1
|
Baek C, Laurenge A, Touat M. Advances in the treatment of IDH-mutant gliomas. Curr Opin Neurol 2024; 37:708-716. [PMID: 39253756 DOI: 10.1097/wco.0000000000001316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW Isocitrate dehydrogenase (IDH) mutation is a defining molecular driver of WHO grade 2-4 astrocytomas and oligodendrogliomas. In this article, we review the recent therapeutic approaches specifically targeting IDH-mutant gliomas and summarize ongoing clinical trials in this population. RECENT FINDINGS The IDH inhibitor vorasidenib recently demonstrated its efficacy after surgical resection in grade 2 IDH-mutated gliomas. Several studies in patients with IDH-mutant gliomas are currently exploring various strategies to target IDH mutations, including the use of small-molecule inhibitors, immunotherapies, peptide vaccines and agents targeting metabolic and epigenomic vulnerabilities. SUMMARY Mutant-IDH targeting holds significant promise in treating progressive or recurrent IDH-mutant gliomas. Recent results with IDH inhibitors will change practice and influence the existing guidelines in a near future.
Collapse
Affiliation(s)
- Chooyoung Baek
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université
| | - Alice Laurenge
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
| | - Mehdi Touat
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Lu S, Zheng Z, Zhu C. Histone methyltransferase WHSC1 cooperate with YBX1 promote glioblastoma progression via regulating PLK1 expression. Cell Signal 2024; 124:111471. [PMID: 39406278 DOI: 10.1016/j.cellsig.2024.111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Wolf-Hirschhorn syndrome candidate gene 1 (WHSC1), a histone methyltransferase, has been implicated in various tumor development processes by regulating target gene expression. However, the role of WHSC1 in glioblastoma remains unexplored. This study investigates the impact of WHSC1 in glioblastoma and its association with prognosis. Our findings reveal that WHSC1 is overexpressed in glioblastoma and correlates with poor patient outcomes. Functional assays demonstrate that the reduction of WHSC1 significantly impairs cell proliferation and tumorigenicity. Mechanistically, WHSC1 modulates PLK1 expression by binding to its promoter region, leading to the activation of the PLK1-AKT pathway, and regulating H3K36 dimethylation levels. Furthermore, YBX1 can cooperate with WHSC1 to activate PLK1 transcription. These results shed light on the potential significance of WHSC1 in glioblastoma and offer a promising avenue for future therapeutic approaches targeting this molecule in glioblastoma treatment.
Collapse
Affiliation(s)
- Shuaijun Lu
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Zhibo Zheng
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Changling Zhu
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
3
|
Huang G, Ouyang M, Xiao K, Zhou H, Zhong Z, Long S, Li Z, Zhang Y, Li L, Xiang S, Ding X. AP-2α decreases TMZ resistance of recurrent GBM by downregulating MGMT expression and improving DNA damage. Life Sci 2024; 357:123111. [PMID: 39369843 DOI: 10.1016/j.lfs.2024.123111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
AIMS The incidence of recurrent gliomas is high, exerting low survival rates and poor prognoses. Transcription factor AP-2α has been reported to regulate the progression of primary glioblastoma (GBM). However, the function of AP-2α in recurrent gliomas is largely unclear. METHODS The expression of AP-2α and O6-methylguanine DNA-methyltransferase (MGMT) was detected in recurrent glioma tissues and cell lines by Western blots, the regulation mechanisms between AP-2α/MGMT promoter and RA/AP-2α promoter were studied by luciferase reporter assays, EMSA, and chIP assays. The effects of AP-2α and TMZ/RA treatment on cell viability in vitro and in vivo were investigated by MTT assays, γH2AX staining, comet assays and intracranial injection. KEY FINDINGS AP-2α expression negatively correlates with the expression of MGMT in glioma samples. AP-2α could directly bind with the promoter of the MGMT gene, suppresses transcriptional levels of MGMT and downregulate MGMT expression in TMZ-resistant U87MG-R and T98G cells, but TMZ treatment decreases AP-2α expression and increases MGMT expression. The extended TMZ treatment and increased TMZ concentrations reversed these effects. Moreover, AP-2α overexpression combines with TMZ to decrease cell viability, concurrently with improved DNA damage marker γH2AX. Furthermore, retinoic acid (RA) activates RAR/RXR heterodimers, which bind to RA-responsive elements (RAREs) of the AP-2α promoter, and activates AP-2α expression in recurrent glioma cells. Finally, in intracranial relapsed glioma mouse model, both RA and TMZ could retard tumor development and prolong the mouse survival. SIGNIFICANCE AP-2α activation by gene overexpression or RA treatment reveals the suppressive effects on glioma relapse, providing a novel therapeutic strategy against malignant refractory gliomas.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Middle Aged
- Antineoplastic Agents, Alkylating/pharmacology
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Brain Neoplasms/metabolism
- Cell Line, Tumor
- DNA Damage/drug effects
- DNA Modification Methylases/metabolism
- DNA Modification Methylases/genetics
- DNA Repair Enzymes/genetics
- DNA Repair Enzymes/metabolism
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Promoter Regions, Genetic
- Temozolomide/pharmacology
- Transcription Factor AP-2/genetics
- Transcription Factor AP-2/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guixiang Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Mi Ouyang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Kai Xiao
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Hao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhe Zhong
- Department of Neurosurgery, Hunan Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410013, China
| | - Shengwen Long
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhiwei Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yiru Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China.
| | - Shuanglin Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
4
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
5
|
Wang M, Liu G, Liang Y, Lyu Z, Tang Z, Tan F, Wei R. Clinical results of helical tomotherapy for high-grade gliomas. Int J Radiat Biol 2024:1-13. [PMID: 39495095 DOI: 10.1080/09553002.2024.2418500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Radiotherapy-related damage of normal tissue inevitably influences the treatment outcomes in the context of high-grade gliomas (HGGs) treatment. We reported the survival outcomes and toxicities of patients with HGG treated with helical tomotherapy (HT) and the prognostic factors were analyzed. MATERIALS AND METHODS A total of 67 patients (29 had grade III and 38 had grade IV HGGs) who received HT between January 2016 and June 2020 were analyzed. Overall survival (OS) and progression-free survival (PFS) from the beginning of HT and OS from surgery were assessed, and toxicity and disease control were described briefly. RESULTS For patients with grade III HGGs, median OS (mOS) and median PFS (mPFS) from the beginning of HT were 68.933 and 62.967 months, respectively. For patients with grade IV HGGs, mOS and mPFS from the beginning of HT were 19.667 and 7.23 months, respectively. No grade ≥3 acute or late nonhematologic toxicities were observed. Multivariable Cox regression analysis showed that methylguanine methyltransferase (MGMT) methylated status, age, number of lesions, WHO grade, and monocyte count for PFS were significant. Age, monocyte count, and isocitrate dehydrogenase (IDH) status for OS. CONCLUSION Treatment of HGGs with HT appears to be potentially effective and safe. HT is promising for glioblastomas (GBM), especially complex cases with infratentorial involvement or multiple lesions. This study highlighted the potential clinical significance of systemic inflammation indicators in predicting survival and disease progression.
Collapse
Affiliation(s)
- Min Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gui Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Liang
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Zhiping Lyu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziqing Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Tan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Sallbach J, Woods M, Rasenberger B, Christmann M, Tomicic MT. The cell cycle inhibitor p21 CIP1 is essential for irinotecan-induced senescence and plays a decisive role in re-sensitization of temozolomide-resistant glioblastoma cells to irinotecan. Biomed Pharmacother 2024; 181:117634. [PMID: 39489121 DOI: 10.1016/j.biopha.2024.117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Standard of care for glioblastomas includes radio-chemotherapy with the monoalkylating compound temozolomide. Temozolomide induces primarily senescence, inefficiently killing glioblastoma cells. Recurrences are inevitable. Although recurrences presumably arise from cells evading/escaping TMZ-induced senescence, becoming resistant, they are often again treated with TMZ. As an alternative treatment, irinotecan could be used. Our aim was to examine to what extent and conditions the topoisomerase I inhibitor irinotecan induces senescence and to analyze the underlying mechanism. RESULTS Multiple glioblastoma lines with different genetic signatures for p53, p21CIP1, p16INK4A, p14ARF, and PTEN were used. By means of LN229 glioblastoma clones which escaped from temozolomide-induced senescence, thus, being potentially recurrence-forming, we show that this escape is accompanied by increased p21CIP1 protein levels in temozolomide-unexposed senescence-evading clones and inability of temozolomide to induce p21CIP1. In contrast, irinotecan was still able to induce p21CIP1 and could elevate senescence and cell death. In combination with the senolytic drug BV6, irinotecan-induced senescence was significantly reduced. Differential response clusters were also observed in paired samples of newly diagnosed and recurrent patients' tumors. This can partially explain a significantly prolonged progression-free time until surgery for recurrence in patients additionally treated with irinotecan after temozolomide consolidation and upon the first onset of recurrence. CONCLUSIONS p21CIP1 is essentially involved in induction and maintenance of irinotecan-induced senescence. Neither p16INK4A, p14ARF, nor PTEN contribute to senescence, if p21CIP1 cannot be induced. Based on the positive results of the irinotecan/BV6 treatment, combatting recurrent glioblastomas by targeting senescence cell antiapoptotic pathways (SCAPs) should be considered.
Collapse
Affiliation(s)
- Jason Sallbach
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| | - Melanie Woods
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| | - Markus Christmann
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| |
Collapse
|
7
|
Shan H, Zheng G, Bao S, Yang H, Shrestha UD, Li G, Duan X, Du X, Ke T, Liao C. Tumor perfusion enhancement by focus ultrasound-induced blood-brain barrier opening to potentiate anti-PD-1 immunotherapy of glioma. Transl Oncol 2024; 49:102115. [PMID: 39217852 PMCID: PMC11402623 DOI: 10.1016/j.tranon.2024.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To demonstrate the feasibility of using focused ultrasound to enhance delivery of PD-1 inhibitors in glioma rats and determine if such an approach increases treatment efficacy. METHODS C6 glioma in situ rat model was used in this study. Transcranial irradiation with FUS combined with microbubbles was administered to open the blood-brain barrier (BBB). The efficacy of BBB opening was evaluated in normal rats. The rats with glioma were grouped to evaluate the role of PD-1 inhibitors combined with FUS-induced immune responses in suppressing glioma when the BBB opens. Flow cytometry was used to examine the changes of immune cell populations of lymphocytes in peripheral blood, tumor tissue and spleen tissue of the rats. A section of rat brain tissue was also used for histological and immunohistochemical analysis. The survival of the rats was then monitored; the tumor progression and changes in blood perfusion of tumor were dynamically observed in vivo using multimodal MRI. RESULTS FUS combined with microbubbles could enhance the blood perfusion of tumors by increasing the permeability of BBB (p < 0.0001), thus promoting the infiltration of CD4+ T lymphocytes (p < 0.01). Compared with the control group, the combination treatment group had increased in the infiltration number of CD4+(p < 0.05) and CD8+ T (p < 0.05); the tumor volume of the combined treatment group was smaller than that of the control group (p < 0.01) and the survival rate of the rats was prolonged (p < 0.05). CONCLUSIONS In this study, we demonstrated that the transient opening of the BBB induced by FUS enhanced tumor vascular perfusion and facilitated the delivery of PD-1 inhibitors, ultimately improving the therapeutic efficacy for glioblastoma.
Collapse
Affiliation(s)
- Haiyan Shan
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| | - Guangrong Zheng
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| | - Shasha Bao
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | | | - Guochen Li
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Xirui Duan
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Xiaolan Du
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China
| | - Tengfei Ke
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Chengde Liao
- Department of Radiology, Yan 'an Hospital of Kunming City, Kunming, China.
| |
Collapse
|
8
|
Li X, Wang Z, Gao B, Dai K, Wu J, Shen K, Li G, Niu X, Wu X, Li L, Shen H, Li H, Yu Z, Wang Z, Chen G. Unveiling the impact of SUMOylation at K298 site of heat shock factor 1 on glioblastoma malignant progression. Neoplasia 2024; 57:101055. [PMID: 39260131 PMCID: PMC11415976 DOI: 10.1016/j.neo.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Glioblastoma (GBM) poses a significant medical challenge due to its aggressive nature and poor prognosis. Mitochondrial unfolded protein response (UPRmt) and the heat shock factor 1 (HSF1) pathway play crucial roles in GBM pathogenesis. Post-translational modifications, such as SUMOylation, regulate the mechanism of action of HSF1 and may influence the progression of GBM. Understanding the interplay between SUMOylation-modified HSF1 and GBM pathophysiology is essential for developing targeted therapies. METHODS We conducted a comprehensive investigation using cellular, molecular, and in vivo techniques. Cell culture experiments involved establishing stable cell lines, protein extraction, Western blotting, co-immunoprecipitation, and immunofluorescence analysis. Mass spectrometry was utilized for protein interaction studies. Computational modeling techniques were employed for protein structure analysis. Plasmid construction and lentiviral transfection facilitated the manipulation of HSF1 SUMOylation. In vivo studies employed xenograft models for tumor growth assessment. RESULTS Our research findings indicate that HSF1 primarily undergoes SUMOylation at the lysine residue K298, enhancing its nuclear translocation, stability, and downstream heat shock protein expression, while having no effect on its trimer conformation. SUMOylated HSF1 promoted the UPRmt pathway, leading to increased GBM cell proliferation, migration, invasion, and reduced apoptosis. In vivo studies have confirmed that SUMOylation of HSF1 enhances its oncogenic effect in promoting tumor growth in GBM xenograft models. CONCLUSION This study elucidates the significance of SUMOylation modification of HSF1 in driving GBM progression. Targeting SUMOylated HSF1 may offer a novel therapeutic approach for GBM treatment. Further investigation into the specific molecular mechanisms influenced by SUMOylated HSF1 is warranted for the development of effective targeted therapies to improve outcomes for GBM patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, Xinghua People's Hospital Affiliated to Yangzhou University, Xinghua 225700, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kecheng Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Guangzhao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiaowang Niu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
9
|
Clavreul A, Guette C, Lasla H, Rousseau A, Blanchet O, Henry C, Boissard A, Cherel M, Jézéquel P, Guillonneau F, Menei P, Lemée JM. Proteomics of tumor and serum samples from isocitrate dehydrogenase-wildtype glioblastoma patients: is the detoxification of reactive oxygen species associated with shorter survival? Mol Oncol 2024; 18:2783-2800. [PMID: 38803161 DOI: 10.1002/1878-0261.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Proteomics has been little used for the identification of novel prognostic and/or therapeutic markers in isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GB). In this study, we analyzed 50 tumor and 30 serum samples from short- and long-term survivors of IDH-wildtype GB (STS and LTS, respectively) by data-independent acquisition mass spectrometry (DIA-MS)-based proteomics, with the aim of identifying such markers. DIA-MS identified 5422 and 826 normalized proteins in tumor and serum samples, respectively, with only three tumor proteins and 26 serum proteins displaying significant differential expression between the STS and LTS groups. These dysregulated proteins were principally associated with the detoxification of reactive oxygen species (ROS). In particular, GB patients in the STS group had high serum levels of malate dehydrogenase 1 (MDH1) and ribonuclease inhibitor 1 (RNH1) and low tumor levels of fatty acid-binding protein 7 (FABP7), which may have enabled them to maintain low ROS levels, counteracting the effects of the first-line treatment with radiotherapy plus concomitant and adjuvant temozolomide. A blood score built on the levels of MDH1 and RNH1 expression was found to be an independent prognostic factor for survival based on the serum proteome data for a cohort of 96 IDH-wildtype GB patients. This study highlights the utility of circulating MDH1 and RNH1 biomarkers for determining the prognosis of patients with IDH-wildtype GB. Furthermore, the pathways driven by these biomarkers, and the tumor FABP7 pathway, may constitute promising therapeutic targets for blocking ROS detoxification to overcome resistance to chemoradiotherapy in potential GB STS.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU d'Angers, France
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
| | - Catherine Guette
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
- PROT'ICO - Plateforme Oncoprotéomique, Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Hamza Lasla
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Nantes, France
- SIRIC ILIAD, Institut de Recherche en Santé, Université de Nantes, France
| | - Audrey Rousseau
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
- Département de Pathologie, CHU d'Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB-0033-00038, CHU d'Angers, France
| | - Cécile Henry
- PROT'ICO - Plateforme Oncoprotéomique, Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Alice Boissard
- PROT'ICO - Plateforme Oncoprotéomique, Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Mathilde Cherel
- Département de Biologie Médicale, Centre Eugène Marquis, Unicancer, Rennes, France
| | - Pascal Jézéquel
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
- Omics Data Science Unit, Institut de Cancérologie de l'Ouest (ICO), Nantes, France
- SIRIC ILIAD, Institut de Recherche en Santé, Université de Nantes, France
| | - François Guillonneau
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
- PROT'ICO - Plateforme Oncoprotéomique, Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU d'Angers, France
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
| | - Jean-Michel Lemée
- Département de Neurochirurgie, CHU d'Angers, France
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, France
| |
Collapse
|
10
|
Lan T, Quan W, Yu DH, Chen X, Wang ZF, Li ZQ. High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway. Sci Rep 2024; 14:26224. [PMID: 39482401 PMCID: PMC11528118 DOI: 10.1038/s41598-024-77348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is upregulated in glioblastoma (GBM) and associated with temozolomide (TMZ) resistance. However, the mechanisms underlying HOTAIR-mediated TMZ resistance remains poorly understood. HOTAIR expression in glioma-related public datasets and drug response estimation were analyzed using bioinformatics. These findings were verified by overexpressing HOTAIR in TMZ-sensitive U251 cells and/or silencing HOTAIR in resistant U251 cells (U251R). The cytotoxic effects were evaluated using cell viability assay and flow cytometry analysis of cell cycle and apoptosis. In this study, we found that HOTAIR was upregulated in TMZ-resistant GBM cell lines and patients with high HOTAIR expression responded poorly to TMZ therapy. HOTAIR knockdown restored TMZ sensitivity in U251R cells, while HOTAIR overexpression conferred TMZ resistance in U251 cells. Wnt/β-catenin signaling was enriched in patients with high HOTAIR expression; consistently, HOTAIR positively regulated β-catenin expression in U251 cells. Moreover, HOTAIR-mediated TMZ resistance was associated with increased MGMT protein level, which resulted from the HOTAIR/miR-214-3p/β-catenin network. Besides, GBM with high HOTAIR expression exhibited sensitivity to methotrexate. Methotrexate enhanced TMZ sensitivity in U251R cells, accompanied by reduced expression of HOTAIR and β-catenin. Thus, we conlcude that HOTAIR is a risk factor for TMZ resistance and methotrexate may represent a potential therapeutic drug for patients with high HOTAIR expression level.
Collapse
Affiliation(s)
- Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Sahoo L, Paikray SK, Tripathy NS, Fernandes D, Dilnawaz F. Advancements in nanotheranostics for glioma therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03559-w. [PMID: 39480526 DOI: 10.1007/s00210-024-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Gliomas are brain tumors mainly derived from glial cells that are difficult to treat and cause high mortality. Radiation, chemotherapy, and surgical excision are the conventional treatments for gliomas. Patients who have surgery or have undergone chemotherapy for glioma treatment have poor prognosis with tumor recurrence. In particular, for glioblastoma, the 5-year average survival rate is 4-7%, and the median survival is 12-18 months. A number of issues hinder effective treatment such as, poor surgical resection, tumor heterogeneity, insufficient drug penetration across the blood-brain barrier, multidrug resistance, and difficulties with drug specificity. Nanotheranostic-mediated drug delivery is becoming a well-researched consideration, and an efficient non-invasive method for delivering chemotherapeutic drugs to the target area. Theranostic nanomedicines, which incorporate therapeutic drugs and imaging agents for personalized therapies, can be used for preventing overdose of non-responders. Through the identification of massive and complicated information from next-generation sequencing, machine learning enables for precise prediction of therapeutic outcomes and post-treatment management for patients with cancer. This article gives a thorough overview of nanocarrier-mediated drug delivery with a brief introduction to drug delivery challenges. In addition, this assessment offers a current summary of preclinical and clinical research on nanomedicines for gliomas. In the future, nanotheranostics will provide personalized treatment for gliomas and other treatable cancers.
Collapse
Affiliation(s)
- Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | | | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India.
| |
Collapse
|
12
|
Gao C, Yang B, Li Y, Pei W. Monocarboxylate transporter dependent mechanism is involved in proliferation, migration, and invasion of human glioblastoma cell lines via activation of PI3K/Akt signaling pathway. PLoS One 2024; 19:e0312939. [PMID: 39475905 PMCID: PMC11524508 DOI: 10.1371/journal.pone.0312939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Glioblastoma multiforme is one of the most common primary tumors of the central nervous system, with a very poor prognosis. Cancer cells have been observed to upregulate pH regulators, such as monocarboxylate transporters (MCTs), with an increase in MCT4 expression being observed in several malignancies. MCT4/ recombinant cluster of differentiation 147 (CD147) transporter complex was reported to stimulate vascular endothelial growth factor (VEGF) via the phosphatidylinositol 3 kinase (PI3K) /protein kinase B (Akt) pathway, which has been proven to mediate glioblastoma invasion and migration. The present study aimed to clarify the role of the MCT4/CD147 transporter complex in glioblastoma cell proliferation, migration, and invasion. In this work, lentiviral vectors were used to overexpress MCT4/CD147 and small interfering RNA (siRNA) was used to silence MCT4/CD147 in the human glioma cell lines U87 and U251, respectively. The effects on cell proliferation, migration and invasiveness, as well as the protein expression levels of MCT4 and CD147, extracellular lactate content and Akt activation were assessed by MTT, wound-healing and invasion assays, western blotting and colorimetric method, respectively. The analysis results suggested that cell proliferation, migration, invasion, and Akt activation were decreased by siRNA in all cell lines, but were increased by lentivirus-mediated MCT4 overexpression. These findings suggest that inhibiting the activity and expression of the MCT4/CD147 transporter complex via metabolic-targeting drugs, particularly in cells with a high rate of glycolysis, should be explored as a novel strategy for glioblastoma treatment.
Collapse
Affiliation(s)
- Chen Gao
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Binni Yang
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Yurong Li
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Wenjuan Pei
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| |
Collapse
|
13
|
Azam A, Kurbegovic S, Carlsen EA, Andersen TL, Larsen VA, Law I, Skjøth-Rasmussen J, Kjaer A. Prospective phase II trial of [ 68Ga]Ga-NOTA-AE105 uPAR-PET/MRI in patients with primary gliomas: Prognostic value and Implications for uPAR-targeted Radionuclide Therapy. EJNMMI Res 2024; 14:100. [PMID: 39472354 PMCID: PMC11522270 DOI: 10.1186/s13550-024-01164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Treatment of patients with low-grade and high-grade gliomas is highly variable due to the large difference in survival expectancy. New non-invasive tools are needed for risk stratification prior to treatment. The urokinase plasminogen activator receptor (uPAR) is expressed in several cancers, associated with poor prognosis and may be non-invasively imaged using uPAR-PET. We aimed to investigate the uptake of the uPAR-PET tracer [68Ga]Ga-NOTA-AE105 in primary gliomas and establish its prognostic value regarding overall survival (OS), and progression-free survival (PFS). Additionally, we analyzed the proportion of uPAR-PET positive tumors to estimate the potential number of candidates for future uPAR-PRRT. METHODS In a prospective phase II clinical trial, 24 patients suspected of primary glioma underwent a dynamic 60-min PET/MRI following the administration of approximately 200 MBq (range: 83-222 MBq) [68Ga]Ga-NOTA-AE105. Lesions were considered uPAR positive if the tumor-to-background ratio, calculated as the ratio of TumorSUVmax-to-Normal-BrainSUVmean tumor-SUVmax-to-background-SUVmean, was ≥ 2.0. The patients were followed over time to assess OS and PFS and stratified into high and low uPAR expression groups based on TumorSUVmax. RESULTS Of the 24 patients, 16 (67%) were diagnosed with WHO grade 4 gliomas, 6 (25%) with grade 3, and 2 (8%) with grade 2. Two-thirds of all patients (67%) presented with uPAR positive lesions and 94% grade 4 gliomas. At median follow up of 18.8 (2.1-45.6) months, 19 patients had disease progression and 14 had died. uPAR expression dichotomized into high and low, revealed significant worse prognosis for the high uPAR group for OS and PFS with HR of 14.3 (95% CI, 1.8-112.3; P = 0.011), and HR of 26.5 (95% CI, 3.3-214.0; P = 0.0021), respectively. uPAR expression as a continuous variable was associated with worse prognosis for OS and PFS with HR of 2.7 (95% CI, 1.5-4.8; P = 0.0012), and HR of 2.5 (95% CI, 1.5-4.2; P = 0.00073), respectively. CONCLUSIONS The majority of glioma patients and almost all with grade 4 gliomas displayed uPAR positive lesions underlining the feasibility of 68Ga-NOTA-AE105 PET/MRI in gliomas. High uPAR expression is significantly correlated with worse survival outcomes for patients. Additionally, the high proportion of uPAR positive gliomas underscores the potential of uPAR-targeted radionuclide therapy in these patients. TRAIL REGISTRATION EudraCT No: 2016-002417-21; the Scientific Ethics Committee: H-16,035,303; the Danish Data Protection Agency: 2012-58-0004; clinical trials registry: NCT02945826, 26Oct2016, URL: https://classic. CLINICALTRIALS gov/ct2/show/NCT02945826 .
Collapse
Affiliation(s)
- Aleena Azam
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen, DK- 2100, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sorel Kurbegovic
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen, DK- 2100, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Esben Andreas Carlsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen, DK- 2100, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen, DK- 2100, Denmark
| | - Vibeke André Larsen
- Department of Radiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen, DK- 2100, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Neuroscience Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen, DK- 2100, Denmark.
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
15
|
Dhiman A, Rana D, Benival D, Garkhal K. Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies. Ther Deliv 2024:1-29. [PMID: 39445563 DOI: 10.1080/20415990.2024.2415281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
Collapse
Affiliation(s)
- Ashish Dhiman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| |
Collapse
|
16
|
Zhang L, Wang Y, Cai X, Mao X, Sun H. Deciphering the CNS-glioma dialogue: Advanced insights into CNS-glioma communication pathways and their therapeutic potential. J Cent Nerv Syst Dis 2024; 16:11795735241292188. [PMID: 39493257 PMCID: PMC11528668 DOI: 10.1177/11795735241292188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
The field of cancer neuroscience has rapidly evolved, shedding light on the complex interplay between the nervous system and cancer, with a particular focus on the relationship between the central nervous system (CNS) and gliomas. Recent advancements have underscored the critical influence of CNS activity on glioma progression, emphasizing the roles of neurons and neuroglial cells in both the onset and evolution of gliomas. This review meticulously explores the primary communication pathways between the CNS and gliomas, encompassing neuro-glioma synapses, paracrine mechanisms, extracellular vesicles, tunneling nanotubes, and the integrative CNS-immune-glioma axis. It also evaluates current and emerging therapeutic interventions aimed at these pathways and proposes forward-looking perspectives for research in this domain.
Collapse
Affiliation(s)
- Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Ruisi I, Jayamanne D, Kastelan M, Cove N, Cheng M, Back M. Nature and impact of symptoms at time of initial presentation for patients with glioblastoma. J Med Imaging Radiat Oncol 2024. [PMID: 39440710 DOI: 10.1111/1754-9485.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION In patients diagnosed with glioblastoma (GBM), minimal data exist on the pathway to presentation and the impact of symptoms on survival outcomes. This study aims to detail the symptoms that occur at time of initial presentation, the response to subsequent intervention, and the factors that predict survival in patients managed for GBM. METHODS A retrospective audit was performed from established prospective databases in patients managed consecutively with radiation therapy (RT) for GBM between 2016 and 2019. The major endpoint was median overall survival (mOS). Analysis was performed to determine associations with clinical factors including presenting symptom, performance status, tumour site and extent of resection. The level of carer support and objective perception of carer mastery was also assessed. RESULTS Overall, 182 patients with GBM were eligible for analysis. The majority of patients presented directly to Emergency (52%), with the most common initial presenting symptom being personality change in 23% of patients. The primary symptoms resolved pre-operatively in 47% of patients, with 9% having worse symptoms postoperatively. The mOS was 16.5 months (95% CI: 14.5-18.5). ECOG Scores 0-1 were associated with improved mOS at both initial ECOG (P < 0.001) and ECOG at 6 months (P = 0.006). Recognised Carer Mastery (P = 0.007) but not presence of carer (P = 0.35) was associated with improved mOS. CONCLUSION In patients with GBM initial presenting symptoms, level of performance status and role of carer influence clinical outcomes and survival. These findings can assist to guide clinicians and supportive care services to optimise future patient care.
Collapse
Affiliation(s)
- Isidoro Ruisi
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| | - Dasantha Jayamanne
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Genesis Cancer Care, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Marina Kastelan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
- The Brain Cancer Group, Sydney, New South Wales, Australia
| | - Nicola Cove
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| | - Michael Cheng
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Michael Back
- Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Genesis Cancer Care, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- The Brain Cancer Group, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
19
|
Serra R, Smith SJ, Rowlinson J, Gorelick N, Moloney C, McCrorie P, Veal GJ, Berry P, Chalmers AJ, Suk I, Shakesheff KM, Alexander C, Grundy RG, Brem H, Tyler BM, Rahman R. Neurosurgical application of olaparib from a thermo-responsive paste potentiates DNA damage to prolong survival in malignant glioma. Br J Cancer 2024:10.1038/s41416-024-02878-2. [PMID: 39433869 DOI: 10.1038/s41416-024-02878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND There is increased pan-cancer specific interest in repurposing the poly adenosine diphosphate-ribose polymerase-1 (PARP-1) inhibitor, olaparib, for newly diagnosed or recurrent isocitrate dehydrogenase wild type glioblastoma. We explore whether intra-cavity delivery of olaparib confers a survival benefit in a pre-clinical high-grade glioma model. METHODS Primary tumor RNA sequencing data was used to determine PARP-1 as a target in the glioblastoma infiltrative margin. We assessed radiosensitization conferred by olaparib alone and concomitant to genotoxic insults in vitro using clonal growth assays, cell cycle analysis and immunocytochemistry, and in vivo upon post-surgical delivery from a temperature-sensitive polymeric paste. RESULTS RNA-sequencing confirmed PARP-1 as a viable therapy target in glioblastoma infiltrative disease. Acute exposure of glioma cells to olaparib impaired proliferation and induced late-stage apoptosis associated with DNA damage in vitro, potentiated by radiation. Using high-grade glioma orthotopic allografts, a long-term overall survival benefit was observed upon interstitial olaparib delivery concomitant with radiotherapy, compared to systemic olaparib and standard glioblastoma treatment. Combined delivery of olaparib with either temozolomide or etoposide increased long-term survival, suggestive of olaparib functioning as DNA damage sensitizer. CONCLUSIONS Collectively, our data support a rationale for localized olaparib delivery concomitant with the current clinical regimen for malignant glioma treatment.
Collapse
Affiliation(s)
- Riccardo Serra
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - Stuart J Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Jonathan Rowlinson
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Noah Gorelick
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - Cara Moloney
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Phoebe McCrorie
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK
| | - Philip Berry
- Newcastle University Centre for Cancer, Newcastle University, Newcastle, UK
| | | | - Ian Suk
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | | | | | - Richard G Grundy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
- Departments of Biomedical Engineering, Oncology and Ophthalmology, Johns Hopkins University, Baltimore, USA
| | - Betty M Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA.
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| |
Collapse
|
20
|
Qin Y, Cui Q, Sun G, Chao J, Wang C, Chen X, Ye P, Zhou T, Jeyachandran AV, Sun O, Liu W, Yao S, Palmer C, Liu X, Arumugaswami V, Chan WC, Wang X, Shi Y. Developing enhanced immunotherapy using NKG2A knockout human pluripotent stem cell-derived NK cells. Cell Rep 2024:114867. [PMID: 39447568 DOI: 10.1016/j.celrep.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/05/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer immunotherapy is gaining increasing attention. However, immune checkpoints are exploited by cancer cells to evade anti-tumor immunotherapy. Here, we knocked out NKG2A, an immune checkpoint expressed on natural killer (NK) cells, in human pluripotent stem cells (hPSCs) and differentiated these hPSCs into NK (PSC-NK) cells. We show that NKG2A knockout (KO) enhances the anti-tumor and anti-viral capabilities of PSC-NK cells. NKG2A KO endows PSC-NK cells with higher cytotoxicity against HLA-E-expressing glioblastoma (GBM) cells, leukemia cells, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells in vitro. The NKG2A KO PSC-NK cells also exerted potent anti-tumor activity in vivo, leading to substantially suppressed tumor progression and prolonged survival of tumor-bearing mice in a xenograft GBM mouse model. These findings underscore the potential of PSC-NK cells with immune checkpoint KO as a promising cell-based immunotherapy. The unlimited supply and ease of genetic engineering of hPSCs makes genetically engineered PSC-NK an attractive option for easily accessible "off-the-shelf" cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Qin
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Qi Cui
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Guihua Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xianwei Chen
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Peng Ye
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Tao Zhou
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olivia Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Wei Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shunyu Yao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Chance Palmer
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| |
Collapse
|
21
|
Cornelissen FMG, He Z, Ciputra E, de Haas RR, Beumer-Chuwonpad A, Noske D, Vandertop WP, Piersma SR, Jiménez CR, Murre C, Westerman BA. The translatome of glioblastoma. Mol Oncol 2024. [PMID: 39417309 DOI: 10.1002/1878-0261.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GB), the most common and aggressive brain tumor, demonstrates intrinsic resistance to current therapies, resulting in poor clinical outcomes. Cancer progression can be partially attributed to the deregulation of protein translation mechanisms that drive cancer cell growth. In this study, we present the translatome landscape of GB as a valuable data resource. Eight patient-derived GB sphere cultures (GSCs) were analyzed using ribosome profiling and messenger RNA (mRNA) sequencing. We investigated inter-cell-line differences through differential expression analysis at both the translatome and transcriptome levels. Translational changes post-radiotherapy were assessed at 30 and 60 min. The translation of non-coding RNAs (ncRNAs) was validated using in-house and public mass spectrometry (MS) data, whereas RNA expression was confirmed by quantitative PCR (qPCR). Our findings demonstrate that ribosome sequencing provides more detailed information than MS or transcriptional analyses. Transcriptional similarities among GSCs correlate with translational similarities, aligning with previously defined subtypes such as proneural and mesenchymal. Additionally, we identified a broad spectrum of open reading frame types in both coding and non-coding mRNA regions, including long non-coding RNAs (lncRNAs) and pseudogenes undergoing active translation. Translation of ncRNAs into peptides was independently confirmed by in-house data and external MS data. We also observed that translational regulation of histones (downregulated) and splicing factors (upregulated) occurs in response to radiotherapy. These data offer new insights into genome-wide protein synthesis, identifying translationally regulated genes and alternative translation initiation sites in GB under normal and radiotherapeutic conditions, providing a rich resource for GB research. Further functional validation of differentially expressed genes after radiotherapy is needed. Understanding translational control in GB can reveal mechanistic insights and identify currently unknown biomarkers, ultimately enhancing the diagnosis and treatment of this aggressive brain cancer.
Collapse
Affiliation(s)
- Fleur M G Cornelissen
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosurgery, Amsterdam UMC, Location VUMC, Cancer Center, Amsterdam, The Netherlands
| | - Zhaoren He
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Edward Ciputra
- Department of Neurosurgery, Amsterdam UMC, Location VUMC, Cancer Center, Amsterdam, The Netherlands
| | - Richard R de Haas
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, The Netherlands
| | | | - David Noske
- Department of Neurosurgery, Amsterdam UMC, Location VUMC, Cancer Center, Amsterdam, The Netherlands
| | - W Peter Vandertop
- Department of Neurosurgery, Amsterdam UMC, Location VUMC, Cancer Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, The Netherlands
| | - Connie R Jiménez
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, The Netherlands
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Bart A Westerman
- Department of Neurosurgery, Amsterdam UMC, Location VUMC, Cancer Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Wang G, Man Y, Cao K, Zhao L, Lun L, Chen Y, Zhao X, Wang X, Zhang L, Hao C. An immune-related gene pair signature predicts the prognosis and immunotherapeutic response in glioblastoma. Heliyon 2024; 10:e39025. [PMID: 39435104 PMCID: PMC11492119 DOI: 10.1016/j.heliyon.2024.e39025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Background Glioblastoma (GBM) has the feature of aggressive growth and high rates of recurrence. Immunotherapy was not included in standard therapy for GBM due to lacking the predictive biomarkers. In the present study, we performed an immune-related gene pair (IRGP) signature to predict the prognosis and immunotherapy response of GBM. Methods A total of 160 GBM patients from TCGA were included. ssGSEA was conducted to evaluate the immune infiltration level. Univariate Cox, LASSO regression analysis, ROC analysis, and Kaplan-Meier survival analysis were applied to construct and evaluate the risk model. Moreover, the association between immune infiltration and the risk score was assessed. Finally, the expression of immune checkpoints between different risk groups was explored. Results According to the normal/tumor, high-/low-immunity group, we identified 125 differentially expressed immune-related genes. Subsequently, a prognostic model including 22 IRGPs was established. The area under the ROC curve to predict 1, 3, and 5-year was 0.811, 0.958, and 0.99 respectively. According to the optimal cut-off value of the 3-year ROC curve, patients were classified into high- and low-risk groups. The Kaplan-Meier analysis result indicated that patients in the low-risk group have longer survival time. The risk score was an independent prognostic predictor (P < 0.001). Moreover, PDCD1 was positively correlated with the risk score (P < 0.01). We also found that patients with high PDCD1 expression had worse survival. Conclusions The IRGP signature was built to predict the prognosis of GBM patients. This signature can serve as a tool to predict the response to immunotherapy in GBM.
Collapse
Affiliation(s)
- Gang Wang
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Man
- Department of Medical Oncology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Kui Cao
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihong Zhao
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lixin Lun
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yiyang Chen
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyu Zhao
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lijie Zhang
- Department of Medical Oncology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Chuncheng Hao
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
23
|
Brokāns A, Dolgopolova J, Saulītis A, Spulle U, Rancāns K, Meiers D, Hasnere S, Balodis A. Optic Nerve Glioblastoma with Optic Chiasm Involvement: A Case Report and a Brief Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1687. [PMID: 39459474 PMCID: PMC11509173 DOI: 10.3390/medicina60101687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Background: optic nerve glioblastoma is an uncommon pathology. The optic chiasm, optic tract, or optic nerves are possible places from which the tumor can originate. Most of the neuroimaging findings are nonspecific. To confirm the diagnosis, a biopsy is required. A delay to the treatment plan for optic nerve glioblastoma results in poor patient survival rates. Case report: a 68-year-old woman with an uncomplicated medical history presented with exophthalmos, deteriorating eyesight, and partial loss of vision. Using radiological data together with postoperative histopathological and histochemical analysis, optic nerve glioblastoma, IDH-wildtype, with optic chiasm involvement was diagnosed. Conclusion: optic nerve glioblastoma is a rare and aggressive form of cancer that affects the optic nerve, leading to significant vision impairment and potentially life-threatening complications. Treatment options are restricted and difficult because of the location and nature of the condition; surgery, radiation therapy, and chemotherapy are frequently needed as part of a multidisciplinary approach.
Collapse
Affiliation(s)
- Artis Brokāns
- Department of Radiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
- Institute of Diagnostic Radiology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Jūlija Dolgopolova
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia; (J.D.); (A.S.); (K.R.)
| | - Agnis Saulītis
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia; (J.D.); (A.S.); (K.R.)
| | - Uldis Spulle
- Department of Oral and Maxillofacial Surgery, RSU Institute of Stomatology, LV-1007 Riga, Latvia;
| | - Kristaps Rancāns
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia; (J.D.); (A.S.); (K.R.)
| | - Dairis Meiers
- Department of Ophthalmology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia;
| | - Sigita Hasnere
- Department of Oncology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia;
| | - Arturs Balodis
- Department of Radiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
- Institute of Diagnostic Radiology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| |
Collapse
|
24
|
Gardner MM, Winter SF, Stahl F, Gerstner ER, Shih HA, Sherman J, Dietrich J, Parsons MW. Brain volume loss after cranial irradiation: a controlled comparison study between photon vs proton radiotherapy for WHO grade 2-3 gliomas. J Neurooncol 2024:10.1007/s11060-024-04850-9. [PMID: 39400662 DOI: 10.1007/s11060-024-04850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Radiation therapy (RT) is an integral treatment component in patients with glioma but associated with neurotoxicity. Proton RT (PRT), as compared with photon RT (XRT), reduces excess radiation to nontarget tissue. We used a retrospective method to evaluate brain imaging metrics of neurotoxicity after treatment with PRT and XRT for glioma. METHODS We analyzed brain volume change in thirty-four patients with WHO grade 2-3 gliomas treated with either PRT (n = 17) or XRT (n = 17). Both groups were carefully matched by demographic/clinical criteria and assessed longitudinally for two years post-radiotherapy. Brain volume change was measured as ventricular volume expansion in the tumor free hemisphere (contralateral to RT target) as a proxy indicator of brain volume loss. We further assessed the impact of volumetric changes on cognition in PRT patients, who completed neuropsychological testing as part of an outcome study. RESULTS We found significant ventricular volume increases in the contralesional hemisphere in both groups at two years post-RT (F(1, 31) = 18.45, p < 0.000, partial η2 = 0.373), with greater volume change observed in XRT (26.55%) vs. PRT (12.03%) (M = 12.03%, SD = 16.26; F(1,31) = 4.26, p = 0.048, partial η2 = 0.121). Although, there was no group-level change on any cognitive test in PRT treated patients, individual changes on cognitive screening, working memory, processing speed and visual memory tasks correlated with contralesional brain volume loss. CONCLUSION This study suggests progressive brain volume loss following cranial irradiation, with greater severity after XRT vs. PRT. Radiation-induced brain volume loss appears to be associated with measurable cognitive changes on an individual level. Prospective studies are warranted to validate these findings and their impacts on long-term cognitive function and quality of life. An improved understanding of the structural and functional consequences of cranial radiation is essential to develop neuroprotective strategies.
Collapse
Affiliation(s)
- Melissa M Gardner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastian F Winter
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franziska Stahl
- Department of Neurology, Schoen Clinic Munich Schwabing, Munich Schwabing, Germany
| | - Elizabeth R Gerstner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet Sherman
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorg Dietrich
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Gkasdaris G, Berthiller J, Guyotat J, Jouanneau E, Gallet C, Meyronet D, Thomas L, Cartalat S, Seyve A, Honnorat J, Ducray F, Picart T. Is Carmustine Wafer Implantation in Progressive High-Grade Gliomas a Relevant Therapeutic Option? Complication Rate, Predictors of Complications and Onco-Functional Outcomes in a Series of 53 Cases. Cancers (Basel) 2024; 16:3465. [PMID: 39456559 PMCID: PMC11506748 DOI: 10.3390/cancers16203465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The aim was to determine the complication rate and the predictors of complications and survival in high-grade glioma surgically managed at progression with implantation of Carmustine wafers. Methods: A retrospective series of 53 consecutive patients operated on between 2017 and 2022 was built. Results: The median age was 55 ± 10.9 years. The rates of global and infectious complications were 35.8% and 18.9%, respectively. In multivariate analysis, patients with a preoperative neurological deficit were more prone to develop a postoperative complication (HR = 5.35 95% CI 1.49-19.26, p = 0.01). No predictor of infectious complication was identified. In the grade 4 glioma subgroup (n = 44), progression-free and overall survival (calculated starting from the reresection) reached 3.95 months, 95% CI 2.92-5.21 and 11.51 months, 95% CI 9.11-17.18, respectively. Preoperative KPS > 80% (HR = 0.97 95% CI 0.93-0.99, p = 0.04), Gross Total Resection (HR = 0.38 95% CI 0.18-0.80, p = 0.01), and 3-month postoperative KPS > 80% (HR = 0.35 95% CI 0.17-0.72, p = 0.004) were predictors of prolonged overall survival. Conclusions: Surgical resection is a relevant option in high-grade gliomas at progression, especially in patients with a preoperative KPS > 80%, without preoperative neurological deficit, and amenable to complete resection. In patients elected for surgery, Carmustine wafer implantation is associated with a high rate of complications. It is consequently critical to closely monitor the patients for whom this option is chosen.
Collapse
Affiliation(s)
- Grigorios Gkasdaris
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
| | - Julien Berthiller
- Department of Research and Clinical Epidemiology—Public Health, Hospices Civils de Lyon, 69677 Bron, France;
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
| | - Emmanuel Jouanneau
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Clémentine Gallet
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
| | - David Meyronet
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Neuropathology, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Laure Thomas
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
| | - Stéphanie Cartalat
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
| | - Antoine Seyve
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
| | - Jérôme Honnorat
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
- MELIS Institute—Team Synaptopathies and Autoantibodies, INSERM U1314, UMR CNRS 5284, 69677 Bron, France
| | - François Ducray
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
| | - Thiebaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 69008 Lyon, France
| |
Collapse
|
26
|
Xu S, Yang G, Xu F, Yang Y, Wang J. Identification of prognostic biomarkers related to retinoic acid metabolism in gliomas and analysis of their impact on the immune microenvironment. Medicine (Baltimore) 2024; 103:e39836. [PMID: 39465792 PMCID: PMC11479434 DOI: 10.1097/md.0000000000039836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Glioma is a primary tumor of the central nervous system. Numerous investigations have demonstrated that retinoic acid (RA) signaling plays an important role in glioblastoma. This research aimed to develop a RA metabolism-related gene signature associated with glioma. The RA metabolism-related differentially expressed genes were obtained through differential analysis of RA metabolism-related genes in GSE4290. The univariate Cox and least absolute shrinkage and selection operator regression analysis were adopted to build a RA metabolism-related glioma prognostic signature. We further conducted immune feature estimation and functional enrichment analysis between 2 risk subgroups. Finally, the potential drug-targeting prognostic genes were predicted through the DrugBank database. A sum of 10 RA metabolism-related differentially expressed genes between normal and tumor groups were identified. Then, a RA metabolism-related prognostic signature was built based on the 7 prognostic genes (ADH4, DHRS3, DHRS9, LRAT, RDH10, RDH12, and RDH5). Glioma patients were separated into 2 risk subgroups (low-risk vs high-risk) based on the median value of the risk score. We found that monocytes were negatively correlated with DHRS9, while activated naive CD4+T cell was positively correlated with RDH10. These prognostic genes participated in some immune-related processes, such as "B cell-mediated immunity." Finally, 4 drugs targeting DHRS3, LRAT, and RDH12 were predicted, including vitamin A, nicotinamide adenine dinucleotide, ethanol, and cyclohexylformamide. The prognostic signature comprised of ADH4, DHRS3, DHRS9, LRAT, RDH10, RDH12, and RDH5 based on RA metabolism was established, which provided a theoretical basis and reference value for the research of glioma.
Collapse
Affiliation(s)
- Suiyun Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an, Jiaotong University, Xi’an, China
| | - Gao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an, Jiaotong University, Xi’an, China
| | - Fangli Xu
- Department of Radiotherapy, The Second Affiliated Hospital of Xi’an, Jiaotong University, Xi’an, China
| | - Yuting Yang
- Department of Radiotherapy, The Second Affiliated Hospital of Xi’an, Jiaotong University, Xi’an, China
| | - Juan Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
27
|
Bae WH, Maraka S, Daher A. Challenges and advances in glioblastoma targeted therapy: the promise of drug repurposing and biomarker exploration. Front Oncol 2024; 14:1441460. [PMID: 39439947 PMCID: PMC11493774 DOI: 10.3389/fonc.2024.1441460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma remains the most prevalent and aggressive primary malignant brain tumor in adults, characterized by limited treatment options and a poor prognosis. Previous drug repurposing efforts have yielded only marginal survival benefits, particularly those involving inhibitors targeting receptor tyrosine kinase and cyclin-dependent kinase-retinoblastoma pathways. This limited efficacy is likely due to several critical challenges, including the tumor's molecular heterogeneity, the dynamic evolution of its genetic profile, and the restrictive nature of the blood-brain barrier that impedes effective drug delivery. Emerging diagnostic tools, such as circulating tumor DNA and extracellular vesicles, offer promising non-invasive methods for real-time tumor monitoring, potentially enabling the application of targeted therapies to more selected patient populations. Moreover, innovative drug delivery strategies, including focused ultrasound, implantable drug-delivery systems, and engineered nanoparticles, hold potential for enhancing the bioavailability and therapeutic efficacy of treatments.
Collapse
Affiliation(s)
- William Han Bae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Stefania Maraka
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| | - Ahmad Daher
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
Liu SJ, Zou C, Pak J, Morse A, Pang D, Casey-Clyde T, Borah AA, Wu D, Seo K, O'Loughlin T, Lim DA, Ozawa T, Berger MS, Kamber RA, Weiss WA, Raleigh DR, Gilbert LA. In vivo perturb-seq of cancer and microenvironment cells dissects oncologic drivers and radiotherapy responses in glioblastoma. Genome Biol 2024; 25:256. [PMID: 39375777 PMCID: PMC11457336 DOI: 10.1186/s13059-024-03404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Genetic perturbation screens with single-cell readouts have enabled rich phenotyping of gene function and regulatory networks. These approaches have been challenging in vivo, especially in adult disease models such as cancer, which include mixtures of malignant and microenvironment cells. Glioblastoma (GBM) is a fatal cancer, and methods of systematically interrogating gene function and therapeutic targets in vivo, especially in combination with standard of care treatment such as radiotherapy, are lacking. RESULTS Here, we iteratively develop a multiplex in vivo perturb-seq CRISPRi platform for single-cell genetic screens in cancer and tumor microenvironment cells that leverages intracranial convection enhanced delivery of sgRNA libraries into mouse models of GBM. Our platform enables potent silencing of drivers of in vivo growth and tumor maintenance as well as genes that sensitize GBM to radiotherapy. We find radiotherapy rewires transcriptional responses to genetic perturbations in an in vivo-dependent manner, revealing heterogenous patterns of treatment sensitization or resistance in GBM. Furthermore, we demonstrate targeting of genes that function in the tumor microenvironment, enabling alterations of ligand-receptor interactions between immune and stromal cells following in vivo CRISPRi perturbations that can affect tumor cell phagocytosis. CONCLUSION In sum, we demonstrate the utility of multiplexed perturb-seq for in vivo single-cell dissection of adult cancer and normal tissue biology across multiple cell types in the context of therapeutic intervention, a platform with potential for broad application.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Arc Institute, Palo Alto, CA, 94304, USA
| | - Christopher Zou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Joanna Pak
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexandra Morse
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Dillon Pang
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Timothy Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ashir A Borah
- Arc Institute, Palo Alto, CA, 94304, USA
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Wu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas O'Loughlin
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, 10029, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roarke A Kamber
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - William A Weiss
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Departments of Pediatrics, Neurology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
29
|
Jiang B, Chen Z, Zhou J. A novel prognostic risk score model based on RNA editing level in lower-grade glioma. Comput Biol Chem 2024; 113:108229. [PMID: 39383624 DOI: 10.1016/j.compbiolchem.2024.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Lower-grade glioma (LGG) refers to WHO grade 2 and 3 gliomas. Surgery combined with radiotherapy and chemotherapy can significantly improve the prognosis of LGG patients, but tumor progression is still unavoidable. As a form of posttranscriptional regulation, RNA editing (RE) has been reported to be involved in tumorigenesis and progression and has been intensively studied recently. METHODS Survival data and RE data were subjected to univariate and multivariate Cox regression analysis and lasso regression analysis to establish an RE risk score model. A nomogram combining the risk score and clinicopathological features was built to predict the 1-, 3-, and 5-year survival probability of patients. The relationship among ADAR1, SOD2 and SOAT1 was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) RESULTS: A risk model associated with RE was constructed and patients were divided into different risk groups based on risk scores. The model demonstrated strong prognostic capability, with the area under the ROC curve (AUC) values of 0.882, 0.938, and 0.947 for 1-, 3-, and 5-year survival predictions, respectively. Through receiver operating characteristic curve (ROC) curves and calibration curves, it was verified that the constructed nomogram had better performance than age, grade, and risk score in predicting patient survival probability. Apart from this functional analysis, the results of correlation analyses between risk differentially expressed genes (RDEGs) and RE help us to understand the underlying mechanism of RE in LGG. ADAR may regulate the expression of SOD2 and SOAT1 through gene editing. CONCLUSION In conclusion, this study establishes a novel and accurate 17-RE model and a nomogram for predicting the survival probability of LGG patients. ADAR may affect the prognosis of glioma patients by influencing gene expression.
Collapse
Affiliation(s)
- Bincan Jiang
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China.
| | - Ziyang Chen
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Jiajie Zhou
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| |
Collapse
|
30
|
Li F, Yang K, Gao X, Zhang M, Gu D, Wu X, Lu C, Wu Q, Dixit D, Gimple RC, You Y, Mack SC, Shi Y, Kang T, Agnihotri SA, Taylor MD, Rich JN, Zhang N, Wang X. A peptide encoded by upstream open reading frame of MYC binds to tropomyosin receptor kinase B and promotes glioblastoma growth in mice. Sci Transl Med 2024; 16:eadk9524. [PMID: 39356747 DOI: 10.1126/scitranslmed.adk9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
MYC promotes tumor growth through multiple mechanisms. Here, we show that, in human glioblastomas, the variant MYC transcript encodes a 114-amino acid peptide, MYC pre-mRNA encoded protein (MPEP), from the upstream open reading frame (uORF) MPEP. Secreted MPEP promotes patient-derived xenograft tumor growth in vivo, independent of MYC through direct binding, and activation of tropomyosin receptor kinase B (TRKB), which induces downstream AKT-mTOR signaling. Targeting MPEP through genetic ablation reduced growth of patient-derived 4121 and 3691 glioblastoma stem cells. Administration of an MPEP-neutralizing antibody in combination with a small-molecule TRKB inhibitor reduced glioblastoma growth in patient-derived xenograft tumor-bearing mice. The overexpression of MPEP in surgical glioblastoma specimens predicted a poor prognosis, supporting its clinical relevance. In summary, our results demonstrate that tumor-specific translation of a MYC-associated uORF promotes glioblastoma growth, suggesting a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Fanying Li
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinya Gao
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xujia Wu
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Chenfei Lu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan C Gimple
- Physician Scientist Training Program, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongping You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Stephen C Mack
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Shi
- Institute of Pathology, Ministry of Education Key Laboratory of Tumor Immunopathology, Southwest Hospital, Chongqing 400038, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China
| | - Sameer A Agnihotri
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Institute for Brain Tumors, Jiangsu Provincial Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
31
|
Liao X, Zhang S, Li X, Qian W, Li M, Chen S, Wu X, Yu X, Li Z, Tang M, Xu Y, Yu R, Zhang Q, Wu G, Zhang N, Song L, Li J. Dynamic structural remodeling of LINC01956 enhances temozolomide resistance in MGMT-methylated glioblastoma. Sci Transl Med 2024; 16:eado1573. [PMID: 39356744 DOI: 10.1126/scitranslmed.ado1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms underlying stimuli-induced dynamic structural remodeling of RNAs for the maintenance of cellular physiological function and survival remain unclear. Here, we showed that in MGMT promoter-methylated glioblastoma (GBM), the RNA helicase DEAD-box helicase 46 (DDX46) is phosphorylated by temozolomide (TMZ)-activated checkpoint kinase 1 (CHK1), resulting in a dense-to-loose conformational change and an increase in DDX46 helicase activity. DDX46-mediated tertiary structural remodeling of LINC01956 exposes the binding motifs of LINC01956 to the 3' untranslated region of O6-methylguanine DNA methyltransferase (MGMT). This accelerates recruitment of MGMT mRNA to the RNA export machinery and transportation of MGMT mRNA from the nucleus to the cytoplasm, leading to increased MGMT abundance and TMZ resistance. Using patient-derived xenograft (PDX) and tumor organoid models, we found that treatment with the CHK1 inhibitor SRA737abolishes TMZ-induced structural remodeling of LINC01956 and subsequent MGMT up-regulation, resensitizing TMZ-resistant MGMT promoter-methylated GBM to TMZ. In conclusion, these findings highlight a mechanism underlying temozolomide-induced RNA structural remodeling and may represent a potential therapeutic strategy for patients with TMZ-resistant MGMT promoter-methylated GBM.
Collapse
Affiliation(s)
- Xinyi Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Shuxia Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xincheng Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Wanying Qian
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Man Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Suwen Chen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xingui Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xuexin Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ziwen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Miaoling Tang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Yingru Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ruyuan Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Qiliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Geyan Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangdong 510080, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
| | - Jun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| |
Collapse
|
32
|
Fleischmann DF, Gajdi L, Corradini S, Schönecker S, Marschner S, Bodensohn R, Hofmaier J, Garny S, Forbrig R, Thon N, Belka C, Niyazi M. Re-irradiation treatment regimens for patients with recurrent glioma - Evaluation of the optimal dose and best concurrent therapy. Radiother Oncol 2024; 199:110437. [PMID: 39013502 DOI: 10.1016/j.radonc.2024.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Re-irradiation (reRT) is an effective treatment modality for patients with recurrent glioma. Data on dose escalation, the use of simulated integrated boost and concomitant therapy to reRT are still scarce. In this monocentric cohort of n = 223 patients we investigated the influence of reRT dose escalation as well as the concomitant use of bevacizumab (BEV) with regard to post-recurrence survival (PRS) and risk of radionecrosis (RN). PATIENTS AND METHODS Patients with recurrent glioma treated between July 2008 and August 2022 with reRT with BEV, reRT with temozolomide (TMZ) and reRT without concomitant systemic therapy were retrospectively analyzed. PRS and RN-free survival (RNFS) were calculated for all patients using the Kaplan-Meier estimator. Univariable and multivariable cox regression was performed for PRS and for RNFS. The reRT Risk Score (RRRS) was calculated for all patients. RESULTS Good, intermediate and poor risk of the RRRS translated into 11 months, 9 months and 7 months of median PRS (univariable: p = 0.008, multivariable: p = 0.013). ReRT was applied with a dose of ≤36 Gy (n = 140) or >36 Gy (n = 83). Concomitant bevacizumab (BEV) therapy was performed in n = 122 and concomitant temozolomide (TMZ) therapy in n = 32 patients. Median PRS was 10 months in patients treated with >36 Gy and 8 months in patients treated with ≤36 Gy (univariable: p = 0.032, multivariable: p = 0.576). Regarding concomitant TMZ therapy, median PRS was 14 months vs. 9 months for patients treated with or without TMZ (univariable: p = 0.041, multivariable: p = 0.019). No statistically significant influence on PRS was seen for concomitant BEV therapy in this series. RN was less frequent for reRT with concomitant BEV, (17/122; 13.9 %) than for reRT without BEV (30/101; 29.7 %). Regarding RNFS, the hazard ratio for reRT with BEV was 0.436 (univariable; p = 0.006) and 0.479 (multivariable; p = 0.023), respectively. ReRT dose did not show statistical significance in regards to RN (univariable: p = 0.073, multivariable: p = 0.404). RNFS was longer for patients receiving concomitant BEV to reRT than for patients treated with reRT only (mean 31.7 vs. 30.9 months, p = 0.004). CONCLUSION In this cohort, in patients treated with concomitant BEV therapy RN was less frequently detected and in patients treated with concomitant TMZ longer PRS was observed. Based on these results, the best concomitant therapy and the optimal dose should be decided on a patient-by-patient basis.
Collapse
Affiliation(s)
- Daniel F Fleischmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Laura Gajdi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Marschner
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Chokshi CR, Shaikh MV, Brakel B, Rossotti MA, Tieu D, Maich W, Anand A, Chafe SC, Zhai K, Suk Y, Kieliszek AM, Miletic P, Mikolajewicz N, Chen D, McNicol JD, Chan K, Tong AHY, Kuhlmann L, Liu L, Alizada Z, Mobilio D, Tatari N, Savage N, Aghaei N, Grewal S, Puri A, Subapanditha M, McKenna D, Ignatchenko V, Salamoun JM, Kwiecien JM, Wipf P, Sharlow ER, Provias JP, Lu JQ, Lazo JS, Kislinger T, Lu Y, Brown KR, Venugopal C, Henry KA, Moffat J, Singh SK. Targeting axonal guidance dependencies in glioblastoma with ROBO1 CAR T cells. Nat Med 2024; 30:2936-2946. [PMID: 39095594 DOI: 10.1038/s41591-024-03138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood-brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50-100% of mice. Our study identifies a promising multi-targetable PTP4A-ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors.
Collapse
Affiliation(s)
- Chirayu R Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Benjamin Brakel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - William Maich
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Alisha Anand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Agata M Kieliszek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Petar Miletic
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Nicholas Mikolajewicz
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - David Chen
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Jamie D McNicol
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Katherine Chan
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Amy H Y Tong
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lina Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Zahra Alizada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Nikoo Aghaei
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Shan Grewal
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Anish Puri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | | | - Dillon McKenna
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Joseph M Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - John P Provias
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - John S Lazo
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu Lu
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Kevin R Brown
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
34
|
Halkett GKB, McDougall E, Berg M, Clarke J, Dhillon HM, Lobb E, Phillips JL, Hudson P, Faris MM, Campbell R, Shaw J, Coyne E, Kelly B, Ownsworth T, Legge DM, Nowak AK. A nurse-led intervention for carers of people with high-grade glioma: A case series of carers reporting high distress. Neurooncol Pract 2024; 11:604-616. [PMID: 39279774 PMCID: PMC11398922 DOI: 10.1093/nop/npae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Background Carers play an important role in supporting patients diagnosed with high-grade glioma (HGG). However, this experience is frequently distressing and many carers require support. Objectives To describe unmet needs of highly distressed carers of people with HGG and recommendations and referrals made by a nurse to support them within the Care-IS trial. Methods Descriptive case series. Carers of people with HGG in the Care-IS trial reporting severe anxiety and/or depression at baseline and/or 4 months and high distress at baseline (during chemoradiotherapy) and at 4 months were included. Carers completed the Partner and Caregiver Supportive Care Needs Scale and Brain Tumor Specific Unmet Needs Survey for carers at baseline, 2, 4, 6, and 12 months. Monthly nurse telephone assessments documented carers' needs, recommendations, and referrals made. Data are reported descriptively. Results Four highly distressed carers were identified (N = 98). Each reported a moderate-high need at ≥1 timepoint for: financial support and/or travel insurance; making life decisions in uncertainty; information about cancer prognosis/likely outcome; and coping with unexpected treatment outcomes. Specific brain tumor unmet needs were: adjusting to changes in personality, mental and thinking abilities, and accessing government assistance. Nurses provided information about treatment, side effects, and practical support. Recommendations for clinical care and referrals to community-based services, and medical specialists were offered. Conclusions Highly distressed carers have diverse support needs in many domains, which can change over time. Nurses were critical in identifying carers' needs, providing support, and making referrals. Carers' distress and needs require ongoing screening and management.
Collapse
Affiliation(s)
- Georgia K B Halkett
- Faculty of Health Sciences, Curtin School of Nursing/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Emma McDougall
- Faculty of Health Sciences, Curtin School of Nursing/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Melissa Berg
- Faculty of Health Sciences, Curtin School of Nursing/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Jenny Clarke
- Faculty of Health Sciences, Curtin School of Nursing/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Haryana M Dhillon
- Psycho-Oncology Cooperative Research Group, Faculty of Science, School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth Lobb
- ImPACCT, Faculty of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Jane L Phillips
- University of Technology Sydney, Ultimo, New South Wales, Australia
- School of Nursing, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter Hudson
- Centre for Palliative Care St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Nursing, University of Melbourne, Melbourne, Victoria, Australia
| | - Mona M Faris
- Psycho-Oncology Cooperative Research Group, Faculty of Science, School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Rachel Campbell
- Psycho-Oncology Cooperative Research Group, Faculty of Science, School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Joanne Shaw
- Psycho-Oncology Cooperative Research Group, Faculty of Science, School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Elisabeth Coyne
- School of Nursing and Midwifery, Griffith University, Gold Coast, Queensland, Australia
| | - Brian Kelly
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | - Tamara Ownsworth
- School of Applied Psychology, Griffith University, Brisbane, Queensland, Australia
| | - Dianne M Legge
- Olivia Newton-John Cancer Centre, Austin Health, Melbourne, Victoria, Australia
- Faculty of Health Sciences, Curtin School of Nursing/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Anna K Nowak
- University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
35
|
Zhang Z, Wang X, Dai Q, Qin Y, Sun X, Suzuki M, Ying X, Han M, Wei Q. Peptide-functionalized gold nanoparticles for boron neutron capture therapy with the potential to use in Glioblastoma treatment. Pharm Dev Technol 2024; 29:862-873. [PMID: 39286881 DOI: 10.1080/10837450.2024.2406044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 h post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.
Collapse
Affiliation(s)
- Zhicheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Dai
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaxin Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Xiaoying Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka, Japan
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Vanhauwaert D, Silversmit G, Vanschoenbeek K, Coucke G, Di Perri D, Clement PM, Sciot R, De Vleeschouwer S, Boterberg T, De Gendt C. Association of hospital volume with survival but not with postoperative mortality in glioblastoma patients in Belgium. J Neurooncol 2024; 170:79-87. [PMID: 39093532 PMCID: PMC11447078 DOI: 10.1007/s11060-024-04776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Standard of care treatment for glioblastoma (GBM) involves surgical resection followed by chemoradiotherapy. However, variations in treatment decisions and outcomes exist across hospitals and physicians. In Belgium, where oncological care is dispersed, the impact of hospital volume on GBM outcomes remains unexplored. This nationwide study aims to analyse interhospital variability in 30-day postoperative mortality and 1-/2-year survival for GBM patients. METHODS Data collected from the Belgian Cancer Registry, identified GBM patients diagnosed between 2016 and 2019. Surgical resection and biopsy cases were identified, and hospital case load was determined. Associations between hospital volume and mortality and survival probabilities were analysed, considering patient characteristics. Statistical analysis included logistic regression for mortality and Cox proportional hazard models for survival. RESULTS A total of 2269 GBM patients were identified (1665 underwent resection, 662 underwent only biopsy). Thirty-day mortality rates post-resection/post-biopsy were 5.1%/11.9% (target < 3%/<5%). Rates were higher in elderly patients and those with worse WHO-performance scores. No significant difference was found based on hospital case load. Survival probabilities at 1/2 years were 48.6% and 21.3% post-resection; 22.4% and 8.3% post-biopsy. Hazard ratio for all-cause death for low vs. high volume centres was 1.618 in first 0.7 year post-resection (p < 0.0001) and 1.411 in first 0.8 year post-biopsy (p = 0.0046). CONCLUSION While 30-day postoperative mortality rates were above predefined targets, no association between hospital volume and mortality was found. However, survival probabilities demonstrated benefits from treatment in higher volume centres, particularly in the initial months post-surgery. These variations highlight the need for continuous improvement in neuro-oncological practice and should stimulate reflection on the neuro-oncological care organisation in Belgium.
Collapse
Affiliation(s)
- Dimitri Vanhauwaert
- Department of Neurosurgery, AZ Delta hospital Roeselare, Roeselare, Belgium.
| | | | | | | | - Dario Di Perri
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Paul M Clement
- Department of Medical Oncology, UZ Leuven, Leuven, Belgium
- Department of Oncology and Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, UZ Leuven and KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | | |
Collapse
|
37
|
Zhang L, He J, Zhao W, Zhou Y, Li J, Li S, Zhao W, Zhang L, Tang Z, Tan G, Chen S, Zhang B, Zhang YW, Wang Z. CD2AP promotes the progression of glioblastoma multiforme via TRIM5-mediated NF-kB signaling. Cell Death Dis 2024; 15:722. [PMID: 39353894 PMCID: PMC11445578 DOI: 10.1038/s41419-024-07094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
CD2-associated protein (CD2AP) is a scaffolding/adaptive protein that regulates intercellular adhesion and multiple signaling pathways. Although emerging evidence suggests that CD2AP is associated with several malignant tumors, there is no study investigating the expression and biological significance of CD2AP in glioblastoma multiforme (GBM). Here by studying public datasets, we found that CD2AP expression was significantly elevated in GBM and that glioma patients with increased CD2AP expression had a worse prognosis. We also confirmed the increase of CD2AP expression in clinical GBM samples and GBM cell lines. CD2AP overexpression in GBM cells promoted their proliferation, colony formation, migration, and invasion in vitro and their tumorigenesis in vivo, and reduced cell apoptosis both at basal levels and in response to temozolomide. While CD2AP knockdown had the opposite effects. Mechanistically, we revealed that CD2AP interacted with TRIM5, an NF-κB modulator. CD2AP overexpression and knockdown increased and decreased TRIM5 levels as well as the NF-κB activity, respectively. Moreover, downregulation of TRIM5 reversed elevated NF-κB activity in GBM cells with CD2AP overexpression; and inhibition of the NF-κB activity attenuated malignant features of GBM cells with CD2AP overexpression. Our findings demonstrate that CD2AP promotes GBM progression through activating TRIM5-mediated NF-κB signaling and that downregulation of CD2AP can attenuate GBM malignancy, suggesting that CD2AP may become a biomarker and the CD2AP-TRIM5-NF-κB axis may become a therapeutic target for GBM.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Jiawei He
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wentao Zhao
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shaobo Li
- Department of Neurosurgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingliang Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ziqian Tang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guowei Tan
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Neurosurgical Quality Control Center, Xiamen, China.
| |
Collapse
|
38
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
39
|
Horowitz MA, Ghadiyaram A, Mehkri Y, Chakravarti S, Liu J, Fox K, Gendreau J, Mukherjee D. Surgical resection of glioblastoma in the very elderly: An analysis of survival outcomes using the surveillance, epidemiology, and end results database. Clin Neurol Neurosurg 2024; 245:108469. [PMID: 39079287 DOI: 10.1016/j.clineuro.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE Patients with glioblastoma (GBM) often undergo surgery to prolong survival. However, the use of surgery, and more specifically achieving gross total resection (GTR), in patients >80 years old has yet to be fully assessed. Using the Surveillance, Epidemiology, and End Results (SEER) database, we aim to assess the efficacy of surgical resection, radiotherapy (RT) and chemotherapy (CT) on overall survival (OS) in very elderly GBM patients compared to elderly counterparts (age 65-79 years). METHODS The SEER database was queried for all patients >65 years old with GBM (2000-2020). Patients not undergoing surgery or biopsy were excluded. Patients were stratified by age, and demographic relationships were assessed with chi-squared testing for categorical variables. Bivariable models were created using Kaplan-Meier survival estimates. All significant variables from bivariable analysis were included on multivariable Cox survival regression models to determine independent associations between clinical variables and OS. RESULTS A total of 27,090 operative GBM patients were identified; 1868 patients (15.92 %) were very elderly and 10,092 patients (84.38 %) were elderly. Very elderly patients were less likely to undergo GTR (28 % vs 35 %, p<0.001), RT (59 % vs 78 %, p<0.001) and CT (40 % vs 66 %, p<0.001). In multivariable Cox regression analysis, very elderly patients who achieved GTR (HR=.696, p<0.001), received RT (HR=0.583, p<0.001) and underwent CT (HR=0.4197, p<0.001) had significantly improved OS compared to very elderly patients that did not undergo these treatment options. CONCLUSION Currently, very elderly GBM patients undergo lower rates of aggressive surgery, RT and CT. However, very elderly patients that undergo surgery, RT and CT may have a survival advantage. These treatments should be considered as potential options for this patient population.
Collapse
Affiliation(s)
| | - Ashwin Ghadiyaram
- Department of Neurological Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Yusuf Mehkri
- Department of Neurological Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Jiaqi Liu
- Department of Neurological Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Keiko Fox
- Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Julian Gendreau
- Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Debraj Mukherjee
- Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Di Nunno V, Gatto L, Tosoni A, Aprile M, Galvani L, Zappi A, Foschini MP, Asioli S, Tallini G, De Biase D, Maloberti T, Bartolini S, Giannini C, Franceschi E. TP53 mutations and survival in patients with histologically defined Glioblastoma, IDH-wildtype. Pathol Res Pract 2024; 262:155516. [PMID: 39163733 DOI: 10.1016/j.prp.2024.155516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Mutations of the TP53 oncosuppressor gene are frequent events in patients with malignant tumors including IDH-wildtype GBM (GBM IDH wt). However, the effective impact of TP53 mutations on prognosis has been poorly evaluated. METHODS We performed a retrospective study investigating the impact of TP53 mutations on patients with GBM IDH wt. Only patients with PS=0-1, treated with temozolomide concurrent with and adjuvant to radiotherapy, and younger than 70 years assessed with NGS were included in the analysis. RESULTS 97 GBM IDH wt have been selected. The median follow-up was 34.5 months (95 %CI, 30.6 - NA). Overall, 20 patients (19.4 %) presented a TP53 mutation. There were no significant differences in terms of TERT mutation (75 % vs 79.2 %) between TP53 mutated and TP53 wild-type (wt) patients. We detected 6 TP53 mutations not previously described within GBM IDH wt patients. The overall survival (OS) did not significantly differ between TP53 mutated and wt patients (HR 0.69, 95 %CI 0.37-1.27, p = 0.24). Considering only patients with an OS longer than 36 months (n = 10), the presence of a TP53 mutation was significantly associated with prolonged survival (45.6 months vs Not Reached, p = 0.037). CONCLUSION The presence of a TP53 mutation does not appear to be correlated with overall survival in this patient cohort. While there is an association with survival for patients with an OS of 36 months or longer, the number of patients is low and there is no available evidence correlating TP53 mutations to long-term survivors.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| | - Lidia Gatto
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marta Aprile
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Linda Galvani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Arianna Zappi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 49139, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Dario De Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Thais Maloberti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 49139, Italy; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
41
|
Dono A, Zhu P, Takayasu T, Arevalo O, Riascos R, Tandon N, Ballester LY, Esquenazi Y. Extent of Resection Thresholds in Molecular Subgroups of Newly Diagnosed Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery 2024; 95:932-940. [PMID: 38687046 DOI: 10.1227/neu.0000000000002964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Maximizing the extent of resection (EOR) improves outcomes in glioblastoma (GBM). However, previous GBM studies have not addressed the EOR impact in molecular subgroups beyond IDH1/IDH2 status. In the current article, we evaluate whether EOR confers a benefit in all GBM subtypes or only in particular molecular subgroups. METHODS A retrospective cohort of newly diagnosed GBM isocitrate dehydrogenase (IDH)-wildtype undergoing resection were prospectively included in a database (n = 138). EOR and residual tumor volume (RTV) were quantified with semiautomated software. Formalin-fixed paraffin-embedded tumor tissues were analyzed by targeted next-generation sequencing. The association between recurrent genomic alterations and EOR/RTV was evaluated using a recursive partitioning analysis to identify thresholds of EOR or RTV that may predict survival. The Kaplan-Meier methods and multivariable Cox proportional hazards regression methods were applied for survival analysis. RESULTS Patients with EOR ≥88% experienced 44% prolonged overall survival (OS) in multivariable analysis (hazard ratio: 0.56, P = .030). Patients with alterations in the TP53 pathway and EOR <89% showed reduced OS compared to TP53 pathway altered patients with EOR>89% (10.5 vs 18.8 months; HR: 2.78, P = .013); however, EOR/RTV was not associated with OS in patients without alterations in the TP53 pathway. Meanwhile, in all patients with EOR <88%, PTEN -altered had significantly worse OS than PTEN -wildtype (9.5 vs 15.4 months; HR: 4.53, P < .001). CONCLUSION Our results suggest that a subset of molecularly defined GBM IDH-wildtype may benefit more from aggressive resections. Re-resections to optimize EOR might be beneficial in a subset of molecularly defined GBMs. Molecular alterations should be taken into consideration for surgical treatment decisions in GBM IDH-wildtype.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | | | - Octavio Arevalo
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | - Roy Riascos
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
| | - Leomar Y Ballester
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston , Texas , USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston , Texas , USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| |
Collapse
|
42
|
Adiguzel S, Karamese M, Kugu S, Kacar EA, Esen MF, Erdogan H, Tasoglu S, Bacanli MG, Altuntas S. Doxorubicin-loaded liposome-like particles embedded in chitosan/hyaluronic acid-based hydrogels as a controlled drug release model for local treatment of glioblastoma. Int J Biol Macromol 2024; 278:135054. [PMID: 39187114 DOI: 10.1016/j.ijbiomac.2024.135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Glioblastoma (GBM) resection and medication treatment are limited, and local drug therapies are required. This study aims to create a hybrid system comprising liposome-like particles (LLP-DOX) encapsulated in chitosan/hyaluronic acid/polyethyleneimine (CHI/HA/PEI) hydrogels, enabling controlled local delivery of doxorubicin (DOX) into the resection cavity for treating GBM. CHI/HA/PEI hydrogels were characterized morphologically, physically, chemically, mechanically, and thermally. Findings revealed a high network and compact micro-network structure, along with enhanced physical and thermal stability compared to CHI/HA hydrogels. Simultaneously, drug release from CHI/HA/PEI/LLP-DOX hydrogels was assessed, revealing continuous and controlled release up to the 148th hour, with no significant burst release. Cell studies showed that CHI/HA/PEI hydrogels are biocompatible with low genotoxicity. Additionally, LLP-DOX-loaded CHI/HA/PEI hydrogels significantly decreased cell viability and gene expression levels compared to LLP-DOX alone. It was also observed that the viability of GBM spheroids decreased over time when interacting with CHI/HA/PEI/LLP-DOX hydrogels, accompanied by a reduction in total surface area and an increase in apoptotic tendencies. In this study, we hypothesized that creating a hybrid drug delivery system by encapsulating DOX-loaded LLPs within a CHI/HA/PEI hydrogel matrix could achieve sustained drug release, improve anticancer efficacy via localized treatment, and effectively mitigate GBM progression for 3D microtissues.
Collapse
Affiliation(s)
- Seyfure Adiguzel
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Molecular Biology and Genetics, Department of Molecular Biology and Genetics, University of Health Sciences, Istanbul 34668, Turkiye
| | - Miray Karamese
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Senanur Kugu
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Elif Ayse Kacar
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Muhammed Fevzi Esen
- Department of Health Information Systems, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| | - Hakan Erdogan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Savas Tasoglu
- Department of Mechanical Engineering, Faculty of Science, Koc University, Istanbul, Turkiye.
| | - Merve Güdül Bacanli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| |
Collapse
|
43
|
Di Nunno V, Gatto L, Aprile M, Bartolini S, Tosoni A, Franceschi E. Economic income and survival in patients affected by glioblastoma: A systematic review and meta-analysis. Neurooncol Pract 2024; 11:546-555. [PMID: 39279765 PMCID: PMC11398944 DOI: 10.1093/nop/npae045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Background Within socioeconomic variables, economic income has been associated with the prognosis of patients with glioblastoma. However, studies investigating this issue provided conflicting results. Methods We carried out a systematic review and meta-analysis of studies investigating the correlation between economic income and survival in patients with glioblastoma. The inverse variance technique for hazard ratio (HR) assessment has been employed in reporting the random effect model. Results We included 12 studies for a total of 143 303 GBM patients (67 463 with high economic income, and 25 679 with low economic income). In the overall analysis, lower economic income resulted in poorer survival (pooled HR 1.09, 95% CI: 1.02-1.17, I2 = 64%). Variables like the type of Health Care System (public, private, or mixed) and the time in which patients have been treated (pre or post-EORTC-NCIC trial 22981/26981, CE.3 protocol advent) did not modify survival on pooled analysis. Conclusions Economic conditions and income influence the prognosis of patients with glioblastoma. A better understanding of the modifiable barriers leading to treatment disparities in more disadvantaged patients is warranted to make equal oncological care.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lidia Gatto
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marta Aprile
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
44
|
Lu J, Huo W, Ma Y, Wang X, Yu J. Suppressive immune microenvironment and CART therapy for glioblastoma: Future prospects and challenges. Cancer Lett 2024; 600:217185. [PMID: 39142498 DOI: 10.1016/j.canlet.2024.217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Glioblastoma, a highly malignant intracranial tumor, has acquired slow progress in treatment. Previous clinical trials involving targeted therapy and immune checkpoint inhibitors have shown no significant benefits in treating glioblastoma. This ineffectiveness is largely due to the complex immunosuppressive environment of glioblastoma. Glioblastoma cells exhibit low immunogenicity and strong heterogeneity and the immune microenvironment is replete with inhibitory cytokines, numerous immunosuppressive cells, and insufficient effective T cells. Fortunately, recent Phase I clinical trials of CART therapy for glioblastoma have confirmed its safety, with a small subset of patients achieving survival benefits. However, CART therapy continues to face challenges, including blood-brain barrier obstruction, antigen loss, and an immunosuppressive tumor microenvironment (TME). This article provides a detailed examination of glioblastoma's immune microenvironment, both from intrinsic and extrinsic tumor cell factors, reviews current clinical and basic research on multi-targets CART treatment, and concludes by outlining the key challenges in using CART cells for glioblastoma therapy.
Collapse
Affiliation(s)
- Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Wen Huo
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, China
| | - Yingze Ma
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Xin Wang
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
45
|
Moosa NY, Azeem SA, Lodge JK, Cheung W, Ahmed SU. Vitamin B6 Pathway Maintains Glioblastoma Cell Survival in 3D Spheroid Cultures. Int J Mol Sci 2024; 25:10428. [PMID: 39408757 PMCID: PMC11476381 DOI: 10.3390/ijms251910428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a deadly brain cancer. The prognosis of GBM patients has marginally improved over the last three decades. The response of GBMs to initial treatment is inevitably followed by relapse. Thus, there is an urgent need to identify and develop new therapeutics to target this cancer and improve both patient outcomes and long-term survival. Metabolic reprogramming is considered one of the hallmarks of cancers. However, cell-based studies fail to accurately recapitulate the in vivo tumour microenvironment that influences metabolic signalling and rewiring. Against this backdrop, we conducted global, untargeted metabolomics analysis of the G7 and R24 GBM 2D monolayers and 3D spheroid cultures under identical cell culture conditions. Our studies revealed that the levels of multiple metabolites associated with the vitamin B6 pathway were significantly altered in 3D spheroids compared to the 2D monolayer cultures. Importantly, we show that pharmacological intervention with hydralazine, a small molecule that reduces vitamin B6 levels, resulted in the cell death of 3D GBM spheroid cultures. Thus, our study shows that inhibition of the vitamin B6 pathway is a novel therapeutic strategy for the development of targeted therapies in GBMs.
Collapse
Affiliation(s)
- Najla Yussuf Moosa
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| | - Sara Abdullah Azeem
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| | - John K. Lodge
- School of Human Sciences, London Metropolitan University, Tower Building, Holloway Road, London N7 8DB, UK;
| | - William Cheung
- Department of Applied Sciences, Northumbria University, Ellison Building, Northumberland Road, Newcastle Upon Tyne NE1 8ST, UK;
| | - Shafiq Uddin Ahmed
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| |
Collapse
|
46
|
Qiu C, Sun N, Zeng S, Chen L, Gong F, Tian J, Xiong Y, Peng L, He H, Ming Y. Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review. Discov Oncol 2024; 15:501. [PMID: 39331302 PMCID: PMC11436538 DOI: 10.1007/s12672-024-01380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits remarkable invasiveness and is characterized by its intricate location, infiltrative behavior, the presence of both the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), phenotypic diversity, an immunosuppressive microenvironment with limited development yet rich vascularity, as well as the resistant nature of glioblastoma stem cells (GSCs) towards traditional chemotherapy and radiotherapy. These formidable factors present substantial obstacles in the quest for effective GBM treatments. Following extensive research spanning three decades, the hepatocellular receptor A2 (EphA2) receptor tyrosine kinase has emerged as a promising molecular target with translational potential in the realm of cancer therapy. Numerous compounds aimed at targeting EphA2 have undergone rigorous evaluation and clinical investigation. This article provides a comprehensive account of the distinctive roles played by canonical and non-canonical EphA2 signaling in various contexts, while also exploring the involvement of the EphA2-ephrin A1 signaling axis in GBM pathogenesis. Additionally, the review offers an overview of completed clinical trials targeting EphA2 for GBM treatment, shedding light on both the prospects and challenges associated with EphA2-directed interventions in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Caohang Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ning Sun
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Feilong Gong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yu Xiong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China.
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
47
|
Devi CM, Deka K, Das AK, Talukdar A, Sola P. Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma. Mol Biotechnol 2024:10.1007/s12033-024-01287-3. [PMID: 39327380 DOI: 10.1007/s12033-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Glioma is the most common and aggressive type of central nervous system tumor as categorized by the World Health Organization. Glioblastoma (GBA), in general, exhibits a grim prognosis and short life expectancy, rarely exceeding 14 months. The dismal prognosis is primarily attributed to the development of chemoresistance to temozolomide, the primary therapeutic agent for GBA treatment. Hence, it becomes imperative to develop novel drugs with antitumor efficacy rooted in distinct mechanisms compared to temozolomide. The vast marine environment contains a wealth of naturally occurring compounds from the sea (known as marine-derived natural products), which hold promise for future research in the quest for new anticancer drugs. Ongoing advancements in anticancer pharmaceuticals have led to an upswing in the isolation and validation of numerous pioneering breakthroughs and improvements in anticancer therapeutics. Nonetheless, the availability of FDA-approved marine-derived anticancer drugs remains limited, owing to various challenges and constraints. Among these challenges, drug delivery is a prominent hurdle. This review delves into an alternative approach for delivering marine-derived drugs using nanotechnological formulations and their mechanism of action for treating GBA.
Collapse
Affiliation(s)
- Chanam Melody Devi
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Amit Kumar Das
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Apurba Talukdar
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India.
| |
Collapse
|
48
|
Ainslie K. Modifying Post-Surgical Immunity: Controlled Release of TLR7/8 Agonist for Immune Mediated Clearance of Glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-5024510. [PMID: 39399681 PMCID: PMC11469459 DOI: 10.21203/rs.3.rs-5024510/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Glioblastoma is an aggressive brain cancer with a dismal prognosis despite current therapeutic interventions. Tumor resection is standard-of-care for glioblastoma and has profound immunostimulatory effects. Resulting in a nadir in tumor burden, resection offers a unique opportunity to break local immune tolerance and mount an effective anti-tumor immune response. Here, we explore the effect of local and controlled release of TLR7/8 agonist from a polymer scaffold implanted at the time of tumor resection. We find that sustained release of TLR7/8 agonist leads to clearance of residual post-resection tumor, improved survival, and subsequent protection from tumor challenge in mice bearing orthotopic GL261 or CT2A gliomas. We show that scaffold therapy boosts resection-mediated disruption to the tumor microenvironment, leading to an early inflammatory innate immune response both in the brain and cervical lymph node. This is followed by an influx of activated NK cells in the brain and effector T cells in the lymph node and brain. In sum, sustained local TLR7/8 agonism within the context of tumor resection is a promising approach for glioblastoma.
Collapse
|
49
|
Guerra G, Nakase T, Kachuri L, McCoy L, Hansen HM, Rice T, Wiemels JL, Wiencke JK, Molinaro AM, Wrensch M, Francis SS. Association of immunoglobulin E levels with glioma risk and survival. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.09.24307132. [PMID: 38766059 PMCID: PMC11100947 DOI: 10.1101/2024.05.09.24307132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Previous epidemiologic studies have reported an association of serum immunoglobulin E (IgE) levels with reduced glioma risk, but the association between IgE and glioma prognosis has not been characterized. This study aimed to examine how sex, tumor subtype, and IgE class modulate the association of serum IgE levels with glioma risk and survival. Methods We conducted a case-control study using participants from the University of California, San Francisco Adult Glioma Study (1997-2010). Serum IgE levels for total, respiratory and food allergy were measured in adults diagnosed with glioma (n=1319) and cancer-free controls (n=1139) matched based on age, sex, and race and ethnicity. Logistic regression was adjusted for patient demographics to assess the association between IgE levels and glioma risk. Multivariable Cox regression adjusted for patient-specific and tumor-specific factors compared survival between the elevated and normal IgE groups. All statistical tests were 2-sided. Results Elevated total IgE was associated with reduced risk of IDH-wildtype (RR=0.78, 95% CI: 0.71-0.86) and IDH-mutant glioma (RR=0.73, 95% CI: 0.63-0.85). In multivariable Cox regression, positive respiratory IgE was associated with improved survival for IDH-wildtype glioma (RR=0.79, 95% CI: 0.67-0.93). The reduction in mortality risk was significant in females only (RR=0.75, 95% CI: 0.57-0.98) with an improvement in median survival of 6.9 months (P<.001). Conclusion Elevated serum IgE was associated with improved prognosis for IDH-wildtype glioma, with a more pronounced protective effect in females than males, which has implications for the future study of IgE-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Geno Guerra
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Taishi Nakase
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Linda Kachuri
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Helen M. Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph. L. Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John K. Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Stephen S. Francis
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Chan P, Nagai Y, Wu Q, Hovsepyan A, Mkhitaryan S, Wang J, Karapetyan G, Kamenecka T, Solt LA, Cope J, Moats RA, Hirota T, Rich JN, Kay SA. Advancing Clinical Response Against Glioblastoma: Evaluating SHP1705 CRY2 Activator Efficacy in Preclinical Models and Safety in Phase I Trials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613520. [PMID: 39345648 PMCID: PMC11429762 DOI: 10.1101/2024.09.17.613520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background It has been reported that circadian clock components, Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), are uniquely essential for glioblastoma (GBM) stem cell (GSC) biology and survival. Consequently, we developed a novel Cryptochrome (CRY) activator SHP1705, which inhibits BMAL1-CLOCK transcriptional activity. Methods We analyzed buffy coats isolated from Phase 1 clinical trial subjects' blood to assess any changes to circadian, housekeeping, and blood transcriptome-based biomarkers following SHP1705 treatment. We utilized GlioVis to determine which circadian genes are differentially expressed in non-tumor versus GBM tissues. We employed in vitro and in vivo methods to test the efficacy of SHP1705 against patient-derived GSCs and xenografts in comparison to earlier CRY activator scaffolds. Additionally, we applied a novel-REV-ERB agonist SR29065, which inhibits BMAL1 transcription, to determine whether targeting both negative limbs of the circadian transcription-translation feedback loop (TTFL) would yield synergistic effects against various GBM cells. Results SHP1705 is safe and well-tolerated in Phase I clinical trials. SHP1705 has increased selectivity for the CRY2 isoform and potency against GSC viability compared to previously published CRY activators. SHP1705 prolonged survival in mice bearing GBM tumors established with GSCs. When combined with the novel REV-ERB agonist SR29065, SHP1705 displayed synergy against multiple GSC lines and differentiated GSCs (DGCs). Conclusions These demonstrate the efficacy of SHP1705 against GSCs, which pose for GBM patient outcomes. They highlight the potential of novel circadian clock compounds in targeting GBM as single agents or in combination with each other or current standard-of-care. KEY POINTS SHP1705 is a novel CRY2 activator that has shown success in Phase 1 safety trialsSHP1705 has a significantly improved efficacy against GSCs and GBM PDX tumorsNovel REV-ERB agonist SR29065 and SHP1705 display synergistic effects against GSCs. IMPORTANCE OF THE STUDY CRY2 is decreased in GBM tissues compared to CRY1 suggesting that promoting CRY2 activity will be an efficacious GBM treatment paradigm. SHP1705, a CRY2 activator that has shown success in Phase 1 safety trials, has significantly improved preclinical efficacy. Novel REV-ERB agonist SR29065 displays synergistic effects against diverse GBM cells.
Collapse
|