1
|
Yu X, Li S, Mai W, Hua X, Sun M, Lai M, Zhang D, Xiao Z, Wang L, Shi C, Luo L, Cai L. Pediatric diffuse intrinsic pontine glioma radiotherapy response prediction: MRI morphology and T2 intensity-based quantitative analyses. Eur Radiol 2024; 34:7962-7972. [PMID: 38907098 PMCID: PMC11557687 DOI: 10.1007/s00330-024-10855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES An easy-to-implement MRI model for predicting partial response (PR) postradiotherapy for diffuse intrinsic pontine glioma (DIPG) is lacking. Utilizing quantitative T2 signal intensity and introducing a visual evaluation method based on T2 signal intensity heterogeneity, and compared MRI radiomic models for predicting radiotherapy response in pediatric patients with DIPG. METHODS We retrospectively included patients with brainstem gliomas aged ≤ 18 years admitted between July 2011 and March 2023. Applying Response Assessment in Pediatric Neuro-Oncology criteria, we categorized patients into PR and non-PR groups. For qualitative analysis, tumor heterogeneity vision was classified into four grades based on T2-weighted images. Quantitative analysis included the relative T2 signal intensity ratio (rT2SR), extra pons volume ratio, and tumor ring-enhancement volume. Radiomic features were extracted from T2-weighted and T1-enhanced images of volumes of interest. Univariate analysis was used to identify independent variables related to PR. Multivariate logistic regression was performed using significant variables (p < 0.05) from univariate analysis. RESULTS Of 140 patients (training n = 109, and test n = 31), 64 (45.7%) achieved PR. The AUC of the predictive model with extrapontine volume ratio, rT2SRmax-min (rT2SRdif), and grade was 0.89. The AUCs of the T2-weighted and T1WI-enhanced models with radiomic signatures were 0.84 and 0.81, respectively. For the 31 DIPG test sets, the AUCs were 0.91, 0.83, and 0.81, for the models incorporating the quantitative features, radiomic model (T2-weighted images, and T1W1-enhanced images), respectively. CONCLUSION Combining T2-weighted quantification with qualitative and extrapontine volume ratios reliably predicted pediatric DIPG radiotherapy response. CLINICAL RELEVANCE STATEMENT Combining T2-weighted quantification with qualitative and extrapontine volume ratios can accurately predict diffuse intrinsic pontine glioma (DIPG) radiotherapy response, which may facilitate personalized treatment and prognostic assessment for patients with DIPG. KEY POINTS Early identification is crucial for radiotherapy response and risk stratification in diffuse intrinsic pontine glioma. The model using tumor heterogeneity and quantitative T2 signal metrics achieved an AUC of 0.91. Using a combination of parameters can effectively predict radiotherapy response in this population.
Collapse
Affiliation(s)
- Xiaojun Yu
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Shaoqun Li
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Wenfeng Mai
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Xiaoyu Hua
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Mengnan Sun
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Mingyao Lai
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Dong Zhang
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Lichao Wang
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Changzheng Shi
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Liangping Luo
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Linbo Cai
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China.
| |
Collapse
|
2
|
Fujita N, Bondoc A, Simoes S, Ishida J, Taccone MS, Luck A, Srikanthan D, Siddaway R, Levine A, Sabha N, Krumholtz S, Kondo A, Arai H, Smith C, McDonald P, Hawkins C, Dedhar S, Rutka J. Combination treatment with histone deacetylase and carbonic anhydrase 9 inhibitors shows therapeutic potential in experimental diffuse intrinsic pontine glioma. Brain Tumor Pathol 2024; 41:117-131. [PMID: 39316272 DOI: 10.1007/s10014-024-00493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) remains a significant therapeutic challenge due to the lack of effective and safe treatment options. This study explores the potential of combining histone deacetylase (HDAC) and carbonic anhydrase 9 (CA9) inhibitors in treating DIPG. Analysis of RNA sequencing data and tumor tissue from patient samples for the expression of the carbonic anhydrase family and hypoxia signaling pathway activity revealed clinical relevance for targeting CA9 in DIPG. A synergy screen was conducted using CA9 inhibitor SLC-0111 and HDAC inhibitors panobinostat, vorinostat, entinostat, and pyroxamide. The combination of SLC-0111 and pyroxamide demonstrated the highest synergy and was selected for further analysis. Combining SLC-0111 and pyroxamide effectively inhibited DIPG cell proliferation, reduced cell migration and invasion potential, and enhanced histone acetylation, leading to decreased cell population in S Phase. Additionally, the combination therapy induced a greater reduction in intracellular pH than either agent alone. Data from this study suggest that the combination of SLC-0111 and pyroxamide holds promise for treating experimental DIPG, and further investigation of this combination therapy in preclinical models is warranted to evaluate its potential as a viable treatment for DIPG.
Collapse
Affiliation(s)
- Naohide Fujita
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Andrew Bondoc
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Sergio Simoes
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Joji Ishida
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Michael S Taccone
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON, K1Y4E9, Canada
| | - Amanda Luck
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Dilakshan Srikanthan
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Robert Siddaway
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Adrian Levine
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Nesrin Sabha
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Stacey Krumholtz
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Paul McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
| | - Cynthia Hawkins
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - James Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave, Suite 1503, Toronto, ON, M5G 1X8, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
3
|
Drexler R, Drinnenberg A, Gavish A, Yalcin B, Shamardani K, Rogers A, Mancusi R, Taylor KR, Kim YS, Woo PJ, Ravel A, Tatlock E, Ramakrishnan C, Ayala-Sarmiento AE, Pacheco DRF, Siverts L, Daigle TL, Tasic B, Zeng H, Breunig JJ, Deisseroth K, Monje M. Cholinergic Neuronal Activity Promotes Diffuse Midline Glioma Growth through Muscarinic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614235. [PMID: 39386427 PMCID: PMC11463519 DOI: 10.1101/2024.09.21.614235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses. However, the putative roles of other neuronal subpopulations - especially neuromodulatory neurons located in the brainstem that project to long-range target sites in midline anatomical locations where DMGs arise - remain largely unexplored. Here, we demonstrate that the activity of cholinergic midbrain neurons modulates both healthy OPC and malignant DMG proliferation in a circuit-specific manner at sites of long-range cholinergic projections. Optogenetic stimulation of the cholinergic pedunculopontine nucleus (PPN) promotes glioma growth in pons, while stimulation of the laterodorsal tegmentum nucleus (LDT) facilitates proliferation in thalamus, consistent with the predominant projection patterns of each cholinergic midbrain nucleus. Reciprocal signaling was evident, as increased activity of cholinergic neurons in the PPN and LDT was observed in pontine DMG-bearing mice. In co-culture, hiPSC-derived cholinergic neurons form neuron-to-glioma networks with DMG cells and robustly promote proliferation. Single-cell RNA sequencing analyses revealed prominent expression of the muscarinic receptor genes CHRM1 and CHRM3 in primary patient DMG samples, particularly enriched in the OPC-like tumor subpopulation. Acetylcholine, the neurotransmitter cholinergic neurons release, exerts a direct effect on DMG tumor cells, promoting increased proliferation and invasion through muscarinic receptors. Pharmacological blockade of M1 and M3 acetylcholine receptors abolished the activity-regulated increase in DMG proliferation in cholinergic neuron-glioma co-culture and in vivo. Taken together, these findings demonstrate that midbrain cholinergic neuron long-range projections to midline structures promote activity-dependent DMG growth through M1 and M3 cholinergic receptors, mirroring a parallel proliferative effect on healthy OPCs.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- These authors contributed equally
| | - Antonia Drinnenberg
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Avishai Gavish
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Belgin Yalcin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Abigail Rogers
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yoon Seok Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Alexandre Ravel
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Eva Tatlock
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Alberto E Ayala-Sarmiento
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Guo Y, Li Z, Parsels LA, Wang Z, Parsels JD, Dalvi A, The S, Hu N, Valvo VM, Doherty R, Peterson E, Wang X, Venkataraman S, Agnihotri S, Venneti S, Wahl DR, Green MD, Lawrence TS, Koschmann C, Morgan MA, Zhang Q. H3K27M diffuse midline glioma is homologous recombination defective and sensitized to radiotherapy and NK cell-mediated antitumor immunity by PARP inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609803. [PMID: 39253432 PMCID: PMC11383052 DOI: 10.1101/2024.08.26.609803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Radiotherapy (RT) is the primary treatment for diffuse midline glioma (DMG), a lethal pediatric malignancy defined by histone H3 lysine 27-to-methionine (H3K27M) mutation. Based on the loss of H3K27 trimethylation producing broad epigenomic alterations, we hypothesized that H3K27M causes a functional double-strand break (DSB) repair defect that could be leveraged therapeutically with PARP inhibitor and RT for selective radiosensitization and antitumor immune responses. Methods H3K27M isogenic DMG cells and orthotopic brainstem DMG tumors in immune deficient and syngeneic, immune competent mice were used to evaluate the efficacy and mechanisms of PARP1/2 inhibition by olaparib or PARP1 inhibition by AZD9574 with concurrent RT. Results H3K27M mutation caused an HRR defect characterized by impaired RT-induced K63-linked polyubiquitination of histone H1 and inhibition of HRR protein recruitment. H3K27M DMG cells were selectively radiosensitized by olaparib in comparison to isogenic controls, and this effect translated to efficacy in H3K27M orthotopic brainstem tumors. Olaparib and RT induced an innate immune response and induction of NK cell (NKG2D) activating ligands leading to increased NK cell-mediated lysis of DMG tumor cells. In immunocompetent syngeneic orthotopic DMG tumors, either olaparib or AZD9574 in combination with RT enhanced intratumoral NK cell infiltration and activity in association with NK cell-mediated therapeutic responses and favorable activity of AZD9574. Conclusions The HRR deficiency in H3K27M DMG can be therapeutically leveraged with PARP inhibitors to radiosensitize and induce an NK cell-mediated antitumor immune response selectively in H3K27M DMG, supporting the clinical investigation of best-in-class PARP inhibitors with RT in DMG patients. Key points H3K27M DMG are HRR defective and selectively radiosensitized by PARP inhibitor.PARP inhibitor with RT enhances NKG2D ligand expression and NK cell-mediated lysis.NK cells are required for the therapeutic efficacy of PARP inhibitor and RT. Importance of the Study Radiotherapy is the cornerstone of H3K27M-mutant diffuse midline glioma treatment, but almost all patients succumb to tumor recurrence with poor overall survival, underscoring the need for RT-based precision combination therapy. Here, we reveal HRR deficiency as an H3K27M-mediated vulnerability and identify a novel mechanism linking impaired RT-induced histone H1 polyubiquitination and the subsequent RNF168/BRCA1/RAD51 recruitment in H3K27M DMG. This model is supported by selective radiosensitization of H3K27M DMG by PARP inhibitor. Notably, the combination treatment results in NKG2D ligand expression that confers susceptibility to NK cell killing in H3K27M DMG. We also show that the novel brain penetrant, PARP1-selective inhibitor AZD9574 compares favorably to olaparib when combined with RT, prolonging survival in a syngeneic orthotopic model of H3K27M DMG. This study highlights the ability of PARP1 inhibition to radiosensitize and induce an NK cell-mediated antitumor immunity in H3K27M DMG and supports future clinical investigation.
Collapse
|
5
|
Pasqualetti F, Lombardi G, Gadducci G, Giannini N, Montemurro N, Feletti A, Zeppieri M, Somma T, Caffo M, Bertolotti C, Ius T. Brain Stem Glioma Recurrence: Exploring the Therapeutic Frontiers. J Pers Med 2024; 14:899. [PMID: 39338153 PMCID: PMC11433503 DOI: 10.3390/jpm14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas of the brainstem represent a small percentage of central nervous system gliomas in adults. Due to the proximity of the tumor to critical structures, radical surgery is highly challenging and limited to selected cases. In addition, postoperative treatments, which become exclusive to non-operable patients, do not guarantee satisfactory disease control, making the progression of the disease inevitable. Currently, there is a lack of therapeutic options to control tumor growth after the diagnosis of recurrence. The rarity of these tumors, their distinct behavioral characteristics, and the limited availability of tumor tissue necessary for the development of prognostic and predictive biomarkers contribute to the absence of a standardized approach for treating recurrent brainstem gliomas. A salvage radiotherapy (RT) retreatment could represent a promising approach for recurrent brainstem gliomas. However, to date, it has been mainly evaluated in pediatric cases, with few experiences available to assess the most appropriate RT dose, safety, and clinical responses in adult patients. This comprehensive review aims to identify instances of adult patients with recurrent brainstem gliomas subjected to a secondary course of RT, with a specific focus on the analysis of treatment-related toxicity and outcomes. Through this investigation, we endeavor to contribute valuable insights into the viability and efficacy of salvage RT retreatment in managing recurrent brainstem gliomas in the adult population.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Giovanni Gadducci
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Noemi Giannini
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
| | - Alberto Feletti
- Department of Neurosciences, Biomedicine, and Movement Sciences, Institute of Neurosurgery, University of Verona, 37126 Verona, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80134 Naples, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomorphology and Dental Science, and Morphofunctional Imaging, Università degli Studi di Messina, 98125 Messina, Italy
| | - Chiara Bertolotti
- Department of Neuroradiology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
6
|
Erturk M, Demircubuk I, Candar E, Sengul G. Comprehensive Morphometric Analysis of the Rhomboid Fossa: Implications for Safe Entry Zones in Brainstem Surgery. World Neurosurg 2024:S1878-8750(24)01463-3. [PMID: 39181240 DOI: 10.1016/j.wneu.2024.08.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The rhomboid fossa (RF) is a crucial anatomical region in brainstem surgery as it contains essential structures such as the reticular formation and cranial nerve nuclei. This study aimed to provide a detailed understanding of the complex microsurgical anatomy of the RF, which is vital for the safe execution of neurosurgical procedures. METHODS Morphometric analysis was conducted on 45 adult human brainstems preserved in 10% formalin. Under 20× magnification, 13 linear measurements were performed using a millimeter graph to identify key anatomical landmarks. RESULTS The RF measured 34.65 mm in length and 22.61 mm in width. The facial colliculus measured 4.26 mm in length on the left and 4.45 mm on the right, with corresponding widths of 3.77 mm and 3.50 mm. The distance between the sulcus limitans incisures was 9.52 mm, and the distance from the upper border of the medullary striae to obex was 11.53 mm. The proximity of the facial colliculus to the median sulcus was measured at 0.86 mm on the right and 0.96 mm on the left. Additionally, 2 safe entry zones-the suprafacial and infrafacial triangles-were identified, offering pathways to reach dorsal pons lesions through the RF. CONCLUSIONS This comprehensive morphometric analysis of the RF enhances the understanding of its intricate anatomy. By describing safe entry zones, the suprafacial and infrafacial triangles, and providing precise measurements of key anatomical features, this study serves as a valuable resource for neurosurgeons in planning and executing brainstem surgeries.
Collapse
Affiliation(s)
- Mete Erturk
- Department of Anatomy, School of Medicine, Ege University, Izmir, Turkey
| | - Ibrahim Demircubuk
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Esra Candar
- Department of Neuroscience, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Gulgun Sengul
- Department of Anatomy, School of Medicine, Ege University, Izmir, Turkey; Department of Neuroscience, Institute of Health Sciences, Ege University, Izmir, Turkey.
| |
Collapse
|
7
|
Viani GA, Gouveia AG, Arcidiacono F, Marta GN, Hamamura AC, Anselmo P, Barbosa FS, Moraes FY. Efficacy and safety of hypofractionated radiotherapy versus conventional fractionated radiotherapy in diffuse intrinsic pontine glioma: A systematic review and meta-analysis. Rep Pract Oncol Radiother 2024; 29:309-317. [PMID: 39144263 PMCID: PMC11321787 DOI: 10.5603/rpor.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) stands as the predominant type of brainstem glioma. It is characterized by a notably brief median survival period, with the majority of patients experiencing disease progression within six months following radiation therapy. This systematic review and meta-analysis aims to assess the efficacy and safety of hypofractionated radiotherapy (HFRT) compared to conventionally fractionated radiotherapy (CFRT) in DIPG treatment. Materials and methods A systematic literature search was conducted in four databases, and relevant studies comparing HFRT and CFRT in DIPG were included. Data were extracted and analyzed for overall survival (OS), progression-free survival (PFS), and treatment-related toxicities. Statistical analysis was performed using random-effects models with heterogeneity assessment. Results Five studies met the inclusion criteria, comprising 518 patients. No significant difference in one-year OS was observed between HFRT and CFRT (29% vs. 22%, p = 0.94). The median OS was similar in both treatment groups (9.7 vs. 9.3 months, p = 0.324). Similarly, no significant difference in one-year PFS was found between HFRT and CFRT (19.8% vs. 16.6%, p = 0.82), with comparable median PFS (9.3 vs. 9.4 months, p = 0.20). In meta-regression analysis, there was no association of chemotherapy (p > 0.05) or radiation biologically effective dose (BED) (p > 0.05) regarding OS or PFS outcomes. There were no significant differences in treatment-related toxicities. Conclusions HFRT yields one-year OS and PFS rates similar to CFRT in DIPG, with no significant differences in treatment-related toxicities. Chemotherapy and BED did not affect OS or PFS.
Collapse
Affiliation(s)
- Gustavo A Viani
- Department of Medical Imagings, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
| | - Andre G Gouveia
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Division of Radiation Oncology, Department of Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | | | - Gustavo N Marta
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Radiation Oncology Department, Hospital Sirio Libanês, São Paulo, Brazil
- Post-Graduation Program, Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Hamamura
- Department of Medical Imagings, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Paola Anselmo
- Radiotherapy Oncology Centre, "S. Maria" Hospital, Terni, Italy
| | - Felipe S Barbosa
- Department of Medical Imagings, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Fabio Y Moraes
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
- Division of Radiation Oncology, Department of Oncology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
8
|
Vazaios K, Stavrakaki Ε, Vogelezang LB, Ju J, Waranecki P, Metselaar DS, Meel MH, Kemp V, van den Hoogen BG, Hoeben RC, Chiocca EA, Goins WF, Stubbs A, Li Y, Alonso MM, Calkoen FG, Hulleman E, van der Lugt J, Lamfers ML. The heterogeneous sensitivity of pediatric brain tumors to different oncolytic viruses is predicted by unique gene expression profiles. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200804. [PMID: 38694569 PMCID: PMC11060958 DOI: 10.1016/j.omton.2024.200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/04/2024]
Abstract
Despite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their in vitro efficacy. These four OVs were screened on 14 patient-derived PBT cell cultures and the degree of oncolysis was assessed using an ATP-based assay. Subsequently, the observed viral efficacies were correlated to whole transcriptome data and Gene Ontology analysis was performed. Although no significant tumor type-specific OV efficacy was observed, the analysis revealed the intrinsic biological processes that associated with OV efficacy. The predictive power of the identified expression profiles was further validated in vitro by screening additional PBTs. In summary, our results demonstrate OV susceptibility of multiple patient-derived PBT entities and the ability to predict in vitro responses to OVs using unique expression profiles. Such profiles may hold promise for future OV preselection with effective oncolytic potency in a specific tumor, therewith potentially improving OV responses.
Collapse
Affiliation(s)
- Konstantinos Vazaios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Εftychia Stavrakaki
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Lisette B. Vogelezang
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Dennis S. Metselaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Michaël H. Meel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - William F. Goins
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Dr, Pittsburgh, PA 15219, USA
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marta M. Alonso
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Avda. de Pío XII, 55, 31008 Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), Av. de Pío XII, 36, 31008 Pamplona, Spain
| | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
9
|
Valvi S, Manoharan N, Mateos MK, Hassall TE, Ziegler DS, McCowage GB, Dun MD, Eisenstat DD, Gottardo NG, Hansford JR. Management of patients with diffuse intrinsic pontine glioma in Australia and New Zealand: Australian and New Zealand Children's Haematology/Oncology Group position statement. Med J Aust 2024; 220:533-538. [PMID: 38699949 DOI: 10.5694/mja2.52295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION The main mission of the Australian and New Zealand Children's Haematology and Oncology Group (ANZCHOG) is to develop and facilitate local access to the world's leading evidence-based clinical trials for all paediatric cancers, including brain tumours, as soon as practically possible. Diffuse intrinsic pontine gliomas (DIPGs) - a subset of a larger group of tumours now termed diffuse midline glioma, H3K27-altered (DMG) - are paediatric brain cancers with less than 10% survival at two years. In the absence of any proven curative therapies, significant recent advancements have been made in pre-clinical and clinical research, leading many to seek integration of novel therapies early into standard practice. Despite these innovative therapeutic approaches, DIPG remains an incurable disease for which novel surgical, imaging, diagnostic, radiation and systemic therapy approaches are needed. MAIN RECOMMENDATIONS All patients with DIPG should be discussed in multidisciplinary neuro-oncology meetings (including pathologists, neuroradiologists, radiation oncologists, neurosurgeons, medical oncologists) at diagnosis and at relapse or progression. Radiation therapy to the involved field remains the local and international standard of care treatment. Proton therapy does not yield a superior survival outcome compared with photon therapy and patients should undergo radiation therapy with the available modality (photon or proton) at their treatment centre. Patients may receive concurrent chemotherapy or radiation-sensitising agents as part of a clinical trial. Biopsy should be offered to facilitate consideration of experimental therapies and eligibility for clinical trial participation. After radiation therapy, each patient should be managed individually with either observation or considered for enrolment on a clinical trial, if eligible, after full discussion with the family. Re-irradiation can be considered for progressive disease. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE Every child diagnosed with DIPG should be offered enrolment on a clinical trial where available. Access to investigational drugs without biological rationale outside the clinical trial setting is not supported. In case of potentially actionable target identification with molecular profiling and absence of a suitable clinical trial, rational targeted therapies can be considered through compassionate access programs.
Collapse
Affiliation(s)
- Santosh Valvi
- Perth Children's Hospital, Perth, WA
- Telethon Kids Institute, Perth, WA
- University of Western Australia, Perth, WA
| | - Neevika Manoharan
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | - Marion K Mateos
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | - Timothy Eg Hassall
- Queensland Children's Hospital, Brisbane, QLD
- Frazer Institute, University of Queensland, Brisbane, QLD
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Sydney, NSW
- University of New South Wales, Sydney, NSW
| | | | - Matthew D Dun
- University of Newcastle, Newcastle, NSW
- Hunter Medical Research Institute, Newcastle, NSW
| | - David D Eisenstat
- Children's Cancer Centre, Royal Children's Hospital Melbourne, Melbourne, VIC
- Murdoch Children's Research Institute, Melbourne, VIC
- University of Melbourne, Melbourne, VIC
| | | | - Jordan R Hansford
- Women's and Children's Hospital, Adelaide, SA
- South Australian Health and Medical Research Institute, Adelaide, SA
- University of Adelaide, Adelaide, SA
| |
Collapse
|
10
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
11
|
Weisbrod LJ, Thiraviyam A, Vengoji R, Shonka N, Jain M, Ho W, Batra SK, Salehi A. Diffuse intrinsic pontine glioma (DIPG): A review of current and emerging treatment strategies. Cancer Lett 2024; 590:216876. [PMID: 38609002 PMCID: PMC11231989 DOI: 10.1016/j.canlet.2024.216876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Anand Thiraviyam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Winson Ho
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Division of Pediatric Neurosurgery, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
12
|
Yu X, Lai M, Li J, Wang L, Ye K, Zhang D, Hu Q, Li S, Hu X, Wang Q, Ma M, Xiao Z, Zhou J, Shi C, Luo L, Cai L. The relationship between imaging features, therapeutic response, and overall survival in pediatric diffuse intrinsic pontine glioma. Neurosurg Rev 2024; 47:212. [PMID: 38727935 PMCID: PMC11087318 DOI: 10.1007/s10143-024-02435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
We aimed to evaluate the relationship between imaging features, therapeutic responses (comparative cross-product and volumetric measurements), and overall survival (OS) in pediatric diffuse intrinsic pontine glioma (DIPG). A total of 134 patients (≤ 18 years) diagnosed with DIPG were included. Univariate and multivariate analyses were performed to evaluate correlations of clinical and imaging features and therapeutic responses with OS. The correlation between cross-product (CP) and volume thresholds in partial response (PR) was evaluated by linear regression. The log-rank test was used to compare OS patients with discordant therapeutic response classifications and those with concordant classifications. In univariate analysis, characteristics related to worse OS included lower Karnofsky, larger extrapontine extension, ring-enhancement, necrosis, non-PR, and increased ring enhancement post-radiotherapy. In the multivariate analysis, Karnofsky, necrosis, extrapontine extension, and therapeutic response can predict OS. A 25% CP reduction (PR) correlated with a 32% volume reduction (R2 = 0.888). Eight patients had discordant therapeutic response classifications according to CP (25%) and volume (32%). This eight patients' median survival time was 13.0 months, significantly higher than that in the non-PR group (8.9 months), in which responses were consistently classified as non-PR based on CP (25%) and volume (32%). We identified correlations between imaging features, therapeutic responses, and OS; this information is crucial for future clinical trials. Tumor volume may represent the DIPG growth pattern more accurately than CP measurement and can be used to evaluate therapeutic response.
Collapse
Affiliation(s)
- Xiaojun Yu
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Mingyao Lai
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Juan Li
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Lichao Wang
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Kunlin Ye
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Dong Zhang
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Qingjun Hu
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Shaoqun Li
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Xinpeng Hu
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Qiong Wang
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Mengjie Ma
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Jiangfen Zhou
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Changzheng Shi
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Liangping Luo
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
- Department of Medical Imaging Center, The Fifth Affiliated Hospital of Jinan University, Yingke Avenue, Heyuan City, 517000, China.
| | - Linbo Cai
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China.
| |
Collapse
|
13
|
Dimentberg E, Marceau MP, Lachance A, Bergeron-Gravel S, Saikali S, Crevier L, Bourget C, Hawkins C, Jabado N, Giannakouros P, Renzi S, Larouche V. Very Long-term Survivorship in Pediatric DIPG: Case Report and Review of the Literature. J Pediatr Hematol Oncol 2024; 46:211-215. [PMID: 38573000 DOI: 10.1097/mph.0000000000002853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Diffuse intrinsic pontine gliomas are lethal tumors with a prognosis generally less than 1 year. Few cases of survivors of 5 years or more have been reported. This case report highlights the journey of a 9.5-year survivor who underwent 3 rounds of focal radiotherapy; she experienced 6 years of progression-free survival following the first round but ultimately succumbed to her disease. An autopsy revealed a favorable IDH1 mutation and the absence of H3K27M. This case reiterates the importance of extensive molecular analyses in diffuse intrinsic pontine gliomas and explores the potential benefit of re-irradiation in patients with positive responses and long periods of remission.
Collapse
Affiliation(s)
| | | | | | | | - Stephan Saikali
- Department of Molecular Biology, Medical Biology, and Pathology
| | | | | | - Cynthia Hawkins
- Department of Pediatrics, Division of Hemato-Oncology, CHU de Québec-Université Laval, Quebec
| | - Nada Jabado
- Department of Laboratory Medicine and Pathobiology - Neuropathology, The Hospital for Sick Children, Toronto
| | - Panagiota Giannakouros
- Department of Pediatrics, Division of Hemato-Oncology, Montreal Children's Hospital, Montreal, Canada
| | - Samuele Renzi
- Department of Pediatrics, Division of Hemato-Oncology, Montreal Children's Hospital, Montreal, Canada
| | - Valérie Larouche
- Department of Pediatrics, Division of Hemato-Oncology, Montreal Children's Hospital, Montreal, Canada
| |
Collapse
|
14
|
Margol AS, Molinaro AM, Onar-Thomas A, Resnick A, Hanson D, Kieran M, Mishra-Kalyani P, Rivera D, Barone A, Arons D, Meehan C, Prados M. Use of External Control Cohorts in Pediatric Brain Tumor Clinical Trials. J Clin Oncol 2024; 42:1340-1343. [PMID: 38394473 DOI: 10.1200/jco.23.01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
Why, when, and how to consider external control cohorts in pediatric brain tumor clinical trials.
Collapse
Affiliation(s)
- Ashley S Margol
- Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, CA
| | - Annette M Molinaro
- Division of Biomedical Statistics and Informatics, Department of Neurosurgery, University of California, San Francisco, San Francisco, CA
| | | | - Adam Resnick
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Derek Hanson
- Joseph M. Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ
| | | | | | | | - Amy Barone
- US Food and Drug Administration, Washington, DC
| | | | | | - Michael Prados
- Departments of Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
15
|
Fu AY, Kavia J, Yadava Y, Srinivasan A, Hargwood P, Mazzola CA, Ammar A. Biopsy of diffuse midline glioma is safe and impacts targeted therapy: a systematic review and meta-analysis. Childs Nerv Syst 2024; 40:625-634. [PMID: 37980290 DOI: 10.1007/s00381-023-06208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE To quantify the safety and utility of biopsy of pediatric diffuse midline glioma (DMG). METHODS This study was conducted in accordance with PRISMA guidelines. PubMed, Embase, Scopus, and Web of Science were queried for relevant articles from inception until June 2023. Two reviewers identified all articles that included diagnostic yield, morbidity, and mortality rates for pediatric DMG patients. Studies that did not present original data or were not in English or peer-reviewed were excluded. Meta-analysis was conducted in R using Freeman-Tukey or logit transformation and DerSimonian-Laird random-effects models. The risk of bias was assessed using the Newcastle-Ottawa Scale. A protocol for this review was not registered. RESULTS We identified 381 patients from ten studies that met all criteria. DMG biopsy is safe overall (0% mortality, 95% CI: 0-0.6%; 11.0% morbidity, 95% CI: 4.8-18.9%) and has a high diagnostic yield (99.9%, 95% CI: 98.5-100%). The use of stereotactic biopsy is a significant moderator of morbidity (p = 0.0238). Molecular targets can be identified in approximately 53.4% of tumors (95% CI: 37.0-69.0%), although targeted therapies are only delivered in about 33.5% of all cases (95% CI: 24.4-44.1%). Heterogeneity was high for morbidity and identification of targets. The risk of bias was low for all studies. CONCLUSION We conducted the first meta-analysis of DMG biopsy to show that it is safe, effective, and able to identify relevant molecular targets that impact targeted therapy.
Collapse
Affiliation(s)
- Allen Y Fu
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ, USA.
- Department of Neurosurgery, New Jersey Pediatric Neuroscience Institute, Morristown, NJ, USA.
| | - Jay Kavia
- Department of Public Health, Rutgers University, New Brunswick, NJ, USA
| | - Yug Yadava
- Department of Neurosurgery, New Jersey Pediatric Neuroscience Institute, Morristown, NJ, USA
- Department of Biology, Rowan University, Glassboro, NJ, USA
| | - Anisha Srinivasan
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ, USA
| | - Pam Hargwood
- Robert Wood Johnson Library of the Health Sciences, The State University of New Jersey, RutgersNew Brunswick, NJ, USA
| | - Catherine A Mazzola
- Department of Neurosurgery, New Jersey Pediatric Neuroscience Institute, Morristown, NJ, USA
| | - Adam Ammar
- Department of Neurosurgery, New Jersey Pediatric Neuroscience Institute, Morristown, NJ, USA
| |
Collapse
|
16
|
Mishra DK, Popovski D, Morris SM, Bondoc A, Senthil Kumar S, Girard EJ, Rutka J, Fouladi M, Huang A, Olson JM, Drissi R. Preclinical pediatric brain tumor models for immunotherapy: Hurdles and a way forward. Neuro Oncol 2024; 26:226-235. [PMID: 37713135 PMCID: PMC10836771 DOI: 10.1093/neuonc/noad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 09/16/2023] Open
Abstract
Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.
Collapse
Affiliation(s)
- Deepak Kumar Mishra
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shelli M Morris
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew Bondoc
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - James Rutka
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Fouladi
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
17
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
18
|
Tosi U, Souweidane M. Diffuse Midline Gliomas: Challenges and New Strategies in a Changing Clinical Landscape. Cancers (Basel) 2024; 16:219. [PMID: 38201646 PMCID: PMC10778507 DOI: 10.3390/cancers16010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) was first described by Harvey Cushing, the father of modern neurosurgery, a century ago. Since then, the classification of this tumor changed significantly, as it is now part of the broader family of diffuse midline gliomas (DMGs), a heterogeneous group of tumors of midline structures encompassing the entire rostro-caudal space, from the thalamus to the spinal cord. DMGs are characterized by various epigenetic events that lead to chromatin remodeling similarities, as two decades of studies made possible by increased tissue availability showed. This new understanding of tumor (epi)biology is now driving novel clinical trials that rely on targeted agents, with finally real hopes for a change in an otherwise unforgiving prognosis. This biological discovery is being paralleled with equally exciting work in therapeutic drug delivery. Invasive and noninvasive platforms have been central to early phase clinical trials with a promising safety track record and anecdotal benefits in outcome.
Collapse
Affiliation(s)
- Umberto Tosi
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Gong X, Kuang S, Deng D, Wu J, Zhang L, Liu C. Differences in survival prognosticators between children and adults with H3K27M-mutant diffuse midline glioma. CNS Neurosci Ther 2023; 29:3863-3875. [PMID: 37311690 PMCID: PMC10651973 DOI: 10.1111/cns.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
AIMS H3K27M-mutant diffuse midline glioma (DMG) is a rare and aggressive central nervous system tumor. The biological behavior, clinicopathological characteristics, and prognostic factors of DMG have not yet been completely uncovered, especially in adult patients. This study aims to investigate the clinicopathological characteristics and identify prognostic factors of H3K27M-mutant DMG in pediatric and adult patients, respectively. METHODS A total of 171 patients with H3K27M-mutant DMG were included in the study. The clinicopathological characteristics of the patients were analyzed and stratified based on age. The Cox proportional hazard model was used to determine the independent prognostic factors in pediatric and adult subgroups. RESULTS The median overall survival (OS) for the entire cohort was 9.0 months. Significant differences were found in some clinicopathological characteristics between children and adults. The median OS was also significantly different between the pediatric and adult subgroups, with 7.1 months for children and 12.3 months for adults (p < 0.001). In the overall population, the multivariate analysis identified adult patients, single lesion, concurrent chemoradiotherapy/radiotherapy, and intact ATRX expression as independent favorable prognostic factors. In the age-stratified subgroups, the prognostic factors varied between children and adults, with intact ATRX expression and single lesion being independent favorable prognostic factors in adults, while infratentorial localization was significantly associated with worse prognosis in children. CONCLUSIONS The differences in clinicopathological features and prognostic factors between pediatric and adult patients with H3K27M-mutant DMG suggest the need for further clinical and molecular stratification based on age.
Collapse
Affiliation(s)
- Xuan Gong
- Departments of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Shuwen Kuang
- Departments of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Dongfeng Deng
- Departments of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Jun Wu
- Departments of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Longbo Zhang
- Departments of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Chao Liu
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Departments of OncologyXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
20
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
21
|
Malik JR, Podany AT, Khan P, Shaffer CL, Siddiqui JA, Baranowska‐Kortylewicz J, Le J, Fletcher CV, Ether SA, Avedissian SN. Chemotherapy in pediatric brain tumor and the challenge of the blood-brain barrier. Cancer Med 2023; 12:21075-21096. [PMID: 37997517 PMCID: PMC10726873 DOI: 10.1002/cam4.6647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pediatric brain tumors (PBT) stand as the leading cause of cancer-related deaths in children. Chemoradiation protocols have improved survival rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the risk of numerous adverse effects that can have long-lasting, detrimental effects on the quality of life for survivors. The pursuit of chemotherapeutics that could obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, including sunitinib, valproic acid, carboplatin, and panobinostat, have shown effectiveness in various malignancies but have not proven effective in treating PBT. The presence of the blood-brain barrier (BBB) plays a pivotal role in maintaining suboptimal concentrations of anti-cancer drugs in the central nervous system (CNS). Ongoing research aims to modulate the integrity of the BBB to attain clinically effective drug concentrations in the CNS. However, current findings on the interaction of exogenous chemical agents with the BBB remain limited and do not provide a comprehensive explanation for the ineffectiveness of established anti-cancer drugs in PBT. METHODS We conducted our search for chemotherapeutic agents associated with the blood-brain barrier (BBB) using the following keywords: Chemotherapy in Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and BBB, and Potential PBT Drugs. We reviewed each relevant article before compiling the information in our manuscript. For the generation of figures, we utilized BioRender software. FOCUS We focused our article search on chemical agents for PBT and subsequently investigated the role of the BBB in this context. Our search criteria included clinical trials, both randomized and non-randomized studies, preclinical research, review articles, and research papers. FINDING Our research suggests that, despite the availability of potent chemotherapeutic agents for several types of cancer, the effectiveness of these chemical agents in treating PBT has not been comprehensively explored. Additionally, there is a scarcity of studies examining the role of the BBB in the suboptimal outcomes of PBT treatment, despite the effectiveness of these drugs for other types of tumors.
Collapse
Affiliation(s)
- Johid Reza Malik
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Anthony T. Podany
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Parvez Khan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher L. Shaffer
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jawed A. Siddiqui
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jennifer Le
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical SciencesSan DiegoCaliforniaUSA
| | - Courtney V. Fletcher
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sadia Afruz Ether
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sean N. Avedissian
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
22
|
Ius T, Lombardi G, Baiano C, Berardinelli J, Romano A, Montemurro N, Cavallo LM, Pasqualetti F, Feletti A. Surgical Management of Adult Brainstem Gliomas: A Systematic Review and Meta-Analysis. Curr Oncol 2023; 30:9772-9785. [PMID: 37999129 PMCID: PMC10670486 DOI: 10.3390/curroncol30110709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The present review aims to investigate the survival and functional outcomes in adult high-grade brainstem gliomas (BGSs) by comparing data from resective surgery and biopsy. MEDLINE, EMBASE and Cochrane Library were screened to conduct a systematic review of the literature, according to the PRISMA statement. Analysis was limited to articles including patients older than 18 years of age and those published from 1990 to September 2022. Case reports, review articles, meta-analyses, abstracts, reports of aggregated data, and reports on multimodal therapy where surgery was not the primary treatment were excluded. The ROBINS-I tool was applied to evaluate the risk of bias. Six studies were ultimately considered for the meta-analysis. The resective group was composed of 213 subjects and the bioptic group comprised 125. The analysis demonstrated a survival benefit in those patients in which an extensive resection was possible (STR HR 0.59 (95% CI 0.42, 0.82)) (GTR HR 0.63 (95% CI 0.43, 0.92)). Although surgical resection is associated with increased survival, the significantly higher complication rate makes it difficult to recommend surgery instead of biopsy for BSGs. Future investigations combining volumetric data and molecular profiles could add important data to better define the proper indication between resection and biopsy.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, 33100 Udine, Italy;
| | - Giuseppe Lombardi
- Department of Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Cinzia Baiano
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.B.); (L.M.C.)
| | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.B.); (L.M.C.)
| | - Andrea Romano
- Department of Neuroradiology, NESMOS S.Andrea Hospital, University Sapienza, 00189 Rome, Italy;
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana, 56123 Pisa, Italy;
| | - Luigi Maria Cavallo
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.B.); (L.M.C.)
| | | | - Alberto Feletti
- Department of Neurosciences, Biomedicine, and Movement Sciences, Institute of Neurosurgery, University of Verona, 37129 Verona, Italy;
| |
Collapse
|
23
|
Østergaard DE, Wahlstedt I, Jørgensen M, Kjærsgaard M, Mathiasen R, Nysom K, Sehested A, Vogelius IR, Maraldo MV. Dose-accumulation analysis of target and organs at risk with clinical outcome after re-irradiation of diffuse midline glioma. Acta Oncol 2023; 62:1526-1530. [PMID: 37733582 DOI: 10.1080/0284186x.2023.2258271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Daniella Elisabet Østergaard
- Section of Radiotherapy, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Isak Wahlstedt
- Section of Radiotherapy, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Jørgensen
- Section of Radiotherapy, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mimi Kjærsgaard
- Department of Paediatric Haematology and Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rene Mathiasen
- Department of Paediatric Haematology and Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karsten Nysom
- Department of Paediatric Haematology and Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Astrid Sehested
- Department of Paediatric Haematology and Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ivan Richter Vogelius
- Section of Radiotherapy, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maja Vestmø Maraldo
- Section of Radiotherapy, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
24
|
Lo Greco MC, Milazzotto R, Liardo RLE, Foti PV, Palmucci S, Basile A, Pergolizzi S, Spatola C. The Role of Reirradiation in Childhood Progressive Diffuse Intrinsic Pontine Glioma (DIPG): An Ongoing Challenge beyond Radiobiology. Brain Sci 2023; 13:1449. [PMID: 37891817 PMCID: PMC10605436 DOI: 10.3390/brainsci13101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the clinical impact of multiple courses of irradiation on pediatric patients with progressive diffuse intrinsic pontine glioma (DIPG), we conducted a retrospective case series on three children treated at our institution from 2018 to 2022. All children were candidates to receive systemic therapy with vinorelbine and nimotuzumab. Radiotherapy was administered to a total dose of 54 Gy. At any disease progression, our local tumor board evaluated the possibility of offering a new course of radiotherapy. To determine feasibility and assess toxicity rates, all children underwent clinical and hematological evaluation both during and after the treatment. To assess efficacy, all children performed contrast-enhanced MRI almost quarterly after the end of the treatment. In all children, following any treatment course, neurological improvement (>80%) was associated with a radiological response (41.7-46%). The longest overall survival (24 months) was observed in the child who underwent three courses of radiotherapy, without experiencing significant side effects. Even though it goes beyond the understanding of conventional radiobiology, first and second reirradiation in pediatric patients with progressive DIPG may represent a feasible and safe approach, capable of increasing overall survival and disease-free survival in selected patients and improving their quality of life.
Collapse
Affiliation(s)
- Maria Chiara Lo Greco
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Roberto Milazzotto
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| | - Rocco Luca Emanuele Liardo
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| | - Pietro Valerio Foti
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Stefano Palmucci
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Antonio Basile
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Corrado Spatola
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| |
Collapse
|
25
|
Liu KX, Haas-Kogan DA, Elhalawani H. Radiotherapy for Primary Pediatric Central Nervous System Malignancies: Current Treatment Paradigms and Future Directions. Pediatr Neurosurg 2023; 58:356-366. [PMID: 37703864 DOI: 10.1159/000533777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Central nervous system tumors are the most common solid tumors in childhood. Treatment paradigms for pediatric central nervous system malignancies depend on elements including tumor histology, age of patient, and stage of disease. Radiotherapy is an important modality of treatment for many pediatric central nervous system malignancies. SUMMARY While radiation contributes to excellent overall survival rates for many patients, radiation also carries significant risks of long-term side effects including neurocognitive decline, hearing loss, growth impairment, neuroendocrine dysfunction, strokes, and secondary malignancies. In recent decades, clinical trials have demonstrated that with better imaging and staging along with more sophisticated radiation planning and treatment set-up verification, smaller treatment volumes can be utilized without decrement in survival. Furthermore, the development of intensity-modulated radiotherapy and proton-beam radiotherapy has greatly improved conformality of radiation. KEY MESSAGES Recent changes in radiation treatment paradigms have decreased risks of short- and long-term toxicity for common histologies and in different age groups. Future studies will continue to develop novel radiation regimens to improve outcomes in aggressive central nervous system tumors, integrate molecular subtypes to tailor radiation treatment, and decrease radiation-associated toxicity for long-term survivors.
Collapse
Affiliation(s)
- Kevin X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
De Pietro R, Zaccaro L, Marampon F, Tini P, De Felice F, Minniti G. The evolving role of reirradiation in the management of recurrent brain tumors. J Neurooncol 2023; 164:271-286. [PMID: 37624529 PMCID: PMC10522742 DOI: 10.1007/s11060-023-04407-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treatment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, given alone or in combination with other focal or systemic therapies, remain a controversial issue.We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects have been critically discussed.
Collapse
Affiliation(s)
- Raffaella De Pietro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucy Zaccaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca De Felice
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy.
- IRCCS Neuromed, Pozzilli (IS), Isernia, Italy.
| |
Collapse
|
27
|
Pan C, Zhang M, Xiao X, Kong L, Wu Y, Zhao X, Sun T, Zhang P, Geng Y, Zuo P, Wang Y, Li X, Gu G, Li T, Wu Z, Zhang J, Zhang L. A multimodal imaging-based classification for pediatric diffuse intrinsic pontine gliomas. Neurosurg Rev 2023; 46:151. [PMID: 37358632 DOI: 10.1007/s10143-023-02068-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
OBJECT Pediatric diffuse intrinsic pontine glioma (DIPG) is a radiologically heterogeneous disease entity, here we aim to establish a multimodal imaging-based radiological classification and evaluate the outcome of different treatment strategies under this classification frame. METHODS This retrospective study included 103 children diagnosed with DIPGs between January 2015 and August 2018 in Beijing Tiantan Hospital (Beijing, China). Multimodal radiological characteristics, including conventional magnetic resonance imaging (MRI), diffuse tensor imaging/diffuse tensor tractography (DTI/DTT), and positron emission tomography (PET) were reviewed to construct the classification. The outcome of different treatment strategies was compared in each DIPG subgroup using Kaplan-Meier method (log-rank test) to determine the optimal treatment for specific DIPGs. RESULTS Four radiological DIPG types were identified: Type A ("homocentric", n=13), Type B ("ventral", n=41), Type C ("eccentric", n=37), and Type D ("dorsal", n=12). Their treatment modalities were grouped as observation (43.7%), cytoreductive surgery (CRS) plus radiotherapy (RT) (24.3%), RT alone (11.7%), and CRS alone (20.4%). CRS+RT mainly fell into type C (29.7%), followed by type B1 (21.9%) and type D (50%). Overall, CRS+RT exhibited a potential survival advantage compared to RT alone, which was more pronounced in specific type, but this did not reach statistical significance, due to limited sample size and unbalanced distribution. CONCLUSION We proposed a multimodality imaging-based radiological classification for pediatric DIPG, which was useful for selecting optimal treatment strategies, especially for identifying candidates who may benefit from CRS plus RT. This classification opened a window into image-guided integrated treatment for pediatric DIPG.
Collapse
Affiliation(s)
- Changcun Pan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Mingxin Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lu Kong
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yuliang Wu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tao Sun
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yibo Geng
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Pengcheng Zuo
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoou Li
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tian Li
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Beijing, 100070, China.
| |
Collapse
|
28
|
Diffuse intrinsic pontine glioma: Insights into oncogenesis and opportunities for targeted therapy. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
29
|
Yao B, Delaidelli A, Vogel H, Sorensen PH. Pediatric Brain Tumours: Lessons from the Immune Microenvironment. Curr Oncol 2023; 30:5024-5046. [PMID: 37232837 PMCID: PMC10217418 DOI: 10.3390/curroncol30050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
In spite of recent advances in tumour molecular subtyping, pediatric brain tumours (PBTs) remain the leading cause of cancer-related deaths in children. While some PBTs are treatable with favourable outcomes, recurrent and metastatic disease for certain types of PBTs remains challenging and is often fatal. Tumour immunotherapy has emerged as a hopeful avenue for the treatment of childhood tumours, and recent immunotherapy efforts have been directed towards PBTs. This strategy has the potential to combat otherwise incurable PBTs, while minimizing off-target effects and long-term sequelae. As the infiltration and activation states of immune cells, including tumour-infiltrating lymphocytes and tumour-associated macrophages, are key to shaping responses towards immunotherapy, this review explores the immune landscape of the developing brain and discusses the tumour immune microenvironments of common PBTs, with hopes of conferring insights that may inform future treatment design.
Collapse
Affiliation(s)
- Betty Yao
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannes Vogel
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (B.Y.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
30
|
Zuo P, Li Y, He C, Wang T, Zheng X, Liu H, Wu Z, Zhang J, Liao X, Zhang L. Anti-tumor efficacy of anti-GD2 CAR NK-92 cells in diffuse intrinsic pontine gliomas. Front Immunol 2023; 14:1145706. [PMID: 37251413 PMCID: PMC10213244 DOI: 10.3389/fimmu.2023.1145706] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Background Diffuse intrinsic pontine gliomas (DIPGs) are rare and fatal pediatric brainstem gliomas with no cure. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells have been proven effective in treating glioblastoma (GBM) in preclinical studies. However, there are no relevant studies on the CAR-NK treatment for DIPG. Our study is the first to evaluate the anti-tumor activity and safety of GD2-CAR NK-92 cells treatment for DIPG. Methods Five patient-derived DIPG cells and primary pontine neural progenitor cell (PPC) were used to access disialoganglioside GD2 expression. Cell killing activity of GD2-CAR NK-92 cells was analyzed by in vitro cytotoxicity assays. Two DIPG patient-derived xenograft models were established to detect the anti-tumor efficacy of GD2-CAR NK-92 cells in vivo. Results Among the five patient-derived DIPG cells, four had high GD2 expression, and one had low GD2 expression. In in vitro assays, GD2-CAR NK-92 cells could effectively kill DIPG cells with high GD2 expression while having limited activity against DIPG cells with low GD2 expression. In in vivo assays, GD2-CAR NK-92 cells could inhibit tumor growth in TT150630 DIPG patient-derived xenograft mice (high GD2 expression) and prolong the overall survival of the mice. However, GD2-CAR NK-92 showed limited anti-tumor activity for TT190326DIPG patient-derived xenograft mice (low GD2 expression). Conclusion Our study demonstrates the potential and safety of GD2-CAR NK-92 cells for adoptive immunotherapy of DIPG. The safety and anti-tumor effect of this therapy need to be further demonstrated in future clinical trials.
Collapse
Affiliation(s)
- Pengcheng Zuo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaopeng Li
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Chi He
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Tantan Wang
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Xu Zheng
- Yufan Biotechnology (Beijing) Co., LTD, Beijing, China
| | - Hao Liu
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| |
Collapse
|
31
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Murdaugh RL, Anastas JN. Applying single cell multi-omic analyses to understand treatment resistance in pediatric high grade glioma. Front Pharmacol 2023; 14:1002296. [PMID: 37205910 PMCID: PMC10191214 DOI: 10.3389/fphar.2023.1002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Despite improvements in cancer patient outcomes seen in the past decade, tumor resistance to therapy remains a major impediment to achieving durable clinical responses. Intratumoral heterogeneity related to genetic, epigenetic, transcriptomic, proteomic, and metabolic differences between individual cancer cells has emerged as a driver of therapeutic resistance. This cell to cell heterogeneity can be assessed using single cell profiling technologies that enable the identification of tumor cell clones that exhibit similar defining features like specific mutations or patterns of DNA methylation. Single cell profiling of tumors before and after treatment can generate new insights into the cancer cell characteristics that confer therapeutic resistance by identifying intrinsically resistant sub-populations that survive treatment and by describing new cellular features that emerge post-treatment due to tumor cell evolution. Integrative, single cell analytical approaches have already proven advantageous in studies characterizing treatment-resistant clones in cancers where pre- and post-treatment patient samples are readily available, such as leukemia. In contrast, little is known about other cancer subtypes like pediatric high grade glioma, a class of heterogeneous, malignant brain tumors in children that rapidly develop resistance to multiple therapeutic modalities, including chemotherapy, immunotherapy, and radiation. Leveraging single cell multi-omic technologies to analyze naïve and therapy-resistant glioma may lead to the discovery of novel strategies to overcome treatment resistance in brain tumors with dismal clinical outcomes. In this review, we explore the potential for single cell multi-omic analyses to reveal mechanisms of glioma resistance to therapy and discuss opportunities to apply these approaches to improve long-term therapeutic response in pediatric high grade glioma and other brain tumors with limited treatment options.
Collapse
Affiliation(s)
- Rebecca L. Murdaugh
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jamie N. Anastas
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
33
|
Zuo P, Li Y, Wang T, Lin X, Wu Z, Zhang J, Liao X, Zhang L. A novel CDK4/6 inhibitor combined with irradiation demonstrates potent anti-tumor efficacy in diffuse midline glioma. J Neurooncol 2023; 163:159-171. [PMID: 37133743 DOI: 10.1007/s11060-023-04323-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Diffuse midline glioma, H3 K27-altered (DMG) is a lethal pediatric brainstem tumor. Despite numerous efforts to improve survival benefits, its prognosis remains poor. This study aimed to design and synthesize a novel CDK4/6 inhibitor YF-PRJ8-1011, which exhibited more potent antitumor activity against a panel of patient-derived DMG tumor cells in vitro and in vivo compared with palbociclib. METHODS Patient-derived DMG cells were used to assess the antitumor efficacy of YF-PRJ8-1011 in vitro. The liquid chromatography tandem-mass spectrometry method was used to measure the activity of YF-PRJ8-1011 passing through the blood-brain barrier. DMG patient-derived xenograft models were established to detect the antitumor efficacy of YF-PRJ8-1011. RESULTS The results showed that YF-PRJ8-1011 could inhibit the growth of DMG cells both in vitro and in vivo. YF-PRJ8-1011 could well penetrate the blood-brain barrier. It also significantly inhibited the growth of DMG tumors and prolonged the overall survival of mice compared with vehicle or palbociclib. Most notably, it exerted potent antitumor efficacy in DMG in vitro and in vivo compared with palbociclib. In addition, we also found that YF-PRJ8-1011 combined with radiotherapy also showed more significant inhibition of DMG xenograft tumor growth than radiotherapy alone. CONCLUSION Collectively, YF-PRJ8-1011 is a novel, safe, and selective CDK4/6 inhibitor for DMG treatment.
Collapse
Affiliation(s)
- Pengcheng Zuo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaopeng Li
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Tantan Wang
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, 519000, Guangdong, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| |
Collapse
|
34
|
Lyu Y, Guo Y, Okeoma CM, Yan Z, Hu N, Li Z, Zhou S, Zhao X, Li J, Wang X. Engineered extracellular vesicles (EVs): Promising diagnostic/therapeutic tools for pediatric high-grade glioma. Biomed Pharmacother 2023; 163:114630. [PMID: 37094548 DOI: 10.1016/j.biopha.2023.114630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly malignant brain tumor that mainly occurs in children with extremely low overall survival. Traditional therapeutic strategies, such as surgical resection and chemotherapy, are not feasible mostly due to the special location and highly diffused features. Radiotherapy turns out to be the standard treatment method but with limited benefits of overall survival. A broad search for novel and targeted therapies is in the progress of both preclinical investigations and clinical trials. Extracellular vesicles (EVs) emerged as a promising diagnostic and therapeutic candidate due to their distinct biocompatibility, excellent cargo-loading-delivery capacity, high biological barrier penetration efficiency, and ease of modification. The utilization of EVs in various diseases as biomarker diagnoses or therapeutic agents is revolutionizing modern medical research and practice. In this review, we will briefly talk about the research development of DIPG, and present a detailed description of EVs in medical applications, with a discussion on the application of engineered peptides on EVs. The possibility of applying EVs as a diagnostic tool and drug delivery system in DIPG is also discussed.
Collapse
Affiliation(s)
- Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yupei Guo
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Zhaoyue Yan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Nan Hu
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zian Li
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shaolong Zhou
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xinjun Wang
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
35
|
Hart E', Bianco J, Bruin MAC, Derieppe M, Besse HC, Berkhout K, Kie LACJ, Su Y, Hoving EW, Huitema ADR, Ries MG, van Vuurden DG. Radiosensitisation by olaparib through focused ultrasound delivery in a diffuse midline glioma model. J Control Release 2023; 357:287-298. [PMID: 37019285 DOI: 10.1016/j.jconrel.2023.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND PURPOSE Diffuse midline glioma H3K27-altered (DMG) is an aggressive, inoperable, predominantly paediatric brain tumour. Treatment strategies are limited, resulting in a median survival of only 11 months. Currently, radiotherapy (RT), often combined with temozolomide, is considered the standard of care but remains palliative, highlighting the urgency for new therapies. Radiosensitisation by olaparib, an inhibitor of PARP1 and subsequently PAR-synthesis, is a promising treatment option. We assessed whether PARP1 inhibition enhances radiosensitivity in vitro and in vivo following focused ultrasound mediated blood-brain barrier opening (FUS-BBBO). METHODS Effects of PARP1 inhibition were evaluated in vitro using viability, clonogenic, and neurosphere assays. In vivo olaparib extravasation and pharmacokinetic profiling following FUS-BBBO was measured by LC-MS/MS. Survival benefit of FUS-BBBO combined with olaparib and RT was assessed using a patient-derived xenograft (PDX) DMG mouse model. RESULTS Treatment with olaparib in combination with radiation delayed tumour cell proliferation in vitro through the reduction of PAR. Prolonged exposure of low olaparib concentration was more efficient in delaying cell growth than short exposure of high concentration. FUS-BBBO increased olaparib bioavailability in the pons by 5.36-fold without observable adverse effects. A Cmax of 54.09 μM in blood and 1.39 μM in the pontine region was achieved following administration of 100 mg/kg olaparib. Although RT combined with FUS-BBBO mediated olaparib extravasation delayed local tumour growth, survival benefits were not observed in an in vivo DMG PDX model. CONCLUSIONS Olaparib effectively radiosensitises DMG cells in vitro and reduces primary tumour growth in vivo when combined with RT. Further studies are needed to investigate the therapeutic benefit of olaparib in suitable preclinical PDX models.
Collapse
Affiliation(s)
- E 't Hart
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - J Bianco
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| | - M A C Bruin
- Department of Pharmacy and Pharmacology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - M Derieppe
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - H C Besse
- Center for Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - K Berkhout
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - L A Chin Joe Kie
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Y Su
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - E W Hoving
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - A D R Huitema
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Department of Pharmacy and Pharmacology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - M G Ries
- Center for Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - D G van Vuurden
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| |
Collapse
|
36
|
Kim HJ, Suh CO. Radiotherapy for Diffuse Intrinsic Pontine Glioma: Insufficient but Indispensable. Brain Tumor Res Treat 2023; 11:79-85. [PMID: 37151149 PMCID: PMC10172015 DOI: 10.14791/btrt.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 05/09/2023] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) account for 10%-20% of all central nervous system tumors in children and are the leading cause of death in children with brain tumors. Although many clinical trials have been conducted over the past decades, the survival outcome has remained unchanged. Over 90% of children die within 2 years of the diagnosis, and radiotherapy remains the standard treatment to date. To improve the prognosis, hyperfractionated and hypofractionated radiotherapy and/or addition of radiosensitizers have been investigated. However, none of the radiotherapy approaches have shown a survival benefit, and the overall survival of patients with DIPG is approximately 11 months. Here, we comprehensively review the management of DIPG with focus on radiotherapy.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Radiation Oncology, Gachon University Gil Hospital, Gachon University College of Medicine, Incheon, Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
37
|
Towards Standardisation of a Diffuse Midline Glioma Patient-Derived Xenograft Mouse Model Based on Suspension Matrices for Preclinical Research. Biomedicines 2023; 11:biomedicines11020527. [PMID: 36831063 PMCID: PMC9952880 DOI: 10.3390/biomedicines11020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Diffuse midline glioma (DMG) is an aggressive brain tumour with high mortality and limited clinical therapeutic options. Although in vitro research has shown the effectiveness of medication, successful translation to the clinic remains elusive. A literature search highlighted the high variability and lack of standardisation in protocols applied for establishing the commonly used HSJD-DIPG-007 patient-derived xenograft (PDX) model, based on animal host, injection location, number of cells inoculated, volume, and suspension matrices. This study evaluated the HSJD-DIPG-007 PDX model with respect to its ability to mimic human disease progression for therapeutic testing in vivo. The mice received intracranial injections of HSJD-DIPG-007 cells suspended in either PBS or Matrigel. Survival, tumour growth, and metastases were assessed to evaluate differences in the suspension matrix used. After cell implantation, no severe side effects were observed. Additionally, no differences were detected in terms of survival or tumour growth between the two suspension groups. We observed delayed metastases in the Matrigel group, with a significant difference compared to mice with PBS-suspended cells. In conclusion, using Matrigel as a suspension matrix is a reliable method for establishing a DMG PDX mouse model, with delayed metastases formation and is a step forward to obtaining a standardised in vivo PDX model.
Collapse
|
38
|
Wagner MW, Namdar K, Napoleone M, Hainc N, Amirabadi A, Fonseca A, Laughlin S, Shroff MM, Bouffet E, Hawkins C, Khalvati F, Bartels U, Ertl-Wagner BB. Radiomic Features Based on MRI Predict Progression-Free Survival in Pediatric Diffuse Midline Glioma/Diffuse Intrinsic Pontine Glioma. Can Assoc Radiol J 2023; 74:119-126. [PMID: 35768942 DOI: 10.1177/08465371221109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose: Biopsy-based assessment of H3 K27 M status helps in predicting survival, but biopsy is usually limited to unusual presentations and clinical trials. We aimed to evaluate whether radiomics can serve as prognostic marker to stratify diffuse intrinsic pontine glioma (DIPG) subsets. Methods: In this retrospective study, diagnostic brain MRIs of children with DIPG were analyzed. Radiomic features were extracted from tumor segmentations and data were split into training/testing sets (80:20). A conditional survival forest model was applied to predict progression-free survival (PFS) using training data. The trained model was validated on the test data, and concordances were calculated for PFS. Experiments were repeated 100 times using randomized versions of the respective percentage of the training/test data. Results: A total of 89 patients were identified (48 females, 53.9%). Median age at time of diagnosis was 6.64 years (range: 1-16.9 years) and median PFS was 8 months (range: 1-84 months). Molecular data were available for 26 patients (29.2%) (1 wild type, 3 K27M-H3.1, 22 K27M-H3.3). Radiomic features of FLAIR and nonenhanced T1-weighted sequences were predictive of PFS. The best FLAIR radiomics model yielded a concordance of .87 [95% CI: .86-.88] at 4 months PFS. The best T1-weighted radiomics model yielded a concordance of .82 [95% CI: .8-.84] at 4 months PFS. The best combined FLAIR + T1-weighted radiomics model yielded a concordance of .74 [95% CI: .71-.77] at 3 months PFS. The predominant predictive radiomic feature matrix was gray-level size-zone. Conclusion: MRI-based radiomics may predict progression-free survival in pediatric diffuse midline glioma/diffuse intrinsic pontine glioma.
Collapse
Affiliation(s)
- Matthias W Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, 7979The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, 7938University of Toronto, Canada
| | - Khashayar Namdar
- Department of Diagnostic Imaging, Division of Neuroradiology, 7979The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, 7938University of Toronto, Canada
| | - Marc Napoleone
- Department of Diagnostic Imaging, Division of Neuroradiology, 7979The Hospital for Sick Children, Toronto, Canada
| | - Nicolin Hainc
- Nicolin Hainc:Department of Neuroradiology, Clinical Neuroscience Center, 7979University Hospital Zurich,University of Zurich, Switzerland
| | - Afsaneh Amirabadi
- Department of Diagnostic Imaging, Division of Neuroradiology, 7979The Hospital for Sick Children, Toronto, Canada
| | - Adriana Fonseca
- Department of Neurooncology, 7979The Hospital for Sick Children, Toronto, Canada
| | - Suzanne Laughlin
- Department of Diagnostic Imaging, Division of Neuroradiology, 7979The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, 7938University of Toronto, Canada
| | - Manohar M Shroff
- Department of Diagnostic Imaging, Division of Neuroradiology, 7979The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, 7938University of Toronto, Canada
| | - Eric Bouffet
- Department of Neurooncology, 7979The Hospital for Sick Children, Toronto, Canada
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, Division of Pathology, 7979The Hospital for Sick Children, Toronto, Canada
| | - Farzad Khalvati
- Department of Diagnostic Imaging, Division of Neuroradiology, 7979The Hospital for Sick Children, Toronto, Canada
| | - Ute Bartels
- Department of Neurooncology, 7979The Hospital for Sick Children, Toronto, Canada
| | - Birgit B Ertl-Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, 7979The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, 7938University of Toronto, Canada
| |
Collapse
|
39
|
11C-methionine PET imaging characteristics in children with diffuse intrinsic pontine gliomas and relationship to survival and H3 K27M mutation status. Eur J Nucl Med Mol Imaging 2023; 50:1709-1719. [PMID: 36697961 DOI: 10.1007/s00259-022-06105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aimed to describe 11C-methionine (11C-MET) PET imaging characteristics in patients with paediatric diffuse intrinsic pontine glioma (DIPG) and correlate them with survival and H3 K27M mutation status. METHODS We retrospectively analysed 98 children newly diagnosed with DIPG who underwent 11C-MET PET. PET imaging characteristics evaluated included uptake intensity, uniformity, metabolic tumour volume (MTV), and total lesion methionine uptake (TLMU). The maximum, mean, and peak of the tumour-to-background ratio (TBR), calculated as the corresponding standardised uptake values (SUV) divided by the mean reference value, were also recorded. The associations between the PET imaging characteristics and clinical outcomes in terms of progression-free survival (PFS) and overall survival (OS) and H3 K27M mutation status were assessed, respectively. RESULTS In univariate analysis, imaging characteristics significantly associated with shorter PFS and OS included a higher uniformity grade, higher TBRs, larger MTV, and higher TLMU. In multivariate analysis, larger MTV at diagnosis, shorter symptom duration, and no treatment were significantly correlated with shorter PFS and OS. The PET imaging features were not correlated with H3 K27M mutation status. CONCLUSION Although several imaging features were significantly associated with PFS and OS, only MTV, indicating the size of the active tumour, was identified as a strong independent prognostic factor.
Collapse
|
40
|
Vallero SG, Bertero L, Morana G, Sciortino P, Bertin D, Mussano A, Ricci FS, Peretta P, Fagioli F. Pediatric diffuse midline glioma H3K27- altered: A complex clinical and biological landscape behind a neatly defined tumor type. Front Oncol 2023; 12:1082062. [PMID: 36727064 PMCID: PMC9885151 DOI: 10.3389/fonc.2022.1082062] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
The 2021 World Health Organization Classification of Tumors of the Central Nervous System, Fifth Edition (WHO-CNS5), has strengthened the concept of tumor grade as a combination of histologic features and molecular alterations. The WHO-CNS5 tumor type "Diffuse midline glioma, H3K27-altered," classified within the family of "Pediatric-type diffuse high-grade gliomas," incarnates an ideally perfect integrated diagnosis in which location, histology, and genetics clearly define a specific tumor entity. It tries to evenly characterize a group of neoplasms that occur primarily in children and midline structures and that have a dismal prognosis. Such a well-defined pathological categorization has strongly influenced the pediatric oncology community, leading to the uniform treatment of most cases of H3K27-altered diffuse midline gliomas (DMG), based on the simplification that the mutation overrides the histological, radiological, and clinical characteristics of such tumors. Indeed, multiple studies have described pediatric H3K27-altered DMG as incurable tumors. However, in biology and clinical practice, exceptions are frequent and complexity is the rule. First of all, H3K27 mutations have also been found in non-diffuse gliomas. On the other hand, a minority of DMGs are H3K27 wild-type but have a similarly poor prognosis. Furthermore, adult-type tumors may rarely occur in children, and differences in prognosis have emerged between adult and pediatric H3K27-altered DMGs. As well, tumor location can determine differences in the outcome: patients with thalamic and spinal DMG have significantly better survival. Finally, other concomitant molecular alterations in H3K27 gliomas have been shown to influence prognosis. So, when such additional mutations are found, which one should we focus on in order to make the correct clinical decision? Our review of the current literature on pediatric diffuse midline H3K27-altered DMG tries to address such questions. Indeed, H3K27 status has become a fundamental supplement to the histological grading of pediatric gliomas; however, it might not be sufficient alone to exhaustively define the complex biological behavior of DMG in children and might not represent an indication for a unique treatment strategy across all patients, irrespective of age, additional molecular alterations, and tumor location.
Collapse
Affiliation(s)
- Stefano Gabriele Vallero
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy,*Correspondence: Stefano Gabriele Vallero,
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Morana
- Neuroradiology Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Paola Sciortino
- Department of Neuroradiology, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Daniele Bertin
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Anna Mussano
- Radiotherapy Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Federica Silvia Ricci
- Child and Adolescent Neuropsychiatry Division, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Paola Peretta
- Pediatric Neurosurgery Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Franca Fagioli
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy,Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
41
|
Dalle Ore C, Coleman C, Gupta N, Mueller S. Advances and Clinical Trials Update in the Treatment of Diffuse Intrinsic Pontine Gliomas. Pediatr Neurosurg 2023; 58:259-266. [PMID: 36642062 PMCID: PMC10664325 DOI: 10.1159/000529099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPGs) are high-grade gliomas (HGGs) that occur primarily in children, and represent a leading cause of death in pediatric patients with brain tumors with a median overall survival of only 8-11 months. SUMMARY While these lesions were previously thought to behave similarly to adult HGG, emerging data have demonstrated that DIPG is a biologically distinct entity from adult HGG frequently driven by mutations in the histone genes H3.3 and H3.1 not found in adult glioma. While biopsy of DIPG was historically felt to confer unacceptable risk of morbidity and mortality, multiple studies have demonstrated that stereotactic biopsy of DIPG is safe, allowing not only for improved understanding of DIPG but also forming the basis for protocols for personalized medicine in DIPG. However, current options for personalized medicine in DIPG are limited by the lack of efficacious targeted therapies for the mutations commonly found in DIPG. Multiple treatment modalities including targeted therapies, immunotherapy, convection-enhanced delivery, and focused ultrasound are in various stages of investigation. KEY MESSAGE Increasing frequency of biopsy for DIPG has identified distinct driving mutations that may serve as therapeutic targets. Novel treatment modalities are under investigation.
Collapse
Affiliation(s)
- Cecilia Dalle Ore
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Christina Coleman
- Division of Hematology/Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Québec, Canada
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Sabine Mueller
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
42
|
Kim HJ, Lee JH, Kim Y, Lim DH, Park SH, Ahn SD, Kim IA, Im JH, Chung JW, Kim JY, Kim IH, Yoon HI, Suh CO. Suggestions for Escaping the Dark Ages for Pediatric Diffuse Intrinsic Pontine Glioma Treated with Radiotherapy: Analysis of Prognostic Factors from the National Multicenter Study. Cancer Res Treat 2023; 55:41-49. [PMID: 35255651 PMCID: PMC9873330 DOI: 10.4143/crt.2021.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE This multicenter retrospective study aimed to investigate clinical, radiologic, and treatment-related factors affecting survival in patients with newly diagnosed diffuse intrinsic pontine glioma (DIPG) treated with radiotherapy. MATERIALS AND METHODS Patients aged <30 years who underwent radiotherapy as an initial treatment for DIPG between 2000 and 2018 were included; patients who did not undergo magnetic resonance imaging at diagnosis and those with pathologically diagnosed grade I glioma were excluded. We examined medical records of 162 patients collected from 10 participating centers in Korea. The patients' clinical, radiological, molecular, and histopathologic characteristics, and treatment responses were evaluated to identify the prognosticators for DIPG and estimate survival outcomes. RESULTS The median follow-up period was 10.8 months (interquartile range, 7.5 to 18.1). The 1- and 2-year overall survival (OS) rates were 53.5% and 19.0%, respectively, with a median OS of 13.1 months. Long-term survival rate (≥ 2 years) was 16.7%, and median OS was 43.6 months. Age (< 10 years), poor performance status, treatment before 2010, and post-radiotherapy necrosis were independently associated with poor OS in multivariate analysis. In patients with increased post-radiotherapy necrosis, the median OS estimates were 13.3 months and 11.4 months with and without bevacizumab, respectively (p=0.138). CONCLUSION Therapeutic strategy for DIPG has remained unchanged over time, and the associated prognosis remains poor. Our findings suggest that appropriate efforts are needed to reduce the occurrence of post-radiotherapy necrosis. Further well-designed clinical trials are recommended to improve the poor prognosis observed in DIPG patients.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Radiation Oncology, Gachon University Gil Hospital, Incheon,
Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Youngkyong Kim
- Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul,
Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Shin-Hyung Park
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Seung Do Ahn
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Jung Ho Im
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam,
Korea
| | - Jae Wook Chung
- Department of Radiation Oncology, Chonnam National University Medical School, Gwangju,
Korea
| | - Joo-Young Kim
- Proton Therapy Center, National Cancer Center, Goyang,
Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul,
Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam,
Korea
| |
Collapse
|
43
|
Zhang M, Xiao X, Gu G, Zhang P, Wu W, Wang Y, Pan C, Wang L, Li H, Wu Z, Zhang J, Zhang L. Role of neuronavigation in the surgical management of brainstem gliomas. Front Oncol 2023; 13:1159230. [PMID: 37205194 PMCID: PMC10185888 DOI: 10.3389/fonc.2023.1159230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 05/21/2023] Open
Abstract
Objective NeuroNavigation (NN) is a widely used intraoperative imaging guidance technique in neurosurgical operations; however, its value in brainstem glioma (BSG) surgery is inadequately reported and lacks objective proof. This study aims to investigate the applicational value of NN in BSG surgery. Method A retrospective analysis was performed on 155 patients with brainstem gliomas who received craniotomy from May 2019 to January 2022 at Beijing Tiantan Hospital. Eighty-four (54.2%) patients received surgery with NN. Preoperative and postoperative cranial nerve dysfunctions, muscle strength, and Karnofsky (KPS) were evaluated. Patients' radiological features, tumor volume, and extent of resection (EOR) were obtained from conventional MRI data. Patients' follow-up data were also collected. Comparative analyses on these variables were made between the NN group and the non-NN group. Result The usage of NN is independently related to a higher EOR in diffuse intrinsic pontine glioma (DIPG) (p=0.005) and non-DIPG group (p<0.001). It was observed that fewer patients in the NN group suffered from deterioration of KPS (p=0.032) and cranial nerve function (p=0.017) in non-DIPG group, and deterioration of muscle strength (p=0.040) and cranial nerve function (p=0.038) in DIPG group. Moreover, the usage of NN is an independent protective factor for the deterioration of KPS (p=0.04) and cranial nerve function (p=0.026) in non-DIPG patients and the deterioration of muscle strength (p=0.009) in DIPG patients. Furthermore, higher EOR subgroups were found to be independently related to better prognoses in DIPG patients (p=0.008). Conclusion NN has significant value in BSG surgery. With the assistance of NN, BSG surgery achieved higher EOR without deteriorating patients' functions. In addition, DIPG patients may benefit from the appropriate increase of EOR.
Collapse
Affiliation(s)
- Mingxin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liwei Zhang,
| |
Collapse
|
44
|
Nagase T, Ishida J, Sasada S, Sasaki T, Otani Y, Yabuno S, Fujii K, Uneda A, Yasuhara T, Date I. IDH-mutant Astrocytoma Arising in the Brainstem with Symptom Improvement by Foramen Magnum Decompression: A Case Report. NMC Case Rep J 2023; 10:75-80. [PMID: 37065877 PMCID: PMC10101703 DOI: 10.2176/jns-nmc.2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/10/2023] [Indexed: 04/18/2023] Open
Abstract
Diffusely infiltrative midline gliomas are known to have a poor prognosis. The standard treatment for typical diffuse midline glioma in the pons is local radiotherapy as surgical resection is inappropriate. This case reports a brainstem glioma in which stereotactic biopsy and foramen magnum decompression were concomitantly performed to confirm the diagnosis and improve symptoms. A 23-year-old woman was referred to our department with a chief complaint of headache for six months. Magnetic resonance imaging (MRI) showed diffuse T2 hyperintense swelling of the brainstem with the pons as the main locus. Enlargement of the lateral ventricles was observed because of cerebrospinal fluid obstruction out of the posterior fossa. This was atypical for a diffuse midline glioma in terms of the longstanding slow progression of symptoms and patient age. Stereotactic biopsy was performed for diagnosis, and foramen magnum decompression (FMD) was concomitantly performed to treat the obstructive hydrocephalus. The histological diagnosis was astrocytoma, IDH-mutant. Post-surgery, the patient's symptoms were relieved, and she was discharged on the fifth day after surgery. The hydrocephalus was resolved, and the patient returned to normal life without any symptoms. The tumor size follow-up with MRI demonstrated no marked change for 12 months. Even though diffuse midline glioma is considered to have a poor prognosis, clinicians should contemplate if it is atypical. In atypical cases like the one described herein, surgical treatment may contribute to pathological diagnosis and symptom improvement.
Collapse
Affiliation(s)
- Takayuki Nagase
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| |
Collapse
|
45
|
Panigrahy A, Jakacki RI, Pollack IF, Ceschin R, Okada H, Nelson MD, Kohanbash G, Dhall G, Bluml S. Magnetic Resonance Spectroscopy Metabolites as Biomarkers of Disease Status in Pediatric Diffuse Intrinsic Pontine Gliomas (DIPG) Treated with Glioma-Associated Antigen Peptide Vaccines. Cancers (Basel) 2022; 14:5995. [PMID: 36497477 PMCID: PMC9739009 DOI: 10.3390/cancers14235995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Diffuse intrinsic pontine gliomas (DIPG) are highly aggressive tumors with no currently available curative therapy. This study evaluated whether measurements of in vivo cell metabolites using magnetic resonance spectroscopy (MRS) may serve as biomarkers of response to therapy, including progression. METHODS Single-voxel MR spectra were serially acquired in two cohorts of patients with DIPG treated with radiation therapy (RT) with or without concurrent chemotherapy and prior to progression: 14 participants were enrolled in a clinical trial of adjuvant glioma-associated antigen peptide vaccines and 32 patients were enrolled who did not receive adjuvant vaccine therapy. Spearman correlations measured overall survival associations with absolute metabolite concentrations of myo-inositol (mI), creatine (Cr), and n-acetyl-aspartate (NAA) and their ratios relative to choline (Cho) during three specified time periods following completion of RT. Linear mixed-effects regression models evaluated the longitudinal associations between metabolite ratios and time from death (terminal decline). RESULTS Overall survival was not associated with metabolite ratios obtained shortly after RT (1.9-3.8 months post-diagnosis) in either cohort. In the vaccine cohort, an elevated mI/Cho ratio after 2-3 doses (3.9-5.2 months post-diagnosis) was associated with longer survival (rho = 0.92, 95% CI 0.67-0.98). Scans performed up to 6 months before death showed a terminal decline in the mI/Cho ratio, with an average of 0.37 ratio/month in vaccine patients (95% CI 0.11-0.63) and 0.26 (0.04-0.48) in the non-vaccine cohort. CONCLUSION Higher mI/Cho ratios following RT, consistent with less proliferate tumors and decreased cell turnover, were associated with longer survival, suggesting that this ratio can serve as a biomarker of prognosis following RT. This finding was seen in both cohorts, although the association with OS was detected earlier in the vaccine cohort. Increased mI/Cho (possibly reflecting immune-effector cell influx into the tumor as a mechanism of tumor response) requires further study.
Collapse
Affiliation(s)
- Ashok Panigrahy
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Regina I. Jakacki
- Department of Hematology Oncology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 9, Pittsburgh, PA 15224, USA
| | - Ian F. Pollack
- Department of Neurosurgery, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Rafael Ceschin
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Hideho Okada
- Department of Neurological Surgery, Box 0112 505 Parnassus Ave, University of California San Francisco, Room M779, San Francisco, CA 94143, USA
- Cancer Immunotherapy Program, Helen Diller Family Comprehensive Cancer Center, Box 0981 UCSF, San Francisco, CA 94143-0981, USA
| | - Marvin D. Nelson
- Department of Radiology, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, 1441 Eastlake Ave # 2315, Los Angeles, CA 90089, USA
| | - Gary Kohanbash
- Department of Neurosurgery, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Girish Dhall
- Department of Pediatrics, University of Alabama at Birmingham, 1600 7 th Ave S, Birmingham, AL 35233, USA
| | - Stefan Bluml
- Keck School of Medicine, University of Southern California, 1441 Eastlake Ave # 2315, Los Angeles, CA 90089, USA
| |
Collapse
|
46
|
Coleman C, Chen K, Lu A, Seashore E, Stoller S, Davis T, Braunstein S, Gupta N, Mueller S. Interdisciplinary care of children with diffuse midline glioma. Neoplasia 2022; 35:100851. [PMID: 36410226 PMCID: PMC9676429 DOI: 10.1016/j.neo.2022.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022] Open
Abstract
Diffuse Midline Glioma (DMG) which includes Diffuse Intrinsic Pontine Glioma (DIPG) is an infiltrative tumor of the midline structures of the central nervous system that demonstrates an aggressive pattern of growth and has no known curative treatment. As these tumors progress, children experience ongoing neurological decline including inability to ambulate, swallow and communicate effectively. We propose that optimal care for patients with DMG should involve a specialized team experienced in caring for the multifaceted needs of these patients and their families. Herein we review the roles and evidence to support early involvement of a specialized interdisciplinary team and outline our views on best practices for these challenging tumors.
Collapse
Affiliation(s)
- Christina Coleman
- Department of Pediatrics, University of California, San Francisco, United States
| | - Katherine Chen
- Department of Radiation Oncology, University of California, San Francisco, United States
| | - Alex Lu
- Department of Neurological Surgery, University of California, San Francisco, United States
| | - Elizabeth Seashore
- Department of Pediatrics, University of California, San Francisco, United States
| | - Schuyler Stoller
- Department of Neurology, University of California, San Francisco, United States
| | - Taron Davis
- Department of Orthopedic Surgery, University of California, San Francisco, United States
| | - Steve Braunstein
- Department of Radiation Oncology, University of California, San Francisco, United States
| | - Nalin Gupta
- Department of Pediatrics, University of California, San Francisco, United States,Department of Neurological Surgery, University of California, San Francisco, United States
| | - Sabine Mueller
- Department of Pediatrics, University of California, San Francisco, United States,Department of Neurological Surgery, University of California, San Francisco, United States,Department of Neurology, University of California, San Francisco, United States,Department of Pediatrics, University of Zurich, Zurich, Switzerland,Corresponding author at: Departments of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, Sandler Neuroscience Building, 675 Nelson Rising Lane, San Francisco, CA 94148, United States.
| |
Collapse
|
47
|
Rhodes A, Martin S, Toledo-Tamula MA, Loucas C, Glod J, Warren KE, Wolters PL. The neuropsychological profile of children with Diffuse Intrinsic Pontine Glioma (DIPG) before and after radiation therapy: A prospective longitudinal study. Child Neuropsychol 2022:1-25. [DOI: 10.1080/09297049.2022.2144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Amanda Rhodes
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mary Anne Toledo-Tamula
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caitlyn Loucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Katherine E. Warren
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatric Neuro-Oncology, Dana Farber Cancer Institute/Boston Children’s Hospital, Boston, MA, USA
| | - Pamela L. Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
48
|
Del Baldo G, Carai A, Abbas R, Cacchione A, Vinci M, Di Ruscio V, Colafati GS, Rossi S, Diomedi Camassei F, Maestro N, Temelso S, Pericoli G, De Billy E, Giovannoni I, Carboni A, Rinelli M, Agolini E, Mackay A, Jones C, Chiesa S, Balducci M, Locatelli F, Mastronuzzi A. Targeted therapy for pediatric diffuse intrinsic pontine glioma: a single-center experience. Ther Adv Med Oncol 2022; 14:17588359221113693. [PMID: 36090803 PMCID: PMC9459464 DOI: 10.1177/17588359221113693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Diffuse intrinsic pontine glioma (DIPG) is a fatal disease with a median
overall survival (OS) of less than 12 months after diagnosis. Radiotherapy
(RT) still remains the mainstay treatment. Several other therapeutic
strategies have been attempted in the last years without a significant
effect on OS. Although radiological imaging is the gold standard for DIPG
diagnosis, the urgent need to improve the survival has led to the
reconsideration of biopsy with the aim to better understand the molecular
profile of DIPG and support personalized treatment. Methods: In this study, we present a single-center experience in treating DIPG
patients at disease progression combining targeted therapies with standard
of care. Biopsy was proposed to all patients at diagnosis or disease
progression. First-line treatment included RT and nimotuzumab/vinorelbine or
temozolomide. Immunohistochemistry-targeted research included study of
mTOR/p-mTOR pathway and BRAFv600E. Molecular analyses
included polymerase chain reaction, followed by Sanger sequences and/or
next-generation sequencing. Results: Based on the molecular profile, targeted therapy was administered in 9 out of
25 patients, while the remaining 16 patients were treated with standard of
care. Personalized treatment included inhibition of the PI3K/AKT/mTOR
pathway (5/9), PI3K/AKT/mTOR pathway and BRAFv600E (1/9),
ACVR1 (2/9) and PDGFRA (1/9); no
severe side effects were reported during treatment. Response to treatment
was evaluated according to Response Assessment in Pediatric Neuro-Oncology
criteria, and the overall response rate within the cohort was 66%. Patients
treated with targeted therapies were compared with the control cohort of 16
patients. Clinical and pathological characteristics of the two cohorts were
homogeneous. Median OS in the personalized treatment and control cohort was
20.26 and 14.18 months, respectively (p = 0.032). In our
experience, the treatment associated with the best OS was everolimus. Conclusion: Despite the small simple size of our study, our data suggest a prognostic
advantage and a safe profile of targeted therapies in DIPG patients, and we
strongly advocate to reconsider the role of biopsy for these patients.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Rachid Abbas
- CESP, INSERM, Université Paris Sud, Villejuif, France
| | - Antonella Cacchione
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mara Vinci
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Di Ruscio
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Nicola Maestro
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Temelso
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Giulia Pericoli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuel De Billy
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Carboni
- Oncological Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Silvia Chiesa
- Department of Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Mario Balducci
- Department of Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Life Sciences and Public Health, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
49
|
A microRNA Prognostic Signature in Patients with Diffuse Intrinsic Pontine Gliomas through Non-Invasive Liquid Biopsy. Cancers (Basel) 2022; 14:cancers14174307. [PMID: 36077842 PMCID: PMC9454461 DOI: 10.3390/cancers14174307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Diffuse intrinsic pontine glioma (DIPG) is a neuro-radiologically defined tumor of the brainstem, primarily affecting children, with most diagnoses occurring between 5 and 7 years of age. Surgical removal in DIPGs is not feasible. Subsequent tumor progression is almost universal and no biomarker for predicting the course of the disease has entered into clinical practice so far. Under these premises, it is essential to develop reliable biomarkers that are able to improve outcomes and stratify patients using non-invasive methods to determine tumor profiles. We designed a study assessing circulating miRNA expression by a high-throughput platform and divided patients into training and validation phases in order to disclose a potential signature with clinical impact. Our results for the first time have proved the usefulness of blood-circulating nucleic acids as powerful, easy-to-assay molecular markers of disease status in DIPG. Abstract Diffuse midline gliomas (DMGs) originate in the thalamus, brainstem, cerebellum and spine. This entity includes tumors that infiltrate the pons, called diffuse intrinsic pontine gliomas (DIPGs), with a rapid onset and devastating neurological symptoms. Since surgical removal in DIPGs is not feasible, the purpose of this study was to profile circulating miRNA expression in DIPG patients in an effort to identify a non-invasive prognostic signature with clinical impact. Using a high-throughput platform, miRNA expression was profiled in serum samples collected at the time of MRI diagnosis and prior to radiation and/or systemic therapy from 47 patients enrolled in clinical studies, combining nimotuzumab and vinorelbine with concomitant radiation. With progression-free survival as the primary endpoint, a semi-supervised learning approach was used to identify a signature that was also tested taking overall survival as the clinical endpoint. A signature comprising 13 circulating miRNAs was identified in the training set (n = 23) as being able to stratify patients by risk of disease progression (log-rank p = 0.00014; HR = 7.99, 95% CI 2.38–26.87). When challenged in a separate validation set (n = 24), it confirmed its ability to predict progression (log-rank p = 0.00026; HR = 5.51, 95% CI 2.03–14.9). The value of our signature was also confirmed when overall survival was considered (log-rank p = 0.0021, HR = 4.12, 95% CI 1.57–10.8). We have identified and validated a prognostic marker based on the expression of 13 circulating miRNAs that can shed light on a patient’s risk of progression. This is the first demonstration of the usefulness of nucleic acids circulating in the blood as powerful, easy-to-assay molecular markers of disease status in DIPG. This study provides Class II evidence that a signature based on 13 circulating miRNAs is associated with the risk of disease progression.
Collapse
|
50
|
Tomita Y, Shimazu Y, Somasundaram A, Tanaka Y, Takata N, Ishi Y, Gadd S, Hashizume R, Angione A, Pinero G, Hambardzumyan D, Brat DJ, Hoeman CM, Becher OJ. A novel mouse model of diffuse midline glioma initiated in neonatal oligodendrocyte progenitor cells highlights cell-of-origin dependent effects of H3K27M. Glia 2022; 70:1681-1698. [PMID: 35524725 PMCID: PMC9546478 DOI: 10.1002/glia.24189] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/13/2022]
Abstract
Diffuse midline glioma (DMG) is a type of lethal brain tumor that develops mainly in children. The majority of DMG harbor the K27M mutation in histone H3. Oligodendrocyte progenitor cells (OPCs) in the brainstem are candidate cells-of-origin for DMG, yet there is no genetically engineered mouse model of DMG initiated in OPCs. Here, we used the RCAS/Tv-a avian retroviral system to generate DMG in Olig2-expressing progenitors and Nestin-expressing progenitors in the neonatal mouse brainstem. PDGF-A or PDGF-B overexpression, along with p53 deletion, resulted in gliomas in both models. Exogenous overexpression of H3.3K27M had a significant effect on tumor latency and tumor cell proliferation when compared with H3.3WT in Nestin+ cells but not in Olig2+ cells. Further, the fraction of H3.3K27M-positive cells was significantly lower in DMGs initiated in Olig2+ cells relative to Nestin+ cells, both in PDGF-A and PDGF-B-driven models, suggesting that the requirement for H3.3K27M is reduced when tumorigenesis is initiated in Olig2+ cells. RNA-sequencing analysis revealed that the differentially expressed genes in H3.3K27M tumors were non-overlapping between Olig2;PDGF-B, Olig2;PDGF-A, and Nestin;PDGF-A models. GSEA analysis of PDGFA tumors confirmed that the transcriptomal effects of H3.3K27M are cell-of-origin dependent with H3.3K27M promoting epithelial-to-mesenchymal transition (EMT) and angiogenesis when Olig2 marks the cell-of-origin and inhibiting EMT and angiogenesis when Nestin marks the cell-of-origin. We did observe some overlap with H3.3K27M promoting negative enrichment of TNFA_Signaling_Via_NFKB in both models. Our study suggests that the tumorigenic effects of H3.3K27M are cell-of-origin dependent, with H3.3K27M being more oncogenic in Nestin+ cells than Olig2+ cells.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Department of Neurosurgery and Neuroendovascular SurgeryHiroshima City Hiroshima Citizens HospitalHiroshimaJapan
| | - Yosuke Shimazu
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Agila Somasundaram
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Yoshihiro Tanaka
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Arrhythmia Research, Department of CardiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Nozomu Takata
- Center for Vascular and Developmental BiologyFeinberg Cardiovascular and Renal Research Institute (FCVRRI), Northwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
| | - Yukitomo Ishi
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Samantha Gadd
- Department of PathologyAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Rintaro Hashizume
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Biochemistry and Molecular GeneticsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Angelo Angione
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Gonzalo Pinero
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Dolores Hambardzumyan
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Daniel J. Brat
- Department of PathologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Christine M. Hoeman
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Oren J. Becher
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Biochemistry and Molecular GeneticsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Jack Martin Division of Pediatric Hematology‐oncologyMount Sinai Kravis Children's HospitalNew YorkUSA
| |
Collapse
|