1
|
Chatterjee S, Das S. Whole-genome sequencing of biofilm-forming and chromium-resistant mangrove fungus Aspergillus niger BSC-1. World J Microbiol Biotechnol 2022; 39:55. [PMID: 36565384 DOI: 10.1007/s11274-022-03497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Filamentous fungus Aspergillus niger has gained significant industrial and ecological value due to its great potential in enzymatic activities. The present study reports the complete genome sequence of A. niger BSC-1 which was isolated from Indian Sundarban mangrove ecosystem. The study revealed that the genome of A. niger BSC-1 was 35.1 Mbp assembled in 40 scaffolds with 49.2% GC content. A total of 10,709 genes were reported out of which 10,535 genes were predicted for encoding the proteins. BUSCO assessment showed 98.6% of genome completeness indicating high quality genome sequencing. The genome sequencing of A. niger BSC-1 revealed the presence of rodA and exgA genes for initial adhesion to surface and Ags genes for matrix formation, during biofilm growth. OrthoVenn2 analysis revealed that A.niger BSC-1 shared 9552 gene clusters with the reference strain A. niger CBS554.65. Semi-quantitative RT-PCR analysis unveiled the role of Ags1 and P-type ATPase in fungal biofilm formation and chromium (Cr) resistance, respectively. During biofilm growth the expression of Ags1 significantly (P < 0.0001; two-way ANOVA followed by Sidak's multiple comparisons test) increased with respect to planktonic culture revealing the possible involvement of Ags1 in biofilm matrix formation. Expression of P-type ATPase gene was significantly upregulated (P < 0.0001; one-way ANOVA followed by Dunnett's multiple comparisons test) with the increasing chromium concentration in the fungal culture. Besides, several other genes encoding metalloprotease, copper and zinc binding proteins, and NADH-dependent oxidoreductase were also found in the genome of A. niger BSC-1. These proteins are also involved in heavy metal tolerance and nanofabrication indicating that this filamentous fungus A. niger BSC-1 could be potentially utilized for chromium detoxification through biofilm or nanobiremediation.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
2
|
Liu D, Liu Q, Guo W, Liu Y, Wu M, Zhang Y, Li J, Sun W, Wang X, He Q, Tian C. Development of Genetic Tools in Glucoamylase-Hyperproducing Industrial Aspergillus niger Strains. BIOLOGY 2022; 11:biology11101396. [PMID: 36290301 PMCID: PMC9599018 DOI: 10.3390/biology11101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Glucoamylase is one of the most needed industrial enzymes in the food and biofuel industries. Aspergillus niger is a commonly used cell factory for the production of commercial glucoamylase. For decades, genetic manipulation has promoted significant progress in industrial fungi for strain engineering and in obtaining deep insights into their genetic features. However, genetic engineering is more laborious in the glucoamylase-producing industrial strains A. niger N1 and O1 because their fungal features of having few conidia (N1) or of being aconidial (O1) make them difficult to perform transformation on. In this study, we targeted A. niger N1 and O1 and successfully developed high-efficiency transformation tools. We also constructed a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 editing marker-free system using an autonomously replicating plasmid to express Cas9 protein and to guide RNA and the selectable marker. By using the genetic tools developed here, we generated nine albino deletion mutants. After three rounds of sub-culturing under nonselective conditions, the albino deletions lost the autonomously replicating plasmid. Together, the tools and optimization process above provided a good reference to manipulate the tough working industrial strain, not only for the further engineering these two glucoamylase-hyperproducing strains, but also for other industrial strains. Abstract The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes, particularly glucoamylase. Although a variety of genetic techniques have been successfully used in wild-type A. niger, the transformation of industrially used strains with few conidia (e.g., A. niger N1) or that are even aconidial (e.g., A. niger O1) remains laborious. Herein, we developed genetic tools, including the protoplast-mediated transformation and Agrobacterium tumefaciens-mediated transformation of the A. niger strains N1 and O1 using green fluorescent protein as a reporter marker. Following the optimization of various factors for protoplast release from mycelium, the protoplast-mediated transformation efficiency reached 89.3% (25/28) for N1 and 82.1% (32/39) for O1. The A. tumefaciens-mediated transformation efficiency was 98.2% (55/56) for N1 and 43.8% (28/64) for O1. We also developed a marker-free CRISPR/Cas9 genome editing system using an AMA1-based plasmid to express the Cas9 protein and sgRNA. Out of 22 transformants, 9 albA deletion mutants were constructed in the A. niger N1 background using the protoplast-mediated transformation method and the marker-free CRISPR/Cas9 system developed here. The genome editing methods improved here will accelerate the elucidation of the mechanism of glucoamylase hyperproduction in these industrial fungi and will contribute to the use of efficient targeted mutation in other industrial strains of A. niger.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yin Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Min Wu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xingji Wang
- Longda Biotechnology Inc., Linyi 276400, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| |
Collapse
|
3
|
Futagami T. The white koji fungus Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem 2022; 86:574-584. [PMID: 35238900 DOI: 10.1093/bbb/zbac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
The white koji fungus, Aspergillus luchuensis mut. kawachii, is used in the production of shochu, a traditional Japanese distilled spirit. White koji fungus plays an important role in the shochu production process by supplying amylolytic enzymes such as α-amylase and glucoamylase. These enzymes convert starch contained in primary ingredients such as rice, barley, buckwheat, and sweet potato into glucose, which is subsequently utilized by the yeast Saccharomyces cerevisiae to produce ethanol. White koji fungus also secretes large amounts of citric acid, which lowers the pH of the shochu mash, thereby preventing the growth of undesired microbes and enabling stable production of shochu in relatively warm regions of Japan. This review describes the historical background, research tools, and recent advances in studies of the mechanism of citric acid production by white koji fungus.
Collapse
Affiliation(s)
- Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.,United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Higuchi Y. Membrane traffic related to endosome dynamics and protein secretion in filamentous fungi. Biosci Biotechnol Biochem 2021; 85:1038-1045. [PMID: 33686391 DOI: 10.1093/bbb/zbab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
In eukaryotic cells, membrane-surrounded organelles are orchestrally organized spatiotemporally under environmental situations. Among such organelles, vesicular transports and membrane contacts occur to communicate each other, so-called membrane traffic. Filamentous fungal cells are highly polarized and thus membrane traffic is developed to have versatile functions. Early endosome (EE) is an endocytic organelle that dynamically exhibits constant long-range motility through the hyphal cell, which is proven to have physiological roles, such as other organelle distribution and signal transduction. Since filamentous fungal cells are also considered as cell factories, to produce valuable proteins extracellularly, molecular mechanisms of secretory pathway including protein glycosylation have been well investigated. In this review, molecular and physiological aspects of membrane traffic especially related to EE dynamics and protein secretion in filamentous fungi are summarized, and perspectives for application are also described.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Kumar V, Ahluwalia V, Saran S, Kumar J, Patel AK, Singhania RR. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. BIORESOURCE TECHNOLOGY 2021; 323:124566. [PMID: 33390315 DOI: 10.1016/j.biortech.2020.124566] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Microbial secondary metabolites (SMs) are the intermediate or the product of metabolism produced during fermentation process. SMs are produced during stationary phase and play a major role in competition, antagonism and self defence mechanisms. These metabolites finds application in the pharmaceuticals, food, cosmetics etc. These are produced besides primary key metabolites (e.g., amino acids, lipids, carbohydrates etc.). Growth condition in solid-state fermentation (SSF) resembles microorganism's own native environment allowing the microorganisms to adapt best. Recent developments in bioprocessing has identified specific SSF practices that have a significant impact on SMs production. The practice of SSF, representing new opportunities to design better bioprocessing with potential genetic development goals for expanding the list of exciting SMs. Current updates cover advanced techniques on SSF to improve microbial SMs production and their ease of operation and cost-effective production strategies. Various factors affecting the SSF have been discussed with respect to sustainable development of novel SSF strategies for SMs production.
Collapse
Affiliation(s)
- Vinod Kumar
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu-180001, India
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Saurabh Saran
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu-180001, India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | | |
Collapse
|
6
|
|
7
|
Suhaimi H, Dailin DJ, Malek RA, Hanapi SZ, Ambehabati KK, Keat HC, Prakasham S, Elsayed EA, Misson M, El Enshasy H. Fungal Pectinases: Production and Applications in Food Industries. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Salgado-Bautista D, Volke-Sepúlveda T, Figueroa-Martínez F, Carrasco-Navarro U, Chagolla-López A, Favela-Torres E. Solid-state fermentation increases secretome complexity in Aspergillus brasiliensis. Fungal Biol 2020; 124:723-734. [PMID: 32690254 DOI: 10.1016/j.funbio.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus is used for the industrial production of enzymes and organic acids, mainly by submerged fermentation (SmF). However, solid-state fermentation (SSF) offers several advantages over SmF. Although differences related to lower catabolite repression and substrate inhibition, as well as higher extracellular enzyme production in SSF compared to SmF have been shown, the mechanisms undelaying such differences are still unknown. To explain some differences among SSF and SmF, the secretome of Aspergillus brasiliensis obtained from cultures in a homogeneous physiological state with high glucose concentrations was analyzed. Of the regulated proteins produced by SmF, 74% were downregulated by increasing the glucose concentration, whereas all those produced by SSF were upregulated. The most abundant and upregulated protein found in SSF was the transaldolase, which could perform a moonlighting function in fungal adhesion to the solid support. This study evidenced that SSF: (i) improves the kinetic parameters in relation to SmF, (ii) prevents the catabolite repression, (iii) increases the branching level of hyphae and oxidative metabolism, as well as the concentration and diversity of secreted proteins, and (iv) favors the secretion of typically intracellular proteins that could be involved in fungal adhesion. All these differences can be related to the fact that molds are more specialized to growth in solid materials because they mimic their natural habitat.
Collapse
Affiliation(s)
- Daniel Salgado-Bautista
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Tania Volke-Sepúlveda
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Francisco Figueroa-Martínez
- CONACyT Research Fellow, Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Alicia Chagolla-López
- Laboratorio de Proteómica- Cinvestav Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, 36824, Guanajuato, Mexico.
| | - Ernesto Favela-Torres
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Cho HD, Min HJ, Won YS, Ahn HY, Cho YS, Seo KI. Solid state fermentation process with Aspergillus kawachii enhances the cancer-suppressive potential of silkworm larva in hepatocellular carcinoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:241. [PMID: 31488109 PMCID: PMC6727413 DOI: 10.1186/s12906-019-2649-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Background Mulberry silkworm larvae (Bombyx mori) are known as the oldest resource of food and traditional medicine. Although silkworm larvae have been reported to treat various chronic diseases, the effect of fermentation by microorganisms improving the biological activities of silkworm larvae was not reported. In the present study, fermented silkworm larvae was developed via solid-state fermentation with Aspergillus kawachii and investigated its anti-cancer activity in human hepatocellular carcinoma cells. Methods We investigated the anti-cancer effects of unfermented (SEE) and fermented silkworm larva ethanol extract (FSEE) on HepG2 human hepatocellular carcinoma cells as well as compared changes in free amino acid, fatty acid, and mineral contents. Anti-cancer activities were evaluated by SRB staining, cell cycle analysis, Annexin V staining, Hoechst staining, DNA fragmentation analysis and western blot analysis. Fatty acid, free amino acid and mineral contents of SEE and FSEE were determined by gas chromatography, amino acid analyzer and flame atomic absorption spectrophotometer, respectively. Results Compared with SEE, treatment with FSEE resulted in apoptotic cell death in HepG2 cells characterized by G0/G1 phase cell cycle arrest, DNA fragmentation, and formation of apoptotic bodies. Furthermore, FSEE significantly up-regulated pro-apoptotic as well as down-regulated anti-apoptotic proteins in HepG2 cells. However, an equivalent concentration of SEE did not induce cell cycle arrest or apoptosis in HepG2 cells. Moreover, fermentation process by Aspergillus kawachii resulted in enhancement of fatty acid contents in silkworm larvae, whereas amino acid and mineral contents were decreased. Conclusion Collectively, this study demonstrates that silkworm larvae solid state-fermented by Aspergillus kawachii strongly potentiates caspase-dependent and -independent apoptosis pathways in human hepatocellular carcinoma cells by regulating secondary metabolites. Electronic supplementary material The online version of this article (10.1186/s12906-019-2649-7) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M. Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 2018; 18:71. [PMID: 30413198 PMCID: PMC6230287 DOI: 10.1186/s12896-018-0481-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020. RESULTS The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h. CONCLUSIONS Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.
Collapse
Affiliation(s)
- Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
- City of Scientific Research and Technology Application, New Burg Al Arab, Alexandria, Egypt
| | - Elsayed Ahmed Elsayed
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| | - Noorhamizah Suhaimi
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Roslinda Abd Malek
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81130 UTM, Skudai, Malaysia
| | - Mona Esawy
- Chemistry of Natural and Microbial Products Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
11
|
Huang Y, Wang Y, Xu Y. Purification and characterisation of an acid protease from the Aspergillus hennebergii
HX08 and its potential in traditional fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongguang Huang
- School of Liquor and Food Engineering, Guizhou University; Huaxi District of Guiyang City, Guiyang Guizhou Province, Guizhou 550025 China
| | - Yuxia Wang
- School of Life Science and Food Engineering; Yibin University; 8 Jiusheng Road Yibin Sichuan 644000 China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology; Jiangnan University; 1800 Lihu Ave Wuxi Jiangsu 214122 China
| |
Collapse
|
12
|
Expression of Talaromyces thermophilus lipase gene in Trichoderma reesei by homologous recombination at the cbh1 locus. J Ind Microbiol Biotechnol 2016; 44:377-385. [PMID: 28039549 DOI: 10.1007/s10295-016-1897-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
CBH1 (cellobiohydrolase) comprises the majority of secreted proteins by Trichoderma reesei. For expression of Talaromyces thermophilus lipase gene in T. reesei, a self-designed CBH1 promoter was applied to drive the lipase gene expression cassette which was bracketed by flanking sequences of cbh1 gene for homologous recombination. Protoplast and Agrobacterium-mediated plasmid transformations were performed and compared, resultantly, transformation mediated by Agrobacterium was overall proved to be more efficient. Stable integration of lipase gene into chromosomal DNA of T. reesei transformants was verified by PCR. After shaking flask fermentation, lipase activity of transformant reached 375 IU mL-1, whereas no cellobiohydrolase activity was detected. SDS-PAGE analysis further showed an obvious protein band about 39 kDa and no CBH1 band in fermentation broth, implying lipase gene was successfully extracellularly expressed in T. reesei via homologous recombination at cbh1 locus. This study herein would benefit genetic engineering of filamentous fungi and industrial application of thermo-alkaline lipase like in paper making and detergents addition.
Collapse
|
13
|
Vitcosque GL, Ribeiro LFC, de Lucas RC, da Silva TM, Ribeiro LF, de Lima Damasio AR, Farinas CS, Gonçalves AZL, Segato F, Buckeridge MS, Jorge JA, Polizeli MDLTM. The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Appl Microbiol Biotechnol 2016; 100:9133-9144. [PMID: 27245677 DOI: 10.1007/s00253-016-7589-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/24/2016] [Accepted: 05/04/2016] [Indexed: 11/28/2022]
Abstract
Filamentous fungi are attractive hosts for heterologous protein expression due to their capacity to secrete large amounts of enzymes into the extracellular medium. Xyloglucanases, which specifically hydrolyze xyloglucan, have been recently applied in lignocellulosic biomass degradation and conversion in many other industrial processes. In this context, this work aimed to clone, express, and determine the functional properties of a recombinant xyloglucanase (AtXEG12) from Aspergillus terreus, and also its solid-state (SSF) and submerged (SmF) fermentation in bioreactors. The purified AtXEG12 showed optimum pH and temperature of 5.5 and 65 °C, respectively, demonstrating to be 90 % stable after 24 h of incubation at 50 °C. AtXEG12 activity increased in the presence of 2-mercaptoethanol (65 %) and Zn+2 (45 %), while Cu+2 and Ag+ ions drastically decreased its activity. A substrate assay showed, for the first time for this enzyme's family, xylanase activity. The enzyme exhibited high specificity for tamarind xyloglucan (K M 1.2 mg mL-1) and V max of 17.4 μmol min-1 mg-1 of protein. The capillary zone electrophoresis analysis revealed that AtXEG12 is an endo-xyloglucanase. The heterologous xyloglucanase secretion was greater than the production by wild-type A. terreus cultivated in SmF. On the other hand, AtXEG12 activity reached by SSF was sevenfold higher than values achieved by SmF, showing that the expression of recombinant enzymes can be significantly improved by cultivation under SSF.
Collapse
Affiliation(s)
- Gabriela Leal Vitcosque
- Departamento de Bioquímica e Imunologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Liliane Fraga Costa Ribeiro
- Departamento de Bioquímica e Imunologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Chemical Biochemical Environmental Engineering Department, University of Maryland, Baltimore County, MD, USA
| | - Rosymar Coutinho de Lucas
- Departamento de Bioquímica e Imunologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Tony Marcio da Silva
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil.,Instituto de Ciências da Saúde, Agrárias e Humanas do Centro Universitário do Planalto de Araxà (UNIARAXÀ), Araxà, MG, Brazil
| | - Lucas Ferreira Ribeiro
- Departamento de Bioquímica e Imunologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - André Ricardo de Lima Damasio
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade de Campinas, Campinas, SP, Brazil
| | | | - Aline Zorzetto Lopes Gonçalves
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Fernando Segato
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - João Atilio Jorge
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Maria de Lourdes T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
14
|
Production of 3-Oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic Acid in the Fungus Aspergillus oryzae: A Step Towards Heterologous Production of Pyrethrins in Fungi. Mol Biotechnol 2016; 58:172-8. [PMID: 26718544 DOI: 10.1007/s12033-015-9911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pyrethrins are natural insecticides, which accumulate to high concentrations in pyrethrum (Chrysanthemum cinerariaefolium) flowers. Synthetic pyrethroids are more stable, more efficacious and cheaper, but contemporary requirements for safe and environmentally friendly pesticides encourage a return to the use of natural pyrethrins, and this would be favoured by development of an efficient route to their production by microbial fermentation. The biosynthesis of pyrethrins involves ester linkage between an acid moiety (chrysanthemoyl or pyrethroyl, synthesised via the mevalonic acid pathway from glucose), and an alcohol (pyrethrolone). Pyrethrolone is generated from 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid, which originates from α-linolenic acid via the jasmonic acid biosynthetic cascade. The first four genes in this cascade, encoding lipoxygenase 2, allene-oxide synthase, allene-oxide cyclase 2 and 12-oxophytodienoic acid reductase 3, were amplified from an Arabidopsis thaliana cDNA library, cloned in a purpose-built fungal multigene expression vector and expressed in Aspergillus oryzae. HPLC-MS analysis of the transgenic fungus homogenate gave good evidence for the presence of 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid.
Collapse
|
15
|
Tai ES, Hsieh PC, Sheu SC. Effect of polygalacturonase and feruloyl esterase from Aspergillus tubingensis on demucilage and quality of coffee beans. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Osmolovskiy AA, Baranova NA, Kreier VG, Kurakov AV, Egorov NS. Solid-state and membrane-surface liquid cultures of micromycetes: Specific features of their development and enzyme production (a Review). APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814030107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kawauchi M, Iwashita K. Functional analysis of histone deacetylase and its role in stress response, drug resistance and solid-state cultivation in Aspergillus oryzae. J Biosci Bioeng 2014; 118:172-6. [PMID: 24613105 DOI: 10.1016/j.jbiosc.2014.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 01/03/2023]
Abstract
In the eukaryotic cell, histone deacetylases (HDACs) play key roles in the regulation of fundamental cellular process such as development regulation, stress response, secondary metabolism and genome integrity. Here, we provide a comprehensive phenotypic analysis using HDAC disruptants in Aspergillus oryzae. Our study revealed that four HDACs, hdaA/Aohda1, hdaB/Aorpd3, hdaD/Aohos2 and hst4/AohstD were involved in stress response, cell wall synthesis and chromatin integrity in A. oryzae. Osmotic stress sensitivity of HDAC disruptants differed between plate cultures and liquid cultures, suggesting that HDACs adapt to the difference environmental conditions. Using a common A. oryzae fermentation medium, rice-koji, we also characterized HDACs related to growth and enzyme production to investigate which HDACs will be required for adaptation to environmental conditions and stress resistances. Because HDACs are widely conserved, our study has broad applications and may inform work with filamentous fungi and other eukaryote.
Collapse
Affiliation(s)
- Moriyuki Kawauchi
- Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8530, Japan; National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kazuhiro Iwashita
- Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8530, Japan; National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan.
| |
Collapse
|
18
|
Macellaro G, Baratto MC, Piscitelli A, Pezzella C, Fabrizi de Biani F, Palmese A, Piumi F, Record E, Basosi R, Sannia G. Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Appl Microbiol Biotechnol 2014; 98:4949-61. [PMID: 24463760 DOI: 10.1007/s00253-013-5491-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/16/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
Since the first report on a laccase, there has been a notable development in the interest towards this class of enzymes, highlighted from the number of scientific papers and patents about them. At the same time, interest in exploiting laccases-mainly high redox potential-for various functions has been growing exponentially over the last 10 years. Despite decades of work, the molecular determinants of the redox potential are far to be fully understood. For this reason, interest in tuning laccase redox potential to provide more efficient catalysts has been growing since the last years. The work herein described takes advantage of the filamentous fungus Aspergillus niger as host for the heterologous production of the high redox potential laccase POXA1b from Pleurotus ostreatus and of one of its in vitro selected variants (1H6C). The system herein developed allowed to obtain a production level of 35,000 U/L (583.3 μkat/L) for POXA1b and 60,000 U/L (1,000 μkat/L) for 1H6C, corresponding to 13 and 20 mg/L for POXA1b and 1H6C, respectively. The characterised proteins exhibit very similar characteristics, with some exceptions regarding catalytic behaviour, stability and spectro-electrochemical properties. Remarkably, the 1H6C variant shows a higher redox potential with respect to POXA1b. Furthermore, the spectro-electrochemical results obtained for 1H6C make it tempting to claim that we spectro-electrochemically determined the redox potential of the 1H6C T2 site, which has not been studied in any detail by spectro-electrochemistry yet.
Collapse
Affiliation(s)
- Gemma Macellaro
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cinthia 4, 80126, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gassara F, Brar SK, Verma M, Tyagi RD. Bisphenol A degradation in water by ligninolytic enzymes. CHEMOSPHERE 2013; 92:1356-60. [PMID: 23668961 DOI: 10.1016/j.chemosphere.2013.02.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 05/20/2023]
Abstract
Many endocrine disruptor compounds, such as bisphenol A (BPA) are used today and released into the environment at low doses but they are barely degraded in wastewater treatment plants. One of the potential alternatives to effectively degrade endocrine disruptor compounds is based on the use of the oxidative action of extracellular fungal enzymes. The aim of this work is to study the ability of free and encapsulated enzymes (manganese peroxidase, lignin peroxidase and laccase) to degrade BPA. Higher degradation of BPA (90%) by ligninolytic enzymes encapsulated on polyacrylamide hydrogel and pectin after 8h was obtained. The degradation of BPA while using the free enzyme (26%) was lower than the value obtained with encapsulated enzymes. The presence of pectin in the formulation significantly (p>0.05) enhanced the activity of enzymes. Kinetics of BPA degradation showed an increase in Vm, while Km remained constant when enzymes were encapsulated. Hence, encapsulation protected the enzymes from non-competitive inhibition.
Collapse
Affiliation(s)
- Fatma Gassara
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, Canada G1K 9A9
| | | | | | | |
Collapse
|
20
|
Rapid enzyme production and mycelial growth in solid-state fermentation using the non-airflow box. J Biosci Bioeng 2013; 116:585-90. [PMID: 23727349 DOI: 10.1016/j.jbiosc.2013.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 11/20/2022]
Abstract
Solid-state fermentation (SSF) has become an attractive alternative to submerged fermentation (SMF) for the production of enzymes, organic acids, and secondary metabolites, while there are many problems during the culture of SSF. We recently created a SSF system using a non-airflow box (NAB) in order to resolve the problems, which enabled the uniform culture in the whole substrate and high yield of many enzymes. In this paper, further characterization of SSF using the NAB was carried out to obtain other advantages. The NAB culture under the fixed environmental condition exhibited a rapid increase in enzyme production at earlier phase during the culture compared with conventional SSF. Total mycelial growth also exhibited the same trend as enzyme production. Thus, the increase in the rate of the enzyme production was thought to mainly be attributed to that of the growth. To support it, it was suggested that the NAB culture resulted in most optimal water activity for the growth just at the log phase. In addition, the NAB culture was able to achieve high reproducibility of enzyme production, derived from uniform condition of the substrate during the culture. The results indicate that the NAB culture has many benefits for SSF.
Collapse
|
21
|
Akpinar M, Urek RO. Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii. Prep Biochem Biotechnol 2013; 42:582-97. [PMID: 23030469 DOI: 10.1080/10826068.2012.673528] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ability to produce various ligninolytic enzymes such as laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) by solid-state fermentation (SSF), which was carried out using a support substrate from the fruit juice industry. The chemical content of grape waste from this industry was studied. Also, the production patterns of these extracellular enzymes were researched during the growth of the organism for a period of 20 days and the protein, reducing sugar, and nitrogen levels were monitored during the stationary cultivation. The highest Lac activity was obtained as 2247.62 ± 75 U/L on day 10 in the presence of 750 µM Mn²⁺, while the highest MnP activity was attained as 2198.44 ± 65 U/L on day 15 in the presence of 500 µM Mn²⁺. Decolorization of methyl orange and reactive red 2 azo dyes was also achieved with ligninolytic enzymes, produced in SSF of P. eryngii.
Collapse
Affiliation(s)
- Merve Akpinar
- Chemistry Department, Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, Turkey
| | | |
Collapse
|
22
|
TAI ES, HSIEH PC, SHEU SC. Purification and Characterization of Polygalacturonase from Screened Aspergillus tubingensis for Coffee Processing. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Production of recombinant proteins by filamentous fungi. Biotechnol Adv 2012; 30:1119-39. [DOI: 10.1016/j.biotechadv.2011.09.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
|
24
|
Sella SRBR, Guizelini BP, Gouvea PM, Figueiredo LFM, Ribeiro CAO, Vandenberghe LPS, Minozzo JC, Soccol CR. Relations between phenotypic changes of spores and biofilm production by Bacillus atrophaeus ATCC 9372 growing in solid-state fermentation. Arch Microbiol 2012; 194:815-25. [DOI: 10.1007/s00203-012-0815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/11/2012] [Accepted: 04/06/2012] [Indexed: 11/30/2022]
|
25
|
Gutiérrez-Correa M, Ludeña Y, Ramage G, Villena GK. Recent Advances on Filamentous Fungal Biofilms for Industrial Uses. Appl Biochem Biotechnol 2012; 167:1235-53. [DOI: 10.1007/s12010-012-9555-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/06/2012] [Indexed: 11/28/2022]
|
26
|
Expression and characterization of a novel metagenome-derived cellulase Exo2b and its application to improve cellulase activity in Trichoderma reesei. Appl Microbiol Biotechnol 2012; 96:951-62. [DOI: 10.1007/s00253-012-3873-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/25/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
|
27
|
Abstract
The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented. In this chapter, an overview of the most common microbial expression systems for the overproduction of microbial lipases is presented. Prokaryotic system as Escherichia coli and eukaryotic systems as Saccharomyces cerevisiae and Pichia pastoris are analyzed and compared in terms of productivity, operational, and downstream processing facilities. Finally, an overview of heterologous Candida rugosa and Rhizopus oryzae lipases, two of the most common lipases used in biocatalysis, is presented. In both cases, P. pastoris has been shown as the most promising host system.
Collapse
Affiliation(s)
- Francisco Valero
- Departament d'Enginyeria Química, EE. Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
28
|
BARRY D, WILLIAMS G. Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis. J Microsc 2011; 244:1-20. [DOI: 10.1111/j.1365-2818.2011.03506.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Renovato J, Gutiérrez-Sánchez G, Rodríguez-Durán LV, Bergman C, Rodríguez R, Aguilar CN. Differential Properties of Aspergillus niger Tannase Produced Under Solid-State and Submerged Fermentations. Appl Biochem Biotechnol 2011; 165:382-95. [DOI: 10.1007/s12010-011-9258-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
|
30
|
Ito K, Kawase T, Sammoto H, Gomi K, Kariyama M, Miyake T. Uniform culture in solid-state fermentation with fungi and its efficient enzyme production. J Biosci Bioeng 2011; 111:300-5. [DOI: 10.1016/j.jbiosc.2010.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022]
|
31
|
Le Ker C, Petit KE, Biard JF, Fleurence J. Search for hydrophilic marine fungal metabolites: a rational approach for their production and extraction in a bioactivity screening context. Mar Drugs 2011; 9:82-97. [PMID: 21339948 PMCID: PMC3039472 DOI: 10.3390/md9010082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 12/30/2010] [Accepted: 01/05/2011] [Indexed: 11/18/2022] Open
Abstract
In the search for bioactive natural products, our lab screens hydrophobic extracts from marine fungal strains. While hydrophilic active substances were recently identified from marine macro-organisms, there was a lack of reported metabolites in the marine fungi area. As such, we decided to develop a general procedure for screening of hydrophobic metabolites. The aim of this study was to compare different processes of fermentation and extraction, using six representative marine fungal strains, in order to define the optimized method for production. The parameters studied were (a) which polar solvent to select, (b) which fermentation method to choose between solid and liquid cultures, (c) which raw material, the mycelium or its medium, to extract and (d) which extraction process to apply. The biochemical analysis and biological evaluations of obtained extracts led to the conclusion that the culture of marine fungi by agar surface fermentation followed by the separate extraction of the mycelium and its medium by a cryo-crushing and an enzymatic digestion with agarase, respectively, was the best procedure when screening for hydrophilic bioactive metabolites. During this development, several bioactivities were detected, confirming the potential of hydrophilic crude extracts in the search for bioactive natural products.
Collapse
Affiliation(s)
- Carine Le Ker
- University of Nantes, Faculty of Pharmacy, MMS–EA 2160, F-44000 Nantes, France; E-Mails: (C.L.K.); (K.-E.P.); (J.-F.B.)
| | - Karina-Ethel Petit
- University of Nantes, Faculty of Pharmacy, MMS–EA 2160, F-44000 Nantes, France; E-Mails: (C.L.K.); (K.-E.P.); (J.-F.B.)
| | - Jean-François Biard
- University of Nantes, Faculty of Pharmacy, MMS–EA 2160, F-44000 Nantes, France; E-Mails: (C.L.K.); (K.-E.P.); (J.-F.B.)
| | - Joël Fleurence
- University of Nantes, Faculty of Pharmacy, MMS–EA 2160, F-44000 Nantes, France; E-Mails: (C.L.K.); (K.-E.P.); (J.-F.B.)
| |
Collapse
|
32
|
Gonzalez-Vogel A, Eyzaguirre J, Oleas G, Callegari E, Navarrete M. Proteomic analysis in non-denaturing condition of the secretome reveals the presence of multienzyme complexes in Penicillium purpurogenum. Appl Microbiol Biotechnol 2010; 89:145-55. [PMID: 20972675 DOI: 10.1007/s00253-010-2953-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 01/23/2023]
Abstract
Proteins secreted by filamentous fungi play key roles in different aspects of their biology. The fungus Penicillium purpurogenum, used as a model organism, is able to degrade hemicelluloses and pectins by secreting a variety of enzymes to the culture medium. This work shows that these enzymes interact with each other to form high molecular weight, catalytically active complexes. By using a proteomics approach, we were able to identify several protein complexes in the secretome of this fungus. The expression and assembly of these complexes depend on the carbon source used and display molecular masses ranging from 300 to 700 kDa. These complexes are composed of a variety of enzymes, including arabinofuranosidases, acetyl xylan esterases, feruloyl esterases, β-glucosidases and xylanases. The protein-protein interactions in these multienzyme complexes were confirmed by coimmunoprecipitation assays. One of the complexes was purified from sugar beet pulp cultures and the subunits identified by tandem mass spectrometry. A better understanding of the biological significance of these kinds of interactions will help in the comprehension of the degradation mechanisms used by fungi and may be of special interest to the biotechnology industry.
Collapse
Affiliation(s)
- Alvaro Gonzalez-Vogel
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | |
Collapse
|
33
|
Tabuchi S, Ito J, Adachi T, Ishida H, Hata Y, Okazaki F, Tanaka T, Ogino C, Kondo A. Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell surface using a chitin-binding module. Appl Microbiol Biotechnol 2010; 87:1783-9. [PMID: 20499230 PMCID: PMC2903697 DOI: 10.1007/s00253-010-2664-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/27/2010] [Accepted: 04/29/2010] [Indexed: 11/28/2022]
Abstract
A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein.
Collapse
Affiliation(s)
- Soichiro Tabuchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Biodegradation of bisphenol A and its halogenated analogues by Cunninghamella elegans ATCC36112. Biodegradation 2010; 21:989-97. [DOI: 10.1007/s10532-010-9358-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
35
|
Gassara F, Brar SK, Tyagi R, Verma M, Surampalli R. Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Imanaka H, Tanaka S, Feng B, Imamura K, Nakanishi K. Cultivation characteristics and gene expression profiles of Aspergillus oryzae by membrane-surface liquid culture, shaking-flask culture, and agar-plate culture. J Biosci Bioeng 2010; 109:267-73. [DOI: 10.1016/j.jbiosc.2009.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/10/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
37
|
Analysis of wide-domain transcriptional regulation in solid-state cultures of Aspergillus oryzae. J Ind Microbiol Biotechnol 2010; 37:455-69. [DOI: 10.1007/s10295-010-0691-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
|
38
|
Sun SY, Xu Y, Wang D. Regulation of environmental factors on the expression of a solid-state specific lipase (Lip1) with Rhizopus chinensis by western blot and indirect Elisa. BIORESOURCE TECHNOLOGY 2009; 100:3152-3156. [PMID: 19269167 DOI: 10.1016/j.biortech.2009.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 05/27/2023]
Abstract
To identify which solid-state typical environmental factors are involved in the induction of a solid-state special lipase (Lip1), western blot and Elisa based on Lip1 antibody were used. A low water activity played a significant role in the induction of Lip1, as evidenced by the increased expression level (20-46 microg/g dry cell) along with the decrease of water activity (0.927-0.969). Physical barrier against hyphal extension was found to be another required factor, since the expression of Lip1 was significantly enhanced by 3-fold using a membrane with smaller pore size (0.45 and 0.22 microm) covered on top of surface culture.
Collapse
Affiliation(s)
- Shu Yang Sun
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | | | | |
Collapse
|
39
|
Barry DJ, Chan C, Williams GA. Morphological quantification of filamentous fungal development using membrane immobilization and automatic image analysis. J Ind Microbiol Biotechnol 2009; 36:787-800. [PMID: 19277741 DOI: 10.1007/s10295-009-0552-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
Mycelial morphology is a critically important process property in industrial fermentations of filamentous micro-organisms, as particular phenotypes are associated with maximum productivity. However, the accurate quantification of complex morphologies still represents a significant challenge in elucidating this relationship. A system has been developed for high-resolution characterisation of filamentous fungal growth on a solid substrate, using membrane immobilization and fully-automatic plug-ins developed for the public domain, Java-based, image-processing software, ImageJ. The system has been used to quantify the microscopic development of Aspergillus oryzae on malt agar, by measuring spore projected area and circularity, the total length of a hyphal element, the number of tips per element, and the hyphal growth unit. Two different stages of growth are described, from the swelling of a population of conidiospores up to fully developed, branched hyphae 24 h after inoculation. Spore swelling expressed as an increase in mean equivalent spore diameter was found to be approximately linear with time. Widespread germination of spores was observed by 8 h after inoculation. From approximately 12 h, the number of tips was found to increase exponentially. The specific growth rate of a population of hyphae was calculated as approximately 0.24-0.27 h(-1). A wide variation in growth kinetics was found within the population. The robustness of the image-analysis system was verified by testing the effect of small variations in the input data.
Collapse
Affiliation(s)
- David J Barry
- School of Biological Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| | | | | |
Collapse
|
40
|
Sun SY, Xu Y. Membrane-bound 'synthetic lipase' specifically cultured under solid-state fermentation and submerged fermentation by Rhizopus chinensis: a comparative investigation. BIORESOURCE TECHNOLOGY 2009; 100:1336-1342. [PMID: 18809324 DOI: 10.1016/j.biortech.2008.07.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/24/2008] [Accepted: 07/28/2008] [Indexed: 05/26/2023]
Abstract
Rhizopus chinensis was able to produce synthetic lipases under both solid-state and submerged fermentations. These lipases were extracted from cell membrane using Triton X-100, and purified to homogeneity through ammonium sulfate precipitation, hydrophobic interaction chromatography and gel filtration chromatography. Judging from SDS-PAGE, the specific synthetic lipases associated with SSF (named as SSL) and SmF (named as SML) were different in the apparent molecular mass (62 and 40kDa). In term of hydrolytic activity, both enzymes exhibited maximum values at pH 8.0 and 40 degrees C; SSL appeared to be more pH tolerant and thermostable than SML. PMSF negligibly affected SSL but strongly reduced the activity of SML. Both enzymes showed clear preference for long-chained p-nitrophenyl esters, yielding maximum activity towards p-nitrophenyl palmitate (with SSL) and p-nitrophenyl laurate (with SML). In term of synthetic activity, lyophilized enzymes gave the highest values both at 30 degrees C, but at different pH memories (7.5 for SSL and 6.5 for SML). Most of ethyl esters synthesized by the two enzymes achieved good yields (>90%), and tetradecanoic acid and laurate acid separately served as the best acyl donors.
Collapse
Affiliation(s)
- Shu Yang Sun
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, PR China
| | | |
Collapse
|
41
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
42
|
Ano T, Jin GY, Mizumoto S, Rahman MS, Okuno K, Shoda M. Solid state fermentation of lipopeptide antibiotic iturin A by using a novel solid state fermentation reactor system. J Environ Sci (China) 2009; 21 Suppl 1:S162-S165. [PMID: 25084420 DOI: 10.1016/s1001-0742(09)60064-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new solid state fermentation reactor (SSFR) for solid substrate was used for the production of lipopeptide antibiotic iturin A using Bacillus subtilis RB14-CS. Solid state fermentation (SSF) is the technique of cultivation of microorganisms on solid and moist substrates in the absence of free water. SSF has shown much promise in the development of several bioprocesses and products because of their several advantages like absence of free water that allows simplified downstream processing and low cost. SSFR allows agitation of the SSF culture with improved temperature control and air supply. Interestingly, when okara, the widely available waste product from the tofu industries, was used as the solid substrate for the SSFR, no iturin A production was observed. However, without agitation, production of iturin A was observed in the SSFR but the production level remained low. The low production of iturin A was found to be due to the heat generation and excess temperature rise inside the reactor system during the fermentation process. Maintaining the temperature within a range of 25-30°C, production of iturin A was significantly improved in the SSFR. This was comparable to the laboratory scale production, and signifies the potential application of the SSFR for SSF.
Collapse
Affiliation(s)
- Takashi Ano
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yoko-hama 226-8503, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Deshpande N, Wilkins MR, Packer N, Nevalainen H. Protein glycosylation pathways in filamentous fungi. Glycobiology 2008; 18:626-37. [PMID: 18504293 DOI: 10.1093/glycob/cwn044] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycosylation of proteins is important for protein stability, secretion, and localization. In this study, we have investigated the glycan synthesis pathways of 12 filamentous fungi including those of medical/agricultural/industrial importance for which genomes have been recently sequenced. We have adopted a systems biology approach to combine the results from comparative genomics techniques with high confidence information on the enzymes and fungal glycan structures, reported in the literature. From this, we have developed a composite representation of the glycan synthesis pathways in filamentous fungi (both N- and O-linked). The N-glycosylation pathway in the cytoplasm and endoplasmic reticulum was found to be highly conserved evolutionarily across all the filamentous fungi considered in the study. In the final stages of N-glycan synthesis in the Golgi, filamentous fungi follow the high mannose pathway as in Saccharomyces cerevisiae, but the level of glycan mannosylation is reduced. Highly specialized N-glycan structures with galactofuranose residues, phosphodiesters, and other insufficiently trimmed structures have also been identified in the filamentous fungi. O-Linked glycosylation in filamentous fungi was seen to be highly conserved with many mannosyltransferases that are similar to those in S. cerevisiae. However, highly variable and diverse O-linked glycans also exist. We have developed a web resource for presenting the compiled data with user-friendly query options, which can be accessed at www.fungalglycans.org. This resource can assist attempts to remodel glycosylation of recombinant proteins expressed in filamentous fungal hosts.
Collapse
Affiliation(s)
- Nandan Deshpande
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | | | | | | |
Collapse
|
44
|
Some distinguishable properties between acid-stable and neutral types of alpha-amylases from acid-producing koji. J Biosci Bioeng 2008; 104:353-62. [PMID: 18086434 DOI: 10.1263/jbb.104.353] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/31/2007] [Indexed: 11/17/2022]
Abstract
The highly humid climate of Japan facilitates the growth of various molds. Among these molds, Aspergillus oryzae is the most important and popular in Japan, and has been used as yellow-koji in producing many traditional fermented beverages and foods, such as Japanese sake, and soy sauce. Taka-amylase A (TAA), a major enzyme produced by the mold, is well known worldwide to be a leading enzyme for industrial utilization and academic study, since many extensive studies have been carried out with TAA. In southern Kyushu, the other koji's of citric acid-producing molds have often been used, such as in the production of a traditional distilled liquor of shochu. The koji molds black-koji and white-koji produce two types of alpha-amylase, namely, acid-stable (AA) and common neutral (NA). The latter enzyme is enzymatically and genetically similar to TAA. In this review, we investigate AA from three molds, Aspergillus niger, A. kawachii and A. awamori, and the yeast Cryptococcus sp. regarding the distinguishable properties between AA and NA. (i) The N-terminus amino acid sequences of AA determined by molecular cloning started with the sequence of L-S-A-, whereas those of NA started with A-T-P-. (ii) Most of the full sequences of AA were composed of, besides a core catalytic domain, an extra domain of a hinge region and a carbohydrate binding domain, which could be responsible for raw-starch-digestibility. The AA from A. niger has no exceptionally extra domain, similarly to NA. (iii) Simple methods for distinguishing AA from NA using CNP-alpha-G3 and G5 as substrates were developed by our group. (iv) The number of subsite in AA on the basis of its cleavage pattern of maltooligosaccharides was estimated to be five, which differs from that of TAA, 7-9. AA has many advantages in industrial applications, such as its acid-stability, thermostability, and raw-starch digesting properties.
Collapse
|
45
|
Abstract
The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. This strategy allowed the isolation of a strain with a functional alpha-1,2-mannosidase producing increased amounts of N-glycans of the Man5GlcNAc2 type. This strain was further engineered by the introduction of a functional GlcNAc transferase I construct yielding GlcNAcMan5GlcNac2 N-glycans. Additionally, we deleted algC genes coding for an enzyme involved in an early step of the fungal glycosylation pathway yielding Man3GlcNAc2 N-glycans. This modification of fungal glycosylation is a step toward the ability to produce humanized complex N-glycans on therapeutic proteins in filamentous fungi.
Collapse
|
46
|
Studies on Productivity and Characterization of Polygalacturonase from Aspergillus giganteus Submerged Culture Using Citrus Pectin and Orange Waste. Appl Biochem Biotechnol 2007; 144:191-200. [DOI: 10.1007/s12010-007-8059-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Daroit DJ, Silveira ST, Hertz PF, Brandelli A. Production of extracellular β-glucosidase by Monascus purpureus on different growth substrates. Process Biochem 2007. [DOI: 10.1016/j.procbio.2007.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Neveu B, Belzile F, Bélanger RR. Cloning of the glyceraldehyde-3-phosphate dehydrogenase gene from Pseudozyma flocculosa and functionality of its promoter in two Pseudozyma species. Antonie van Leeuwenhoek 2007; 92:245-55. [PMID: 17387629 DOI: 10.1007/s10482-007-9160-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Pseudozyma flocculosa is a yeast-like epiphyte recently classified as a basidiomycete related to the Ustilaginales. In this study, we report the cloning of its gene coding for a putative glyceraldehyde-3-phosphate dehydrogenase (GPD). This gene was selected on the premise that its transcripts are abundant during the growth phase of P. flocculosa. The complete sequence of this gene was found to contain two introns in the coding region and one in the 3'-untranslated region. This gene was present in a single copy in the genome of P. flocculosa. By comparing its deduced amino acid sequence with various sequences from basidiomycetous and ascomycetous fungi, we observed a stronger homology with the former group as predicted by the new classification of P. flocculosa. The promoter region lacked a typical TATA or CAAT box but contained a CT-rich region including the transcription start site. Although the GPD promoter showed a stronger affinity within P. flocculosa, it remained active across species as shown by expressing the green fluorescent protein in Pseudozyma antarctica. The cloning of this gene and its promoter brings new and versatile options to the limited genetic tools currently available for the study of the recently defined Pseudozyma genus.
Collapse
Affiliation(s)
- Bertrand Neveu
- Département de Phytologie, Centre de Recherche en Horticulture, Université Laval, Pavillon Envirotron, Quebec, QC, Canada, G1K 7P4
| | | | | |
Collapse
|
49
|
Ahamed A, Singh A, Ward OP. Chymostatin can combine with pepstatin to eliminate extracellular protease activity in cultures of Aspergillus niger NRRL-3. J Ind Microbiol Biotechnol 2006; 34:165-9. [PMID: 17177024 DOI: 10.1007/s10295-006-0183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 10/18/2006] [Indexed: 11/27/2022]
Abstract
Aspergillus strains are being considered as potential hosts for recombinant heterologous protein production because of their excellent extracellular enzyme production characteristics. However, Aspergillus proteases are problematic in that they modify and degrade the heterologous proteins in the extracellular medium. In previous studies we observed that media adjustments and maintenance of a filamentous morphology greatly reduced protease activity and that a low concentration of the aspartic protease inhibitor pepstatin inhibited the latter protease activity to the extent of approximately 90%. In this paper we report that when the serine protease inhibitor chymostatin is used in combination with pepstatin 99-100% of total protease activity in Aspergillus cultures is inhibited. In protease assays a concentration of 30 microM chymostatin combined with 0.075 microM pepstatin was required for maximum inhibition. Inhibitor concentrations of chymostatin and pepstatin of 120 and 0.3 microM, respectively, when added to Aspergillus cultures, has no significant effect on biomass production, glucose utilization or culture pH pattern. The potential of using these protease inhibitors in cultures of recombinant Aspergillus strains producing heterologous proteins will now be investigated to determine if the previously observed recombinant protein denaturing effects of Aspergillus proteases can be negated.
Collapse
Affiliation(s)
- Aftab Ahamed
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | |
Collapse
|
50
|
Zhong YH, Wang XL, Wang TH, Jiang Q. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl Microbiol Biotechnol 2006; 73:1348-54. [PMID: 17021875 DOI: 10.1007/s00253-006-0603-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/31/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
Filamentous fungus Trichoderma reesei QM9414 was successfully transformed with Agrobacterium tumefaciens AGL-1 for random integration of transforming DNA (T-DNA). Co-cultivation of T. reesei conidia or protoplasts with A. tumefaciens in the presence of acetosyringone resulted in the formation of hygromycin B-resistant fungal colonies with high transformation frequency. Nine randomly selected resistant clones were proved to be stable through mitotic cell division. The integration of the hph gene into T. reesei genome was determined by PCR and dot blot analysis. Transgenic T. reesei strains were analyzed using TAIL-PCR for their T-DNA contents. The results showed that T-DNA inserts occurred evidently by fusing DNA at T-DNA borders via random recombination, which suggests that Agrobacterium-mediated transformation is a potentially powerful tool towards tagged mutagenesis and gene transfer technology for T. reesei.
Collapse
Affiliation(s)
- Yao Hua Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | | | | | | |
Collapse
|