1
|
Roman A, Koenraadt CJM, Raymond B. Asaia spp. accelerate development of the yellow fever mosquito, Aedes aegypti, via interactions with the vertically transmitted larval microbiome. J Appl Microbiol 2024; 135:lxae261. [PMID: 39419784 DOI: 10.1093/jambio/lxae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
AIMS A wide range of vector control programmes rely on the efficient production and release of male mosquito. Asaia bacteria are described as potential symbionts of several mosquito species but their relationship with Aedes aegypti has never been rigorously tested. Here, we aimed to quantify the benefits of three Asaia species on host development in Ae. aegypti, and the ability of these bacteria to form a stable symbiotic association with growing larvae. METHODS AND RESULTS In order to disentangle direct and indirect effects of Asaia inoculation on host development, experiments used insects with an intact microbiome and those reared in near-aseptic conditions, while we characterized bacterial communities and Asaia densities with culture dependent and independent methods (16S rRNA amplicon sequencing). Neonate larvae were inoculated with Asaia spp. for 24 h, or left as uninoculated controls, all were reared on sterile food. Aseptic larvae were produced by surface sterilization of eggs. Although all Asaia were transient members of the gut community, two species accelerated larval development relative to controls. The two mutualistic species had lasting impacts on the larval microbiome, largely by altering the relative abundance of dominant bacteria, namely Klebsiella and Pseudomonas. Axenic larvae were dominated by Asaia when inoculated with this species but showed slower development than conventionally reared insects, indicating that Asaia alone could not restore normal development. CONCLUSIONS Our results reveal Asaia as a poor mutualist for Ae. aegypti, but with a species-specific positive effect on improving host performance mediated by interactions with other bacteria.
Collapse
Affiliation(s)
- Alessandro Roman
- Centre for Ecology and Conservation, University of Exeter Cornwall campus, Treliever Road, Penryn, TR10 9FE, United Kingdom
- Laboratory of Entomology, Droevendaalsesteeg 1, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | | | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter Cornwall campus, Treliever Road, Penryn, TR10 9FE, United Kingdom
| |
Collapse
|
2
|
Chatterjee S, Sarkar B, Bag S, Biswal D, Mandal A, Bandyopadhyay R, Sarkar Paria D, Chatterjee A, Saha NC. Mitigating the Public Health Issues Caused by the Filarial Vector, Culex quinquefasciatus (Diptera: Culicidae) Through Phytocontrol and Larval Source Marker Management. Appl Biochem Biotechnol 2024; 196:5013-5044. [PMID: 37999898 DOI: 10.1007/s12010-023-04747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Failure of conventional mosquito control strategies to curb the population of vectors have made the humans vulnerable to serious medical problems transmitted by them. This effect has been compounded by global climate change enabling the mosquitoes to cross geographical boundaries and cause trouble in regions where they were initially not found. As such, the scientific community has been compelled to devise alternative and innovative strategies of mosquito control that can be integrated with the conventional practices to implement multi-phasic approach of vector management. Culex quinquefasciatus is one such mosquito species that is reported to be one of the primary vectors of lymphatic filariasis and many other diseases of global health concern. However, not much is known about its breeding habitat ecology and microbial properties that have enabled the species to achieve reproductive success in urbanized habitats. The current investigation was carried out at Digha, West Bengal, India. The region, despite being endemic for lymphatic filariasis, has rarely been explored for its mosquito diversity and/or their breeding habitat characteristics. Therefore, these were attempted. For survey and sampling, seven villages were chosen, namely, Duttapur, Jatimati, Champabani, Padima, Gobindabasan, Bhagibaharampur and Palsandapur. The study showed that Cx. quinquefasciatus is the dominant mosquito species at the sampling sites with the highest density of their larvae being recorded from man-made structures like drains and pools close to human habitations and livestock. The study was, therefore, restricted to Cx. quinquefasciatus. Seasonal abundance showed that they were most prevalent in the monsoon followed by summer. The physicochemical characterization showed their larvae to prefer almost neutral pH (6.9 to 7.3), low chloride concentration (98 to 258 ppm) and turbidity. As far as other parameters are concerned, they were tolerant towards a wide range allowing them to adapt varied habitats in the study areas. The bacterial profiling of their natural habitat waters revealed the presence of Paenibacillus nanensis DGX1(OQ690670), Bacillus cereus DGX2(OQ690675), Bacillus sp. DGX3(OQ690700) and Escherichia coli DGX4(OQ690701). Bacillus cereus was found to have high oviposition attractant properties in oviposition assays. Bacillus cereus was also obtained from the midgut of third instar larvae indicating that they had entered from the surrounding medium and colonized the larval gut. Subsequent tests exhibited the roles of B. cereus in larval development. Numerous plant products have been reported either as insecticides for killing larvae or adult mosquitoes or as repellents for mosquito biting and the best alternatives for mosquito control. Larvicidal potential of emulsified neem oil formulation against the field collected 3rd instar larvae of Culex quinquefasciatus mosquito under laboratory conditions was also evaluated. The information thus obtained can be pooled to generate larval source markers and larval source management practices by altering their habitats that cannot be removed. Furthermore, the time of implementation of these strategies can also be planned.
Collapse
Affiliation(s)
- Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| | - Basanta Sarkar
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Souvik Bag
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Debraj Biswal
- Department of Zoology, Government General Degree College at Mangalkote, Burdwan, West Bengal, 713132, India
| | - Abhijit Mandal
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Raktima Bandyopadhyay
- Department of Nutrition, AKPC Mahavidyalaya, Bengai, Hooghly, West Bengal, 712611, India
| | - Dipanwita Sarkar Paria
- Department of Zoology, Chandernagore College, Chandernagore, Hooghly, West Bengal, 712136, India
| | - Arnab Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Nimai Chandra Saha
- Department of Zoology, Bidhannagar College, EB-2, Sector 1, Salt Lake, Kolkata, 700 064, India
| |
Collapse
|
3
|
Jenull S, Bauer T, Silbermayr K, Dreer M, Stark TD, Ehling-Schulz M. The toxicological spectrum of the Bacillus cereus toxin cereulide points towards niche-specific specialisation. Environ Microbiol 2023; 25:2231-2249. [PMID: 37354053 DOI: 10.1111/1462-2920.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Most microbes share their environmental niches with very different forms of life thereby engaging in specialised relationships to enable their persistence. The bacterium Bacillus cereus occurs ubiquitously in the environment with certain strain backgrounds causing foodborne and opportunistic infections in humans. The emetic lineage of B. cereus is capable of producing the toxin cereulide, which evokes emetic illnesses. Although food products favouring the accumulation of cereulide are known, the ecological role of cereulide and the environmental niche of emetic B. cereus remain elusive. To better understand the ecology of cereulide-producing B. cereus, we systematically assayed the toxicological spectrum of cereulide on a variety of organisms belonging to different kingdoms. As cereulide is a potassium ionophore, we further tested the effect of environmental potassium levels on the action of cereulide. We found that adverse effects of cereulide exposure are species-specific, which can be exacerbated with increased environmental potassium. Additionally, we demonstrate that cereulide is produced within an insect cadaver indicating its potential ecological function for a saprophytic lifestyle. Collectively, distinct cereulide susceptibilities of other organisms may reflect its role in enabling competitive niche specialization of emetic B. cereus.
Collapse
Affiliation(s)
- Sabrina Jenull
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Bauer
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katja Silbermayr
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maximilian Dreer
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Mosquera KD, Martínez Villegas LE, Rocha Fernandes G, Rocha David M, Maciel-de-Freitas R, A Moreira L, Lorenzo MG. Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites. BMC Biol 2023; 21:97. [PMID: 37101136 PMCID: PMC10134544 DOI: 10.1186/s12915-023-01605-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Aedes aegypti, the main arboviral mosquito vector, is attracted to human dwellings and makes use of human-generated breeding sites. Past research has shown that bacterial communities associated with such sites undergo compositional shifts as larvae develop and that exposure to different bacteria during larval stages can have an impact on mosquito development and life-history traits. Based on these facts, we hypothesized that female Ae. aegypti shape the bacteria communities of breeding sites during oviposition as a form of niche construction to favor offspring fitness. RESULTS To test this hypothesis, we first verified that gravid females can act as mechanical vectors of bacteria. We then elaborated an experimental scheme to test the impact of oviposition on breeding site microbiota. Five different groups of experimental breeding sites were set up with a sterile aqueous solution of larval food, and subsequently exposed to (1) the environment alone, (2) surface-sterilized eggs, (3) unsterilized eggs, (4) a non-egg laying female, or (5) oviposition by a gravid female. The microbiota of these differently treated sites was assessed by amplicon-oriented DNA sequencing once the larvae from the sites with eggs had completed development and formed pupae. Microbial ecology analyses revealed significant differences between the five treatments in terms of diversity. In particular, between-treatment shifts in abundance profiles were detected, showing that females induce a significant decrease in microbial alpha diversity through oviposition. In addition, indicator species analysis pinpointed bacterial taxa with significant predicting values and fidelity coefficients for the samples in which single females laid eggs. Furthermore, we provide evidence regarding how one of these indicator taxa, Elizabethkingia, exerts a positive effect on the development and fitness of mosquito larvae. CONCLUSIONS Ovipositing females impact the composition of the microbial community associated with a breeding site, promoting certain bacterial taxa over those prevailing in the environment. Among these bacteria, we found known mosquito symbionts and showed that they can improve offspring fitness if present in the water where eggs are laid. We deem this oviposition-mediated bacterial community shaping as a form of niche construction initiated by the gravid female.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Luis Eduardo Martínez Villegas
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH, 43210, USA
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana Rocha David
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Luciano A Moreira
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Hardy H, Hopkins R, Mnyone L, Hawkes FM. Manure and mosquitoes: life history traits of two malaria vector species enhanced by larval exposure to cow dung, whilst chicken dung has a strong negative effect. Parasit Vectors 2022; 15:472. [PMID: 36527072 PMCID: PMC9756494 DOI: 10.1186/s13071-022-05601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malaria vectors have a strong ecological association with rice agroecosystems, which can provide abundant aquatic habitats for larval development. Climate-adapted rice cultivation practices, such as the System of Rice Intensification (SRI), are gaining popularity in malaria-endemic countries seeking to expand rice production; however, the potential impact of these practices on vector populations has not been well characterised. In particular, SRI encourages the use of organic fertilisers (OFs), such as animal manures, as low-cost and environmentally friendly alternatives to industrially produced inorganic fertilisers. We therefore set out to understand the effects of two common manure-based OFs on the life history traits of two major African malaria vectors, Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.). METHODS Larvae of An. arabiensis and An. gambiae s.s. were reared from first instar to emergence in water containing either cow or chicken dung at one of four concentrations (0.25, 0.5, 0.75, and 1.0 g/100 ml), or in a clean water control. Their life history traits were recorded, including survival, development rate, adult production, and adult wing length. RESULTS Exposure to cow dung significantly increased the development rate of An. gambiae s.s. independent of concentration, but did not affect the overall survival and adult production of either species. Chicken dung, however, significantly reduced survival and adult production in both species, with a greater effect as concentration increased. Interestingly, An. arabiensis exhibited a relative tolerance to the lowest chicken dung concentration, in that survival was unaffected and adult production was not reduced to the same extent as in An. gambiae s.s. The effects of chicken dung on development rate were less clear in both species owing to high larval mortality overall, though there was some indication that it may reduce development rate. Adult wing lengths in males and females increased with higher concentrations of both cow and chicken dung. CONCLUSIONS Our findings suggest that manure-based OFs significantly alter the life history traits of An. gambiae s.s. and An. arabiensis. In both species, exposure to cow dung may improve fitness, whereas exposure to chicken dung may reduce it. These findings have implications for understanding vector population dynamics in rice agroecosystems and may inform the use of OFs in SRI, and rice agriculture more widely, to avoid their adverse effects in enhancing vector fitness.
Collapse
Affiliation(s)
- Harrison Hardy
- grid.36316.310000 0001 0806 5472Natural Resources Institute, University of Greenwich, London, UK
| | - Richard Hopkins
- grid.36316.310000 0001 0806 5472Natural Resources Institute, University of Greenwich, London, UK
| | - Ladslaus Mnyone
- grid.11887.370000 0000 9428 8105Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania ,grid.463517.20000 0004 0648 0180Department of Science, Technology and Innovation, Ministry of Education, Science and Technology, Dar Es Salaam, Tanzania
| | - Frances M. Hawkes
- grid.36316.310000 0001 0806 5472Natural Resources Institute, University of Greenwich, London, UK
| |
Collapse
|
6
|
Hery L, Guidez A, Durand AA, Delannay C, Normandeau-Guimond J, Reynaud Y, Issaly J, Goindin D, Legrave G, Gustave J, Raffestin S, Breurec S, Constant P, Dusfour I, Guertin C, Vega-Rúa A. Natural Variation in Physicochemical Profiles and Bacterial Communities Associated with Aedes aegypti Breeding Sites and Larvae on Guadeloupe and French Guiana. MICROBIAL ECOLOGY 2021; 81:93-109. [PMID: 32621210 PMCID: PMC7794107 DOI: 10.1007/s00248-020-01544-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
Aedes aegypti develop in aquatic habitats in which mosquito larvae are exposed to physicochemical elements and microorganisms that may influence their life cycle and their ability to transmit arboviruses. Little is known about the natural bacterial communities associated with A. aegypti or their relation to the biotic and abiotic characteristics of their aquatic habitats. We characterized the physicochemical properties and bacterial microbiota of A. aegypti breeding sites and larvae on Guadeloupe and in French Guiana. In addition, we explored whether geographic location, the type of breeding site and physicochemical parameters influenced the microbiota associated with this mosquito species. We used large-scale 16S rRNA gene sequencing of 160 breeding sites and 147 pools of A. aegypti larvae and recorded 12 physicochemical parameters at the sampled breeding sites. Ordination plots and multiple linear regression were used to assess the influence of environmental factors on the bacterial microbiota of water and larvae. We found territory-specific differences in physicochemical properties (dissolved oxygen, conductivity) and the composition of bacterial communities in A. aegypti breeding sites that influenced the relative abundance of several bacteria genera (e.g., Methylobacterium, Roseoccocus) on the corresponding larvae. A significant fraction of the bacterial communities identified on larvae, dominated by Herbiconiux and Microvirga genera, were consistently enriched in mosquitoes regardless the location. In conclusion, territory-specific differences observed in the biotic and abiotic properties of A. aegypti breeding sites raise concern about the impact of these changes on pathogen transmission by different A. aegypti populations.
Collapse
Affiliation(s)
- Lyza Hery
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | - Amandine Guidez
- Vector Control and Adaptation Unit, Cayenne, Institut Pasteur of French Guiana, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana France
| | | | - Christelle Delannay
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | | | - Yann Reynaud
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | - Jean Issaly
- Vector Control and Adaptation Unit, Cayenne, Institut Pasteur of French Guiana, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana France
| | - Daniella Goindin
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | - Grégory Legrave
- Laboratory of Environment and Food Hygiene, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| | - Joel Gustave
- Regional Health Agency of Guadeloupe, Gourbeyre, Guadeloupe France
| | - Stéphanie Raffestin
- Laboratory of Environment and Hygiene, Institut Pasteur of French Guiana, Cayenne, French Guiana France
| | - Sebastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Institut Pasteur of Guadeloupe, Pointe-à-Pitre, France
- Hyacinthe Bastaraud Faculty of Medicine, University of Antilles, Pointe-à-Pitre, France
- INSERM Centre for Clinical Investigation 1424, Pointe-à-Pitre, Les Abymes France
| | - Philippe Constant
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec Canada
| | - Isabelle Dusfour
- Vector Control and Adaptation Unit, Cayenne, Institut Pasteur of French Guiana, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana France
| | - Claude Guertin
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec Canada
| | - Anubis Vega-Rúa
- Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Institut Pasteur of Guadeloupe, Morne Jolivière, Guadeloupe France
| |
Collapse
|
7
|
Steinwascher K. Competition and growth among Aedes aegypti larvae: Effects of distributing food inputs over time. PLoS One 2020; 15:e0234676. [PMID: 33006964 PMCID: PMC7531853 DOI: 10.1371/journal.pone.0234676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Male and female mosquito larvae compete for different subsets of the yeast food resource in laboratory microcosms. Males compete more intensely with males, and females with females. The amount and timing of food inputs alters both growth and competition, but the effects are different between sexes. Increased density increases competition among males. Among females, density operates primarily by changing the food/larva or total food; this affects competition in some interactions and growth in others. Food added earlier in the life span contributes more to mass than the same quantity added later. After a period of starvation larvae appear to use some of the subsequent food input to rebuild physiological reserves in addition to building mass. The timing of pupation is affected by the independent factors and competition, but not in the same way for the two sexes, and not in the same way as mass at pupation for the two sexes. There is an effect of density on the timing of pupation for females independent of competition or changes in food/larva or total food. Male and female larvae have different larval life history strategies. Males grow quickly to a minimum size, then pupate, depending on the amount of food available. Males that do not grow quickly enough may delay pupation further to grow larger, resulting in a bimodal distribution of sizes and ages. Males appear to have a maximum size determined by the early food level. Females grow faster than males and grow larger than males on the same food inputs. Females affect the growth and competition among males by manipulating the number of particles in the microcosm through changes in feeding behavior. Mosquito larvae appear to have evolved to survive periods of starvation and take advantage of intermittent inputs of food into containers.
Collapse
Affiliation(s)
- Kurt Steinwascher
- Florida Medical Entomology Laboratory, Vero Beach, FL, United States of America
| |
Collapse
|
8
|
Mukhopadhyay P, Chatterjee S. Characterization and control of symbiotic Bacillus cereus isolated from the mid gut of Anopheles subpictus Grassi. J Parasit Dis 2016; 40:1414-1421. [PMID: 27876960 DOI: 10.1007/s12639-015-0704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/18/2015] [Indexed: 11/25/2022] Open
Abstract
An investigation was done to find out the role of gut bacterium on the larval development and survival of Anopheles subpictus, the vector responsible for the transmission of malaria. An. subpictus mosquitoes breed exclusively in stagnant water, including shrimp/fish ponds with high nutrient level. One bacterial strain (CX2) was isolated from the midgut of late third instar of mosquito larvae. The bacterial isolate was sensitive to recommended doses of tetracyclin (30 µg/disc), doxycycline (30 µg/disc), kanamycin (30 µg/disc), gentamycin (10 µg/disc), streptomycin (10 µg/disc), vancomycin (30 µg/disc), ofloxacin (5 µg/disc), levofloxacin (5 µg/disc), gatifloxacin (10 µg/disc), but resistant to ampicillin (10 µg/disc).The larvae which were fed with the mixture of two antibiotics tetracylin (30 µg/disc) and doxycyclin (30 µg/disc) (1:1) could not survive in rice-field water. In the control experiments without any antibiotic treatment, 95-100 % survival and 95 % adult emergence were observed. The study indicates that the elimination of gut bacteria suppressed larval growth. Phylogenetic analysis of the 16S rRNA gene sequence was also done. Based on the morphological, biochemical, FAME analysis and phylogenetic analysis, the bacterial isolate CX2 was identified as Bacillus cereus. Poly acrylamide gel electrophoresis analysis revealed that the isolate showed discrete bands ranging from 24.272 to 60.049 kDa proteins. Water extract and methanol extract of Tamarindus indica showed inhibitory effect against B. cereus.
Collapse
Affiliation(s)
- Priyanka Mukhopadhyay
- Microbiology and Parasitology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713 104 India
| | - Soumendranath Chatterjee
- Microbiology and Parasitology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713 104 India
| |
Collapse
|
9
|
Balakrishnan S, Indira K, Srinivasan M. Mosquitocidal properties of Bacillus species isolated from mangroves of Vellar estuary, Southeast coast of India. J Parasit Dis 2015; 39:385-92. [PMID: 26345039 PMCID: PMC4554596 DOI: 10.1007/s12639-013-0371-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022] Open
Abstract
Samples collected from the mangroves of Vellar estuary yielded a mosquitocidal bacterium, whose secondary metabolites exhibited mosquito larvicidal and pupicidal activity. The bacterium was isolated using standard microbiological methods and identified using classical biochemical tests. The mosquitocidal bacterium was identified as Bacillus subtilis, Bacillus thuringiensis, Bacillus sphaericus and Bacillus cereus. Mosquitocidal metabolite(s) was separated from the culture supernatant of the bacterium and its efficacy was against the larval and pupal stages of two different species of mosquitoes and determined in terms of LC50 and LC90. Mosquito larvicidal activity in terms of LC50 against Anopheleus stephensi and Aedes aegypti was 4.374 and 7.406 μl/ml and its pupicidal activity was 4.928 and 9.865 μl/ml, respectively. The present study proved that the mosquitocidal properties of the Bacillus species isolated from mangroves of Vellar estuary was evaluated as target species of mosquito vectors. This is an ideal eco-friendly approach for the vector control programs.
Collapse
Affiliation(s)
- S. Balakrishnan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502 Tamil Nadu INDIA
| | - K. Indira
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502 Tamil Nadu INDIA
| | - M. Srinivasan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502 Tamil Nadu INDIA
| |
Collapse
|
10
|
Abdul-Ghani R, Al-Mekhlafi AM, Alabsi MS. Microbial control of malaria: biological warfare against the parasite and its vector. Acta Trop 2012; 121:71-84. [PMID: 22100545 DOI: 10.1016/j.actatropica.2011.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 01/31/2023]
Abstract
Microbial applications in malaria transmission control have drawn global attention. Mosquito midgut microbiota can modulate vector immunity and block Plasmodium development. Paratransgenic manipulation of bacterial symbionts and Wolbachia can affect reproductive characteristics of mosquitoes. Bacillus-based biolarvicides can control mosquito larvae in different breeding habitats, but their effectiveness differs according to the type of formulation applied, and the physical and ecological conditions of the environment. Entomopathogenic fungi show promise as effective and evolution-proof agents against adult mosquitoes. In addition, transgenic fungi can express anti-plasmodial effector molecules that can target the parasite inside its vector. Despite showing effectiveness in domestic environments as well as against insecticide-resistant mosquitoes, claims towards their deployability in the field and their possible use in integrated vector management programmes have yet to be investigated. Viral pathogens show efficacy in the interruption of sporogonic development of the parasite, and protozoal pathogens exert direct pathogenic potential on larvae and adults with substantial effects on mosquito longevity and fecundity. However, the technology required for their isolation and maintenance impedes their field application. Many agents show promising findings; however, the question remains about the epidemiologic reality of these approaches because even those that have been tried under field conditions still have certain limitations. This review addresses aspects of the microbial control of malaria between proof-of-concept and epidemiologic reality.
Collapse
|
11
|
Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin. Appl Environ Microbiol 2011; 77:2755-62. [PMID: 21357430 DOI: 10.1128/aem.02671-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.
Collapse
|
12
|
Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A, Ricci I, Negri I, Scuppa P, Rossi P, Ballarini P, Raddadi N, Marzorati M, Sacchi L, Clementi E, Genchi M, Mandrioli M, Bandi C, Favia G, Alma A, Daffonchio D. Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ Microbiol 2009; 11:3252-64. [DOI: 10.1111/j.1462-2920.2009.02048.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS One 2009; 4:e6388. [PMID: 19633721 PMCID: PMC2712238 DOI: 10.1371/journal.pone.0006388] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022] Open
Abstract
Background Commensal and symbiotic microbes have a considerable impact on the behavior of many arthropod hosts, including hematophagous species that transmit pathogens causing infectious diseases to human and animals. Little is known about the bacteria associated with mosquitoes other than the vectorized pathogens. This study investigated Wolbachia and cultivable bacteria that persist through generations in Ae. albopictus organs known to host transmitted arboviruses, such as dengue and chikungunya. Methodology/Principal Findings We used culturing, diagnostic and quantitative PCR, as well as in situ hybridization, to detect and locate bacteria in whole individual mosquitoes and in dissected tissues. Wolbachia, cultivable bacteria of the genera Acinetobacter, Comamonas, Delftia and Pseudomonas co-occurred and persisted in the bodies of both males and females of Ae. albopictus initially collected in La Réunion during the chikungunya outbreak, and maintained as colonies in insectaries. In dissected tissues, Wolbachia and the cultivable Acinetobacter can be detected in the salivary glands. The other bacteria are commonly found in the gut. Quantitative PCR estimates suggest that Wolbachia densities are highest in ovaries, lower than those of Acinetobacter in the gut, and approximately equal to those of Acinetobacter in the salivary glands. Hybridization using specific fluorescent probes successfully localized Wolbachia in all germ cells, including the oocytes, and in the salivary glands, whereas the Acinetobacter hybridizing signal was mostly located in the foregut and in the anterior midgut. Conclusions/Significance Our results show that Proteobacteria are distributed in the somatic and reproductive tissues of mosquito where transmissible pathogens reside and replicate. This location may portend the coexistence of symbionts and pathogens, and thus the possibility that competition or cooperation phenomena may occur in the mosquito vector Ae. albopictus. Improved understanding of the vectorial system, including the role of bacteria in the vector's biology and competence, could have major implications for understanding viral emergences and for disease control.
Collapse
|
14
|
Molecular Identification of Hemolymph-Associated Symbiotic Bacteria in Red Imported Fire Ant Larvae. Curr Microbiol 2008; 57:575-9. [DOI: 10.1007/s00284-008-9245-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
15
|
Gusmão DS, Santos AV, Marini DC, Russo EDS, Peixoto AMD, Bacci Júnior M, Berbert-Molina MA, Lemos FJA. First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new perspectives for an insect-bacteria association. Mem Inst Oswaldo Cruz 2008; 102:919-24. [PMID: 18209929 DOI: 10.1590/s0074-02762007000800005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 11/23/2007] [Indexed: 11/22/2022] Open
Abstract
We show for the first time that the ventral diverticulum of the mosquito gut (impermeable sugar storage organ) harbors microorganisms. The gut diverticulum from newly emerged and non-fed Aedes aegypti was dissected under aseptic conditions, homogenized and plated on BHI medium. Microbial isolates were identified by sequencing of 16S rDNA for bacteria and 28S rDNA for yeast. A direct DNA extraction from Ae. aegypti gut diverticulum was also performed. The bacterial isolates were: Bacillus sp., Bacillus subtilis and Serratia sp. The latter was the predominant bacteria found in our isolations. The yeast species identified was Pichia caribbica.
Collapse
Affiliation(s)
- Desiely Silva Gusmão
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Role of ureolytic activity in Bacillus cereus nitrogen metabolism and acid survival. Appl Environ Microbiol 2008; 74:2370-8. [PMID: 18296540 DOI: 10.1128/aem.02737-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The presence and activities of urease genes were investigated in 49 clinical, food, and environmental Bacillus cereus isolates. Ten strains were shown to have urease genes, with eight of these strains showing growth on urea as the sole nitrogen source. Two of the urease-positive strains, including the sequenced strain ATCC 10987, could not use urea for growth, despite their capacities to produce active urease. These observations can be explained by the inability of the two strains to use ammonium as a nitrogen source. The impact of urea hydrolysis on acid stress resistance was subsequently assessed among the ureolytic B. cereus strains. However, none of the strains displayed increased fitness under acidic conditions or showed enhanced acid shock survival in the presence of urea. Expression analysis of urease genes in B. cereus ATCC 10987 revealed a low level of expression of these genes and a lack of pH-, nitrogen-, urea-, oxygen-, and growth phase-dependent modulation of mRNA transcription. This is in agreement with the low urease activity observed in strain ATCC 10987 and the other nine strains tested. Although a role for B. cereus ureolytic activity in acid survival cannot be excluded, its main role appears to be in nitrogen metabolism, where ammonium may be provided to the cells in nitrogen-limited, urea-containing environments.
Collapse
|
17
|
Swiecicka I, Mahillon J. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol Ecol 2006; 56:132-40. [PMID: 16542411 DOI: 10.1111/j.1574-6941.2006.00063.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although Bacillus cereus sensu lato are important both from an ecological and an economical point of view, little is known about their population structure, ecology, and relationships with other organisms. In the present work, the genotypic similarity of arthropod-borne B. cereus s.l. isolates, and their symbiotic relationship with the host are assessed. Bacilli of this group were recovered from the digestive tracts of sow bugs (Porcellio scaber) collected in three closely located sites. Their genotypic diversity was investigated using pulse-field gel electrophoresis (PFGE) following the whole-genome DNA digestions with NotI and AscI, and PCR amplification of virulence genes. The majority of the sow-bug Bacillus cereus sensu stricto isolates originating from the same but also from different sites displayed identical PFGE patterns, virulence gene content and enterotoxicity, indicating strong genetic and genomic relationships. The sow-bug Bacillus mycoides/Bacillus pseudomycoides strains displayed a higher diversity. The isopod-B. cereus s.l. relationship was also evaluated using antibiotic-resistant derivatives of B. cereus s.s., B. mycoides/B. pseudomycoides and Bacillus thuringiensis reintroduced into sow bugs. Both spores and vegetative cells of B. cereus s.l. were recovered from sow bugs over a 30-day period, strongly suggesting that these bacteria are natural residents of terrestrial isopods.
Collapse
Affiliation(s)
- Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland.
| | | |
Collapse
|
18
|
Abstract
Bacillus cereus sensu lato, the species group comprising Bacillus anthracis, Bacillus thuringiensis and B. cereus (sensu stricto), has previously been scrutinized regarding interspecies genetic correlation and pathogenic characteristics. So far, little attention has been paid to analysing the biological and ecological properties of the three species in their natural environments. In this review, we describe the B. cereus sensu lato living in a world on its own; all B. cereus sensu lato can grow saprophytically under nutrient-rich conditions, which are only occasionally found in the environment, except where nutrients are actively collected. As such, members of the B. cereus group have recently been discovered as common inhabitants of the invertebrate gut. We speculate that all members disclose symbiotic relationships with appropriate invertebrate hosts and only occasionally enter a pathogenic life cycle in which the individual species infects suitable hosts and multiplies almost unrestrained.
Collapse
Affiliation(s)
- G B Jensen
- National Institute of Occupational Health, Lersø Parkalle 105, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|