1
|
Amanzadeh Jajin E, Oraee-Yazdani S, Zali A, Tavanaei R. Efficacy and safety of gene therapy approaches for malignant gliomas: A systematic review and meta-analysis: ConNRNRNRNR22.5NRNR1011.413.511.9NRNRNR. Curr Probl Cancer 2025; 55:101183. [PMID: 39854884 DOI: 10.1016/j.currproblcancer.2025.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/17/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Malignant gliomas are the most aggressive brain tumors with no certain therapeutic methods. Nowadays, novel treatment methods are introduced for gliomas among which gene therapy is known as a promising and robust method. In this method, genes with key roles in the prevention of cell cycle or induction of cell suicide are transferred to the tumor site using vectors. Viral vectors are the most popular transfer methods, while the liposomes are also used for gene therapy. METHODS This meta-analysis and systematic review was performed based on PRISMA guidelines. We performed a comprehensive search in databases including PubMed, Embase, and clinicaltrial.gov. After processing and filtering the articles, phase 1 clinical trials were chosen for the evaluation of the efficacy and safety of gene therapy for malignant gliomas. RESULTS The obtained results showed that gene therapy increases overall survival (OS) and progression-free survival (PFS) in two years of follow-up. Subgroup analysis also showed that cytokines exhibit the highest effectiveness compared to suicide genes and oncolytic genes. It was found that gene therapy is more efficient for recurrent gliomas than primary gliomas. The subgroup analysis for vectors revealed that Adenovirus is the most effective for increasing the OS in malignant glioma patients. CONCLUSION Gene therapy is an immunotherapy method for malignant gliomas following the standard treatment approach. Considering the effectiveness of gene therapy on the survival of patients, it is hoped that solving related issues with gene therapy will help to increase the OS rate in this malignant disease.
Collapse
Affiliation(s)
- Elnaz Amanzadeh Jajin
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Tavanaei
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Westphal M, Drexler R, Maire C, Ricklefs F, Lamszus K. Cancer neuroscience and glioma: clinical implications. Acta Neurochir (Wien) 2025; 167:2. [PMID: 39752006 PMCID: PMC11698767 DOI: 10.1007/s00701-024-06406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components. In the brain, interactions between glioma cells as well as metastatic lesions with neural components have clinical implications for diagnostics, risk assessments, neurological sequelae, and the development of innovative therapeutics. Here, we review these neuro-tumoral dynamics, emphasizing aspects relevant to neurosurgical practice.
Collapse
Affiliation(s)
- Manfred Westphal
- Institute for Tumorbiology, University Hospital Hamburg Eppendorf, W29 - R34, Hamburg, 20246, Germany.
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Cecile Maire
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Duerinck J, Lescrauwaet L, Dirven I, Del’haye J, Stevens L, Geeraerts X, Vaeyens F, Geens W, Brock S, Vanbinst AM, Everaert H, Caljon B, Bruneau M, Lebrun L, Salmon I, Kockx M, Tuyaerts S, Neyns B. Intracranial administration of anti-PD-1 and anti-CTLA-4 immune checkpoint-blocking monoclonal antibodies in patients with recurrent high-grade glioma. Neuro Oncol 2024; 26:2208-2221. [PMID: 39406392 PMCID: PMC11630548 DOI: 10.1093/neuonc/noae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Recurrent high-grade glioma (rHGG) lacks effective life-prolonging treatments and the efficacy of systemic PD-1 and CTLA-4 immune checkpoint inhibitors is limited. The multi-cohort Glitipni phase I trial investigates the safety and feasibility of intraoperative intracerebral (iCer) and postoperative intracavitary (iCav) nivolumab (NIVO) ± ipilimumab (IPI) treatment following maximal safe resection (MSR) in rHGG. MATERIALS AND METHODS Patients received 10 mg IV NIVO within 24 h before surgery, followed by MSR, iCer 5 mg IPI and 10 mg NIVO, and Ommaya catheter placement in the resection cavity. Biweekly postoperative iCav administrations of 1-5-10 mg NIVO (cohort 4) or 10 mg NIVO plus 1-5-10 mg IPI (cohort 7) were combined with 10 mg IV NIVO for 11 cycles. RESULTS 42 rHGG patients underwent MSR with iCer NIVO + IPI. 16 pts were treated in cohort 4 (postoperative iCav NIVO at escalating doses) while 28 patients were treated in cohort 7 (intra and postoperative iCav NIVO and escalating doses of IPI). The most common TRAE was fatigue; no grade 5 AE occurred. Dose-limiting toxicity was grade 3 neutrophilic pleocytosis (4 pts) receiving iCav NIVO plus 5 or 10 mg IPI. PFS and OS did not significantly differ between cohorts (median OS: 42 [95% CI 26-57] vs. 35 [29-40] weeks; 1-year OS rate: 37% vs. 29%). Baseline B7-H3 expression significantly correlated with worse survival. OS compared favorably to a historical pooled cohort (n = 469) of Belgian rHGG pts treated with anti-VEGF therapies (log-rank P = .015). CONCLUSION Intraoperative iCer IPI + NIVO with postoperative iCav NIVO ± IPI up to biweekly doses of 1 mg IPI + 10 mg NIVO is feasible and safe, showing encouraging OS in rHGG patients. ClinicalTrials.gov registration: NCT03233152.
Collapse
Affiliation(s)
- Johnny Duerinck
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Louise Lescrauwaet
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iris Dirven
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jacomi Del’haye
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Latoya Stevens
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Xenia Geeraerts
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Freya Vaeyens
- Department of Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Wietse Geens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ben Caljon
- Department of Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Michaël Bruneau
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laetitia Lebrun
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | | | - Sandra Tuyaerts
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
5
|
Spirito F, Nocini R, Mori G, Albanese M, Georgakopoulou EA, Sivaramakrishnan G, Khalil B, Špiljak B, Surya V, Mishra D, Chaurasia A. The Potential of Oncolytic Virotherapy in the Treatment of Head and Neck Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:12990. [PMID: 39684701 DOI: 10.3390/ijms252312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancer (HNC) represents a challenging oncological entity with significant morbidity and mortality rates. Despite advances in conventional therapies, including surgery, chemotherapy, and radiation therapy, the overall survival rates for advanced HNC remain suboptimal. In recent years, the emerging field of oncolytic virotherapy has gained attention as a promising therapeutic approach for various malignancies, including HNC. This review provides a comprehensive overview of the current understanding of oncolytic viruses (Ovs) in the context of HNC treatment, including their mechanisms of action, preclinical and clinical studies, challenges, and future directions. Future oncolytic virotherapy focuses on improving delivery and specificity through nanoparticle carriers and genetic modifications to enhance tumor targeting and immune response. Combining different OVs and integrating them with immunotherapies, such as checkpoint inhibitors, could overcome tumor resistance and improve outcomes. Personalized approaches and rigorous clinical trials are key to ensuring the safety and effectiveness of virotherapy in treating HNC.
Collapse
Affiliation(s)
- Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Massimo Albanese
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Eleni A Georgakopoulou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Basel Khalil
- Department of Basic Sciences, Faculty of Dentistry, University of Damascus, Damascus 30621, Syria
| | - Bruno Špiljak
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Varun Surya
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
6
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 PMCID: PMC11607068 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
7
|
Palavani LB, Mitre LP, Camerotte R, Nogueira BV, Canto GL, Chen HC, Pacheco-Barrios N, Ferreira MY, Batista S, Andreão FF, Polverini AD, Montenegro TS, Paiva W, Ferreira C, Bertani R, D'Amico RS. Advancements and challenges: immunotherapy therapy in high-grade glioma - a meta-analysis of randomized clinical trials. J Neurooncol 2024; 170:483-493. [PMID: 39230804 DOI: 10.1007/s11060-024-04813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND High-grade gliomas (HGG) are the most aggressive primary brain tumors with poor prognoses despite conventional treatments. Immunotherapy has emerged as a promising avenue due to its potential to elicit a targeted immune response against tumor cells. OBJECTIVE This meta-analysis aimed to evaluate the efficacy and safety of various immunotherapeutic strategies, including immune checkpoint inhibitors (ICI), virotherapy, and dendritic cell vaccines (DCV) in treating HGG. METHODS Following the PRISMA framework, we searched PubMed, Cochrane, and Embase for studies reporting outcomes of HGG patients treated with immunotherapy. Key metrics included overall survival, progression-free survival, and treatment-related adverse events. RESULTS We reviewed 47 studies, analyzing data from 3674 HGG patients treated with immunotherapy. The mean overall survival for patients treated with ICI was 11.05 months, with virotherapy at 11.79 months and notably longer for DCV at 24.11 months. The mean progression-free survival (PFS) for ICIs was 3.65 months. Virotherapy demonstrated a PFS favoring the control group, indicating minimal impact, while DCV showed substantial PFS improvement with a median of 0.43 times lower hazard compared to controls (95% CI: 29-64%). Adverse events were primarily Grade 1 or 2 for ICI, included a Grade 5 event for virotherapy, and were predominantly Grade 1 or 2 for DCV, indicating a favorable safety profile. CONCLUSION Immunotherapy holds potential as an effective treatment for HGG, especially DCV. However, results vary significantly with the type of therapy and individual patient profiles. Further randomized controlled trials are necessary to establish robust clinical guidelines and optimize treatment protocols.
Collapse
Affiliation(s)
| | - Lucas Pari Mitre
- Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP, Brazil
| | | | | | | | | | | | - Márcio Yuri Ferreira
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA
| | - Sávio Batista
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Allan Dias Polverini
- Neurosurgical Oncology Division, Barretos Cancer Hospital, Barretos, São Paulo, SP, Brazil
| | - Thiago S Montenegro
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wellingson Paiva
- Department of Neurosurgery, University of São Paulo, São Paulo, SP, Brazil
| | | | - Raphael Bertani
- Department of Neurosurgery, University of São Paulo, São Paulo, SP, Brazil
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA
| |
Collapse
|
8
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Ius T, Somma T, Pasqualetti F, Berardinelli J, Vitulli F, Caccese M, Cella E, Cenciarelli C, Pozzoli G, Sconocchia G, Zeppieri M, Gerardo C, Caffo M, Lombardi G. Local therapy in glioma: An evolving paradigm from history to horizons (Review). Oncol Lett 2024; 28:440. [PMID: 39081966 PMCID: PMC11287108 DOI: 10.3892/ol.2024.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Ius
- Unit of Neurosurgery, Head-Neck and Neurosciences Department, University Hospital of Udine, I-33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | | | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Francesca Vitulli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| | - Eugenia Cella
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
- Medical Oncology 2, San Martino Hospital-IRCCS, I-16131 Genoa Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Giacomo Pozzoli
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, I-33100 Udine, Italy
| | - Caruso Gerardo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| |
Collapse
|
10
|
Qin YT, Liu X, An JX, Chen Z, Niu MT, Yan X, Li QR, Rao ZY, Zhang XZ. Oral Saccharomyces cerevisiae-Guided Enzyme Prodrug Therapy Combined with Immunotherapy for the Treatment of Orthotopic Colorectal Cancer. ACS NANO 2024; 18:23497-23507. [PMID: 39146387 DOI: 10.1021/acsnano.4c07115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Colorectal cancer (CRC) is a major global health concern, and the development of effective treatment strategies is crucial. Enzyme prodrug therapy (EPT) shows promise in combating tumors but faces challenges in achieving sustained expression of therapeutic enzymes and optimal biological distribution. To address these issues, a fungi-triggered in situ chemotherapeutics generator (named as SC@CS@5-FC) was constructed via oral delivery of a prodrug (5-fluorocytosine, 5-FC) for the treatment of orthotopic colorectal tumor. When SC@CS@5-FC targets the tumor through tropism by Saccharomyces cerevisiae (SC), the chemotherapeutic generator could be degraded under abundant hyaluronidase (HAase) in the tumor microenvironment by an enzyme-responsive gate to release prodrug (5-FC). And nontoxic 5-FC was catalyzed to toxic chemotherapy drug 5-fluorouracil (5-FU) by cytosine deaminase (CD) of SC. Meanwhile, SC and zinc-coordinated chitosan nanoparticles could be used as immune adjuvants to activate antigen-presenting cells and further enhance the therapeutic effect. Our results demonstrated that SC@CS@5-FC could effectively inhibit tumor growth and prolong mouse survival in an orthotopic colorectal cancer model. This work utilizes living SC as a dynamotor and positioning system for the chemotherapeutic generator SC@CS@5-FC, providing a strategy for oral enzyme prodrug therapy for the treatment of orthotopic colorectal.
Collapse
Affiliation(s)
- You-Teng Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xinhua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Jia-Xin An
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Zhu Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Mei-Ting Niu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Qian-Ru Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
11
|
Sferruzza G, Consoli S, Dono F, Evangelista G, Giugno A, Pronello E, Rollo E, Romozzi M, Rossi L, Pensato U. A systematic review of immunotherapy in high-grade glioma: learning from the past to shape future perspectives. Neurol Sci 2024; 45:2561-2578. [PMID: 38308708 DOI: 10.1007/s10072-024-07350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
High-grade gliomas (HGGs) constitute the most common malignant primary brain tumor with a poor prognosis despite the standard multimodal therapy. In recent years, immunotherapy has changed the prognosis of many cancers, increasing the hope for HGG therapy. We conducted a comprehensive search on PubMed, Scopus, Embase, and Web of Science databases to include relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Fifty-two papers were finally included (44 phase II and eight phase III clinical trials) and further divided into four different subgroups: 14 peptide vaccine trials, 15 dendritic cell vaccination (DCV) trials, six immune checkpoint inhibitor (ICI) trials, and 17 miscellaneous group trials that included both "active" and "passive" immunotherapies. In the last decade, immunotherapy created great hope to increase the survival of patients affected by HGGs; however, it has yielded mostly dismal results in the setting of phase III clinical trials. An in-depth analysis of these clinical results provides clues about common patterns that have led to failures at the clinical level and helps shape the perspective for the next generation of immunotherapies in neuro-oncology.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS Ospedale San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessia Giugno
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Edoardo Pronello
- Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Eleonora Rollo
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marina Romozzi
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucrezia Rossi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, ASUGI, University of Trieste, Trieste, Italy
| | - Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|
12
|
Guan J, Sun K, Guerrero CA, Zheng J, Xu Y, Mathur S, Teh BS, Farach A, Zhang J, Butler E, Pan PY, Zsigmond E, Mei Z, Mejia J, Chen SH, Chang JC, Bernicker EH. A Phase 2 Study of In Situ Oncolytic Virus Therapy and Stereotactic Body Radiation Therapy Followed by Pembrolizumab in Metastatic Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1531-1540. [PMID: 37625523 DOI: 10.1016/j.ijrobp.2023.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
PURPOSE A phase 2 study of stereotactic body radiation therapy (SBRT) and in situ oncolytic virus therapy in metastatic non-small cell lung cancer (mNSCLC) followed by pembrolizumab (STOMP) was designed to explore the dual approach in enhancing single pembrolizumab with ADV/HSV-tk plus valacyclovir gene therapy and SBRT in mNSCLC. METHODS AND MATERIALS STOMP is a single-arm, open-label phase 2 study. Patients with mNSCLC received intratumoral injections of ADV/HSV-tk (5 × 1011 vp) and SBRT (30 Gy in 5 fractions) followed by pembrolizumab 200 mg IV every 3 weeks until disease progression or intolerable toxicity. The primary endpoint was overall response rate (ORR) (complete response [CR] and partial response [PR]). Secondary endpoints included clinical benefit rate (CBR) (CR, PR and stable disease [SD]), progression-free survival (PFS), overall survival (OS), and safety. RESULTS 28 patients were enrolled, of whom 27 were evaluated for response. The ORR was 33.3%, including 2 CR (7.4%) and 7 PR (25.9%). CBR was 70.4%. Six of eight (75.0%) patients who were immune checkpoint inhibitor (ICI) refractory derived clinical benefits. Responders had durable responses with median PFS, and OS not reached. The entire cohort had a median PFS of 7.4 months (95% CI, 5.1-9.6 months), and median OS of 18.1 months (95% CI, 15.4-20.9 months). The combination was well tolerated, with grade 3 or higher toxicity in 6 (21.4%) patients. CONCLUSIONS The dual approach of in situ ADV/HSV-tk plus valacyclovir gene therapy and SBRT as a chemotherapy-sparing strategy to enhance the antitumor effect of pembrolizumab is a well-tolerated encouraging treatment in patients with mNSCLC.
Collapse
Affiliation(s)
- Jian Guan
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Kai Sun
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Carlo A Guerrero
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Junjun Zheng
- Houston Methodist Research Institute, Houston, Texas
| | - Yitian Xu
- Houston Methodist Research Institute, Houston, Texas
| | - Sunil Mathur
- Houston Methodist Research Institute, Houston, Texas
| | - Bin S Teh
- Houston Methodist Research Institute, Houston, Texas; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Andrew Farach
- Houston Methodist Research Institute, Houston, Texas; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Jun Zhang
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Edward Butler
- Houston Methodist Research Institute, Houston, Texas; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Ping-Ying Pan
- Houston Methodist Research Institute, Houston, Texas
| | - Eva Zsigmond
- Houston Methodist Research Institute, Houston, Texas
| | - Zhuyong Mei
- Center for Gene and Cell Therapy, Baylor College of Medicine, Houston, Texas
| | - Jaime Mejia
- Merck Research Laboratories, Rahway, New Jersey
| | - Shu Hsia Chen
- Houston Methodist Research Institute, Houston, Texas
| | - Jenny C Chang
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas; Houston Methodist Research Institute, Houston, Texas
| | - Eric H Bernicker
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas; Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
13
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
14
|
Wu M, Shi Y, Liu Y, Li Z, Wu H, Yu Z, Wang Z, Xu C. A Human Adenovirus C Infection-Related Gene Panel for Predicting Survival and Treatment Responsiveness in Glioma Patients. World Neurosurg 2024; 183:e173-e186. [PMID: 38097166 DOI: 10.1016/j.wneu.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Viruses are critical for the regulation of cancer development and for therapy. Human adenovirus C (HadVC) has been detected in central nervous system and glioma tissue. The objective of the present study was the development of a robust prognostic model based on HadVC infection (HadVCi)-relevant genes. METHODS The genome, transcriptome, and virome were systemically analyzed using The Cancer Genome Atlas dataset for training and 2 cohorts from the Chinese Glioma Genome Atlas and an immunotherapy trial cohort with 17 patients receiving anti-PD-1 treatment for validation. HadVCi-relevant gene selection from differentially expressed genes between HadVC-infected and non-HadVC-infected glioma patients using least absolute shrinkage and selection operator regression was followed by Cox regression modeling to establish a prognostic HadVCi score. Kaplan-Meier and receiver operating characteristic curve analyses were performed to estimate the predictive capacity of the HadVCi score. The χ2, Spearman, and Mann-Whitney U tests were used to identify the correlation with the clinicopathological parameters, treatment responsiveness, and immune landscape. Temozolomide-resistant glioma cells were established and analyzed at the transcriptional level using RNA sequencing data. RESULTS The HadVCi score was (-0.2526673∗TRPC6) + (-0.2244276∗RNF207) + (-0.0894468∗SEC31B) + (-0.0190214∗ZCRB1) + (-0.017122∗DNPH1) + (0.0495818∗CCDC34) + (0.1196349∗PURG) + (0.1778997∗LILRA5). The score possesses a strong ability to predict overall survival. Further analysis revealed a higher HadVCi score correlated with a malignant phenotype and poorer treatment responsiveness to temozolomide-based chemotherapy and combined therapies. Additionally, transcriptomic analysis showed malignancy-, stemness-, and radioresistant-related gene activation in the HadVCi group, which characterized the poor outcomes and limited sensitivity to standard therapy. CONCLUSIONS The HadVCi score could be an effective tool for survival prediction and treatment guidance for patients with glioma.
Collapse
Affiliation(s)
- Mengwan Wu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Shi
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Zhaoshen Li
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Hong Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhuoyang Yu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
16
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
17
|
Lampela J, Pajula J, Järveläinen N, Siimes S, Laham-Karam N, Kivelä A, Mushimiyimana I, Nurro J, Hartikainen J, Ylä-Herttuala S. Caridac vein retroinjections provide an efficient approach for global left ventricular gene transfer with adenovirus and adeno-associated virus. Sci Rep 2024; 14:1467. [PMID: 38233585 PMCID: PMC10794695 DOI: 10.1038/s41598-024-51712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Heart failure (HF) is a major burden worldwide, and new therapies are urgently needed. Gene therapy is a promising new approach to treat myocardial diseases. However, current cardiac gene delivery methods for producing global myocardial effects have been inefficient. The aim of this study was to develop an endovascular, reproducible, and clinically applicable gene transfer method for global left ventricular (LV) transduction. Domestic pigs (n = 52) were used for the experiments. Global LV myocardium coverage was achieved by three retrograde injections into the three main LV vein branches. The distribution outcome was significantly improved by simultaneous transient occlusions of the corresponding coronary arteries and the main anastomotic veins of the retroinjected veins. The achieved cardiac distribution was visualized first by administering Indian Ink solution. Secondly, AdLacZ (2 × 1012vp) and AAV2-GFP (2 × 1013vg) gene transfers were performed to study gene transduction efficacy of the method. By retrograde injections with simultaneous coronary arterial occlusions, both adenovirus (Ad) and adeno-associated virus (AAV) vectors were shown to deliver an efficient transduction of the LV. We conclude that retrograde injections into the three main LV veins is a potential new approach for a global LV gene transfer.
Collapse
Affiliation(s)
- Jaakko Lampela
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juho Pajula
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niko Järveläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Satu Siimes
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Antti Kivelä
- Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Isidore Mushimiyimana
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jussi Nurro
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Heart Center, Kuopio University Hospital, Kuopio, Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
18
|
Chang CT, Chen HH, Chuang CC, Chang SH, Hsiao NW. Ganciclovir as a potential treatment for glioma: a systematic review and meta-analysis. J Neurooncol 2023; 165:399-411. [PMID: 38066255 DOI: 10.1007/s11060-023-04503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Glioma is a challenging malignant tumor with a low survival rate and no effective treatment. Recently, ganciclovir, an antiviral drug, combined with gene therapy and its own antiviral ability, has been proposed as a potential treatment for glioma. However, there are differences in the results of various clinical trials. In this study, we conducted a systematic review and meta-analysis to evaluate the efficacy of ganciclovir in treating glioma. METHODS We searched databases such as PubMed, EMBASE, and Cochrane Library before March 30, 2023. The search terms included glioma, ganciclovir, valganciclovir and treatment. Calculated 1, 2 and 4-year survival rate by risk difference (RD), and overall survival (OS) by odds ratio (OR). RESULTS Five randomized controlled trials (RCTs) with a total of 606 high-grade glioma patients were included. The results showed that ganciclovir can improve 2-yeaer (RD = 0.179, 95% CI 0.012-0.346, P = 0.036) and 4-year survival rate (RD = 0.185, 95% CI 0.069-0.3, P = 0.002) and OS (OR 2.393, 95% CI 1.212-4.728, P = 0.012) compared with the control group. CONCLUSIONS This meta-analysis showed that ganciclovir significantly improved the prognosis of glioma patients. Therefore, we suggest that more cases of ganciclovir as a glioma treatment can be conducted, or a large clinical trial can be designed.
Collapse
Affiliation(s)
- Chun-Tao Chang
- Department of Biology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Hsing-Hui Chen
- Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Chun-Chao Chuang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, South Dist., Taichung City, 402306, Taiwan
| | - Shao-Hsun Chang
- Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan
| | - Nai-Wan Hsiao
- Department of Biology, National Changhua University of Education, No. 1, Jinde Rd, Changhua City, Changhua County, 500207, Taiwan.
| |
Collapse
|
19
|
Leikas AJ, Ylä-Herttuala S, Hartikainen JEK. Adenoviral Gene Therapy Vectors in Clinical Use-Basic Aspects with a Special Reference to Replication-Competent Adenovirus Formation and Its Impact on Clinical Safety. Int J Mol Sci 2023; 24:16519. [PMID: 38003709 PMCID: PMC10671366 DOI: 10.3390/ijms242216519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Adenoviral vectors are commonly used in clinical gene therapy. Apart from oncolytic adenoviruses, vector replication is highly undesired as it may pose a safety risk for the treated patient. Thus, careful monitoring for the formation of replication-competent adenoviruses (RCA) during vector manufacturing is required. To render adenoviruses replication deficient, their genomic E1 region is deleted. However, it has been known for a long time that during their propagation, some viruses will regain their replication capability by recombination in production cells, most commonly HEK293. Recently developed RCA assays have revealed that many clinical batches contain more RCA than previously assumed and allowed by regulatory authorities. The clinical significance of the higher RCA content has yet to be thoroughly evaluated. In this review, we summarize the biology of adenovirus vectors, their manufacturing methods, and the origins of RCA formed during HEK293-based vector production. Lastly, we share our experience using minimally RCA-positive serotype 5 adenoviral vectors based on observations from our clinical cardiovascular gene therapy studies.
Collapse
Affiliation(s)
- Aleksi J. Leikas
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juha E. K. Hartikainen
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
20
|
Burger MC, Forster MT, Romanski A, Straßheimer F, Macas J, Zeiner PS, Steidl E, Herkt S, Weber KJ, Schupp J, Lun JH, Strecker MI, Wlotzka K, Cakmak P, Opitz C, George R, Mildenberger IC, Nowakowska P, Zhang C, Röder J, Müller E, Ihrig K, Langen KJ, Rieger MA, Herrmann E, Bonig H, Harter PN, Reiss Y, Hattingen E, Rödel F, Plate KH, Tonn T, Senft C, Steinbach JP, Wels WS. Intracranial injection of natural killer cells engineered with a HER2-targeted chimeric antigen receptor in patients with recurrent glioblastoma. Neuro Oncol 2023; 25:2058-2071. [PMID: 37148198 PMCID: PMC10628939 DOI: 10.1093/neuonc/noad087] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GB) is incurable at present without established treatment options for recurrent disease. In this phase I first-in-human clinical trial we investigated safety and feasibility of adoptive transfer of clonal chimeric antigen receptor (CAR)-NK cells (NK-92/5.28.z) targeting HER2, which is expressed at elevated levels by a subset of glioblastomas. METHODS Nine patients with recurrent HER2-positive GB were treated with single doses of 1 × 107, 3 × 107, or 1 × 108 irradiated CAR-NK cells injected into the margins of the surgical cavity during relapse surgery. Imaging at baseline and follow-up, peripheral blood lymphocyte phenotyping and analyses of the immune architecture by multiplex immunohistochemistry and spatial digital profiling were performed. RESULTS There were no dose-limiting toxicities, and none of the patients developed a cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Five patients showed stable disease after relapse surgery and CAR-NK injection that lasted 7 to 37 weeks. Four patients had progressive disease. Pseudoprogression was found at injection sites in 2 patients, suggestive of a treatment-induced immune response. For all patients, median progression-free survival was 7 weeks, and median overall survival was 31 weeks. Furthermore, the level of CD8+ T-cell infiltration in recurrent tumor tissue prior to CAR-NK cell injection positively correlated with time to progression. CONCLUSIONS Intracranial injection of HER2-targeted CAR-NK cells is feasible and safe in patients with recurrent GB. 1 × 108 NK-92/5.28.z cells was determined as the maximum feasible dose for a subsequent expansion cohort with repetitive local injections of CAR-NK cells.
Collapse
Affiliation(s)
- Michael C Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | | | - Annette Romanski
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Florian Straßheimer
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Jadranka Macas
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pia S Zeiner
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Eike Steidl
- Institute of Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Katharina J Weber
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center (UCT), Goethe University Hospital, Frankfurt, Germany
| | - Jonathan Schupp
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer H Lun
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maja I Strecker
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Karolin Wlotzka
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Pinar Cakmak
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinna Opitz
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Rosemol George
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Iris C Mildenberger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
| | - Paulina Nowakowska
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Jasmin Röder
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Elvira Müller
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Kristina Ihrig
- University Cancer Center (UCT), Goethe University Hospital, Frankfurt, Germany
| | - Karl-Josef Langen
- Research Center Jülich, Institute of Neuroscience and Medicine, Jülich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Michael A Rieger
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Eva Herrmann
- Institute for Biostatistics and Mathematical Modelling, Goethe University, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yvonne Reiss
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Franz Rödel
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Karl H Plate
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Torsten Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Winfried S Wels
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| |
Collapse
|
21
|
Faisal SM, Castro MG, Lowenstein PR. Combined cytotoxic and immune-stimulatory gene therapy using Ad-TK and Ad-Flt3L: Translational developments from rodents to glioma patients. Mol Ther 2023; 31:2839-2860. [PMID: 37574780 PMCID: PMC10556227 DOI: 10.1016/j.ymthe.2023.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023] Open
Abstract
Gliomas are the most prevalent and devastating primary malignant brain tumors in adults. Despite substantial advances in understanding glioma biology, there have been no regulatory drug approvals in the US since bevacizumab in 2009 and tumor treating fields in 2011. Recent phase III clinical trials have failed to meet their prespecified therapeutic primary endpoints, highlighting the need for novel therapies. The poor prognosis of glioma patients, resistance to chemo-radiotherapy, and the immunosuppressive tumor microenvironment underscore the need for the development of novel therapies. Gene therapy-based immunotherapeutic strategies that couple the ability of the host immune system to specifically kill glioma cells and develop immunological memory have shown remarkable progress. Two adenoviral vectors expressing Ad-HSV1-TK/GCV and Ad-Flt3L have shown promising preclinical data, leading to FDA approval of a non-randomized, phase I open-label, first in human trial to test safety, cytotoxicity, and immune-stimulatory efficiency in high-grade glioma patients (NCT01811992). This review provides a thorough overview of immune-stimulatory gene therapy highlighting recent advancements, potential drawbacks, future directions, and recommendations for future implementation of clinical trials.
Collapse
Affiliation(s)
- Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Rogel Cancer Centre, University of Michigan Medical School, Ann Arbor, MI 48108, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Rogel Cancer Centre, University of Michigan Medical School, Ann Arbor, MI 48108, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Rogel Cancer Centre, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48108, USA.
| |
Collapse
|
22
|
Umemura Y, Orringer D, Junck L, Varela ML, West MEJ, Faisal SM, Comba A, Heth J, Sagher O, Leung D, Mammoser A, Hervey-Jumper S, Zamler D, Yadav VN, Dunn P, Al-Holou W, Hollon T, Kim MM, Wahl DR, Camelo-Piragua S, Lieberman AP, Venneti S, McKeever P, Lawrence T, Kurokawa R, Sagher K, Altshuler D, Zhao L, Muraszko K, Castro MG, Lowenstein PR. Combined cytotoxic and immune-stimulatory gene therapy for primary adult high-grade glioma: a phase 1, first-in-human trial. Lancet Oncol 2023; 24:1042-1052. [PMID: 37657463 DOI: 10.1016/s1470-2045(23)00347-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.
Collapse
Affiliation(s)
- Yoshie Umemura
- Department of Neurology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Orringer
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Larry Junck
- Department of Neurology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Maria L Varela
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; The Rogel Cancer Center, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Molly E J West
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; The Rogel Cancer Center, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Syed M Faisal
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; The Rogel Cancer Center, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Comba
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; The Rogel Cancer Center, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Jason Heth
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Oren Sagher
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Denise Leung
- Department of Neurology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Mammoser
- Department of Neurology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Zamler
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Viveka N Yadav
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Patrick Dunn
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Wajd Al-Holou
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Todd Hollon
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Michelle M Kim
- Department of Radiation Oncology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Sandra Camelo-Piragua
- Department of Pathology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Andrew P Lieberman
- Department of Pathology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Sriram Venneti
- Department of Pathology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Paul McKeever
- Department of Pathology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Theodore Lawrence
- Department of Radiation Oncology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Ryo Kurokawa
- Department of Radiology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Karen Sagher
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - David Altshuler
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, The University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Karin Muraszko
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; The Rogel Cancer Center, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; The Rogel Cancer Center, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan School of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Bernstock JD, Ling A, Chiocca EA. Combined gene therapies for high-grade glioma. Lancet Oncol 2023; 24:949-950. [PMID: 37657467 DOI: 10.1016/s1470-2045(23)00389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Ling
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
24
|
Guo B, Zhang S, Xu L, Sun J, Chan WL, Zheng P, Zhang J, Zhang L. Efficacy and safety of innate and adaptive immunotherapy combined with standard of care in high-grade gliomas: a systematic review and meta-analysis. Front Immunol 2023; 14:966696. [PMID: 37483593 PMCID: PMC10357294 DOI: 10.3389/fimmu.2023.966696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 05/26/2023] [Indexed: 07/25/2023] Open
Abstract
Background Malignant glioma is the most common intracranial malignant tumor with the highest mortality. In the era of immunotherapy, it is important to determine what type of immunotherapy provides the best chance of survival. Method Here, the efficacy and safety of immunotherapy in high-grade glioma (HGG) were evaluated by systematic review and meta-analysis. The differences between various types of immunotherapy were explored. Retrieved hits were screened for inclusion in 2,317 articles. We extracted the overall survival (OS) and progression-free survival (PFS) hazard ratios (HRs) as two key outcomes for examining the efficacy of immunotherapy. We also analyzed data on the reported corresponding adverse events to assess the safety of immunotherapy. This study was registered with PROSPERO (CRD42019112356). Results We included a total of 1,271 patients, of which 524 received a combination of immunotherapy and standard of care (SOC), while 747 received SOC alone. We found that immunotherapy extended the OS (HR = 0.74; 95% confidence interval [CI], 0.56-0.99; Z = -2.00, P = 0.0458 < 0.05) and PFS (HR = 0.67; 95% CI, 0.45-0.99; Z = -1.99, P = 0.0466 < 0.05), although certain adverse events occurred (proportion = 0.0773, 95% CI, 0.0589-0.1014). Our data have demonstrated the efficacy of the dendritic cell (DC) vaccine in prolonging the OS (HR = 0.38; 95% CI, 0.21-0.68; Z = -3.23; P = 0.0012 < 0.05) of glioma patients. Oncolytic viral therapy (VT) only extended patient survival in a subgroup analysis (HR = 0.60; 95% CI, 0.45-0.80; Z = -3.53; P = 0.0004 < 0.05). By contrast, immunopotentiation (IP) did not prolong OS (HR = 0.69; 95% CI, 0.50-0.96; Z = -2.23; P = 0.0256). Conclusion Thus, DC vaccination significantly prolonged the OS of HGG patients, however, the efficacy of VT and IP should be explored in further studies. All the therapeutic schemes evaluated were associated with certain side effects. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=112356.
Collapse
Affiliation(s)
- Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shengnan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences of Jilin University, Changchun, Jilin, China
| | - Libo Xu
- Department of Pathophysiology, College of Basic Medical Sciences of Jilin University, Changchun, Jilin, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wai-Lun Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Pengfei Zheng
- Department of Pathophysiology, College of Basic Medical Sciences of Jilin University, Changchun, Jilin, China
| | - Jinnan Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ling Zhang
- Department of Pathophysiology, College of Basic Medical Sciences of Jilin University, Changchun, Jilin, China
| |
Collapse
|
25
|
Oraee-Yazdani S, Tavanaei R, Rostami F, Hajarizadeh A, Mehrabadi M, Akhlaghpasand M, Tamaddon M, Khannejad S, Yazdani KO, Zali A. Suicide gene therapy using allogeneic adipose tissue-derived mesenchymal stem cell gene delivery vehicles in recurrent glioblastoma multiforme: a first-in-human, dose-escalation, phase I clinical trial. J Transl Med 2023; 21:350. [PMID: 37245011 DOI: 10.1186/s12967-023-04213-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is associated with remarkably poor prognosis, and its treatment is challenging. This investigation aimed to evaluate the safety of suicide gene therapy using allogeneic adipose tissue-derived mesenchymal stem cells (ADSCs) carrying herpes simplex virus-thymidine kinase (HSV-TK) gene for the first time in patients with recurrent GBM. METHODS This study was a first-in-human, open-label, single-arm, phase I clinical trial with a classic 3 + 3 dose escalation design. Patients who did not undergo surgery for their recurrence were included and received this gene therapy protocol. Patients received the intratumoral stereotactic injection of ADSCs according to the assigned dose followed by prodrug administration for 14 days. The first dosing cohort (n = 3) received 2.5 × 105 ADSCs; the second dosing cohort (n = 3) received 5 × 105 ADSCs; the third dosing cohort (n = 6) received 10 × 105 ADSCs. The primary outcome measure was the safety profile of the intervention. RESULTS A total of 12 patients with recurrent GBM were recruited. The median follow-up was 16 (IQR, 14-18.5) months. This gene therapy protocol was safe and well tolerated. During the study period, eleven (91.7%) patients showed tumor progression, and nine (75.0%) died. The median overall survival (OS) was 16.0 months (95% CI 14.3-17.7) and the median progression-free survival (PFS) was 11.0 months (95% CI 8.3-13.7). A total of 8 and 4 patients showed partial response and stable disease, respectively. Moreover, significant changes were observed in volumetric analysis, peripheral blood cell counts, and cytokine profile. CONCLUSIONS The present clinical trial, for the first time, showed that suicide gene therapy using allogeneic ADSCs carrying the HSV-TK gene is safe in patients with recurrent GBM. Future phase II/III clinical trials with multiple arms are warranted to validate our findings and further investigate the efficacy of this protocol compared with standard therapy alone. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT), IRCT20200502047277N2. Registered 8 October 2020, https://www.irct.ir/ .
Collapse
Affiliation(s)
- Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran.
| | - Roozbeh Tavanaei
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Fatemeh Rostami
- Stem Cell Technology Research Center (STRC), Iran university of medical science (IUMS), Tehran, Iran
| | - Atieh Hajarizadeh
- Stem Cell Technology Research Center (STRC), Iran university of medical science (IUMS), Tehran, Iran
| | - Marzieh Mehrabadi
- Stem Cell Technology Research Center (STRC), Iran university of medical science (IUMS), Tehran, Iran
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Mona Tamaddon
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samin Khannejad
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Kaveh Oraii Yazdani
- Department of cardiovascular diseases, Zahedan university of medical science, Zahedan, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| |
Collapse
|
26
|
Feng W, Zuo M, Li W, Chen S, Wang Z, Yuan Y, Yang Y, Liu Y. A novel score system based on arginine metabolism-related genes to predict prognosis, characterize immune microenvironment, and forecast response to immunotherapy in IDH-wildtype glioblastoma. Front Pharmacol 2023; 14:1145828. [PMID: 37214463 PMCID: PMC10196947 DOI: 10.3389/fphar.2023.1145828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Glioblastoma is one of the most lethal cancers and leads to more than 200,000 deaths annually. However, despite lots of researchers devoted to exploring novel treatment regime, most of these attempts eventually failed to improve the overall survival of glioblastoma patients in near 20 years. Immunotherapy is an emerging therapy for cancers and have succeeded in many cancers. But most of its application in glioblastoma have been proved with no improvement in overall survival, which may result from the unique immune microenvironment of glioblastoma. Arginine is amino acid and is involved in many physiological processes. Many studies have suggested that arginine and its metabolism can regulate malignancy of multiple cancers and influence the formation of tumor immune microenvironment. However, there is hardly study focusing on the role of arginine metabolism in glioblastoma. Methods: In this research, based on mRNA sequencing data of 560 IDH-wildtype glioblastoma patients from three public cohorts and one our own cohort, we aimed to construct an arginine metabolism-related genes signature (ArMRS) based on four essential arginine metabolism-related genes (ArMGs) that we filtered from all genes with potential relation with arginine metabolism. Subsequently, the glioblastoma patients were classified into ArMRS high-risk and low-risk groups according to calculated optimal cut-off values of ArMRS in these four cohorts. Results: Further validation demonstrated that the ArMRS was an independent prognostic factor and displayed fine efficacy in prediction of glioblastoma patients' prognosis. Moreover, analyses of tumor immune microenvironment revealed that higher ArMRS was correlated with more immune infiltration and relatively "hot" immunological phenotype. We also demonstrated that ArMRS was positively correlated with the expression of multiple immunotherapy targets, including PD1 and B7-H3. Additionally, the glioblastomas in the ArMRS high-risk group would present with more cytotoxic T cells (CTLs) infiltration and better predicted response to immune checkpoint inhibitors (ICIs). Discussion: In conclusion, our study constructed a novel score system based on arginine metabolism, ArMRS, which presented with good efficacy in prognosis prediction and strong potential to predict unique immunological features, resistance to immunotherapy, and guide the application of immunotherapy in IDH-wild type glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Yang
- *Correspondence: Yuan Yang, ; Yanhui Liu,
| | - Yanhui Liu
- *Correspondence: Yuan Yang, ; Yanhui Liu,
| |
Collapse
|
27
|
Wang Y, Li S, Peng Y, Ma W, Wang Y, Li W. Progress in phase III clinical trials of molecular targeted therapy and immunotherapy for glioblastoma. CANCER INNOVATION 2023; 2:114-130. [PMID: 38090060 PMCID: PMC10686181 DOI: 10.1002/cai2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 10/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor, whose prognosis remains poor under the sequential standard of care, such as neurosurgery followed by concurrent temozolomide radiochemotherapy and adjuvant temozolomide chemotherapy in the presence or absence of tumor treating fields. Accordingly, the advent of molecular targeted therapy and immunotherapy has opened a new era of tumor management. A diverse range of targeted drugs have been tested in patients with GBM in phase III clinical trials. However, these drugs are ineffective for all patients, as evidenced by the fact that only a minority of patients in these trials showed prolonged survival. Furthermore, there are several published phase III clinical trials that involve immune checkpoint inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly, this review comprehensively overviews existing studies of targeted drugs and immunotherapy for glioma and discusses the challenge and perspective of targeted drugs and immunotherapy for glioma to clarify future directions.
Collapse
Affiliation(s)
- Yuekun Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shenglan Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yichen Peng
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenbin Li
- Department of Neuro‐oncology, Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
28
|
Garcia Fallit M, Pidre ML, Asad AS, Peña Agudelo JA, Vera MB, Nicola Candia AJ, Sagripanti SB, Pérez Kuper M, Amorós Morales LC, Marchesini A, Gonzalez N, Caruso CM, Romanowski V, Seilicovich A, Videla-Richardson GA, Zanetti FA, Candolfi M. Evaluation of Baculoviruses as Gene Therapy Vectors for Brain Cancer. Viruses 2023; 15:608. [PMID: 36992317 PMCID: PMC10051617 DOI: 10.3390/v15030608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
We aimed to assess the potential of baculoviral vectors (BV) for brain cancer gene therapy. We compared them with adenoviral vectors (AdV), which are used in neuro-oncology, but for which there is pre-existing immunity. We constructed BVs and AdVs encoding fluorescent reporter proteins and evaluated their transduction efficiency in glioma cells and astrocytes. Naïve and glioma-bearing mice were intracranially injected with BVs to assess transduction and neuropathology. Transgene expression was also assessed in the brain of BV-preimmunized mice. While the expression of BVs was weaker than AdVs in murine and human glioma cell lines, BV-mediated transgene expression in patient-derived glioma cells was similar to AdV-mediated transduction and showed strong correlation with clathrin expression, a protein that interacts with the baculovirus glycoprotein GP64, mediating BV endocytosis. BVs efficiently transduced normal and neoplastic astrocytes in vivo, without apparent neurotoxicity. BV-mediated transgene expression was stable for at least 21 days in the brain of naïve mice, but it was significantly reduced after 7 days in mice systemically preimmunized with BVs. Our findings indicate that BVs efficiently transduce glioma cells and astrocytes without apparent neurotoxicity. Since humans do not present pre-existing immunity against BVs, these vectors may constitute a valuable tool for the delivery of therapeutic genes into the brain.
Collapse
Affiliation(s)
- Matías Garcia Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428BFA, Argentina
| | - Matías L. Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| | - Antonela S. Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Jorge A. Peña Agudelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Mariana B. Vera
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Alejandro J. Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Sofia B. Sagripanti
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Melanie Pérez Kuper
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Leslie C. Amorós Morales
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| | - Abril Marchesini
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Carla M. Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Guillermo A. Videla-Richardson
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| | - Flavia A. Zanetti
- Instituto de Ciencia y Tecnología ‘‘Dr. Cesar Milstein”, CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires C1428, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina
| |
Collapse
|
29
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
30
|
Johanssen T, McVeigh L, Erridge S, Higgins G, Straehla J, Frame M, Aittokallio T, Carragher NO, Ebner D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front Oncol 2023; 12:1075559. [PMID: 36733367 PMCID: PMC9886867 DOI: 10.3389/fonc.2022.1075559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) remains a cancer of high unmet clinical need. Current standard of care for GBM, consisting of maximal surgical resection, followed by ionisation radiation (IR) plus concomitant and adjuvant temozolomide (TMZ), provides less than 15-month survival benefit. Efforts by conventional drug discovery to improve overall survival have failed to overcome challenges presented by inherent tumor heterogeneity, therapeutic resistance attributed to GBM stem cells, and tumor niches supporting self-renewal. In this review we describe the steps academic researchers are taking to address these limitations in high throughput screening programs to identify novel GBM combinatorial targets. We detail how they are implementing more physiologically relevant phenotypic assays which better recapitulate key areas of disease biology coupled with more focussed libraries of small compounds, such as drug repurposing, target discovery, pharmacologically active and novel, more comprehensive anti-cancer target-annotated compound libraries. Herein, we discuss the rationale for current GBM combination trials and the need for more systematic and transparent strategies for identification, validation and prioritisation of combinations that lead to clinical trials. Finally, we make specific recommendations to the preclinical, small compound screening paradigm that could increase the likelihood of identifying tractable, combinatorial, small molecule inhibitors and better drug targets specific to GBM.
Collapse
Affiliation(s)
- Timothy Johanssen
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura McVeigh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Geoffrey Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joelle Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Margaret Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Kolyasnikova NM, Pestov NB, Sanchez-Pimentel JP, Barlev NA, Ishmukhametov AA. Anti-cancer Virotherapy in Russia: Lessons from the Past, Current Challenges and Prospects for the Future. Curr Pharm Biotechnol 2023; 24:266-278. [PMID: 35578840 DOI: 10.2174/1389201023666220516121813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
The idea of using the lytic power of viruses against malignant cells has been entertained for many decades. However, oncolytic viruses gained broad attention as an emerging anti-cancer therapy only recently with the successful implementation of several oncolytic viruses to treat advanced melanoma. Here we review the history of oncolytic viruses in the Russian Federation and recent biotechnological advances in connection with the perspectives of their practical use against aggressive tumors such as glioblastoma or pancreatic cancer. A particular emphasis is made on novel applications of safe non-lytic virus-derived vectors armed with prodrug-converting enzyme transgenes. Rational improvement of oncotropism by conjugation with biopolymers and nanoformulations is also discussed.
Collapse
Affiliation(s)
- Nadezhda M Kolyasnikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| | - Nikolay B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia.,Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, Laboratory of Molecular Oncology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Jeanne P Sanchez-Pimentel
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| | - Nikolay A Barlev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia.,Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, Laboratory of Molecular Oncology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.,Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow, 119435, Russia
| | - Aidar A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| |
Collapse
|
32
|
Oraee-Yazdani S, Akhlaghpasand M, Rostami F, Golmohammadi M, Tavanaei R, Shokri G, Hafizi M, Oraee-Yazdani M, Zali AR, Soleimani M. Case report: Stem cell-based suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene reduces tumor progression in multifocal glioblastoma. Front Neurol 2023; 14:1060180. [PMID: 37034076 PMCID: PMC10075310 DOI: 10.3389/fneur.2023.1060180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The prognosis for glioblastoma multiforme (GBM), a malignant brain tumor, is poor despite recent advancements in treatments. Suicide gene therapy is a therapeutic strategy for cancer that requires a gene to encode a prodrug-activating enzyme which is then transduced into a vector, such as mesenchymal stem cells (MSCs). The vector is then injected into the tumor tissue and exerts its antitumor effects. Case presentation A 37-year-old man presented to our department with two evident foci of glioblastoma multiforme at the left frontal and left parietal lobes. The patient received an injection of bone marrow-derived MSCs delivering the herpes simplex virus thymidine kinase (HSV-tk) gene to the frontal focus of the tumor, followed by ganciclovir administration as a prodrug for 14 days. For follow-up, the patient was periodically assessed using magnetic resonance imaging (MRI). The growth and recurrence patterns of the foci were assessed. After the injection on 09 February 2019, the patient's follow-up appointment on 19 December 2019 MRI revealed a recurrence of parietal focus. However, the frontal focus had a slight and unremarkable enhancement. On the last follow-up (18 March 2020), the left frontal focus had no prominent recurrence; however, the size of the left parietal focus increased and extended to the contralateral hemisphere through the corpus callosum. Eventually, the patient passed away on 16 July 2020 (progression-free survival (PFS) = 293 days, overall survival (OS) = 513 days). Conclusion The gliomatous focus (frontal) treated with bone marrow-derived MSCs carrying the HSV-TK gene had a different pattern of growth and recurrence compared with the non-treated one (parietal). Trial registration IRCT20200502047277N2. Registered 10 May 2020-Retrospectively registered, https://eng.irct.ir/trial/48110.
Collapse
Affiliation(s)
- Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Saeed Oraee-Yazdani
| | - Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rostami
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Golmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Tavanaei
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali-Reza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
33
|
Immunotherapy as a New Therapeutic Approach for Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:73-84. [PMID: 36587382 DOI: 10.1007/978-3-031-14732-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Historically, the central nervous system (CNS) was considered an immune-privileged organ. However, recent studies have shown that the immune system plays a significant role in the CNS. Thus, there is renewed interest in applying cancer immunotherapy to CNS malignancies with the hope of generating a robust anti-tumor immune response and creating long-lasting immunity in patients. There has been some work with non-specific immunotherapy such as IL-2 for brain metastasis. Unfortunately, the results from non-specific immunotherapy studies were lackluster, so the focus has shifted to more specific CNS immunotherapies including cancer vaccines, immune checkpoint inhibitors, oncolytic virus therapy, and chimeric antigen receptor (CAR) T cell therapy. With respect to cancer vaccines, rindopepimut has been well-studied in glioblastoma (GBM) patients with the EGFRvIII mutation, with early results from phase II trials showing possible efficacy in carefully selected GBM patients. Other antigen-specific CNS tumor vaccines are still in the early stages. Immune checkpoint inhibitors are amongst the most promising and widely studied CNS immunotherapy strategies. Anti-PD-1 showed promising results in many non-CNS solid tumors, however, results from early clinical trials show poor efficacy for anti-PD-1 in GBM patients. Anti-PD-1 is also under investigation for CNS metastasis and showed some efficacy in non-small cell lung cancer and renal cell carcinoma patients. Anti-PD-1 is under early stage investigation for other CNS tumors such as chordoma. Oncolytic virus therapy is the strategy of infecting tumor cells with a virus that in turn triggers an innate immune response leading to tumor cell lysis. Oncolytic viruses currently under investigation include several adenovirus-based therapies and a herpes simplex virus-based therapy. Phase I studies have demonstrated the safety of oncolytic virus therapies in GBM patients. Current studies are evaluating the efficacy of these therapies both alone and in combination with other immunotherapy approaches such as checkpoint inhibition in patients with CNS tumors. CAR T cell therapy is a newer immunotherapy approach. CAR T cell therapies, directed against EGFRvIII mutation and HER-2 mutation, demonstrate an acceptable safety profile, although there is no conclusive evidence of the survival benefit of these therapies in early trials. Studies are currently underway to determine optimal tumor-specific antigen selection and modality of administration for CAR T cell therapy. Overall, the prognosis is generally poor for patients with CNS malignancies. The promising results of cancer immunotherapy for non-CNS tumors have created significant interest in applying these therapies for CNS malignancies. Preliminary results have not demonstrated robust efficacy for CNS immunotherapy. However, it is important to keep in mind that the field is still in its infancy and many clinical trials are still early-phase. Several, clinical trials are currently underway to further explore the role of immunotherapy for CNS malignancies.
Collapse
|
34
|
Sun X, Cui Z. Microbiological Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
35
|
Oster C, Schmidt T, Agkatsev S, Lazaridis L, Kleinschnitz C, Sure U, Scheffler B, Kebir S, Glas M. Are we providing best-available care to newly diagnosed glioblastoma patients? Systematic review of phase III trials in newly diagnosed glioblastoma 2005-2022. Neurooncol Adv 2023; 5:vdad105. [PMID: 37811538 PMCID: PMC10558397 DOI: 10.1093/noajnl/vdad105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Background Glioblastoma is the most aggressive primary brain cancer with a poor prognosis. Despite numerous studies in the past 17 years, effective treatment options for glioblastoma remain limited. In this study, we aimed to identify and compare phase III clinical trials for glioblastoma in terms of efficacy and baseline characteristics. Methods A systematic literature search was conducted using PubMed and ClinicalTrials.gov to identify phase III clinical trials for glioblastoma in adult patients. The target population included adult patients aged 18 years and above (younger cohort) and patients ≥60 years of age (elderly cohort). The search results were screened based on predefined inclusion criteria, and the included trials were analyzed for their study design, baseline characteristics, and survival results. Results Eleven trials met the inclusion criteria in the younger cohort. Of these, three reported a statistically significant improvement in overall survival (OS), including the EORTC/NCIC study (NCT00006353), EF-14 (NCT00916409), and CeTeG (NCT01149109). Of the 11 trials, eight were open-label randomized trials, including all of the positive ones, while three negative trials employed treatment blinding and a placebo control. The baseline characteristics of the trials [such as extent of resection, age, gender, and O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status] did not significantly differ between positive and negative trials. Isocitrate dehydrogenase (IDH) mutation status was analyzed in only two trials, with a small percentage of IDH-mutated tumors in each. Additionally, three more trials in the elderly cohort showed a statistically significant improvement of OS, the NOA-08 trial, the ISRCTN81470623-trial by Malmström et al. and NCT00482677-trial by Perry et al. Their baseline characteristics and implications are also analyzed. Conclusion This analysis of phase III clinical trials for glioblastoma conducted since 2005 showed that the majority of trials did not result in a significant improvement in OS. Among the trials included in this analysis, only the EORTC/NCIC, EF-14, and CeTeG studies demonstrated a positive OS outcome in the younger cohort.
Collapse
Affiliation(s)
- Christoph Oster
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Teresa Schmidt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Sarina Agkatsev
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Sied Kebir
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Glas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
36
|
Magnetic resonance imaging analysis predicts nanoparticle concentration delivered to the brain parenchyma. Commun Biol 2022; 5:964. [PMID: 36109574 PMCID: PMC9477799 DOI: 10.1038/s42003-022-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Ultrasound in combination with the introduction of microbubbles into the vasculature effectively opens the blood brain barrier (BBB) to allow the passage of therapeutic agents. Increased permeability of the BBB is typically demonstrated with small-molecule agents (e.g., 1-nm gadolinium salts). Permeability to small-molecule agents, however, cannot reliably predict the transfer of remarkably larger molecules (e.g., monoclonal antibodies) required by numerous therapies. To overcome this issue, we developed a magnetic resonance imaging analysis based on the ΔR2* physical parameter that can be measured intraoperatively for efficient real-time treatment management. We demonstrate successful correlations between ΔR2* values and parenchymal concentrations of 3 differently sized (18 nm–44 nm) populations of liposomes in a rat model. Reaching an appropriate ΔR2* value during treatment can reflect the effective delivery of large therapeutic agents. This prediction power enables the achievement of desirable parenchymal drug concentrations, which is paramount to obtaining effective therapeutic outcomes. ΔR2* values from MRI analysis correlate with concentrations of liposomes in the size range of 18–44 nm in a rat model.
Collapse
|
37
|
Davis A, Morris KV, Shevchenko G. Hypoxia-directed tumor targeting of CRISPR-Cas9 and HSV-TK suicide gene therapy using lipid nanoparticles. Mol Ther Methods Clin Dev 2022; 25:158-169. [PMID: 35402634 PMCID: PMC8971340 DOI: 10.1016/j.omtm.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
Hypoxia is a characteristic feature of solid tumors that contributes to tumor aggressiveness and is associated with resistance to cancer therapy. The hypoxia inducible factor-1 (HIF-1) transcription factor complex mediates hypoxia-specific gene expression by binding to hypoxia-responsive element (HRE) sequences within the promoter of target genes. HRE-driven expression of therapeutic cargo has been widely explored as a strategy to achieve cancer-specific gene expression. By utilizing this system, we achieve hypoxia-specific expression of two therapeutically relevant cargo elements: the herpes simplex virus thymidine kinase (HSV-tk) suicide gene and the CRISPR-Cas9 nuclease. Using an expression vector containing five copies of the HRE derived from the vascular endothelial growth factor gene, we are able to show high transgene expression in cells in a hypoxic environment, similar to levels achieved using the cytomegalovirus (CMV) and CBh promoters. Furthermore, we are able to deliver our therapeutic cargo to tumor cells with high efficiency using plasmid-packaged lipid nanoparticles (LNPs) to achieve specific killing of tumor cells in hypoxic conditions while maintaining tight regulation with no significant changes to cell viability in normoxia.
Collapse
Affiliation(s)
- Alicia Davis
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Kevin V. Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Galina Shevchenko
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
38
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|
39
|
Singh V, Khan N, Jayandharan GR. Vector engineering, strategies and targets in cancer gene therapy. Cancer Gene Ther 2022; 29:402-417. [PMID: 33859378 DOI: 10.1038/s41417-021-00331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Understanding the molecular basis of disease and the design of rationally designed molecular therapies has been the holy grail in the management of human cancers. Gene-based therapies are an important avenue for achieving a possible cure. Focused research in the last three decades has provided significant clues to optimize the potential of cancer gene therapy. The development of gene therapies with a high potential to kill the target cells at the lowest effective dose possible, the development of vectors with significant ability to target cancer-associated antigen, the application of adjunct therapies to target dysregulated microRNA, and embracing a hybrid strategy with a combination of gene therapy and low-dose chemotherapy in a disease-specific manner will be pivotal. This article outlines the advances and challenges in the field with emphasis on the biology and scope of vectors used for gene transfer, newer targets identified, and their outcome in preclinical and clinical studies.
Collapse
Affiliation(s)
- Vijayata Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Nusrat Khan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India. .,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, UP, India.
| |
Collapse
|
40
|
Skull modulated strategies to intensify tumor treating fields on brain tumor: a finite element study. Biomech Model Mechanobiol 2022; 21:1133-1144. [PMID: 35477828 DOI: 10.1007/s10237-022-01580-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Tumor treating fields (TTFields) are a breakthrough in treating glioblastoma (GBM), whereas the intensity cannot be further enhanced, due to the limitation of scalp lesions. Skull remodeling (SR) surgery can elevate the treatment dose of TTFields in the intracranial foci. This study was aimed at exploring the characteristics of the skull modulated strategies toward TTFields augmentation. The simplified multiple-tissue-layer model (MTL) and realistic head (RH) model were reconstructed through finite element methods (FEM), to simulate the remodeling of the skull, which included skull drilling, thinning, and cranioplasty with PEEK, titanium, cerebrospinal fluid (CSF), connective tissue and autologous bone. Skull thinning could enhance the intensity of TTFields in the brain tumor, with a 10% of increase in average peritumoral intensity (API) by every 1 cm decrease in skull thickness. Cranioplasty with titanium accompanied the most enhancement of TTFields in the MTL model, but CSF was superior in TTFields enhancement when simulated in the RH model. Besides, API increased nonlinearly with the expansion of drilled burr holes. In comparison with the single drill replaced by titanium, nine burr holes could reach 96.98% of enhancement in API, but it could only reach 63.08% of enhancement under craniectomy of nine times skull defect area. Skull thinning and drilling could enhance API, which was correlated with the number and area of skull drilling. Cranioplasty with highly conductive material could also augment API, but might not provide clinical benefits as expected.
Collapse
|
41
|
Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res 2022; 41:142. [PMID: 35428347 PMCID: PMC9013078 DOI: 10.1186/s13046-022-02349-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/26/2022] [Indexed: 04/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common high-grade primary malignant brain tumor with an extremely poor prognosis. Given the poor survival with currently approved treatments for GBM, new therapeutic strategies are urgently needed. Advances in decades of investment in basic science of glioblastoma are rapidly translated into innovative clinical trials, utilizing improved genetic and epigenetic profiling of glioblastoma as well as the brain microenvironment and immune system interactions. Following these encouraging findings, immunotherapy including immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have offered new hope for improving GBM outcomes; ongoing studies are using combinatorial therapies with the aim of minimizing adverse side-effects and augmenting antitumor immune responses. In addition, techniques to overcome the blood-brain barrier (BBB) for targeted delivery are being tested in clinical trials in patients with recurrent GBM. Here, we set forth the rationales for these promising therapies in treating GBM, review the potential novel agents, the current status of preclinical and clinical trials, and discuss the challenges and future perspectives in glioblastoma immuno-oncology.
Collapse
Affiliation(s)
- Liang Rong
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ni Li
- Institute of Human Virology, Key Laboratory of Tropical Diseases Control Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Zhang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| |
Collapse
|
42
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
43
|
Mitra AP, Narayan VM, Mokkapati S, Miest T, Boorjian SA, Alemozaffar M, Konety BR, Shore ND, Gomella LG, Kamat AM, Bivalacqua TJ, Montgomery JS, Lerner SP, Busby JE, Poch M, Crispen PL, Steinberg GD, Schuckman AK, Downs TM, Svatek RS, Mashni J, Lane BR, Guzzo TJ, Bratslavsky G, Karsh LI, Woods ME, Brown GA, Canter D, Luchey A, Lotan Y, Krupski T, Inman BA, Williams MB, Cookson MS, Keegan KA, Andriole GL, Sankin AI, Boyd A, O’Donnell MA, Philipson R, Ylä-Herttuala S, Sawutz D, Parker NR, McConkey DJ, Dinney CP. Antiadenovirus Antibodies Predict Response Durability to Nadofaragene Firadenovec Therapy in BCG-unresponsive Non-muscle-invasive Bladder Cancer: Secondary Analysis of a Phase 3 Clinical Trial. Eur Urol 2022; 81:223-228. [PMID: 34933753 PMCID: PMC8891058 DOI: 10.1016/j.eururo.2021.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
A recent phase 3 trial of intravesical nadofaragene firadenovec reported a promising complete response rate for patients with bacillus Calmette-Guérin-unresponsive non-muscle-invasive bladder cancer. This study examined the ability of antiadenovirus antibody levels to predict the durability of therapeutic response to nadofaragene firadenovec. A standardized and validated quantitative assay was used to prospectively assess baseline and post-treatment serum antibody levels among 91 patients from the phase 3 trial, of whom 47 (52%) were high-grade recurrence free at 12 mo (responders). While baseline titers did not predict treatment response, 3-mo titer >800 was associated with a higher likelihood of durable response (p = 0.026). Peak post-treatment titers >800 were noted in 42 (89%) responders versus 26 (59%) nonresponders (p = 0.001; assay sensitivity, 89%; negative predictive value, 78%). Moreover, 22 (47%) responders compared with eight (18%) nonresponders had a combination of peak post-treatment titers >800 and peak antibody fold change >8 (p = 0.004; assay specificity, 82%; positive predictive value, 73%). A majority of responders continued to have post-treatment antibody titers >800 after the first 6 mo of therapy. In conclusion, serum antiadenovirus antibody quantification may serve as a novel predictive marker for nadofaragene firadenovec response durability. Future studies will focus on large-scale validation and clinical utility of the assay. PATIENT SUMMARY: This study reports on a planned secondary analysis of a phase 3 multicenter clinical trial that established the benefit of nadofaragene firadenovec, a novel intravesical gene therapeutic, for the treatment of patients with bacillus Calmette-Guérin (BCG)-unresponsive high-risk non-muscle-invasive bladder cancer. Prospective assessment of serum anti-human adenovirus type-5 antibody levels of patients in this trial indicated that a combination of post-treatment titers and fold change from baseline can predict treatment efficacy. While this merits additional validation, our findings suggest that serum antiadenovirus antibody levels can serve as an important predictive marker for the durability of therapeutic response to nadofaragene firadenovec.
Collapse
Affiliation(s)
- Anirban P. Mitra
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikram M. Narayan
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharada Mokkapati
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tanner Miest
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Neal D. Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - Leonard G. Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ashish M. Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trinity J. Bivalacqua
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Seth P. Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - J. Erik Busby
- Department of Surgery, Prisma Health, University of South Carolina School of Medicine at Greenville, Greenville, SC, USA
| | - Michael Poch
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paul L. Crispen
- Department of Urology, University of Florida, Gainesville, FL, USA
| | - Gary D. Steinberg
- Department of Urology, New York University Langone Health, New York, NY, USA
| | - Anne K. Schuckman
- Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Tracy M. Downs
- Department of Urology, University of Wisconsin, Madison, WI, USA
| | - Robert S. Svatek
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph Mashni
- Department of Surgical Oncology, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Brian R. Lane
- Division of Urology, Spectrum Health, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Thomas J. Guzzo
- Division of Urology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | - Adam Luchey
- Department of Urology, West Virginia University Cancer Institute, Morgantown, WV, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tracey Krupski
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Brant A. Inman
- Division of Urology, Department of Surgery, Duke University, Durham, NC, USA
| | | | - Michael S. Cookson
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kirk A. Keegan
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gerald L. Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Alexander I. Sankin
- Department of Urology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | - Seppo Ylä-Herttuala
- AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Nigel R. Parker
- AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - David J. McConkey
- Department of Urology, Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Colin P.N. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Corresponding author. Department of Urology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1373, Houston, TX 77030, USA. Tel. +1-713-792-3250; Fax: +1-713-794-4824, (C.P.N. Dinney)
| |
Collapse
|
44
|
Picca A, Guyon D, Santonocito OS, Baldini C, Idbaih A, Carpentier A, Naccarato AG, Caccese M, Lombardi G, Di Stefano AL. Innovating Strategies and Tailored Approaches in Neuro-Oncology. Cancers (Basel) 2022; 14:1124. [PMID: 35267432 PMCID: PMC8909701 DOI: 10.3390/cancers14051124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Diffuse gliomas, the most frequent and aggressive primary central nervous system neoplasms, currently lack effective curative treatments, particularly for cases lacking the favorable prognostic marker IDH mutation. Nonetheless, advances in molecular biology allowed to identify several druggable alterations in a subset of IDH wild-type gliomas, such as NTRK and FGFR-TACC fusions, and BRAF hotspot mutations. Multi-tyrosine kinase inhibitors, such as regorafenib, also showed efficacy in the setting of recurrent glioblastoma. IDH inhibitors are currently in the advanced phase of clinical evaluation for patients with IDH-mutant gliomas. Several immunotherapeutic approaches, such as tumor vaccines or checkpoint inhibitors, failed to improve patients' outcomes. Even so, they may be still beneficial in a subset of them. New methods, such as using pulsed ultrasound to disrupt the blood-brain barrier, gene therapy, and oncolytic virotherapy, are well tolerated and may be included in the therapeutic armamentarium soon.
Collapse
Affiliation(s)
- Alberto Picca
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, 75013 Paris, France; (A.P.); (A.I.)
| | - David Guyon
- Department of Medical Oncology, Gustave Roussy University Hospital, 94800 Villejuif, France;
| | - Orazio Santo Santonocito
- Division of Neurosurgery, Spedali Riuniti di Livorno—USL Toscana Nord-Ovest, 57124 Livorno, Italy;
| | - Capucine Baldini
- Drug Development Department (DITEP), Gustave Roussy University Hospital, 94800 Villejuif, France;
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, 75013 Paris, France; (A.P.); (A.I.)
| | - Alexandre Carpentier
- Service de Neurochirurgie, Hôpital Universitaire La Pitié Salpêtrière, 75013 Paris, France;
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Pathology, University of Pisa, 56100 Pisa, Italy;
- Anatomia Patologica 1, Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Spedali Riuniti di Livorno—USL Toscana Nord-Ovest, 57124 Livorno, Italy;
- Department of Neurology, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
45
|
Bezeljak U. Cancer gene therapy goes viral: viral vector platforms come of age. Radiol Oncol 2022; 56:1-13. [PMID: 35148469 PMCID: PMC8884858 DOI: 10.2478/raon-2022-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Since the advent of viral vector gene therapy in 1990s, cancer treatment with viral vectors promised to revolutionize the field of oncology. Notably, viral vectors offer a unique combination of efficient gene delivery and engagement of the immune system for anti-tumour response. Despite the early potential, viral vector-based cancer treatments are only recently making a big impact, most prominently as gene delivery devices in approved CAR-T cell therapies, cancer vaccines and targeted oncolytic therapeutics. To reach this broad spectrum of applications, a number of challenges have been overcome - from our understanding of cancer biology to vector design, manufacture and engineering. Here, we take an overview of viral vector usage in cancer therapy and discuss the latest advancements. We also consider production platforms that enable mainstream adoption of viral vectors for cancer gene therapy. CONCLUSIONS Viral vectors offer numerous opportunities in cancer therapy. Recent advances in vector production platforms open new avenues in safe and efficient viral therapeutic strategies, streamlining the transition from lab bench to bedside. As viral vectors come of age, they could become a standard tool in the cancer treatment arsenal.
Collapse
|
46
|
Jain S, Chalif EJ, Aghi MK. Interactions Between Anti-Angiogenic Therapy and Immunotherapy in Glioblastoma. Front Oncol 2022; 11:812916. [PMID: 35096619 PMCID: PMC8790087 DOI: 10.3389/fonc.2021.812916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is the most aggressive brain tumor with a median survival ranging from 6.2 to 16.7 months. The complex interactions between the tumor and the cells of tumor microenvironment leads to tumor evolution which ultimately results in treatment failure. Immunotherapy has shown great potential in the treatment of solid tumors but has been less effective in treating glioblastoma. Failure of immunotherapy in glioblastoma has been attributed to low T-cell infiltration in glioblastoma and dysfunction of the T-cells that are present in the glioblastoma microenvironment. Recent advances in single-cell sequencing have increased our understanding of the transcriptional changes in the tumor microenvironment pre and post-treatment. Another treatment modality targeting the tumor microenvironment that has failed in glioblastoma has been anti-angiogenic therapy such as the VEGF neutralizing antibody bevacizumab, which did not improve survival in randomized clinical trials. Interestingly, the immunosuppressed microenvironment and abnormal vasculature of glioblastoma interact in ways that suggest the potential for synergy between these two therapeutic modalities that have failed individually. Abnormal tumor vasculature has been associated with immune evasion and the creation of an immunosuppressive microenvironment, suggesting that inhibiting pro-angiogenic factors like VEGF can increase infiltration of effector immune cells into the tumor microenvironment. Remodeling of the tumor vasculature by inhibiting VEGFR2 has also been shown to improve the efficacy of PDL1 cancer immunotherapy in mouse models of different cancers. In this review, we discuss the recent developments in our understanding of the glioblastoma tumor microenvironment specially the tumor vasculature and its interactions with the immune cells, and opportunities to target these interactions therapeutically. Combining anti-angiogenic and immunotherapy in glioblastoma has the potential to unlock these therapeutic modalities and impact the survival of patients with this devastating cancer.
Collapse
Affiliation(s)
- Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Eric J Chalif
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
47
|
Liu D, Yang T, Ma W, Wang Y. Clinical strategies to manage adult glioblastoma patients without MGMT hypermethylation. J Cancer 2022; 13:354-363. [PMID: 34976195 PMCID: PMC8692679 DOI: 10.7150/jca.63595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/21/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant brain tumor with a dismal prognosis. Standard therapy for GBM comprises surgical resection, followed by radiotherapy plus concomitant and adjuvant temozolomide (TMZ) therapy. The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter is one of the most essential predictive biomarkers for patients with GBM treated with TMZ. Patients with an unmethylated MGMT promoter (umMGMT), who comprise 60% of patients with GBM, present an even worse prognosis because of TMZ resistance. Radiotherapy with various fractionation, chemotherapy compensating for TMZ, targeted therapy against diverse oncogenic pathways, immunotherapy of vaccine or immune checkpoint inhibitor, and tumor treating fields have been studied in umMGMT GBM patients. However, most efforts have yielded negative results or merely minimal improvements. Therefore, effective patient subgroup selection concerning precision medicine has become the focus. By assigning different treatments to the corresponding patient subgroups, a better curative effect and subsequently prolonged survival can be achieved. In this review, we re-evaluate the value of standard TMZ therapy and summarize the new clinical strategies and attempts to treat patients with umMGMT, which yielded positive and negative results, to provide alternative treatment options and discuss future directions of umMGMT GBM treatment.
Collapse
Affiliation(s)
- Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
48
|
Microbiological Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
49
|
Saeb S, Assche JV, Loustau T, Rohr O, Wallet C, Schwartz C. Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochem Pharmacol 2021; 197:114893. [PMID: 34968484 DOI: 10.1016/j.bcp.2021.114893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
50
|
Bhatt DK, Wekema L, Carvalho Barros LR, Chammas R, Daemen T. A systematic analysis on the clinical safety and efficacy of onco-virotherapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:239-253. [PMID: 34761104 PMCID: PMC8551473 DOI: 10.1016/j.omto.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Several onco-virotherapy candidates have been developed and clinically evaluated for the treatment of cancer, and several are approved for clinical use. In this systematic review we explored the clinical impact of onco-virotherapy compared to other cancer therapies by analyzing factors such as trial design, patient background, therapy design, delivery strategies, and study outcomes. For this purpose, we retrieved clinical studies from three platforms: ClinicalTrials.gov, PubMed, and EMBASE. We found that most studies were performed in patients with advanced and metastatic tumors, using a broad range of genetically engineered vectors and mainly administered intratumorally. Therapeutic safety was the most frequently assessed outcome, while relatively few studies focused on immunological antitumor responses. Moreover, only 59 out of 896 clinical studies were randomized controlled trials reporting comparative data. This systemic review thus reveals the need of more, and better controlled, clinical studies to increase our understanding on the application of onco-virotherapy either as a single treatment or in combination with other cancer immunotherapies.
Collapse
Affiliation(s)
- Darshak K Bhatt
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,Center for Translational Research in Oncology, Instituto do Câncer do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, CEP 01246-000, Brazil
| | - Lieske Wekema
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Luciana Rodrigues Carvalho Barros
- Center for Translational Research in Oncology, Instituto do Câncer do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, CEP 01246-000, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology, Instituto do Câncer do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, CEP 01246-000, Brazil
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| |
Collapse
|