entropy (SampEn), and Lempel−Ziv complexity (LZC), were significantly higher in both mild-to-moderate patients and healthy controls compared to pre-stimulation, while it was significantly lower in severe patients. (2) At the spatial level, the EEG responses of the mild-to-moderate patients and the severe patients showed statistical differences (p < 0.05), showing that as the degree of dementia progressed, fewer pairs of EEG characteristic showed significant differences among brain regions under music stimulation. In this paper, we found that AD patients with different degrees of dementia had different EEG responses to music stimulation. Our study provides a possible explanation for this discrepancy in terms of the pathological progression of AD and music cognitive hierarchy theory. Our study has adjunctive implications for clinical music therapy in AD., potentially allowing for more targeted treatment. Meanwhile, the variations in the brains of Alzheimer’s patients in response to music stimulation might be a model for investigating the neural mechanism of music perception.
Collapse
|
40
|
Fernández A, Noce G, Del Percio C, Pinal D, Díaz F, Lojo-Seoane C, Zurrón M, Babiloni C. Resting state electroencephalographic rhythms are affected by immediately preceding memory demands in cognitively unimpaired elderly and patients with mild cognitive impairment. Front Aging Neurosci 2022; 14:907130. [PMID: 36062151 PMCID: PMC9435320 DOI: 10.3389/fnagi.2022.907130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Experiments on event-related electroencephalographic oscillations in aged people typically include blocks of cognitive tasks with a few minutes of interval between them. The present exploratory study tested the effect of being engaged on cognitive tasks over the resting state cortical arousal after task completion, and whether it differs according to the level of the participant’s cognitive decline. To investigate this issue, we used a local database including data in 30 healthy cognitively unimpaired (CU) persons and 40 matched patients with amnestic mild cognitive impairment (aMCI). They had been involved in 2 memory tasks for about 40 min and underwent resting-state electroencephalographic (rsEEG) recording after 5 min from the task end. eLORETA freeware estimated rsEEG alpha source activity as an index of general cortical arousal. In the CU but not aMCI group, there was a negative correlation between memory tasks performance and posterior rsEEG alpha source activity. The better the memory tasks performance, the lower the posterior alpha activity (i.e., higher cortical arousal). There was also a negative correlation between neuropsychological test scores of global cognitive status and alpha source activity. These results suggest that engagement in memory tasks may perturb background brain arousal for more than 5 min after the tasks end, and that this effect are dependent on participants global cognitive status. Future studies in CU and aMCI groups may cross-validate and extend these results with experiments including (1) rsEEG recordings before memory tasks and (2) post-tasks rsEEG recordings after 5, 15, and 30 min.
Collapse
Affiliation(s)
- Alba Fernández
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Alba Fernández,
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Diego Pinal
- Psychological Neuroscience Lab, Escola de Psicologia, Universidade do Minho, Braga, Portugal
| | - Fernando Díaz
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Lojo-Seoane
- Departamento de Psicoloxía Evolutiva e da Educación, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montserrat Zurrón
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
- San Raffaele Cassino, Cassino, Italy
| |
Collapse
|
41
|
Wiesman AI, Murman DL, Losh RA, Schantell M, Christopher-Hayes NJ, Johnson HJ, Willett MP, Wolfson SL, Losh KL, Johnson CM, May PE, Wilson TW. Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer's disease. Brain 2022; 145:2177-2189. [PMID: 35088842 PMCID: PMC9246709 DOI: 10.1093/brain/awab430] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
An extensive electrophysiological literature has proposed a pathological 'slowing' of neuronal activity in patients on the Alzheimer's disease spectrum. Supported by numerous studies reporting increases in low-frequency and decreases in high-frequency neural oscillations, this pattern has been suggested as a stable biomarker with potential clinical utility. However, no spatially resolved metric of such slowing exists, stymieing efforts to understand its relation to proteinopathy and clinical outcomes. Further, the assumption that this slowing is occurring in spatially overlapping populations of neurons has not been empirically validated. In the current study, we collected cross-sectional resting state measures of neuronal activity using magnetoencephalography from 38 biomarker-confirmed patients on the Alzheimer's disease spectrum and 20 cognitively normal biomarker-negative older adults. From these data, we compute and validate a new metric of spatially resolved oscillatory deviations from healthy ageing for each patient on the Alzheimer's disease spectrum. Using this Pathological Oscillatory Slowing Index, we show that patients on the Alzheimer's disease spectrum exhibit robust neuronal slowing across a network of temporal, parietal, cerebellar and prefrontal cortices. This slowing effect is shown to be directly relevant to clinical outcomes, as oscillatory slowing in temporal and parietal cortices significantly predicted both general (i.e. Montreal Cognitive Assessment scores) and domain-specific (i.e. attention, language and processing speed) cognitive function. Further, regional amyloid-β accumulation, as measured by quantitative 18F florbetapir PET, robustly predicted the magnitude of this pathological neural slowing effect, and the strength of this relationship between amyloid-β burden and neural slowing also predicted attentional impairments across patients. These findings provide empirical support for a spatially overlapping effect of oscillatory neural slowing in biomarker-confirmed patients on the Alzheimer's disease spectrum, and link this effect to both regional proteinopathy and cognitive outcomes in a spatially resolved manner. The Pathological Oscillatory Slowing Index also represents a novel metric that is of potentially high utility across a number of clinical neuroimaging applications, as oscillatory slowing has also been extensively documented in other patient populations, most notably Parkinson's disease, with divergent spectral and spatial features.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Rebecca A Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Kathryn L Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| |
Collapse
|
42
|
Han SH, Chul Youn Y. Quantitative electroencephalography changes in patients with mild cognitive impairment after choline alphoscerate administration. J Clin Neurosci 2022; 102:42-48. [PMID: 35714391 DOI: 10.1016/j.jocn.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
There is limited evidence on the effectiveness of choline alphoscerate for mild cognitive impairment (MCI) in studies using neuropsychological markers. The aim of this study was to evaluate the spectral change at a source level using quantitative electroencephalography (qEEG) as a biomarker for cognitive function after choline alphoscerate administration to patients with MCI. This study used the qEEG data of patients with MCI who visited the Department of Neurology of the Chung-Ang University Hospital between April 2017 and December 2018. Resting-state EEG studies were performed on 33 patients with MCI at baseline and compared with those of the 18 normal controls selected from the community. After baseline qEEG, choline alphoscerate 400 mg was administered twice daily for 2 months to the patients with MCI. Follow-up qEEG was performed in 20 subjects. Baseline qEEG of patients with MCI was compared to qEEG after choline alphoscerate administration. We found that the MCI group exhibited a decreased alpha power compared to that of the control group. Patients with MCI treated with choline alphoscerate exhibited a decrease in the theta and delta power of the parietal and temporal lobe and an increase in the alpha power spectrum of the occipital lobes. We also identified the trend of default mode network enhancement after choline alphoscerate administration. Our results suggest that choline alphoscerate may have a positive effect in patients with MCI and support the usefulness of qEEG for monitoring the therapeutic effect of nootropics.
Collapse
Affiliation(s)
- Su-Hyun Han
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
43
|
Fouladi S, Safaei AA, Mammone N, Ghaderi F, Ebadi MJ. Efficient Deep Neural Networks for Classification of Alzheimer’s Disease and Mild Cognitive Impairment from Scalp EEG Recordings. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Öksüz Ö, Günver MG, Arıkan MK. Quantitative Electroencephalography Findings in Patients With Diabetes Mellitus. Clin EEG Neurosci 2022; 53:248-255. [PMID: 33729035 DOI: 10.1177/1550059421997657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective. Diabetes mellitus (DM) causes structural central nervous system (CNS) impairment, and this situation can be detected by quantitative electroencephalography (QEEG) findings before cognitive impairment is clinically observed. The main aim of this study is to uncover the effect of DM on brain function. Since QEEG reflects the CNS functioning, particularly in cognitive aspects, we expected electrophysiological clues to be found for prevention and follow-up in DM-related cognitive decline. Since a majority of the psychiatric population have cognitive dysfunction, we have given particular attention to those people. It was stated that a decrease was observed in the posterior cortical alpha power due to the hippocampal atrophy by several previous studies and we hypothesize that decreased alpha power will be observed also in DM. Methods. This study included 2094 psychiatric patients, 207 of whom were diagnosed with DM and 1887 of whom were not diagnosed with DM, and QEEG recordings were performed. Eyes-closed electroencephalography data were segmented into consecutive 2 s epochs. Fourier analysis was performed by averaging across 2 s epochs without artifacts. The absolute alpha power in the occipital regions (O1 and O2) of patients with and without DM was compared. Results. In the DM group, a decrease in the absolute alpha, alpha 1, and alpha 2 power in O1 and O2 was observed in comparison with the control group. It was determined that the type of psychiatric diagnosis did not affect QEEG findings. Conclusion. The decrease in absolute alpha power observed in patients diagnosed with DM may be related to the CNS impairment in DM. QEEG findings in DM can be useful while monitoring the CNS impairment, diagnosing DM-related dementia, in the follow-up of the cognitive process, constructing the protocols for electrophysiological interventions like neurofeedback and transcranial magnetic stimulation and monitoring the response to treatment.
Collapse
Affiliation(s)
- Özden Öksüz
- Department of Neuroscience, 52998Yeditepe University, İstanbul, Turkey
| | | | | |
Collapse
|
45
|
Abnormal EEG Signal Energy in the Elderly: A Wavelet Analysis of Event-related Potentials During a Stroop Task. J Neurosci Methods 2022; 376:109608. [PMID: 35487316 DOI: 10.1016/j.jneumeth.2022.109608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Previous work showed that elderly with excess in theta activity in their resting state electroencephalogram (EEG) are at higher risk of cognitive decline than those with a normal EEG. By using event-related potentials (ERP) during a counting Stroop task, our prior work showed that elderly with theta excess have a large P300 component compared with normal EEG group. This increased activity could be related to a higher EEG signal energy used during this task. NEW METHOD By wavelet analysis applied to ERP obtained during a counting Stroop task we quantified the energy in the different frequency bands of a group of elderly with altered EEG. RESULTS In theta and alpha bands, the total energy was higher in elderly subjects with theta excess, specifically in the stimulus categorization window (258-516 ms). Both groups solved the task with similar efficiency. COMPARISON WITH EXISTING METHODS The traditional ERP analysis in elderly compares voltage among conditions and groups for a given time windows, while the frequency composition is not usually examined. We complemented our previous ERP analysis using a wavelet methodology. Furthermore, we showed the advantages of wavelet analysis over Short Time Fourier Transform when exploring EEG signal during this task. CONCLUSIONS The higher EEG signal energy in ERP might reflect undergoing neurobiological mechanisms that allow the elderly with theta excess to cope with the cognitive task with similar behavioral results as the normal EEG group. This increased energy could promote a metabolic and cellular dysregulation causing a greater decline in cognitive function.
Collapse
|
46
|
Porcaro C, Vecchio F, Miraglia F, Zito G, Rossini PM. Dynamics of the "Cognitive" Brain Wave P3b at Rest for Alzheimer Dementia Prediction in Mild Cognitive Impairment. Int J Neural Syst 2022; 32:2250022. [PMID: 35435134 DOI: 10.1142/s0129065722500228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia that involves a progressive and irrevocable decline in cognitive abilities and social behavior, thus annihilating the patient's autonomy. The theoretical assumption that disease-modifying drugs are most effective in the early stages hopefully in the prodromal stage called mild cognitive impairment (MCI) urgently pushes toward the identification of robust and individualized markers of cognitive decline to establish an early pharmacological intervention. This requires the combination of well-established neural mechanisms and the development of increasingly sensitive methodologies. Among the neurophysiological markers of attention and cognition, one of the sub-components of the 'cognitive brain wave' P300 recordable in an odd-ball paradigm -namely the P3b- is extensively regarded as a sensitive indicator of cognitive performance. Several studies have reliably shown that changes in the amplitude and latency of the P3b are strongly related to cognitive decline and aging both healthy and pathological. Here, we used a P3b spatial filter to enhance the electroencephalographic (EEG) characteristics underlying 175 subjects divided into 135 MCI subjects, 20 elderly controls (EC), and 20 young volunteers (Y). The Y group served to extract the P3b spatial filter from EEG data, which was later applied to the other groups during resting conditions with eyes open and without being asked to perform any task. The group of 135 MCI subjects could be divided into two subgroups at the end of a month follow-up: 75 with stable MCI (MCI-S, not converted to AD), 60 converted to AD (MCI-C). The P3b spatial filter was built by means of a signal processing method called Functional Source Separation (FSS), which increases signal-to-noise ratio by using a weighted sum of all EEG recording channels rather than relying on a single, or a small sub-set, of channels. A clear difference was observed for the P3b dynamics at rest between groups. Moreover, a machine learning approach showed that P3b at rest could correctly distinguish MCI from EC (80.6% accuracy) and MCI-S from MCI-C (74.1% accuracy), with an accuracy as high as 93.8% in discriminating between MCI-C and EC. Finally, a comparison of the Bayes factor revealed that the group differences among MCI-S and MCI-C were 138 times more likely to be detected using the P3b dynamics compared with the best performing single electrode (Pz) approach. In conclusion, we propose that P3b as measured through spatial filters can be safely regarded as a simple and sensitive marker to predict the conversion from an MCI to AD status eventually combined with other non-neurophysiological biomarkers for a more precise definition of dementia having neuropathological Alzheimer characteristics.
Collapse
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.,Institute of Cognitive Sciences and Technologies, (ISTC) - National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy.,Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy
| | - Francesca Miraglia
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy.,Department of Neurology, Neurovascular Treatment Unit, San Camillo de Lellis Hospital, Rieti, Italy
| | - Giancarlo Zito
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy.,Department of Neurology, Neurovascular Treatment Unit, San Camillo de Lellis Hospital, Rieti, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy
| |
Collapse
|
47
|
Smailovic U, Ferreira D, Ausén B, Ashton NJ, Koenig T, Zetterberg H, Blennow K, Jelic V. Decreased Electroencephalography Global Field Synchronization in Slow-Frequency Bands Characterizes Synaptic Dysfunction in Amnestic Subtypes of Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:755454. [PMID: 35462693 PMCID: PMC9031731 DOI: 10.3389/fnagi.2022.755454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMild cognitive impairment (MCI) is highly prevalent in a memory clinic setting and is heterogeneous regarding its clinical presentation, underlying pathophysiology, and prognosis. The most prevalent subtypes are single-domain amnestic MCI (sd-aMCI), considered to be a prodromal phase of Alzheimer’s disease (AD), and multidomain amnestic MCI (md-aMCI), which is associated with multiple etiologies. Since synaptic loss and dysfunction are the closest pathoanatomical correlates of AD-related cognitive impairment, we aimed to characterize it in patients with sd-aMCI and md-aMCI by means of resting-state electroencephalography (EEG) global field power (GFP), global field synchronization (GFS), and novel cerebrospinal fluid (CSF) synaptic biomarkers.MethodsWe included 52 patients with sd-aMCI (66.9 ± 7.3 years, 52% women) and 30 with md-aMCI (63.1 ± 7.1 years, 53% women). All patients underwent a detailed clinical assessment, resting-state EEG recordings and quantitative analysis (GFP and GFS in delta, theta, alpha, and beta bands), and analysis of CSF biomarkers of synaptic dysfunction, neurodegeneration, and AD-related pathology. Cognitive subtyping was based on a comprehensive neuropsychological examination. The Mini-Mental State Examination (MMSE) was used as an estimation of global cognitive performance. EEG and CSF biomarkers were included in a multivariate model together with MMSE and demographic variables, to investigate differences between sd-aMCI and md-aMCI.ResultsPatients with sd-aMCI had higher CSF phosphorylated tau, total tau and neurogranin levels, and lower values in GFS delta and theta. No differences were observed in GFP. The multivariate model showed that the most important synaptic measures for group separation were GFS theta, followed by GFS delta, GFP theta, CSF neurogranin, and GFP beta.ConclusionPatients with sd-aMCI when compared with those with md-aMCI have a neurophysiological and biochemical profile of synaptic damage, neurodegeneration, and amyloid pathology closer to that described in patients with AD. The most prominent signature in sd-aMCI was a decreased global synchronization in slow-frequency bands indicating that functional connectivity in slow frequencies is more specifically related to early effects of AD-specific molecular pathology.
Collapse
Affiliation(s)
- Una Smailovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Birgitta Ausén
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
- Clinic for Cognitive Disorders, Karolinska University Hospital-Huddinge, Stockholm, Sweden
- Women’s Health and Allied Health Professionals Theme, Medical Unit Medical Psychology, Karolinska University Hospital, Huddinge, Sweden
| | - Nicholas James Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, United Kingdom
| | - Thomas Koenig
- Psychiatric Electrophysiology Unit, Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Vesna Jelic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
- Clinic for Cognitive Disorders, Karolinska University Hospital-Huddinge, Stockholm, Sweden
- *Correspondence: Vesna Jelic,
| |
Collapse
|
48
|
Ding Y, Chu Y, Liu M, Ling Z, Wang S, Li X, Li Y. Fully automated discrimination of Alzheimer's disease using resting-state electroencephalography signals. Quant Imaging Med Surg 2022; 12:1063-1078. [PMID: 35111605 DOI: 10.21037/qims-21-430] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
Background The Alzheimer's disease (AD) population increases worldwide, placing a heavy burden on the economy and society. Presently, there is no cure for AD. Developing a convenient method of screening for AD and mild cognitive impairment (MCI) could enable early intervention, thus slowing down the progress of the disease and enabling better overall disease management. Methods In the current study, resting-state electroencephalography (EEG) data were acquired from 113 normal cognition (NC) subjects, 116 amnestic MCI patients, and 72 probable AD patients. After preprocessing by an automatic algorithm, features including spectral power, complexity, and functional connectivity were extracted, and machine-learning classifiers were built to differentiate among the 3 groups. The classification performance was evaluated from multiple perspectives, including accuracy, specificity, sensitivity, area under the curve (AUC) with 95% confidence intervals, and compared to the empirical chance level by permutation tests. Results The analysis of variance results (P<0.05 with false discovery rate correction) confirmed the tendency to slow brain activity, reduced complexity, and connectivity with AD progress. By combining the features, the ability of the machine-learning classifiers, especially the ensemble trees, to differentiate among the 3 groups, was significantly better than that of the empirical chance level of the permutation test. The AUC of the classifier with the best performance was 80.08% for AD vs. NC, 70.82% for AD vs. MCI, and 63.95% for MCI vs. NC. Conclusions The current study presented a fully automatic procedure that could significantly distinguish NC, MCI, and AD subjects via resting-state EEG signals. The study was based on a large data set with evidence-based medical diagnosis and provided further evidence that resting-state EEG data could assist in the discrimination of AD patients.
Collapse
Affiliation(s)
- Yue Ding
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,iFLYTEK Research, iFLYTEK CO., LTD., Hefei, China
| | - Yinxue Chu
- iFLYTEK Research, iFLYTEK CO., LTD., Hefei, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenhua Ling
- National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China, Hefei, China
| | - Shijin Wang
- iFLYTEK Research, iFLYTEK CO., LTD., Hefei, China.,State Key Laboratory of Cognitive Intelligence, Hefei, China
| | - Xin Li
- iFLYTEK Research, iFLYTEK CO., LTD., Hefei, China.,National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China, Hefei, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
49
|
The Interactive Effect of Genetic and Epigenetic Variations in FKBP5 and ApoE Genes on Anxiety and Brain EEG Parameters. Genes (Basel) 2022; 13:genes13020164. [PMID: 35205209 PMCID: PMC8872390 DOI: 10.3390/genes13020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
FKBP51 is a key stress-responsive regulator of the hypothalamic–pituitary–adrenal axis. To elucidate the contribution of rs1360780 FKBP5 C/T alleles to aging and longevity, we genotyped FKBP5 in a cohort of 800 non-demented and Alzheimer’s disease (AD) subjects of different age, taking into account the allele state of ApoE ε4, the major risk factor for AD. Furthermore, we searched for the association of FKBP5 with subcohorts of non-demented subjects evaluated for anxiety and resting-state quantitative EEG characteristics, associated with cognitive, emotional, and functional brain activities. We observed that increased state anxiety scores depend on the combination of the FKBP5 and ApoE genotypes and on the DNA methylation state of the FKBP5 promoter and ApoE genotype. We also found a significant gender-dependent correlation between FKBP5 promoter methylation and alpha-, delta-, and theta-rhythms. Analysis of the FKBP5 expression in an independent cohort revealed a significant upregulation of FKBP5 in females versus males. Our data suggest a synergistic effect of the stress-associated (FKBP5) and neurodegeneration-associated (ApoE) gene alleles on anxiety and the gender-dependent effect of FKBP5 on neurophysiological brain activity.
Collapse
|
50
|
Yao S, Zhu J, Li S, Zhang R, Zhao J, Yang X, Wang Y. Bibliometric Analysis of Quantitative Electroencephalogram Research in Neuropsychiatric Disorders From 2000 to 2021. Front Psychiatry 2022; 13:830819. [PMID: 35677873 PMCID: PMC9167960 DOI: 10.3389/fpsyt.2022.830819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND With the development of quantitative electroencephalography (QEEG), an increasing number of studies have been published on the clinical use of QEEG in the past two decades, particularly in the diagnosis, treatment, and prognosis of neuropsychiatric disorders. However, to date, the current status and developing trends of this research field have not been systematically analyzed from a macroscopic perspective. The present study aimed to identify the hot spots, knowledge base, and frontiers of QEEG research in neuropsychiatric disorders from 2000 to 2021 through bibliometric analysis. METHODS QEEG-related publications in the neuropsychiatric field from 2000 to 2021 were retrieved from the Web of Science Core Collection (WOSCC). CiteSpace and VOSviewer software programs, and the online literature analysis platform (bibliometric.com) were employed to perform bibliographic and visualized analysis. RESULTS A total of 1,904 publications between 2000 and 2021 were retrieved. The number of QEEG-related publications in neuropsychiatric disorders increased steadily from 2000 to 2021, and research in psychiatric disorders requires more attention in comparison to research in neurological disorders. During the last two decades, QEEG has been mainly applied in neurodegenerative diseases, cerebrovascular diseases, and mental disorders to reveal the pathological mechanisms, assist clinical diagnosis, and promote the selection of effective treatments. The recent hot topics focused on QEEG utilization in neurodegenerative disorders like Alzheimer's and Parkinson's disease, traumatic brain injury and related cerebrovascular diseases, epilepsy and seizure, attention-deficit hyperactivity disorder, and other mental disorders like major depressive disorder and schizophrenia. In addition, studies to cross-validate QEEG biomarkers, develop new biomarkers (e.g., functional connectivity and complexity), and extract compound biomarkers by machine learning were the emerging trends. CONCLUSION The present study integrated bibliometric information on the current status, the knowledge base, and future directions of QEEG studies in neuropsychiatric disorders from a macroscopic perspective. It may provide valuable insights for researchers focusing on the utilization of QEEG in this field.
Collapse
Affiliation(s)
- Shun Yao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jieying Zhu
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuiyan Li
- Department of Rehabilitation Medicine, School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Ruibin Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiubo Zhao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueling Yang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - You Wang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|