1
|
Ong HX, Traini D, Young PM. Liposomes for Inhalation. J Aerosol Med Pulm Drug Deliv 2024; 37:100-110. [PMID: 38640446 DOI: 10.1089/jamp.2024.29112.hxo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
Inhalation of liposomes formulated with phospholipids similar to endogenous lung surfactants and lipids offers biocompatibility and versatility within the pulmonary medicine field to treat a range of diseases such as lung cancer, cystic fibrosis and lung infections. Manipulation of the physicochemical properties of liposomes enables innovative design of the carrier to meet specific delivery, release and targeting requirements. This delivery system offers several benefits: improved pharmacokinetics with reduced toxicity, enhanced therapeutic efficacy, increased delivery of poorly soluble drugs, taste masking, biopharmaceutics degradation protection and targeted cellular therapy. This section provides an overview of liposomal formulation and delivery, together with their applications for different disease states in the lung.
Collapse
Affiliation(s)
- Hui Xin Ong
- Woolcock Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Daniela Traini
- Woolcock Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Paul M Young
- CEO, Ab Inito Pharma, Macquarie Park, NSW, Australia
| |
Collapse
|
2
|
Advancing Medicine with Lipid-Based Nanosystems-The Successful Case of Liposomes. Biomedicines 2023; 11:biomedicines11020435. [PMID: 36830971 PMCID: PMC9953160 DOI: 10.3390/biomedicines11020435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nanomedicine, a promising area of medicine, employs nanosized tools for the diagnosis, prevention, and treatment of disease. Particularly, liposomes, lipid-based nanovesicles, are currently one of the most successful nanosystems, with extensive applications in the clinic and an increasing pipeline of products in preclinical and clinical development. These versatile nanotechnological tools are biocompatible and biodegradable, and can load a variety of molecules and, ultimately, improve the therapeutic performance of drugs while minimizing undesired side effects. In this review, we provide a brief description on liposomes' composition and classification and mainly focus on their clinical use in various areas, including disease management (e.g., cancer, fungal and bacterial infections, ocular pathologies), analgesia, vaccination, diagnostics, and immunosuppression in organ transplantation. Herein are described examples of current liposomal products already in the clinic, as well as the most recent clinical trials involving liposomes as effective and safe nanomedicine tools.
Collapse
|
3
|
Patil P, Nene S, Shah S, Singh SB, Srivastava S. Exploration of novel drug delivery systems in topical management of osteoarthritis. Drug Deliv Transl Res 2023; 13:531-546. [PMID: 36031671 DOI: 10.1007/s13346-022-01229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/30/2022]
Abstract
Osteoarthritis is one of the foremost disabling disorders in the world. There is no definitive treatment to prevent the progression of osteoarthritis. Hence, palliative treatment aims at minimizing pain, disability and improving function, performance and quality of life. Oral administration of nonsteroidal anti-inflammatory drug is associated with number of adverse effects and reduced therapeutic efficacy. Intra-articular injection has been the preferred route of drug administration. However, the clearance of drug from the arthritic site, risk of infections, cost and the pain associated with frequent injections make this route highly non-compliant to patients. Since osteoarthritis is a chronic condition which requires treatment for prolonged duration, there is an urgent need for another administration route which circumvents the hindrances linked with intra-articular route. Transdermal route across the skin locally at the osteoarthritis site could help in surpassing the disadvantages associated with intra-articular route. However, traversing skin barrier and reaching the chondrocytes with sufficient amount of the drug is extremely difficult. Nanocarrier-based approaches could hold an answer to the said shortcomings owing to their reduced size, targeting tunability and site specificity. In this article, we discuss the pathophysiology of osteoarthritis, molecular targets, and utilization of nanocarrier-based approaches to strategize the treatment of osteoarthritis in a new direction, i.e. topical delivery of nanocarriers in osteoarthritis.
Collapse
Affiliation(s)
- Pratiksha Patil
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Shashi Bala Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
4
|
Sheybanifard M, Guerzoni LPB, Omidinia-Anarkoli A, De Laporte L, Buyel J, Besseling R, Damen M, Gerich A, Lammers T, Metselaar JM. Liposome manufacturing under continuous flow conditions: towards a fully integrated set-up with in-line control of critical quality attributes. LAB ON A CHIP 2022; 23:182-194. [PMID: 36448477 DOI: 10.1039/d2lc00463a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Continuous flow manufacturing (CFM) has shown remarkable advantages in the industrial-scale production of drug-loaded nanomedicines, including mRNA-based COVID-19 vaccines. Thus far, CFM research in nanomedicine has mainly focused on the initial particle formation step, while post-formation production steps are hardly ever integrated. The opportunity to implement in-line quality control of critical quality attributes merits closer investigation. Here, we designed and tested a CFM setup for the manufacturing of liposomal nanomedicines that can potentially encompass all manufacturing steps in an end-to-end system. Our main aim was to elucidate the key composition and process parameters that affect the physicochemical characteristics of the liposomes. Total flow rate, lipid concentration and residence time of the liposomes in a high ethanol environment (i.e., above 20% v/v) emerged as critical parameters to tailor liposome size between 80 and 150 nm. After liposome formation, the pressure and the surface area of the filter in the ultrafiltration unit were critical parameters in the process of clearing the dispersion from residual ethanol. As a final step, we integrated in-line measurement of liposome size and residual ethanol content. Such in-line measurements allow for real-time monitoring and in-process adjustment of key composition and process parameters.
Collapse
Affiliation(s)
- Maryam Sheybanifard
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Luis P B Guerzoni
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
- Institute of Applied Medical Engineering, RWTH University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Laura De Laporte
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
- Institute of Applied Medical Engineering, RWTH University, Pauwelsstraße 20, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany
| | - Johannes Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Rut Besseling
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Michiel Damen
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Ad Gerich
- InProcess-LSP, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Tomnikova A, Orgonikova A, Krizek T. Liposomes: preparation and characterization with a special focus on the application of capillary electrophoresis. MONATSHEFTE FUR CHEMIE 2022; 153:687-695. [PMID: 35966959 PMCID: PMC9360637 DOI: 10.1007/s00706-022-02966-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Liposomes are nowadays a matter of tremendous interest. Due to their amphiphilic character, various substances with different properties can be incorporated into them and they are especially suitable as a model system for controlled transport of bioactive substances and drugs to the final destination in the body; for example, COVID-19 vaccines use liposomes as a carrier of mRNA. Liposomes mimicking composition of various biological membranes can be prepared with a proper choice of the lipids used, which proved to be important tool in the early drug development. This review deals with commonly used methods for the preparation and characterization of liposomes which is essential for their later use. The alternative capillary electrophoresis methods for physico-chemical characterization such as determination of membrane permeability of liposome, its size and charge, and encapsulation efficiency are included. Two different layouts using liposomes to yield more efficient separation of various analytes are also presented, capillary electrochromatography, and liposomal electrokinetic chromatography.
Collapse
Affiliation(s)
- Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Andrea Orgonikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
7
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
8
|
Bhattacharya S, Saindane D, Prajapati BG. Liposomal Drug Delivery And Its Potential Impact On Cancer Research. Anticancer Agents Med Chem 2022; 22:2671-2683. [PMID: 35440318 DOI: 10.2174/1871520622666220418141640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Liposomes are one of the most versatile drug carriers due to their functional properties, such as higher biocompatibility, the ability to encapsulate hydrophilic and hydrophobic products, and higher biodegradability. Liposomes are a better and more significant nanocarrier for cancer therapy. The key to developing a better cancer-targeted nanocarrier is the development of targeted liposomes using various approaches. Several traditional and novel liposome preparation methods are briefly discussed in this mini-review. The current state of liposome targeting, active and passive liposome targeting in cancer therapy, ligand directed targeting (antibody, aptamer, and protein/peptide-mediated targeting), and other miscellaneous approaches such as stimuli-responsive liposome-based targeting, autophagy inhibition mediated targeting, and curcumin loaded liposomal targeting are all discussed within. All of this gathered and compiled information will shed new light on liposome targeting strategies in cancer treatment and will pique the interest of aspiring researchers and academicians.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405
| | - Dnyanesh Saindane
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405
| | | |
Collapse
|
9
|
Formulation and Characterization of Stimuli-Responsive Lecithin-Based Liposome Complexes with Poly(acrylic acid)/Poly(N,N-dimethylaminoethyl methacrylate) and Pluronic® Copolymers for Controlled Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040735. [PMID: 35456569 PMCID: PMC9029292 DOI: 10.3390/pharmaceutics14040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Polymer–liposome complexes (PLCs) can be efficiently applied for the treatment and/or diagnosis of several types of diseases, such as cancerous, dermatological, neurological, ophthalmic and orthopedic. In this work, temperature-/pH-sensitive PLC-based systems for controlled release were developed and characterized. The selected hydrophilic polymeric setup consists of copolymers of Pluronic®-poly(acrylic acid) (PLU-PAA) and Pluronic®-poly(N,N-dimethylaminoethyl methacrylate) (PLU-PD) synthesized by atom transfer radical polymerization (ATRP). The copolymers were incorporated into liposomes formulated from soybean lecithin, with different copolymer/phospholipid ratios (2.5, 5 and 10%). PLCs were characterized by evaluating their particle size, polydispersity, surface charge, capacity of release and encapsulation efficiency. Their cytotoxic potential was assessed by determining the viability of human epithelial cells exposed to them. The results showed that the incorporation of the synthesized copolymers positively contributed to the stabilization of the liposomes. The main accomplishments of this work were the innovative synthesis of PLU-PD and PLU-PAA by ATRP, and the liposome stabilization by their incorporation. The formulated PLCs exhibited relevant characteristics, notably stimuli-responsive attributes upon slight changes in pH and/or temperature, with proven absence of cellular toxicity, which could be of interest for the treatment or diagnosis of all diseases that cause some particular pH/temperature change in the target area.
Collapse
|
10
|
Liposomal-Based Formulations: A Path from Basic Research to Temozolomide Delivery Inside Glioblastoma Tissue. Pharmaceutics 2022; 14:pharmaceutics14020308. [PMID: 35214041 PMCID: PMC8875825 DOI: 10.3390/pharmaceutics14020308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment. Yet, the therapeutic efficacy of TMZ suffers from its inability to cross the BBB and very short half-life (~2 h), which requires high doses of this drug for a proper therapeutic effect. Encapsulation in a (nano)carrier is a promising strategy to effectively improve the therapeutic effect of TMZ against GBM. Although research on liposomes as carriers for therapeutic agents is still at an early stage, their integration in GBM treatment has a great potential to advance understanding and treating this disease. In this review, we provide a critical discussion on the preparation methods and physico-chemical properties of liposomes, with a particular emphasis on TMZ-liposomal formulations targeting GBM developed within the last decade. Furthermore, an overview on liposome-based formulations applied to translational oncology and clinical trials formulations in GBM treatment is provided. We emphasize that despite many years of intense research, more careful investigations are still needed to solve the main issues related to the manufacture of reproducible liposomal TMZ formulations for guaranteed translation to the market.
Collapse
|
11
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Németh Z, Pallagi E, Dobó DG, Csóka I. A Proposed Methodology for a Risk Assessment-Based Liposome Development Process. Pharmaceutics 2020; 12:E1164. [PMID: 33260443 PMCID: PMC7760874 DOI: 10.3390/pharmaceutics12121164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
The requirements of a liposomal formulation vary depending on the pharmaceutical indication, the target patient population, and the corresponding route of administration. Different preparation methods require various material attributes (MAs) (properties and characteristics of the components) and process parameters (PPs) (settings of the preparation method). The identification of the quality target product profile for a liposome-based formulation, the critical quality attributes of the liposomes, and the possible MAs and PPs that may influence the key characteristics of the vesicles facilitates pharmaceutical research. Researchers can systematise their knowledge by using the quality by design (QbD) approach. The potential factors that influence the quality of the product can be collected and studied through a risk assessment process. In this paper, the requirements of a liposome formulation prepared via the thin-film hydration preparation technique are presented; furthermore, the possible factors that have an impact on the quality of the final product and have to be considered and specified during the development of a liposomal formulation are herein identified and collected. The understanding and the application of these elements of QbD in the pharmaceutical developments help to influence the quality, the achievements, and the success of the formulated product.
Collapse
Affiliation(s)
| | | | | | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (Z.N.); (E.P.); or (D.G.D.)
| |
Collapse
|
13
|
Subramani T, Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3545-3555. [PMID: 32903987 PMCID: PMC7447741 DOI: 10.1007/s13197-020-04360-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Encapsulation in packaging of food ingredients is of great interest at micro and nano levels. It is a distinct process leading to the entrapping of one substance within another material. Lipid oriented encapsulation methods are currently considered as a superior choice for encapsulation of sensitive ingredients, focusing on foods and dietary supplements of hydrophobic and hydrophilic molecules along with bioactive compounds, food ingredients supplementary systems for therapeutic purpose. Liposome and nanoliposome techniques have been widely used in food industry in nutrient enrichment and supplements. It enhances the sensory attributes and shelf life of the food product and serves as an alternative to micro encapsulation. These lipid and water oriented systems have distinguished advantages and provide higher surface area in food processing, which increases product solubility, bioavailability and permits accurate targeting of the encapsulated material to a greater extent in food and nutraceutical production. This review article focuses on nanoliposome, its preparation techniques, advantages and application of nanoliposome in food and nutraceutical process.
Collapse
Affiliation(s)
- Thirukkumar Subramani
- Department of Food Science and Nutrition, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625104 India
| | - Hemalatha Ganapathyswamy
- Department of Food Science and Nutrition, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625104 India
| |
Collapse
|
14
|
Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation. Processes (Basel) 2020. [DOI: 10.3390/pr8070788] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanoparticle-based therapeutics have been used in pulmonary formulations to enhance delivery of poorly water-soluble drugs, protect drugs against degradation and achieve modified release and drug targeting. This review focuses on the use of spray drying as a solidification technique to produce microparticles containing nanoparticles (i.e., nanoparticle (NP) agglomerates) with suitable properties as dry powders for inhalation. The review covers the general aspects of pulmonary drug delivery with emphasis on nanoparticle-based dry powders for inhalation and the principles of spray drying as a method for the conversion of nanosuspensions to microparticles. The production and therapeutic applications of the following types of NP agglomerates are presented: nanoporous microparticles, nanocrystalline agglomerates, lipid-based and polymeric formulations. The use of alternative spray-drying techniques, namely nano spray drying, and supercritical CO2-assisted spray drying is also discussed as a way to produce inhalable NP agglomerates.
Collapse
|
15
|
|
16
|
Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 2020; 10:163. [PMID: 32206497 PMCID: PMC7062946 DOI: 10.1007/s13205-020-2144-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/16/2020] [Indexed: 01/02/2023] Open
Abstract
Liposomes are very useful biocompatible tools used in diverse scientific disciplines, employed for the vehiculation and delivery of lipophilic, ampiphilic or hydrophilic compounds. Liposomes have gained the importance as drug carriers, as the drugs alone have limited targets, higher toxicity and develop resistance when used in higher doses. Conventional liposomes suffer from several drawbacks like encapsulation inefficiencies and partially controlled particle size. The surface chemistry of liposome technology started from simple conventional vesicles to second generation liposomes by modulating their lipid composition and surface with different ligands. Introduction of polyethylene glycol to lipid anchor was the first innovative strategy which increased circulation time, delayed clearance and opsonin resistance. PEGylated liposomes have been found to possess higher drug loading capacity up to 90% or more and some drugs like CPX-1 encapsuled in such liposomes have increased the disease control up to 73% patients suffering from colorectal cancer. The surface of liposomes have been further liganded with small molecules, vitamins, carbohydrates, peptides, proteins, antibodies, aptamers and enzymes. These advanced liposomes exhibit greater solubility, higher stability, long-circulating time and specific drug targeting properties. The immense utility and demand of surface modified liposomes in different areas have led their way to the modern market. In addition to this, the multi-drug carrier approach of targeted liposomes is an innovative method to overcome drug resistance while treating ceratin tumors. Presently, several second-generation liposomal formulations of different anticancer drugs are at various stages of clinical trials. This review article summarizes briefly the preparation of liposomes, strategies of disease targeting and exclusively the surface modifications with different entities and their clinical applications especially as drug delivery system.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Khaled S. Allemailem
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Ahmed Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| |
Collapse
|
17
|
Darley E, Singh JKD, Surace NA, Wickham SFJ, Baker MAB. The Fusion of Lipid and DNA Nanotechnology. Genes (Basel) 2019; 10:E1001. [PMID: 31816934 PMCID: PMC6947036 DOI: 10.3390/genes10121001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes-aqueous droplets enclosed by a bilayer membrane-can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.
Collapse
Affiliation(s)
- Es Darley
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
| | - Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Camperdown 2006, Australia
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
| | - Natalie A. Surace
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
| | - Shelley F. J. Wickham
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
- School of Physics, University of Sydney, Camperdown 2006, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
18
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
19
|
Zhang X, Lei B, Wang Y, Xu S, Liu H. Dual-Sensitive On-Off Switch in Liposome Bilayer for Controllable Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5213-5220. [PMID: 30883134 DOI: 10.1021/acs.langmuir.8b04094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To improve the controllability of drug release from liposome, a series of pH- and photosensitive block copolymers C7H15-AZO- b-PDPAn- b-mPEG were designed and served as an on-off switch in the liposome bilayer. The functional properties of liposomes were studied by dynamic light scattering, fluorophotometry, UV-vis spectroscopy, and fluorescence spectrophotometry. The liposomes with or without copolymer were relatively uniform in size. Their membrane stability was improved obviously after inserting copolymer under pH 7.4, but it decreased in an acidic environment and caused a large amount of drug release. Meanwhile, UV irradiation could also result in more drug release because of the photoisomerization of the azobenzene (AZO) group. Furthermore, intermittent drug-release experiments showed that the PDPA blocks could reversibly get in and out of the liposome bilayer and ultimately realized the complete drug release. All results suggested that the designed copolymers could be inserted into liposome bilayer through self-assembly and could act as a switch for controllable drug release.
Collapse
Affiliation(s)
- Xueru Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , PR China
| | - Bin Lei
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , PR China
| | - Yizhou Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , PR China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , PR China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , PR China
| |
Collapse
|
20
|
Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol 2018; 9:2224. [PMID: 30337923 PMCID: PMC6180194 DOI: 10.3389/fimmu.2018.02224] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Collapse
Affiliation(s)
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
21
|
Nothnagel L, Wacker MG. How to measure release from nanosized carriers? Eur J Pharm Sci 2018; 120:199-211. [PMID: 29751101 DOI: 10.1016/j.ejps.2018.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022]
Abstract
Novel drug delivery systems exhibit great potential in the formulation of poorly soluble compounds but have also been applied to reduce side effects of highly active drug molecules. Despite all efforts, there are only few technologies available to investigate the in vitro release of next-generation nanotherapeutics. In the following, different approaches for testing the drug release from nanoparticles in the fields of formulation development and quality control will be discussed. A variety of methods is available, starting from dialysis-based equipment, in situ measurements, flow-through devices and sample and separate setups. If possible, these methods should enable a more rapid formulation development and quality control of nanosized carriers as well as improve the prediction of in vivo performance and clinical outcomes.
Collapse
Affiliation(s)
- Lisa Nothnagel
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), 60438 Frankfurt am Main, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Technology, Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Simões M, Hugo A, Alves P, Pérez P, Gómez-Zavaglia A, Simões P. Long term stability and interaction with epithelial cells of freeze-dried pH-responsive liposomes functionalized with cholesterol-poly(acrylic acid). Colloids Surf B Biointerfaces 2018; 164:50-57. [DOI: 10.1016/j.colsurfb.2018.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 11/25/2022]
|
23
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
24
|
Faber K, Zorzi GK, Brazil NT, Rott MB, Teixeira HF. siRNA-loaded liposomes: Inhibition of encystment of Acanthamoeba
and toxicity on the eye surface. Chem Biol Drug Des 2017; 90:406-416. [DOI: 10.1111/cbdd.12958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Kathrin Faber
- Graduate Program in Pharmaceutical Sciences; School of Pharmacy; Federal University of Rio Grande do Sul; Porto Alegre Brazil
- Institute of Pharmacology and Toxicology; Universitätsmedizin Berlin; Berlin Germany
| | - Giovanni K. Zorzi
- Graduate Program in Pharmaceutical Sciences; School of Pharmacy; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Nathalya T. Brazil
- Graduate Program in Pharmaceutical Sciences; School of Pharmacy; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Marilise B. Rott
- Graduate Program of Agricultural and Environmental Microbiology; Institute of Basic Health Sciences; Porto Alegre Brazil
| | - Helder F. Teixeira
- Graduate Program in Pharmaceutical Sciences; School of Pharmacy; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
25
|
Simões MG, Alves P, Carvalheiro M, Simões PN. Stability effect of cholesterol-poly(acrylic acid) in a stimuli-responsive polymer-liposome complex obtained from soybean lecithin for controlled drug delivery. Colloids Surf B Biointerfaces 2017; 152:103-113. [PMID: 28088691 DOI: 10.1016/j.colsurfb.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 01/02/2017] [Indexed: 01/16/2023]
Abstract
The development of polymer-liposome complexes (PLCs), in particular for biomedical applications, has grown significantly in the last decades. The importance of these studies comes from the emerging need in finding intelligent controlled release systems, more predictable, effective and selective, for applications in several areas, such as treatment and/or diagnosis of cancer, neurological, dermatological, ophthalmic and orthopedic diseases, gene therapy, cosmetic treatments, and food engineering. This work reports the development and characterization of a pH sensitive system for controlled release based on PLCs. The selected hydrophilic polymer was poly(acrylic acid) (PAA) synthesized by atom transfer radical polymerization (ATRP) with a cholesterol (CHO) end-group to improve the anchoring of the polymer into the lipid bilayer. The polymer was incorporated into liposomes formulated from soybean lecithin and stearylamine, with different stearylamine/phospholipid and polymer/phospholipid ratios (5, 10 and 20%). The developed PLCs were characterized in terms of particle size, polydispersity, zeta potential, release profiles, and encapsulation efficiency. Cell viability studies were performed to assess the cytotoxic potential of PLCs. The results showed that the liposomal formulation with 5% of stearylamine and 10% of polymer positively contribute to the stabilization of the complexes. Afterwards, the carboxylic acid groups of the polymer present at the surface of the liposomes were crosslinked and the same parameters analyzed. The crosslinked complexes showed to be more stable at physiologic conditions. In addition, the release profiles at different pHs (2-12) revealed that the obtained complexes released all their content at acidic conditions. In summary, the main accomplishments of this work are: (i) innovative synthesis of cholesterol-poly(acrylic acid) (CHO-PAA) by ATRP; (ii) stabilization of the liposomal formulation by incorporation of stearylamine and CHO-PAA; (iii) new approach for CHO-PAA crosslinking, resulting in more stable PLCs at physiological conditions; (iv) destabilization of PLCs upon slight changes of pH, showing their pH sensitivity; and (v) the PLCs do not exhibit cellular toxicity.
Collapse
Affiliation(s)
- M G Simões
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Portugal
| | - P Alves
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Portugal.
| | - Manuela Carvalheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Portugal
| | - P N Simões
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Portugal
| |
Collapse
|
26
|
Parenteral Routes for Drug Delivery and Targeting. Drug Deliv 2016. [DOI: 10.1201/9781315382579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Current Trends in Development of Liposomes for Targeting Bacterial Biofilms. Pharmaceutics 2016; 8:pharmaceutics8020018. [PMID: 27231933 PMCID: PMC4932481 DOI: 10.3390/pharmaceutics8020018] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
Biofilm targeting represents a great challenge for effective antimicrobial therapy. Increased biofilm resistance, even with the elevated concentrations of very potent antimicrobial agents, often leads to failed therapeutic outcome. Application of biocompatible nanomicrobials, particularly liposomally-associated nanomicrobials, presents a promising approach for improved drug delivery to bacterial cells and biofilms. Versatile manipulations of liposomal physicochemical properties, such as the bilayer composition, membrane fluidity, size, surface charge and coating, enable development of liposomes with desired pharmacokinetic and pharmacodynamic profiles. This review attempts to provide an unbiased overview of investigations of liposomes destined to treat bacterial biofilms. Different strategies including the recent advancements in liposomal design aiming at eradication of existing biofilms and prevention of biofilm formation, as well as respective limitations, are discussed in more details.
Collapse
|
28
|
Sousa A, Araújo P, Azevedo J, Cruz L, Fernandes I, Mateus N, de Freitas V. Antioxidant and antiproliferative properties of 3-deoxyanthocyanidins. Food Chem 2016; 192:142-8. [DOI: 10.1016/j.foodchem.2015.06.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023]
|
29
|
Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016. [DOI: 10.1039/c6ra15764e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biodegradable polymeric nanostructures (BPNs) have shown great promise in different therapeutic applications such as diagnosis, imaging, drug delivery, cosmetics, organ implants, and tissue engineering.
Collapse
Affiliation(s)
- S. K. Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| | - Sudheesh K. Shukla
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - Penny P. Govender
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - N. G. Giri
- Department of Chemistry
- Shivaji College
- University of Delhi
- New Delhi-110027
- India
| |
Collapse
|
30
|
Campardelli R, Espirito Santo I, Albuquerque EC, de Melo SV, Della Porta G, Reverchon E. Efficient encapsulation of proteins in submicro liposomes using a supercritical fluid assisted continuous process. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Simão AMS, Bolean M, Cury TAC, Stabeli RG, Itri R, Ciancaglini P. Liposomal systems as carriers for bioactive compounds. Biophys Rev 2015; 7:391-397. [PMID: 28510100 DOI: 10.1007/s12551-015-0180-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Abstract
Since the revolutionary discovery that phospholipids can form closed bilayered structures in aqueous systems, the study of liposomes has become a very interesting area of research. The versatility and amazing biocompatibility of liposomes has resulted in their wide-spread use in many scientific fields, and many of their applications, especially in medicine, have yielded breakthroughs in recent decades. Specifically, their easy preparation and various structural aspects have given rise to broadly usable methodologies to internalize different compounds, with either lipophilic or hydrophilic properties. The study of compounds with potential biotechnological application(s) is generally related to evaluation and risk assessment of the possible cytotoxic or therapeutic effects of the compound under study. In most cases, undesirable side-effects are associated with an interaction of the liposome with the cell membrane and/or its absorption and subsequent interaction with a cellular biomolecule. Liposomal carrier systems have an unprecedented potential for delivering bioactive substances to specific molecular targets due to their biocompatibility, biodegradability and low toxicity. Liposomes are therefore considered to be an invaluable asset in applied biotechnology studies due to their potential for interaction with both hydrophilic and lipophilic compounds.
Collapse
Affiliation(s)
- Ana Maria Sper Simão
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Thuanny Alexandra Campos Cury
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Centro de Nanotecnologia Aplicada a Saúde-Nanosus, Presidência da Fiocruz, Rua Prof. Algacyr Munhoz Mader, 3775, 81350-010, Curitiba, PR, Brazil.,Brasil e Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Rosangela Itri
- Depto. Física Aplicada, Instituto de Física, IF-USP, São Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
32
|
Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces 2015; 136:514-26. [PMID: 26454541 DOI: 10.1016/j.colsurfb.2015.09.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023]
Abstract
Liposomes have gained extensive attention as carriers for a wide range of drugs due to being both nontoxic and biodegradable as they are composed of substances naturally occurring in biological membranes. Active targeting for cells has explored specific modification of the liposome surface by functionalizing it with specific targeting ligands in order to increase accumulation and intracellular uptake into target cells. None of the Food and Drug Administration-licensed liposomes or lipid nanoparticles are coated with ligands or target moieties to delivery for homing drugs to target tissues, cells or subcellular organelles. Targeted therapies (with or without controlled drug release) are an emerging and relevant research area. Despite of the numerous liposomes reviews published in the last decades, this area is in constant development. Updates urgently needed to integrate new advances in targeted liposomes research. This review highlights the evolution of liposomes from passive to active targeting and challenges in the development of targeted liposomes for specific therapies.
Collapse
Affiliation(s)
- Eugénia Nogueira
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana Preto
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB-Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
33
|
Naqvi AZ, Noori S, Kabir-ud-Din. Effect of surfactant structure on the mixed micelle formation of cationic gemini–zwitterionic phospholipid systems. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Trif M, Craciunescu O. Liposome as efficient system for intracellular delivery of bioactive molecules. NANOTECHNOLOGY AND FUNCTIONAL FOODS 2015:191-213. [DOI: 10.1002/9781118462157.ch12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Tao L, Faig A, Uhrich KE. Liposomal stabilization using a sugar-based, PEGylated amphiphilic macromolecule. J Colloid Interface Sci 2014; 431:112-6. [PMID: 24996019 DOI: 10.1016/j.jcis.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/27/2022]
Abstract
Liposomes are an important class of colloidal drug delivery systems, yet the clinical applications of conventional liposomes can be hampered by poor colloidal and biological stabilities. In this work, a sugar-based, PEGylated amphiphilic macromolecule (AM) was evaluated for its ability to stabilize dipalmitoyl phosphatidylcholine (DPPC)-based liposomes. Compared to unmodified liposomes, AM-stabilized liposomes exhibited enhanced colloidal stability, maintaining relatively constant particle sizes for 5 weeks without aggregation. AM-stabilized liposomes also showed significantly decreased membrane permeability, even in the presence of serum. Finally, AM-stabilized liposomes displayed improved biological stability, significantly inhibiting phagocytosis by macrophages. Overall, the effectiveness of AM to stabilize liposomes was comparable to a conventional stabilizing agent, PEG-modified phosphatidylethanolamine. Based upon these results, AM is a promising stabilizing agent for colloidal drug delivery applications and currently being optimized.
Collapse
Affiliation(s)
- Li Tao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Allison Faig
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
36
|
Ait-Oudhia S, Mager DE, Straubinger RM. Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics 2014; 6:137-74. [PMID: 24647104 PMCID: PMC3978529 DOI: 10.3390/pharmaceutics6010137] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 11/16/2022] Open
Abstract
Liposomal formulations of anticancer agents have been developed to prolong drug circulating lifetime, enhance anti-tumor efficacy by increasing tumor drug deposition, and reduce drug toxicity by avoiding critical normal tissues. Despite the clinical approval of numerous liposome-based chemotherapeutics, challenges remain in the development and clinical deployment of micro- and nano-particulate formulations, as well as combining these novel agents with conventional drugs and standard-of-care therapies. Factors requiring optimization include control of drug biodistribution, release rates of the encapsulated drug, and uptake by target cells. Quantitative mathematical modeling of formulation performance can provide an important tool for understanding drug transport, uptake, and disposition processes, as well as their role in therapeutic outcomes. This review identifies several relevant pharmacokinetic/pharmacodynamic models that incorporate key physical, biochemical, and physiological processes involved in delivery of oncology drugs by liposomal formulations. They capture observed data, lend insight into factors determining overall antitumor response, and in some cases, predict conditions for optimizing chemotherapy combinations that include nanoparticulate drug carriers.
Collapse
Affiliation(s)
- Sihem Ait-Oudhia
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14214, USA.
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14214, USA.
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14214, USA.
| |
Collapse
|
37
|
Novel methods for liposome preparation. Chem Phys Lipids 2014; 177:8-18. [DOI: 10.1016/j.chemphyslip.2013.10.011] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022]
|
38
|
Mullen L, Adams G, Layward L, Vessillier S, Annenkov A, Mittal G, Rigby A, Sclanders M, Baker D, Gould D, Chernajovsky Y. Latent cytokines for targeted therapy of inflammatory disorders. Expert Opin Drug Deliv 2013; 11:101-10. [PMID: 24294995 DOI: 10.1517/17425247.2014.863872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The use of cytokines as therapeutic agents is important, given their potent biological effects. However, this very potency, coupled with the pleiotropic nature and short half-life of these molecules, has limited their therapeutic use. Strategies to increase the half-life and to decrease toxicity are necessary to allow effective treatment with these molecules. AREAS COVERED A number of strategies are used to overcome the natural limitations of cytokines, including PEGylation, encapsulation in liposomes, fusion to targeting peptides or antibodies and latent cytokines. Latent cytokines are engineered using the latency-associated peptide of transforming growth factor-β to produce therapeutic cytokines/peptides that are released only at the site of disease by cleavage with disease-induced matrix metalloproteinases. The principles underlying the latent cytokine technology are described and are compared to other methods of cytokine delivery. The potential of this technology for developing novel therapeutic strategies for the treatment of diseases with an inflammatory-mediated component is discussed. EXPERT OPINION Methods of therapeutic cytokine delivery are addressed. The latent cytokine technology holds significant advantages over other methods of drug delivery by providing simultaneously increased half-life and localised drug delivery without systemic effects. Cytokines that failed clinical trials should be reassessed using this delivery system.
Collapse
Affiliation(s)
- Lisa Mullen
- Queen Mary University of London, William Harvey Research Institute, Bone and Joint Research Unit, Barts and The London Medical School , Charterhouse Square , London EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Onyesom I, Lamprou DA, Sygellou L, Owusu-Ware SK, Antonijevic M, Chowdhry BZ, Douroumis D. Sirolimus encapsulated liposomes for cancer therapy: physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol Pharm 2013; 10:4281-93. [PMID: 24099044 DOI: 10.1021/mp400362v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sirolimus has recently been introduced as a therapeutic agent for breast and prostate cancer. In the current study, conventional and Stealth liposomes were used as carriers for the encapsulation of sirolimus. The physicochemical characteristics of the sirolimus liposome nanoparticles were investigated including the particle size, zeta potential, stability and membrane integrity. In addition atomic force microscopy was used to study the morphology, surface roughness and mechanical properties such as elastic modulus deformation and deformation. Sirolimus encapsulation in Stealth liposomes showed a high degree of deformation and lower packing density especially for dipalmitoyl-phosphatidylcholine (DPPC) Stealth liposomes compared to unloaded. Similar results were obtained by differential scanning calorimetry (DSC) studies; sirolimus loaded liposomes were found to result in a distorted state of the bilayer. X-ray photon electron (XPS) analysis revealed a uniform distribution of sirolimus in multilamellar DPPC Stealth liposomes compared to a nonuniform, greater outer layer lamellar distribution in distearoylphosphatidylcholine (DSPC) Stealth liposomes.
Collapse
Affiliation(s)
- Ichioma Onyesom
- School of Science, University of Greenwich , Medway Campus, Chatham Maritime, Kent ME4 4TB, U.K
| | | | | | | | | | | | | |
Collapse
|
40
|
Andar AU, Hood RR, Vreeland WN, DeVoe DL, Swaan PW. Microfluidic Preparation of Liposomes to Determine Particle Size Influence on Cellular Uptake Mechanisms. Pharm Res 2013; 31:401-13. [DOI: 10.1007/s11095-013-1171-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
|
41
|
Arouri A, Hansen AH, Rasmussen TE, Mouritsen OG. Lipases, liposomes and lipid-prodrugs. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Ascenso A, Pinho S, Eleutério C, Praça FG, Bentley MVLB, Oliveira H, Santos C, Silva O, Simões S. Lycopene from tomatoes: vesicular nanocarrier formulations for dermal delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7284-7293. [PMID: 23826819 DOI: 10.1021/jf401368w] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This experimental work aimed to develop a simple, fast, economic, and environmentally friendly process for the extraction of lycopene from tomato and incorporate this lycopene-rich extract into ultradeformable vesicular nanocarriers suitable for topical application. Lycopene extraction was conducted without a cosolvent for 30 min. The extracts were analyzed and incorporated in transfersomes and ethosomes. These formulations were characterized, and the cellular uptake was observed by confocal microscopy. Dermal delivery of lycopene formulations was tested under in vitro and in vivo conditions. Lycopene extraction proved to be quite safe and selective. The vesicular formulation was taken up by the cells, being more concentrated around the nucleus. Epicutaneous application of lycopene formulations decreased the level of anthralin-induced ear swelling by 97 and 87%, in a manner nonstatistically different from the positive control. These results support the idea that the lycopene-rich extract may be a good alternative to the expensive commercial lycopene for incorporation into advanced topical delivery systems.
Collapse
Affiliation(s)
- Andreia Ascenso
- Nanomedicine and Drug Delivery Systems group of iMedUL, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ullrich M, Hanuš J, Dohnal J, Štěpánek F. Encapsulation stability and temperature-dependent release kinetics from hydrogel-immobilised liposomes. J Colloid Interface Sci 2013; 394:380-5. [DOI: 10.1016/j.jcis.2012.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
|
44
|
Membrane-perturbing effect of fatty acids and lysolipids. Prog Lipid Res 2013; 52:130-40. [DOI: 10.1016/j.plipres.2012.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/20/2012] [Accepted: 09/13/2012] [Indexed: 12/13/2022]
|
45
|
|
46
|
Wiedmer SK, Lokajová J. Capillary electromigration techniques for studying interactions between analytes and lipid dispersions. J Sep Sci 2012; 36:37-51. [DOI: 10.1002/jssc.201200829] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 11/11/2022]
|
47
|
Abstract
INTRODUCTION A number of delivery issues exist for biotech molecules including peptides, proteins and gene-based medicines that now make up over 60% of the drug pipeline. The problems comprise pharmaceutical ad biopharmaceutical issues. One of the common approaches to overcome these issues is the use of a carrier and liposomes as carriers have been investigated extensively over the last decade. AREAS COVERED The review has been discussed in terms of formulation and preclinical development studies and in vivo studies encompassing different delivery routes including parenteral, oral, buccal, pulmonary, intranasal, ocular and transdermal involving liposomes as carriers. Important research findings have been tabulated under each side heading and an expert opinion has been summarised for each delivery route. EXPERT OPINION The conclusion and expert opinion - conclusion sections discuss in detail troubleshooting aspects related to the use of liposomes as carriers for delivery of biopharmaceutical moieties and scrutinises the aspects behind the absence of a protein/peptide-containing liposome in market.
Collapse
Affiliation(s)
- Janani Swaminathan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland.
| | | |
Collapse
|
48
|
Yang JA, Murphy CJ. Evidence for patchy lipid layers on gold nanoparticle surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5404-5416. [PMID: 22352432 DOI: 10.1021/la300325p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gold nanoparticles bearing multiple surface ligands are becoming favored candidates as multifunctional targeting, imaging, and therapeutic vehicles for biomedicine. The question of spatial location of different ligands on nanoparticle surfaces, especially with those of diameters less than 100 nm, is an important one that is difficult to quantitatively address. Here we functionalize the surface of 20, 50, and 90 nm gold nanoparticles with two different lipids, both single and mixed, using two different surface chemical procedures. Mass spectrometry supports the presence of both lipids in the mixed-lipid systems on nanoparticles, while electron microscopy evidence shows domain sizes for one lipid apparently a quarter to a half the projected diameter for 50 and 90 nm particles; but for 20 nm particles, there is no evidence for the existence of patches of the two lipids. Larger gold nanoparticles (90 nm) can be decorated with an array of 12 nm gold nanoparticles by use of a third lipid and antibody-antigen connectors; the display of the 12 nm particles about the 90 nm particles can be controlled to some extent by the initial surface chemistry and is quantified via a new angle analysis procedure.
Collapse
Affiliation(s)
- Jie An Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
49
|
Hegeman MA, Cobelens PM, Kamps J, Hennus MP, Jansen NJG, Schultz MJ, van Vught AJ, Molema G, Heijnen CJ. Liposome-encapsulated dexamethasone attenuates ventilator-induced lung inflammation. Br J Pharmacol 2011; 163:1048-58. [PMID: 21391981 DOI: 10.1111/j.1476-5381.2011.01314.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Systemic glucocorticoid therapy may effectively attenuate lung inflammation but also induce severe side-effects. Delivery of glucocorticoids by liposomes could therefore be beneficial. We investigated if liposome-encapsulated dexamethasone inhibited ventilator-induced lung inflammation. Furthermore, we evaluated whether targeting of cellular Fcγ-receptors (FcγRs) by conjugating immunoglobulin G (IgG) to liposomes, would improve the efficacy of dexamethasone-liposomes in attenuating granulocyte infiltration, one of the hallmarks of lung inflammation. EXPERIMENTAL APPROACH Mice were anaesthetized, tracheotomized and mechanically ventilated for 5 h with either 'low' tidal volumes ∼7.5 mL·kg(-1) (LV(T) ) or 'high' tidal volumes ∼15 mL·kg(-1) (HV(T) ). At initiation of ventilation, we intravenously administered dexamethasone encapsulated in liposomes (Dex-liposomes), dexamethasone encapsulated in IgG-modified liposomes (IgG-Dex-liposomes) or free dexamethasone. Non-ventilated mice served as controls. KEY RESULTS Dex-liposomes attenuated granulocyte infiltration and IL-6 mRNA expression after LV(T) -ventilation, but not after HV(T) -ventilation. Dex-liposomes also down-regulated mRNA expression of IL-1β and KC, but not of CCL2 (MCP-1) in lungs of LV(T) and HV(T) -ventilated mice. Importantly, IgG-Dex-liposomes inhibited granulocyte influx caused by either LV(T) or HV(T) -ventilation. IgG-Dex-liposomes diminished IL-1β and KC mRNA expression in both ventilation groups, and IL-6 and CCL2 mRNA expression in the LV(T) -ventilated group. Free dexamethasone prevented granulocyte influx and inflammatory mediator expression induced by LV(T) or HV(T) -ventilation. CONCLUSIONS AND IMPLICATIONS FcγR-targeted IgG-Dex-liposomes are pharmacologically more effective than Dex-liposomes particularly in inhibiting pulmonary granulocyte infiltration. IgG-Dex-liposomes inhibited most parameters of ventilator-induced lung inflammation as effectively as free dexamethasone, with the advantage that liposome-encapsulated dexamethasone will be released locally in the lung thereby preventing systemic side-effects.
Collapse
Affiliation(s)
- M A Hegeman
- Laboratory of Neuroimmunology and Developmental Origins of Disease, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Singh P, Kumari K, Tomar V, Samim M, Patel R, Mehrotra GK, Dubey M, Pandey ND, Katyal A. A novel method to chemically bind thiazolidine-2,4-dione through cross-linked chitosan nanoparticles using malanodialdehyde as a cross-linker. CAN J CHEM 2011. [DOI: 10.1139/v11-047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chitosan is a biodegradable natural polymer with great potential for pharmaceutical applications because of its biocompatibility, high charge density, nontoxicity and mucoadhesion. It has been shown that it not only improves the dissolution of poorly soluble drugs but also exerts a significant effect on fat metabolism in the body. Gel formation can be obtained by interactions of chitosans with low molecular counterions such as polyphosphates, sulfates, and cross-linkers. This gelling property of chitosan allows a wide range of applications such as the coating of pharmaceuticals and food products, gel entrapment of biochemicals, plant embryos, whole cells, microorganisms, and algae. This manuscript is an insight into the exploitation of its properties for microencapsulating drugs. Herein, we report a novel method to chemically bind thiazolidine-2,4-dione through cross-linked chitosan nanoparticles using malanodialdehyde as a new cross-linker and well characterized by FT-IR, NMR, TGA, DSC, powder X-ray diffraction, TEM, and cyclic voltametry.
Collapse
Affiliation(s)
- Prashant Singh
- A. R. S. D. Collage, University of Delhi, Delhi, India
- Department of Chemistry, Jamia Hamdard, New Delhi 110062, India
| | - Kamlesh Kumari
- Department of Chemistry, Jamia Hamdard, New Delhi 110062, India
- MNNIT Allahabad, Uttar Pradesh, India
| | - Vartika Tomar
- A. R. S. D. Collage, University of Delhi, Delhi, India
| | - Mohd. Samim
- Department of Chemistry, Jamia Hamdard, New Delhi 110062, India
| | - Rajan Patel
- Jamia Millia Islamia, New Delhi 110025, India
| | | | | | | | - Anju Katyal
- ACBR, University of Delhi, Delhi 110007, India
| |
Collapse
|