1
|
Barker CA, D'Angelo SP, Wasilewski G, Steckler AM, Lian M, Zhang Z, Chapman PB, Shoushtari AN, Ariyan CE. A phase II randomized trial of talimogene laherparepvec oncolytic immunotherapy with or without radiotherapy for patients with cutaneous metastases from solid tumors. Radiother Oncol 2024; 200:110478. [PMID: 39159678 PMCID: PMC11438562 DOI: 10.1016/j.radonc.2024.110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Cutaneous metastases (CMs) are a manifestation of advanced cancer and can be treated with oncolytic immunotherapy. Laboratory studies suggest radiotherapy (RT) may facilitate response to immunotherapy. We hypothesized that oncolytic immunotherapy with talimogene lapherparepvec (T-VEC, an oncolytic immunotherapy that expresses granulocyte-macrophage colony stimulating factor) and RT would produce response in non-targeted metastases. METHODS A randomized phase 2 trial of T-VEC+/-RT was conducted. Eligible patients had ≥1 CM from a solid tumor amenable to T-VEC and RT and another measurable metastasis. Tumor and overall response was assessed using modified World Health Organization (mWHO) criteria. Adverse events (AEs) and quality of life (QOL) were characterized using CTCAE v4.0 and Skindex-16, respectively. Correlative analyses of tumor genomics and the immune system were performed. RESULTS 19 patients were randomized to receive T-VEC (n = 9) or T-VEC+RT (n = 10). One patient in each arm demonstrated complete response in the largest non-targeted metastasis. The trial was closed after the first stage of enrollment because of no overall mWHO responses, slow accrual and the COVID-19 pandemic. AEs were consistent with prior reports of T-VEC. Skin related QOL was poor before and after treatment. Median progression free survival was 1.2 and 2.5 months in the T-VEC and T-VEC+RT arms; median overall survival was 4.9 and 17.3 months in the T-VEC and T-VEC+RT arms. Analyses of peripheral blood cells and cytokines demonstrated responders exhibited several outlying lymphocyte and cytokine parameters. CONCLUSIONS Low overall response rate, slow accrual, and the COVID-19 pandemic led to closure of this trial. Responses in non-injected and non-irradiated metastases were infrequent.
Collapse
Affiliation(s)
- Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gloria Wasilewski
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexa M Steckler
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming Lian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhigang Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul B Chapman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Charlotte E Ariyan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Hussein NI, Molina AH, Sunga GM, Amit M, Lei YL, Zhao X, Hartgerink JD, Sikora AG, Young S. Localized intratumoral delivery of immunomodulators for oral cancer and oral potentially malignant disorders. Oral Oncol 2024; 158:106986. [PMID: 39137489 DOI: 10.1016/j.oraloncology.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Immunotherapy has developed into an important modality of modern cancer treatment. Unfortunately, checkpoint inhibitor immunotherapies are currently delivered systemically and require frequent administration, which can result in toxicity and severe, sometimes fatal, adverse events. Localized delivery of immunomodulators for oral cancer and oral potentially malignant disorders offers the promise of maximum therapeutic potential and reduced systemic adverse effects. This review will discuss the limitations of current standard-of-care systemic therapies and highlight research advances in localized, intratumoral delivery platforms for immunotherapy for oral cancer and oral potentially malignant disorders.
Collapse
Affiliation(s)
- Nourhan I Hussein
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA
| | - Andrea H Molina
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA
| | - Gemalene M Sunga
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Xiao Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Jeffrey D Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, 6500 Main St, BRC-319, Houston, TX 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA.
| |
Collapse
|
3
|
Bergeron P, Dos Santos M, Sitterle L, Tarlet G, Lavigne J, Liu W, Gerbé de Thoré M, Clémenson C, Meziani L, Schott C, Mazzaschi G, Berthelot K, Benadjaoud MA, Milliat F, Deutsch E, Mondini M. Non-homogenous intratumor ionizing radiation doses synergize with PD1 and CXCR2 blockade. Nat Commun 2024; 15:8845. [PMID: 39397001 PMCID: PMC11471822 DOI: 10.1038/s41467-024-53015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
The efficacy and side effects of radiotherapy (RT) depend on parameters like dose and the volume of irradiated tissue. RT induces modulations of the tumor immune microenvironment (TIME) that are dependent on the dose. Low dose RT (LDRT, i.e., single doses of 0.5-2 Gy) has been shown to promote immune infiltration into the tumor. Here we hypothesize that partial tumor irradiation combining the immunostimulatory/non-lethal properties of LDRT with cell killing/shrinkage properties of high dose RT (HDRT) within the same tumor mass could enhance anti-tumor responses when combined with immunomodulators. In models of colorectal and breast cancer in immunocompetent female mice, partial irradiation (PI) with millimetric precision to deliver LDRT (2 Gy) and HDRT (16 Gy) within the same tumor induces substantial tumor control when combined with anti-PD1. Using flow cytometry, cytokine profiling and single-cell RNA sequencing, we identify a crosstalk between the TIME of the differentially irradiated tumor volumes. PI reshapes tumor-infiltrating CD8+ T cells into more cytotoxic and interferon-activated phenotypes but also increases the infiltration of pro-tumor neutrophils driven by CXCR2. The combination of the CXCR2 antagonist SB225002 with PD1 blockade and PI improves tumor control and mouse survival. Our results suggest a strategy to reduce RT toxicity and improve the therapeutic index of RT and immune checkpoint combinations.
Collapse
Affiliation(s)
- Paul Bergeron
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Lisa Sitterle
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Jeremy Lavigne
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Winchygn Liu
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | | | - Céline Clémenson
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Lydia Meziani
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Cathyanne Schott
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Giulia Mazzaschi
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Kevin Berthelot
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Eric Deutsch
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
4
|
Chang JY, Xu X, Shroff GS, Comeaux NI, Li W, Rodon Ahnert J, Karp DD, Dumbrava EE, Verma V, Chen A, Welsh J, Hong DS. Phase I/II study of BMS-986156 with ipilimumab or nivolumab with or without stereotactic ablative radiotherapy in patients with advanced solid malignancies. J Immunother Cancer 2024; 12:e009975. [PMID: 39384194 PMCID: PMC11474930 DOI: 10.1136/jitc-2024-009975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND BMS-986156 is an agonist of the glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related protein (GITR) and promotes increased effector T-cell activation. Combined anti-GITR, anti-programmed death-1, anti-cytotoxic T-lymphocyte-associated protein 4 antibodies and radiotherapy improve tumor control in preclinical studies. Herein we describe the results of the safety and efficacy of BMS-986156+ipilimumab or nivolumab with/without stereotactic ablative radiotherapy (SABR) in patients with advanced solid cancers (NCT04021043). METHODS This open-label, multigroup, single-center phase I/II study enrolled patients with histologically-confirmed stage IV solid cancers resistant to standard treatments. Group 1 (G1, n=20) received four cycles of ipilimumab (3 mg/kg) plus BMS-986156 (30 mg as dose level 1 (L1) or 100 mg as dose level 2 (L2)), every 3 weeks (Q3W). Group 2 (G2, n=10) received four cycles of ipilimumab (3 mg/kg) plus BMS-986156 (dose as determined in G1, Q3W) with SABR (50 Gy/4 fx or 60-70 Gy/10 fx to liver/lung lesions. Group 3 (G3, n=20) received four cycles of nivolumab (480 mg) plus BMS-986156 (30 mg), every 4 weeks with SABR. Maintenance nivolumab could be given up to 2 years. Tumor responses were assessed every 1-3 months until progression, using immune-related response criteria. RESULTS 50 patients were enrolled between 10/2019 and 12/2021. Patients received a median of 3 (IQR 2-4.25) initial treatment cycles. 100 mg BMS-986156 with ipilimumab was tolerated well. Five discontinued BMS-986156 with ipilimumab due to treatment-related adverse events (TRAEs), with three in G1/L1, one in G1/L2 and one in G2, respectively. 22 patients (44%) experienced Grade 1-3 TRAEs (6, 4, 5, 7 patients for G1/L1, G1/L2, G2, G3). Six (12%) had Grade 3 TRAEs (2, 2, 1, 1 for G1/L1, G1/L2, G2, G3), with elevated alanine aminotransferase (n=3, in G1/L2, G2 and G3) and aspartate aminotransferase (n=2, in G2 and G3) being the most common. There was no Grade 4-5 TRAEs. Overall, 19/39 (48.7%) patients eligible for efficacy analysis had stable disease and 3 (7.7%) achieved a partial response. Out-of-field (abscopal) disease control rate (ACR) and out-of-field (abscopal) response rate (ARR) were 38.5% and 7.7%, respectively, with the highest ACR (50%, 9/18) and ARR (11.1%, 2/18) in G3. CONCLUSIONS BMS-986156 was well-tolerated with ipilimumab, nivolumab, with or without SABR. Outcomes were encouraging in this population, as more than half of patients had stable disease/partial response.
Collapse
Affiliation(s)
- Joe Y Chang
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinyan Xu
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Girish S Shroff
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nathan I Comeaux
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Li
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Verma
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aileen Chen
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James Welsh
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Lu D, Li W, Tan J, Li Y, Mao W, Zheng Y, Yang M, Wang J, Wang W, Wang S, Gao J, Liu Y. STING Agonist Delivered by Neutrophil Membrane-Coated Gold Nanoparticles Exerts Synergistic Tumor Inhibition with Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53474-53488. [PMID: 39316508 DOI: 10.1021/acsami.4c09825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Radiotherapy (RT) is one of the major treatments for cancers and a promising initiator of immune response. Gold nanoparticles are a promising radiosensitizer. In this study, we sought to optimize the drug delivery efficiency of gold nanoparticles and explore their function in delivering stimulator of interferon genes (STING) agonists with or without RT. Gold nanoparticles covalent to MSA-2 (MSA-Au) were mixed with cRGD-modified neutrophil membranes to obtain M-Au@RGD-NM. We explored the treatment efficiency of M-Au@RGD-NM combined with RT. Immune cell regulation and STING pathway activation were detected. We successfully prepared M-Au@RGD-NM with significant tumor suppression by induction of ROS and the resulting DNA damage. In vivo dynamic imaging showed that M-Au@RGD-NM was mainly targeted to radiated tumors. Tumor-bearing mice showed significant tumor inhibition following a combination therapy. M-Au@RGD-NM significantly activated the STING pathway and regulated the whole-body immune response. Locally radiated tumors showed dendritic cells mature, CD8+ T cells upregulation, and M1 polarization, with systematic immune response demonstrated by CD8+ T cell infiltration in abscopal tumors. In this study, we synthesized M-Au@RGD-NM loading MSA-2. Following characterization, we found that RT-based M-Au@RGD-NM treatment achieved good antitumor effects, tumor RT enhancement, and induction of an immune response via STING activation.
Collapse
Affiliation(s)
- Dehua Lu
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Wenhua Li
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Jingyun Tan
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Ying Li
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Wei Mao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Yuanyuan Zheng
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Muwen Yang
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Jin Wang
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
- School of medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weihu Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| | - Yajie Liu
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science & Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
6
|
Wilcox JA, Chukwueke UN, Ahn MJ, Aizer AA, Bale TA, Brandsma D, Brastianos PK, Chang S, Daras M, Forsyth P, Garzia L, Glantz M, Oliva ICG, Kumthekar P, Le Rhun E, Nagpal S, O'Brien B, Pentsova E, Lee EQ, Remsik J, Rudà R, Smalley I, Taylor MD, Weller M, Wefel J, Yang JT, Young RJ, Wen PY, Boire AA. Leptomeningeal metastases from solid tumors: A Society for Neuro-Oncology and American Society of Clinical Oncology consensus review on clinical management and future directions. Neuro Oncol 2024; 26:1781-1804. [PMID: 38902944 PMCID: PMC11449070 DOI: 10.1093/neuonc/noae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 06/22/2024] Open
Abstract
Leptomeningeal metastases (LM) are increasingly becoming recognized as a treatable, yet generally incurable, complication of advanced cancer. As modern cancer therapeutics have prolonged the lives of patients with metastatic cancer, specifically in patients with parenchymal brain metastases, treatment options, and clinical research protocols for patients with LM from solid tumors have similarly evolved to improve survival within specific populations. Recent expansions in clinical investigation, early diagnosis, and drug development have given rise to new unanswered questions. These include leptomeningeal metastasis biology and preferred animal modeling, epidemiology in the modern cancer population, ensuring validation and accessibility of newer leptomeningeal metastasis diagnostics, best clinical practices with multimodality treatment options, clinical trial design and standardization of response assessments, and avenues worthy of further research. An international group of multi-disciplinary experts in the research and management of LM, supported by the Society for Neuro-Oncology and American Society of Clinical Oncology, were assembled to reach a consensus opinion on these pressing topics and provide a roadmap for future directions. Our hope is that these recommendations will accelerate collaboration and progress in the field of LM and serve as a platform for further discussion and patient advocacy.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ugonma N Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ayal A Aizer
- Department of Radiation Oncology, Brigham and Women's Hospital / Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Priscilla K Brastianos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Chang
- Division of Neuro-Oncology, Department of Neurosurgery, University of San Francisco California, San Francisco, California, USA
| | - Mariza Daras
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glantz
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priya Kumthekar
- The Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Emilie Le Rhun
- Departments of Neurology and Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Seema Nagpal
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Barbara O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elena Pentsova
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eudocia Quant Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan Remsik
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science Hospital, Turin, Italy
- Department of Neurology, Castelfranco Veneto and Treviso Hospitals, Castelfranco Veneto, Italy
| | - Inna Smalley
- Department of Tumor Biology, The Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
- Neuro-oncology Research Program, Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jeffrey Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan T Yang
- Department of Radiation Oncology, Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adrienne A Boire
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
7
|
Moscardini-Martelli J, Rodríguez-Camacho A, Torres-Ríos JA, Meraz-Soto JM, Flores-Vázquez JG, Hernández-Sánchez LC, Lozano-Ruiz FJ, Maldonado-Magos F, Cid-Sánchez D, Flores-Balcázar CH, Celis-López MÁ, Gutiérrez-Aceves GA, Flores-Vázquez F, Moreno-Jiménez S. A Comprehensive Revision of Radiation Immunotherapy and the Abscopal Effect in Central Nervous System Metastases: Reassessing the Frontier. Curr Issues Mol Biol 2024; 46:11075-11085. [PMID: 39451538 PMCID: PMC11506806 DOI: 10.3390/cimb46100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Seventy years ago, Robin Mole introduced the concept of the abscopal effect to describe a rare phenomenon. This occurs when local radiation triggers an immune-mediated reduction in tumors outside the treated area but within the same organism. Observing this effect has been linked to improved overall and progression-free survival in patients who experience it. While the abscopal effect was once considered rare, it is now being observed more frequently due to the combination of radiation with immunotherapy. As a result, more researchers are exploring this study area, which shows promise for excellent results. This review focuses explicitly on the immunological implications of activating the abscopal effect through ionizing radiation in the central nervous system and explores the potentially involved immunological pathways.
Collapse
Affiliation(s)
- Júlia Moscardini-Martelli
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Alejandro Rodríguez-Camacho
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
- Radiotherapy Service, National Cancer Institute, Mexico City 14080, Mexico; (F.J.L.-R.); (F.M.-M.); (D.C.-S.); (C.H.F.-B.)
| | - Jorge Alejandro Torres-Ríos
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Juan Marcos Meraz-Soto
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - José Guillermo Flores-Vázquez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Laura Crystell Hernández-Sánchez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Francisco Javier Lozano-Ruiz
- Radiotherapy Service, National Cancer Institute, Mexico City 14080, Mexico; (F.J.L.-R.); (F.M.-M.); (D.C.-S.); (C.H.F.-B.)
| | - Federico Maldonado-Magos
- Radiotherapy Service, National Cancer Institute, Mexico City 14080, Mexico; (F.J.L.-R.); (F.M.-M.); (D.C.-S.); (C.H.F.-B.)
| | - Dharely Cid-Sánchez
- Radiotherapy Service, National Cancer Institute, Mexico City 14080, Mexico; (F.J.L.-R.); (F.M.-M.); (D.C.-S.); (C.H.F.-B.)
| | | | - Miguel Ángel Celis-López
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | - Guillermo Axayacatl Gutiérrez-Aceves
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
| | | | - Sergio Moreno-Jiménez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (J.M.-M.); (J.A.T.-R.); (J.M.M.-S.); (J.G.F.-V.); (L.C.H.-S.); (M.Á.C.-L.); (G.A.G.-A.); (S.M.-J.)
- American British Cowdray Medical Center, Neurological Center, Mexico City 01120, Mexico
| |
Collapse
|
8
|
Lancia A, Ingrosso G, Detti B, Festa E, Bonzano E, Linguanti F, Camilli F, Bertini N, La Mattina S, Orsatti C, Francolini G, Abenavoli EM, Livi L, Aristei C, de Jong D, Al Feghali KA, Siva S, Becherini C. Biology-guided radiotherapy in metastatic prostate cancer: time to push the envelope? Front Oncol 2024; 14:1455428. [PMID: 39314633 PMCID: PMC11417306 DOI: 10.3389/fonc.2024.1455428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The therapeutic landscape of metastatic prostate cancer has undergone a profound revolution in recent years. In addition to the introduction of novel molecules in the clinics, the field has witnessed a tremendous development of functional imaging modalities adding new biological insights which can ultimately inform tailored treatment strategies, including local therapies. The evolution and rise of Stereotactic Body Radiotherapy (SBRT) have been particularly notable in patients with oligometastatic disease, where it has been demonstrated to be a safe and effective treatment strategy yielding favorable results in terms of disease control and improved oncological outcomes. The possibility of debulking all sites of disease, matched with the ambition of potentially extending this treatment paradigm to polymetastatic patients in the not-too-distant future, makes Biology-guided Radiotherapy (BgRT) an attractive paradigm which can be used in conjunction with systemic therapy in the management of patients with metastatic prostate cancer.
Collapse
Affiliation(s)
- Andrea Lancia
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | | | - Beatrice Detti
- Radiotherapy Unit Prato, Usl Centro Toscana, Presidio Villa Fiorita, Prato, Italy
| | - Eleonora Festa
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | | | - Federico Camilli
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Niccolò Bertini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Salvatore La Mattina
- Department of Radiation Oncology, San Matteo Hospital Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| | - Carolina Orsatti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | | | - Lorenzo Livi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - Dorine de Jong
- Medical Affairs, RefleXion Medical, Inc., Hayward, CA, United States
| | | | - Shankar Siva
- Department of Radiation Oncology, Sir Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Carlotta Becherini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
9
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Kluge A, Baum RP, Bitterlich N, Kulkarni HR, Schorr-Neufing U, van Echteld CJA. Immune Response to Molecular Radiotherapy with 177Lu-DOTATOC: Predictive Value of Blood Cell Counts for Therapy Outcome. Cancer Biother Radiopharm 2024; 39:541-550. [PMID: 38905126 DOI: 10.1089/cbr.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Purpose: In a prior, retrospective study, 76% of patients with advanced neuroendocrine tumors undergoing 177Lu-DOTATOC molecular radiotherapy (MRT) showed their best response within 8 months from the first MRT cycle. In 24% of patients, latency was much greater up to >22 months after the first cycle, and long after near-complete decay of 177Lu from the last cycle. An immune response induced by MRT seems a likely explanation. As a crude measure of immunocompetence, the authors investigated whether blood cell counts (BCCs) may have predictive value for MRT outcome with 177Lu-DOTATOC. Methods: 56 Patients with neuroendocrine tumors (NET) were administered 177Lu-DOTATOC (mean 2.1 cycles; range 1-4) with median radioactivity of 7.0 GBq/cycle at 3-month intervals. Patients' BCCs were evaluated for four responder categories: CR, PR, SD, and PD (RECIST 1.1). Furthermore, baseline BCCs were correlated with progression-free survival (PFS). Finally, BCCs of patients with (PMT+) and without prior medical therapy (PMT-) were compared. Results: Significant differences between responder categories were found for baseline hemoglobin (Hb), erythrocytes, neutrophils, lymphocytes, neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and LEHN-score, integrating lymphocyte, erythrocyte, and neutrophil counts, and Hb level, but not for leukocytes and platelets. LEHN-score yielded an almost complete separation between CR and PD groups. In analogy, PFS times showed significant correlations with baseline Hb, erythrocytes, neutrophils, lymphocytes, NLR, PLR, and LEHN-score, the LEHN-score showing the strongest correlation, but not with leukocytes and platelets. For PMT- patients, median PFS was 34.5 months, compared with 20.8 months in PMT+ patients, with corresponding baseline lymphocyte (32.1 ± 9.6% vs. 24.5 ± 11.6%, p = 0.028) and neutrophil (54.9 ± 11.6% vs. 63.5 ± 13.7%, p = 0.039) counts. Conclusion: These findings emphasize the significance of an immune response to MRT for obtaining optimal therapy efficacy and support concepts to enhance the immune response of less immunocompetent patients before MRT. It seems advisable to avoid prior or concomitant immunosuppressant medical therapy.
Collapse
Affiliation(s)
- Andreas Kluge
- ABX-CRO Advanced Pharmaceutical Services, Dresden, Germany
| | - Richard P Baum
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany
- CURANOSTICUM Wiesbaden-Frankfurt-Advanced Theranostics Center for Radiomolecular Precision Oncology, HELIOS DKD Klinik, Wiesbaden, Germany
| | | | - Harshad R Kulkarni
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany
- BAMF Health, Grand Rapids, Michigan, USA
| | | | - Cees J A van Echteld
- ABX-CRO Advanced Pharmaceutical Services, Dresden, Germany
- Helacor Consultancy, Hillegom, The Netherlands
| |
Collapse
|
11
|
Chen D, Zou B, Li B, Gao A, Huang W, Shao Q, Meng X, Zhang P, Tang X, Hu X, Zhang Y, Guo J, Zhao C, Yuan J, Li Q, Zhu C, Yu J, Wang L. Adebrelimab plus chemotherapy and sequential thoracic radiotherapy as first-line therapy for extensive-stage small-cell lung cancer (ES-SCLC): a phase II trial. EClinicalMedicine 2024; 75:102795. [PMID: 39252865 PMCID: PMC11381814 DOI: 10.1016/j.eclinm.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Background This phase II prospective trial aimed to investigate the efficacy and safety of adebrelimab (PD-L1 antibody) plus first-line chemotherapy followed by sequential thoracic radiotherapy (TRT) combined with adebrelimab in extensive-stage small-cell lung cancer (ES-SCLC). Biomarkers associated with potential therapeutic effects were also explored. Methods Patients with previously untreated ES-SCLC were enrolled at Shandong Cancer Hospital and Institute (Jinan, China). Patients received 4-6 cycles of adebrelimab (20 mg/kg, D1, Q3W) combined with EP/EC (etoposide, 100 mg/m2, D1-3, Q3W and cisplatin, 75 mg/m2, D1, Q3W or carboplatin, AUC = 5, D1, Q3W). Then patients with response sequentially underwent consolidative TRT (≥30 Gy in 10 fractions or ≥50 Gy in 25 fractions, involved-field irradiation), and maintenance adebrelimab until disease progression or intolerable adverse events (AEs). The primary endpoint was overall survival (OS). Genomic and circulating tumour DNA (ctDNA) profiling were also analyzed with tumour tissues and peripheral blood. This trial was registered with ClinicalTrials.gov, NCT04562337. Findings From October 2020 to April 2023, 67 patients diagnosed with ES-SCLC were enrolled and received at least one dose of study treatment. All patients were included in the efficacy and safety analyses. 45 patients received sequential TRT as planned. The median OS and progression-free survival (PFS) was 21.4 months (95% CI: 17.2-not reached months) and 10.1 months (95% CI: 6.9-15.5 months), respectively. The confirmed objective response rate was 71.6% (48/67, 95% CI: 59.3-82.0%) and disease control rate was 89.6% (60/67, 95% CI: 79.7-95.7%). There were no treatment-related deaths. The most common grade 3 or higher treatment-related adverse events (TRAEs) were hematological toxicities. The incidence of any grade and G3+ pneumonitis was 25% (17/67) and 6% (4/67), respectively. No unexpected adverse events were observed. Patients without co-mutations of TP53/RB1 in both tissue and peripheral blood displayed longer PFS (tissue, P = 0.071; ctDNA, P = 0.060) and OS (tissue, P = 0.032; ctDNA, P = 0.031). Interpretation Adebrelimab plus chemotherapy and sequential TRT as first-line therapy for ES-SCLC showed promising efficacy and acceptable safety. Funding This study was funded by the National Natural Science Foundation of China (82172865), Jiangsu Hengrui Pharmaceuticals Co., Ltd. and Amoy Diagnostics Co., Ltd.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Pinliang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyong Tang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xudong Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yan Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jun Guo
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Changhong Zhao
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jiajia Yuan
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Qian Li
- Amoy Diagnostics Co., Ltd., Xiamen, Fujian, China
| | - Changbin Zhu
- Amoy Diagnostics Co., Ltd., Xiamen, Fujian, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
12
|
Ni J, Wang X, Wu L, Ai X, Chu Q, Han C, Dong X, Zhou Y, Pang Y, Zhu Z. Sintilimab in combination with stereotactic body radiotherapy and granulocyte-macrophage colony-stimulating factor in metastatic non-small cell lung cancer: The multicenter SWORD phase 2 trial. Nat Commun 2024; 15:7242. [PMID: 39174542 PMCID: PMC11341907 DOI: 10.1038/s41467-024-51807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
This single-arm, multicenter, phase 2 trial (NCT04106180) investigated the triple combination of sintilimab (anti-PD1 antibody), stereotactic body radiotherapy (SBRT) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in metastatic non-small cell lung cancer (NSCLC). With a median follow-up of 32.1 months, 18 (36.7%, 90% CI 25.3%-49.5%) of the 49 evaluable patients had an objective response, meeting the primary endpoint. Secondary endpoints included out-of-field (abscopal) response rate (ASR), progression-free survival (PFS), overall survival (OS), and treatment-related adverse events (TRAEs). The ASR was 30.6% (95% CI 18.3%-45.4%). The median PFS and OS were 5.9 (95% CI 2.5-9.3) and 18.4 (95% CI 9.7-27.1) months, respectively. Any grade and grade 3 TRAEs occurred in 44 (86.3%) and 6 (11.8%) patients, without grade 4-5 TRAEs. Moreover, in pre-specified biomarker analyses, SBRT-induced increase of follicular helper T cells (Tfh) in unirradiated tumor lesions and patient's blood, as well as of circulating IL-21 levels, was found associated with improved prognosis. Taken together, the triple combination therapy was well tolerated with promising efficacy and Tfh may play a critical role in SBRT-triggered anti-tumor immunity in metastatic NSCLC.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Wang
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Lin Wu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinghao Ai
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yechun Pang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Montero-Calle A, Garranzo-Asensio M, Moreno-Casbas MT, Campuzano S, Barderas R. Autoantibodies in cancer: a systematic review of their clinical role in the most prevalent cancers. Front Immunol 2024; 15:1455602. [PMID: 39234247 PMCID: PMC11371560 DOI: 10.3389/fimmu.2024.1455602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although blood autoantibodies were initially associated with autoimmune diseases, multiple evidence have been accumulated showing their presence in many types of cancer. This has opened their use in clinics, since cancer autoantibodies might be useful for early detection, prognosis, and monitoring of cancer patients. In this review, we discuss the different techniques available for their discovery and validation. Additionally, we discuss here in detail those autoantibody panels verified in at least two different reports that should be more likely to be specific of each of the four most incident cancers. We also report the recent developed kits for breast and lung cancer detection mostly based on autoantibodies and the identification of novel therapeutic targets because of the screening of the cancer humoral immune response. Finally, we discuss unsolved issues that still need to be addressed for the implementation of cancer autoantibodies in clinical routine for cancer diagnosis, prognosis, and/or monitoring.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Teresa Moreno-Casbas
- Investén-isciii, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Dagar G, Gupta A, Shankar A, Chauhan R, Macha MA, Bhat AA, Das D, Goyal R, Bhoriwal S, Pandita RK, Prasad CP, Sarkar PS, Pandita TK, Singh M. The future of cancer treatment: combining radiotherapy with immunotherapy. Front Mol Biosci 2024; 11:1409300. [PMID: 39044839 PMCID: PMC11263218 DOI: 10.3389/fmolb.2024.1409300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Radiotherapy (RT) and immunotherapy (IT) are the powerful tools for cancer treatment which act through the stimulation of immune response, and evidence suggest that combinatorial actions of these therapies may augment each other's beneficial effect through complex synergistic mechanisms. These molecular strategies are designed to target rapidly dividing cancer cells by either directly or indirectly inducing DNA damage. However, when cells detect DNA damage, they activate a range of signalling pathways known as the DNA damage response (DDR) to repair. Strategies are being developed to interfere with the DDR pathways in cancer cells to ensure their damage-induced degeneration. The stability of a cell's genetic material is largely dependent on the efficacy of DNA repair and therefore, an in-depth understanding of DNA damages and repair mechanism(s) in cancer cells is important to develop a promising therapeutic strategies for ensuring the efficacy of damage-induced tumor cell death. In recent years, a wide range of small molecule drugs have been developed which are currently being employed to combat the DNA repair deficiencies associated with tumor cells. Sequential or concurrent use of these two modalities significantly enhances the anti-tumor response, however with a concurrent probability of increased incidence of symptomatic adverse effects. With advent of newer IT agents, and administration of higher doses of radiation per fraction, such effects are more difficult to predict owing to the paucity of randomized trial data. It is well established that anti cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), anti- Programmed cell death protein 1(PD-1), anti-Programmed cell death one ligand 1 (PD-L1) can be safely administered with RT and many studies have demonstrated survival benefit with such combination for patients with metastatic malignancy. However, the biology of radioimmunotherapy (RT/IT) is still an open area where research need to be focused to determine optimum dosage specially the interaction of the RT/IT pathways to determine optimum dosing schedule. In the current article we have summarised the possible intracellular immunological events that might be triggered when RT and IT modalities are combined with the DDR antagonists and highlighted present clinical practices, outcome, and toxicity profile of this novel treatment strategy.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu And Kashmir, India
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York City, NY, United States
| | - Rajeev Goyal
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Raj K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Chandra Prakash Prasad
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Partha S. Sarkar
- Department of Neurobiology and Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Salomon N, Helm A, Selmi A, Fournier C, Diken M, Schrörs B, Scholz M, Kreiter S, Durante M, Vascotto F. Carbon Ion and Photon Radiation Therapy Show Enhanced Antitumoral Therapeutic Efficacy With Neoantigen RNA-LPX Vaccines in Preclinical Colon Carcinoma Models. Int J Radiat Oncol Biol Phys 2024; 119:936-945. [PMID: 38163521 DOI: 10.1016/j.ijrobp.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.
Collapse
Affiliation(s)
- Nadja Salomon
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Alexander Helm
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Abderaouf Selmi
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Fournier
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Mustafa Diken
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Schrörs
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Sebastian Kreiter
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marco Durante
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany; Technical University Darmstadt, Institute of Condensed Matter Physics, Darmstadt, Germany; University Federico II, Department of Physics "Ettore Pancini", Naples, Italy
| | - Fulvia Vascotto
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
16
|
Shang Z, Fan Y, Xi S, Zhang S, Shen W, Tao L, Xu C, Tan J, Fan M, Ma H, Lai Y, Sun D, Cheng H. Arenobufagin enhances T-cell anti-tumor immunity in colorectal cancer by modulating HSP90β accessibility. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155497. [PMID: 38640855 DOI: 10.1016/j.phymed.2024.155497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90β-STAT3-PD-L1 axis activity. METHODS We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90β (HSP90β) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90β's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90β-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.
Collapse
Affiliation(s)
- Zhihao Shang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yiping Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314000, China
| | - Songyang Xi
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212000, China
| | - Shang Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lihuiping Tao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Minmin Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hongyue Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yueyang Lai
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
17
|
Arnold CR, Mangesius J, Portnaia I, Ganswindt U, Wolff HA. Innovative therapeutic strategies to overcome radioresistance in breast cancer. Front Oncol 2024; 14:1379986. [PMID: 38873260 PMCID: PMC11169591 DOI: 10.3389/fonc.2024.1379986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Despite a comparatively favorable prognosis relative to other malignancies, breast cancer continues to significantly impact women's health globally, partly due to its high incidence rate. A critical factor in treatment failure is radiation resistance - the capacity of tumor cells to withstand high doses of ionizing radiation. Advancements in understanding the cellular and molecular mechanisms underlying radioresistance, coupled with enhanced characterization of radioresistant cell clones, are paving the way for the development of novel treatment modalities that hold potential for future clinical application. In the context of combating radioresistance in breast cancer, potential targets of interest include long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and their associated signaling pathways, along with other signal transduction routes amenable to pharmacological intervention. Furthermore, technical, and methodological innovations, such as the integration of hyperthermia or nanoparticles with radiotherapy, have the potential to enhance treatment responses in patients with radioresistant breast cancer. This review endeavors to provide a comprehensive survey of the current scientific landscape, focusing on novel therapeutic advancements specifically addressing radioresistant breast cancer.
Collapse
Affiliation(s)
| | - Julian Mangesius
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iana Portnaia
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hendrik Andreas Wolff
- Department of Radiology, Nuclear Medicine, and Radiotherapy, Radiology Munich, Munich, Germany
| |
Collapse
|
18
|
Dai D, Pei Y, Zhu B, Wang D, Pei S, Huang H, Zhu Q, Deng X, Ye J, Xu J, Chen X, Huang M, Xiao Y. Chemoradiotherapy-induced ACKR2 + tumor cells drive CD8 + T cell senescence and cervical cancer recurrence. Cell Rep Med 2024; 5:101550. [PMID: 38723624 PMCID: PMC11148771 DOI: 10.1016/j.xcrm.2024.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
Tumor recurrence after chemoradiotherapy is challenging to overcome, and approaches to predict the recurrence remain elusive. Here, human cervical cancer tissues before and after concurrent chemoradiotherapy (CCRT) analyzed by single-cell RNA sequencing reveal that CCRT specifically promotes CD8+ T cell senescence, driven by atypical chemokine receptor 2 (ACKR2)+ CCRT-resistant tumor cells. Mechanistically, ACKR2 expression is increased in response to CCRT and is also upregulated through the ligation of CC chemokines that are produced by activated myeloid and T cells. Subsequently, ACKR2+ tumor cells are induced to produce transforming growth factor β to drive CD8+ T cell senescence, thereby compromising antitumor immunity. Moreover, retrospective analysis reveals that ACKR2 expression and CD8+ T cell senescence are enhanced in patients with cervical cancer who experienced recurrence after CCRT, indicating poor prognosis. Overall, we identify a subpopulation of CCRT-resistant ACKR2+ tumor cells driving CD8+ T cell senescence and tumor recurrence and highlight the prognostic value of ACKR2 and CD8+ T cell senescence for chemoradiotherapy recurrence.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biqing Zhu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxiang Chen
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Mingzhu Huang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Yichuan Xiao
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
19
|
Chen H, Zhu Y, Zhang C, Hu L, Yang K. Engineered bacteria in tumor immunotherapy. Cancer Lett 2024; 589:216817. [PMID: 38492769 DOI: 10.1016/j.canlet.2024.216817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
As the limitations of cancer immunotherapy become increasingly apparent, there is considerable anticipation regarding the utilization of biological tools to enhance treatment efficacy, particularly bacteria and their derivatives. Leveraging advances in genetic and synthetic biology technologies, engineered bacteria now play important roles far beyond those of conventional immunoregulatory agents, and they could function as tumor-targeting vehicles and in situ pharmaceutical factories. In recent years, these engineered bacteria play a role in almost every aspect of immunotherapy. It is nothing short of impressive to keep seeing different strain of bacteria modified in diverse ways for unique immunological enhancement. In this review, we have scrutinized the intricate interplay between the immune system and these engineered bacteria. These interactions generate strategies that can directly or indirectly optimize immunotherapy and even modulate the effects of combination therapies. Collectively, these engineered bacteria present a promising novel therapeutic strategy that promises to change the current landscape of immunotherapy.
Collapse
Affiliation(s)
- Hua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Yinrui Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chonghai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| |
Collapse
|
20
|
Colangelo NW, Gerber NK, Vatner RE, Cooper BT. Harnessing the cGAS-STING pathway to potentiate radiation therapy: current approaches and future directions. Front Pharmacol 2024; 15:1383000. [PMID: 38659582 PMCID: PMC11039815 DOI: 10.3389/fphar.2024.1383000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
In this review, we cover the current understanding of how radiation therapy, which uses ionizing radiation to kill cancer cells, mediates an anti-tumor immune response through the cGAS-STING pathway, and how STING agonists might potentiate this. We examine how cGAS-STING signaling mediates the release of inflammatory cytokines in response to nuclear and mitochondrial DNA entering the cytoplasm. The significance of this in the context of cancer is explored, such as in response to cell-damaging therapies and genomic instability. The contribution of the immune and non-immune cells in the tumor microenvironment is considered. This review also discusses the burgeoning understanding of STING signaling that is independent of inflammatory cytokine release and the various mechanisms by which cancer cells can evade STING signaling. We review the available data on how ionizing radiation stimulates cGAS-STING signaling as well as how STING agonists may potentiate the anti-tumor immune response induced by ionizing radiation. There is also discussion of how novel radiation modalities may affect cGAS-STING signaling. We conclude with a discussion of ongoing and planned clinical trials combining radiation therapy with STING agonists, and provide insights to consider when planning future clinical trials combining these treatments.
Collapse
Affiliation(s)
- Nicholas W. Colangelo
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Naamit K. Gerber
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Ralph E. Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Benjamin T. Cooper
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
21
|
Ito M, Abe S, Adachi S, Oshima Y, Takeuchi A, Ohashi W, Iwata T, Ogawa T, Ota A, Kubota Y, Okuda T, Suzuki K. Solid tumours showing oligoprogression to immune checkpoint inhibitors have the potential for abscopal effects. Jpn J Radiol 2024; 42:424-434. [PMID: 38093137 PMCID: PMC10980609 DOI: 10.1007/s11604-023-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 04/01/2024]
Abstract
PURPOSE Given the uncertainty surrounding the abscopal effect (AE), it is imperative to identify promising treatment targets. In this study, we aimed to explore the incidence of AE when administering radiotherapy to patients with oligoprogressive solid tumours while they are undergoing treatment with immune checkpoint inhibitors (ICIs). MATERIALS AND METHODS In this multicentre prospective observational study, oligoprogressive disease was defined as a < 20% increase in lesions compared to > 2 months before enrolment. We enrolled patients who requested radiotherapy during the ICI rest period between 2020 and 2023. AE was considered present if ≥ 1 non-irradiated lesion decreased by ≥ 30% before the next line of systemic therapy started. RESULTS Twelve patients were included in this study; the common primary lesions were in the lungs (four patients) and kidneys (three patients). AEs were observed in six (50%) patients, with a median time to onset of 4 (range 2-9) months after radiotherapy. No significant predictors of AEs were identified. Patients in the AE group had a significantly better 1-year progression-free survival (PFS) rate than those in the non-AE group (p = 0.008). Two patients from the AE group were untreated and progression-free at the last follow-up. Four (33%) patients experienced grade 2 toxicity, with two cases attributed to radiotherapy and the other two to ICI treatment. No grade 3 or higher toxicities were observed in any category. CONCLUSION Patients with oligoprogressive disease may be promising targets with potential for AEs. AEs can lead to improved PFS and, in rare cases, to a certain progression-free period without treatment. Irradiating solid tumours in patients with oligoprogressive disease during immune checkpoint inhibitor therapy may be a promising target with the potential for abscopal effects (AEs). AEs can lead to improved progression-free survival and, in rare cases, to a certain progression-free period without treatment.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan.
| | - Souichiro Abe
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Sou Adachi
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Yukihiko Oshima
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Arisa Takeuchi
- Department of Radiation Oncology, Anjo Kosei Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, 28 Higashihirokute, Anjo-Cho, Anjo, Aichi, 446-8602, Japan
| | - Wataru Ohashi
- Department of Biostatistics, Clinical Research Center, Aichi Medical University, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Takashi Iwata
- Department of Oncology Center, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Akiko Ota
- Department of Oncology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Yasuaki Kubota
- Department of Urology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Takahito Okuda
- Department of Radiation Oncology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
22
|
Rai P, Mahajan A, Shukla S, Agarwal U. Double Whammy: Abscopal Effect and Pseudoprogression in a Case of Non-small Cell Lung Carcinoma With Brain Metastases. Cureus 2024; 16:e59099. [PMID: 38803768 PMCID: PMC11128365 DOI: 10.7759/cureus.59099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Abscopal effect and pseudoprogression are terms used in modern oncological imaging. Abscopal effect refers to the elicitation of tumor response away from the site of primary disease. Pseudoprogression is the increase in size or enhancement of the treated tumor or the appearance of new lesions that remain stable or show subsequent decrease without any change in therapy. Both of these are known to be associated with radiation therapy. We present a case of adenocarcinoma of the lung, which developed both these phenomena throughout the course of their therapy. Out-of-target responses secondary to radiotherapy have been discussed extensively in the literature and may pave the way for future oncological management as the targeted therapies become more specific. At the same time, atypical, however not uncommon, phenomena such as pseudoprogression should always be kept in the back of a clinician's mind as further course of clinical management may change.
Collapse
Affiliation(s)
- Pranjal Rai
- Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, IND
| | - Abhishek Mahajan
- Imaging Department, The Clatterbridge Cancer Centre National Health Service (NHS), Liverpool, GBR
| | - Shreya Shukla
- Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, IND
| | - Ujjwal Agarwal
- Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, IND
| |
Collapse
|
23
|
Yu B, Gao Y, Li J, Gao F, Zhang J, Li L, Feng X, Zuo D, Jin X, Chen W, Li Q. Killing two birds with one stone: Abscopal effect mechanism and its application prospect in radiotherapy. Crit Rev Oncol Hematol 2024; 196:104325. [PMID: 38462151 DOI: 10.1016/j.critrevonc.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Abscopal effects are characterized by the emergence of neoplasms in regions unrelated to the primary radiation therapy site, displaying a gradual attenuation or regression throughout the progression of radiation therapy, which have been of interest to scientists since Mole's proposal in 1953. The incidence of abscopal effects in radiation therapy is intricately linked to the immune system, with both innate and adaptive immune responses playing crucial roles. Biological factors impacting abscopal effects ultimately exert their influence on the intricate workings of the immune system. Although abscopal effects are rarely observed in clinical cases, the underlying mechanism remains uncertain. This article examines the biological and physical factors influencing abscopal effects of radiotherapy. Through a review of preclinical and clinical studies, this article aims to offer a comprehensive understanding of abscopal effects and proposes new avenues for future research in this field. The findings presented in this article serve as a valuable reference for researchers seeking to explore this topic in greater depth.
Collapse
Affiliation(s)
- Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou 730070, China
| | - Jiaxin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Public Health, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Feng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashan Zuo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Rajan A, Sivapiromrat AK, McAdams MJ. Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions. Cancers (Basel) 2024; 16:1369. [PMID: 38611047 PMCID: PMC11010813 DOI: 10.3390/cancers16071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Thymic epithelial tumors are a histologically diverse group of cancers arising from the epithelial compartment of the thymus. These tumors are characterized by a low tumor mutation burden, a lack of actionable genomic changes, and, especially with thymomas, defects in immune tolerance. Surgery is the mainstay of the management of resectable disease, whereas advanced, unresectable tumors are treated with platinum-based chemotherapy. Disease recurrence can occur months to years after frontline treatment. Although several options are available for conventional treatment of recurrent thymic tumors, response rates are generally low, and treatment-related toxicity can affect quality of life. A subset of patients benefit from biologic therapies, but there remains an unmet need for the development of new treatments. Immune checkpoint inhibitors are safe, clinically active, and have contributed to an improvement in survival for patients with a wide variety of cancers. However, the application of these revolutionary treatments for thymic cancers is limited to their use for the management of recurrent thymic carcinoma because of the risk of immune toxicity. In this paper, we review the current uses of immunotherapy for the management of thymic epithelial tumors and highlight potential strategies to improve safety and broaden the application of these treatments for patients with thymic cancers.
Collapse
Affiliation(s)
- Arun Rajan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
25
|
Kong Y, Chen R, Xu M, Zhang J, Chen G, Hong Z, Zhang H, Dai X, Ma Y, Zhao X, Peng Y, Zhang C, Xing P, Zhang L. Evaluation of the efficacy and safety of a precise thymalfasin-regulated PRaG regimen for advanced refractory solid tumours: protocol for the open-label, prospective, multicentre study (PRaG5.0 study). BMJ Open 2024; 14:e075642. [PMID: 38458816 DOI: 10.1136/bmjopen-2023-075642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION The PRaG regimen, which consists of hypofractionated radiotherapy combined with a programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitor and granulocyte-macrophage colony stimulating factor (GM-CSF), has been demonstrated to have a survival benefit in patients with advanced solid tumours who have failed at least two lines of treatment. Nonetheless, lymphopenia poses an impediment to the enduring efficacy of PD-1/PD-L1 inhibitor therapy. Adequate lymphocyte reserves are essential for the efficacy of immunotherapy. Coupling the PRaG regimen with immunomodulatory agents that augment the number and functionality of lymphocytes may yield further survival benefits in this cohort of patients. OBJECTIVE The aim of this study is to investigate the effectiveness and safety of a meticulously thymalfasin-controlled PRaG regimen in patients with advanced and chemotherapy-resistant solid tumours. METHODS AND ANALYSIS The study has a prospective, single-arm, open-label, multicentre design and aims to recruit up to 60 patients with histologically confirmed advanced solid tumours that have relapsed or metastasised. All eligible patients will receive a minimum of two cycles of the PRaG regimen comprising thymalfasin followed by maintenance treatment with a PD-1/PD-L1 inhibitor and thymalfasin for 1 year or until disease progression. Patients will be monitored according to the predetermined protocol for a year or until disease progression after initiation of radiotherapy. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of the Second Affiliated Hospital of Soochow University, on 25 November 2022 (JD-LK-2022-151-01) and all other participating hospitals. Findings will be disseminated through national and international conferences. We also plan to publish our findings in high-impact peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT05790447.
Collapse
Affiliation(s)
- Yuehong Kong
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Rongzheng Chen
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Meiling Xu
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Junjun Zhang
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Guangqiang Chen
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhihui Hong
- Department of Nuclear Medicine, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Dai
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yifu Ma
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Xiangrong Zhao
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Yong Peng
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Chenyang Zhang
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Pengfei Xing
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu, China
| | - Liyuan Zhang
- Center for Cancer Diagnosis and Treatment, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Xu JY, Hu M, Wu SG, Zhou J. Local treatment strategies in Stage IVB cervical squamous cell carcinoma and adenocarcinoma. Int J Gynaecol Obstet 2024; 164:1053-1063. [PMID: 37724012 DOI: 10.1002/ijgo.15121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVE To evaluate the effect of different local treatment strategies on survival outcomes in patients with Stage IVB cervical squamous cell carcinoma (SCC) and adenocarcinoma. METHODS Patients diagnosed with Stage IVB cervical SCC and adenocarcinoma between 2004 and 2015 were included from the Surveillance, Epidemiology, and End Results (SEER) database. Subgroup analysis was performed in those diagnosed between 2010 and 2015 and available for the sites of distant metastases. RESULTS In total, 706 patients were identified in this study, including 378 (53.5%) and 328 (46.5%) diagnosed in 2004-2009 and 2010-2015, respectively. There were 525 (74.4%) and 181 (25.6%) patients with SCC and adenocarcinoma, respectively. Moreover, 274 (38.8%) and 432 (61.2%) patients received hysterectomy and primary radiotherapy, respectively. The results of the multivariate Cox regression analysis showed that histology and local treatment strategies were not related to cause-specific survival (CSS) and overall survival. In the SCC patients, patients who received primary radiotherapy had similar CSS (P = 0.312) and overall survival (P = 0.390) compared with those treated with surgery. In the adenocarcinoma patients, those who received primary radiotherapy had inferior CSS (P = 0.003) and overall survival (P < 0.001) compared with those treated with surgery. Similar results were found in those diagnosed 2004-2015 and 2010-2015 after propensity score matching. CONCLUSIONS For patients with Stage IVB cervical cancer who received local therapy, surgery, and primary radiotherapy had similar survival in cervical SCC, whereas surgery had better survival outcomes compared with primary radiotherapy in those with cervical adenocarcinoma.
Collapse
Affiliation(s)
- Jing-Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Min Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - San-Gang Wu
- Xiamen Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| |
Collapse
|
27
|
Wang X, Wang Y, Zhang Y, Shi H, Liu K, Wang F, Wang Y, Chen H, Shi Y, Wang R. Immune modulatory roles of radioimmunotherapy: biological principles and clinical prospects. Front Immunol 2024; 15:1357101. [PMID: 38449871 PMCID: PMC10915027 DOI: 10.3389/fimmu.2024.1357101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonggang Zhang
- Department of Head and Neck Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Hongyun Shi
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Kuan Liu
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yue Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Huijing Chen
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ruiyao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
28
|
Liu Z, Wang F, Zhang Y, Lu J, Yang Y. Combination treatment with anti-HER2 therapeutic antibody RC48, PD-1 inhibitor, radiotherapy, and granulocyte macrophage-colony stimulating factor (GM-CSF) in patient with metastatic gastric cancer: a case report. Front Immunol 2024; 15:1321946. [PMID: 38361930 PMCID: PMC10867122 DOI: 10.3389/fimmu.2024.1321946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
HER2 overexpression/amplification is a prevalent driver in various types of cancer, including gastric cancer (GC). Limited options are available for patients with HER2-positive metastatic gastric cancer, particularly those who do not respond to the standard therapy of HER2 antibody trastuzumab combined with chemotherapy. Previous research suggests that combining a PD-1 inhibitor with radiotherapy and granulocyte macrophage-colony stimulating factor (PRaG regimen) may enhance the antitumor effects in patients with chemotherapy-resistant metastatic solid tumors. In this case study, we presented a potential treatment strategy of a patient having HER2-positive and PD-L1-negative gastric adenocarcinoma. The patient showed rapid tumor progression even after surgery and multiple trastuzumab plus chemotherapy treatments. To address this, we employed a novel anti-HER2 antibody called RC48 in combination with PRaG regimen therapy (PRaG3.0). The patient demonstrated a positive response after two treatment cycles and achieved a progression-free survival time of 6.5 months. This case highlights the potential of four-combination therapies for treating refractory, multiorgan, HER2-positive, PD-L1-negative metastatic gastric cancer. Additionally, varying radiation doses in targeting dual foci is critical to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Zhuixing Liu
- Department of Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| | - Fang Wang
- Department of Radiotherapy & Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| | - Yingqi Zhang
- Department of Radiotherapy & Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| | - Jun Lu
- Department of Radiotherapy & Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| | - Yang Yang
- Department of Radiotherapy & Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| |
Collapse
|
29
|
Qu FJ, Zhou Y, Wu S. Progress of immune checkpoint inhibitors therapy for non-small cell lung cancer with liver metastases. Br J Cancer 2024; 130:165-175. [PMID: 37945751 PMCID: PMC10803805 DOI: 10.1038/s41416-023-02482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Nearly one-fifth of patients with non-small cell Lung Cancer (NSCLC) will develop liver metastases (LMs), and the overall treatment strategy of LMs will directly affect the survival of patients. However, some retrospective studies have found that patients receiving chemotherapy or targeted therapy have a poorer prognosis once LMs develop. In recent years, multiple randomised controlled trials (RCTS) have shown significant improvements in outcomes for patients with advanced lung cancer following the introduction of immune checkpoint inhibitors (ICIs) compared to conventional chemotherapy. ICIs is safe and effective in patients with LMs, although patients with LMs are mostly underrepresented in randomised clinical trials. However, NSCLC patients with LMs have a significantly worse prognosis than those without LMs when treated with ICIs, and the mechanism by which LMs induce systemic anti-tumour immunity reduction is unknown, so the management of LMs in patients with NSCLC is a clinical challenge that requires more optimised therapies to achieve effective disease control. In this review, we summarised the mechanism of ICIs in the treatment of LMs, the clinical research and treatment progress of ICIs and their combination with other therapies in patients with LMs from NSCLC.
Collapse
Affiliation(s)
- Fan-Jie Qu
- Department of Oncology, Affiliated Dalian Third People's Hospital of Dalian Medical University, 116033, Dalian, China.
| | - Yi Zhou
- Department of Oncology, Affiliated Dalian Third People's Hospital of Dalian Medical University, 116033, Dalian, China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People's Hospital of Dalian Medical University, 116033, Dalian, China
| |
Collapse
|
30
|
Zhang N, Guo MF. Granulocyte-Macrophage Colony-Stimulating Factor in Combination With Chemoradiation for Recurrent or Metastatic Cervical Cancer. Cureus 2024; 16:e54573. [PMID: 38523939 PMCID: PMC10959459 DOI: 10.7759/cureus.54573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Recurrent or metastatic cervical cancer carries a bleak prognosis and presents a formidable challenge in terms of treatment. Granulocyte-macrophage colony-stimulating factor (GM-CSF) increases the body's immune response by enhancing antigen presentation, which has been rarely reported in recurrent or metastatic cervical cancer. A 44-year-old woman presented to the hospital with vaginal bleeding four years after radical hysterectomy for stage IB2 squamous cell carcinoma (SCC) of the cervix (grade II-III). Gynecological examination and imaging revealed a vaginal mass, and the biopsy confirmed the recurrence of grade III SCC. The patient was treated with chemoradiation (CRT) combined with immunoadjuvant GM-CSF and achieved complete remission and a progression-free survival of two years.
Collapse
Affiliation(s)
- Na Zhang
- Department of Gynecologic Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, CHN
| | - Ming-Fang Guo
- Department of Gynecologic Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, CHN
| |
Collapse
|
31
|
Qin Y, Huang S, Tang J, Fan Y, Deng X, Guan P, Zhang Z, Wen Q, Li D. Case report: Interstitial implantation radiotherapy combined with immunotherapy and GM-CSF in oligometastatic platinum-resistant ovarian cancer. Front Immunol 2024; 14:1329951. [PMID: 38235148 PMCID: PMC10791797 DOI: 10.3389/fimmu.2023.1329951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Background Treatment for platinum-resistant ovarian cancer is challenging. Currently, platinum-resistant ovarian cancer is typically treated with non-platinum single-agent chemotherapy ± bevacizumab, but the prognosis is often extremely poor. In the treatment of platinum-resistant ovarian cancer patients, reports of triple therapy with interstitial implantation radiotherapy combined with immunotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF) (PRaG for short) are relatively rare. Case description Here, we report a patient with oligometastatic platinum-resistant ovarian cancer. The patient achieved partial response (PR) of the lesion and sustained benefit for more than six months after receiving interstitial implantation radiotherapy combined with immunotherapy along with GM-CSF. Conclusion This triple therapy may provide additional options for these patients.
Collapse
Affiliation(s)
- Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Junli Tang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Oncology, The First People’s Hospital of Suining, Suining, Sichuan, China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiangyu Deng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Ping Guan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhenhua Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinglian Wen
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
32
|
Feng B, Zheng Y, Zhang J, Tang M, Na F. Chemoimmunotherapy combined with consolidative thoracic radiotherapy for extensive-stage small cell lung cancer: A systematic review and meta-analysis. Radiother Oncol 2024; 190:110014. [PMID: 37981084 DOI: 10.1016/j.radonc.2023.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION This study aimed to evaluate the efficacy and safety of chemoimmunotherapy combined with consolidative thoracic radiation therapy (cTRT) in patients with extensive-stage small cell lung cancer (ES-SCLC). METHODS A meta-analysis was conducted. PubMed, Embase, Web of Science, and the Cochrane Library were searched. The study was registered in PROSPERO (registration no. CRD42023410344). RESULTS A total of 4677 studies were initially screened and 15 studies encompassing a total of 1033 patients were included. Chemoimmunotherapy combined with cTRT significantly improved survival (HR = 0.52, 95 % CI: 0.39, 0.68) with favorable 6-month (0.89, 95 % CI: 0.77, 1.00) and 1-year (0.77, 95 % CI: 0.72, 0.82) OS, without affecting ≥3 grade TRAEs (RR = 1.29, 95 % CI: 0.85, 1.98). Pooled 6-month and 1-year PFS were 0.67 (95 % CI: 0.47, 0.86) and 0.38 (95 % CI: 0.22, 0.55), respectively. Incidence of ≥3 grade TRAEs was 0.24 (95 % CI: 0.08, 0.39) and radiation pneumonitis was 0.03 (95 % CI: 0.01, 0.06). CONCLUSIONS Chemoimmunotherapy combined with cTRT improves survival and shows favorable outcomes in ES-SCLC patients, with manageable adverse events. Further research with larger samples is needed to confirm these findings.
Collapse
Affiliation(s)
- Baijie Feng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayuan Zhang
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol 2024; 44:100691. [PMID: 38033759 PMCID: PMC10684810 DOI: 10.1016/j.ctro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Spatially Fractionated Radiation Therapy (SFRT) is a form of radiotherapy that delivers a single large dose of radiation within the target volume in a heterogeneous pattern with regions of peak dosage and regions of under dosage. SFRT types can be defined by how the heterogeneous pattern of radiation is obtained. Immune checkpoint inhibitors (ICIs) have been approved for various malignant tumors and are widely used to treat patients with metastatic cancer. The efficacy of ICI monotherapy is limited due to the "cold" tumor microenvironment. Fractionated radiotherapy can achieve higher doses per fraction to the target tumor, and induce immune activation (immodulate tumor immunogenicity and microenvironment). Therefore, coupling ICI therapy and fractionated radiation therapy could significantly improve the outcome of metastatic cancer. This review focuses on both preclinical and clinical studies that use a combination of radiotherapy and ICI therapy in cancer.
Collapse
Affiliation(s)
- Qiuxia Lu
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| | - Weisi Yan
- Baptist Health System, Lexington, KY, United States
- Junxin Precision Oncology Group, P.R. China
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Slavisa Tubin
- Albert Einstein Collage of Medicine New York, Center for Ion Therapy, Medaustron, Austria
| | - Waleed F. Mourad
- Department of Radiation Medicine Markey Cancer Center, University of Kentucky - College of Medicine, United States
| | - Jun Yang
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| |
Collapse
|
34
|
Popp I, Vaes RDW, Wieten L, Adebahr S, Hendriks L, Bavafaye Haghighi E, Degens J, Schäfer H, Greil C, Peeters S, Waller CF, Houben R, Niedermann G, Rawluk J, Gkika E, Duyster J, Grosu AL, De Ruysscher D. Radiotherapy to reinvigorate immunotherapy activity after acquired resistance in metastatic non-small-cell lung cancer: A pooled analysis of two institutions prospective phase II single arm trials. Radiother Oncol 2024; 190:110048. [PMID: 38070686 DOI: 10.1016/j.radonc.2023.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/20/2024]
Abstract
AIM The current work aimed to investigate the clinical benefit of radiotherapy in patients with metastatic non-small cell lung cancer (NSCLC) developing acquired resistance to immune checkpoint inhibitors. METHOD We report on a pooled, two-institution, phase II single-arm prospective cohort study. The study included patients with stage IV NSCLC who showed progression of one or more measurable lesions under anti-PD-(L)1 inhibition alone, after initially having achieved at least stable disease. Hypofractionated radiotherapy (hRT) of one to four metastases was performed, while one or more lesions were kept untreated. Following hRT, treatment with immune checkpoint inhibitors was continued unchanged until further evidence of tumor progression or unacceptable toxicity. Primary endpoint of the pooled analysis was progression-free survival (PFS), secondary endpoints included overall survival (OS) and toxicity. RESULTS A total of 48 patients were enrolled: mean age was 67.1 ± 9.3 years, 50 % were male and 72.9 % were PD-L1 positive. Immunotherapy was in 95.8 % of patients the first or second line therapy at time of enrollment. hRT was performed to one (93.8 % of cases) or more lesions (median total dose: 27.5 Gy, median 6.5 Gy/fraction). Forty-five patients (93.8 %) were able to continue immunotherapy for a median of 6.2 months following hRT. Median PFS was 4.4 months, with 62.5 % disease control at three months and 37.5 % at six months. Median OS was 14.9 months. Severe adverse events (grade ≥ 2) were reported in 12 cases (25 %), of which none were radiotherapy-related and four were immunotherapy-related. Salvage therapy consisted of chemotherapy (48.8 %) or repeated irradiation (21.9 %). No further tumor treatment was performed in 29.3 % of patients. CONCLUSIONS The current pooled analysis is a prospective evaluation of the role of radiation therapy for metastatic NSCLC in the setting of newly acquired immunotherapy resistance. Hypofractionated radiotherapy can support the outcome of immune checkpoint inhibitors and thus allow continuation of treatment for a relevant amount of time despite initial tumor progression.
Collapse
Affiliation(s)
- Ilinca Popp
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Rianne D W Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW School for Oncology and Reproduction. Maastricht University Medical Center, Maastricht, the Netherlands
| | - Sonja Adebahr
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lizza Hendriks
- Department of Respiratory Diseases, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Juliette Degens
- Department of Respiratory Diseases, Zuyderland Hospital, Sittard-Geleen, the Netherlands
| | - Henning Schäfer
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Greil
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stéphanie Peeters
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Cornelius F Waller
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Justyna Rawluk
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
35
|
Xu Y, Kong Y, Ma Y, Xu M, Yang J, Zhang J, Chen R, Chen G, Hong Z, Zhao X, Zhang C, Xing P, Zhang L, Zhao P. Phase I/II Clinical Study of PRaG Regimen Combined With Intraperitoneal Infusion of PD-1 Inhibitor for Advanced Refractory Solid Tumors With Cancerous Ascites (PRaG4.0P Study). Technol Cancer Res Treat 2024; 23:15330338241264169. [PMID: 39051686 PMCID: PMC11273709 DOI: 10.1177/15330338241264169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
Objective: The prognosis of malignant tumors with peritoneal metastases and cancerous ascites has generally been poor, with limited treatment options. The PRaG regimen, which comprised of hypofractionated radiotherapy, programmed cell death-1 (PD-1) inhibitor, and granulocyte-macrophage colony-stimulating factor (GM-CSF), showed a survival advantage in patients with advanced solid tumors who failed at least the first line of standard systemic treatment. Intraperitoneal infusion of PD-1 inhibitors may be a novel therapeutic strategy for managing malignant ascites. Integrating the PRaG regimen with intraperitoneal perfusion of a PD-1 inhibitor might control malignant ascites and provide further survival benefits in these patients. This proposed study aims to investigate the safety and efficacy of intraperitoneal infusion of serplulimab in combination with the PRaG regimen in patients with simultaneous advanced solid tumors and cancerous ascites who fail at least the first-line treatment. Methods: This proposed study is a prospective, single-arm, open-label, multicenter clinical trial. All eligible patients will receive 2 cycles of intensive treatment, a combination of PRaG regimen with an intraperitoneal infusion of PD-1 inhibitor. The patients who are beneficially treated with intensive treatment will receive consolidation treatment every 2 weeks until ascites disappear, disease progression occurs, intolerable toxicity occurs, or for up to 1 year. Phase I of this study will be conducted using a modified 3 + 3 design. The dose of intraperitoneal infusion of PD-1 inhibitor for phase II will be determined according to dose-limiting toxicity evaluation in the phase I study. Conclusion: This prospective, open-label, multicenter study will potentially lead to intraperitoneal perfusion of a PD-1 inhibitor being a new strategy for malignant ascites patients and provide a meaningful efficacy and safety of the combination of PRaG regimen with an intraperitoneal infusion of PD-1 inhibitor for these patients.
Collapse
Affiliation(s)
- Yingying Xu
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuehong Kong
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yifu Ma
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meiling Xu
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiabao Yang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junjun Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rongzheng Chen
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangqiang Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangrong Zhao
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenyang Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Xing
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liyuan Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peifeng Zhao
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
36
|
Yang SJ, Pai JA, Yao CJ, Huang CH, Chen JL, Wang CH, Chen KC, Shieh MJ. SN38-loaded nanomedicine mediates chemo-radiotherapy against CD44-expressing cancer growth. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-022-00151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Chemo-radiotherapy is the combined chemotherapy and radiotherapy on tumor treatment to obtain the local radiosensitization and local cytotoxicity of the tumor and to control the microscopic metastatic disease.
Methods
In this study, 7-ethyl-10-hydroxycamptothecin (SN38) molecules could be successfully loaded into human serum albumin (HSA)–hyaluronic acid (HA) nanoparticles (SH/HA NPs) by the hydrophobic side groups of amino acid in HSA.
Results
HSA could be used to increase the biocompatibility and residence time of the nanoparticles in the blood, whereas HA could improve the benefits and overall treatment effect on CD44-expressing colorectal cancer (CRC), and reduce drug side effects. In addition to its role as a chemotherapeutic agent, SN38 could be used as a radiosensitizer, able to arrest the cell cycle, and allowing cells to stay in the G2/M stage, to improve the sensitivity of tumor cells to radiation. In vivo results demonstrated that SH/HA NPs could accumulate in the tumor and produce significant tumor suppression, with no adverse effects observed when combined with γ-ray irradiation. This SH/HA NPs-medicated chemo-radiotherapy could induce an anti-tumor immune response to inhibit the growth of distal tumors, and produce an abscopal effect.
Conclusions
Therefore, this SN38-loaded and HA-incorporated nanoparticle combined with radiotherapy may be a promising therapeutic artifice for CRC in the future.
Collapse
|
37
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
38
|
Karapetyan L, Iheagwara UK, Olson AC, Chmura SJ, Skinner HK, Luke JJ. Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J Natl Cancer Inst 2023; 115:1278-1293. [PMID: 37348864 PMCID: PMC10637035 DOI: 10.1093/jnci/djad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Immunotherapy combinations are being investigated to expand the benefit of immune checkpoint blockade across many cancer types. Radiation combinations, in particular using stereotactic body radiotherapy, are of keen interest because of underlying mechanistic rationale, safety, and availability as a standard of care in certain cancers. In addition to direct tumor cytotoxicity, radiation therapy has immunomodulatory effects such as induction of immunogenic cell death, enhancement of antigen presentation, and expansion of the T-cell receptor repertoire as well as recruitment and increased activity of tumor-specific effector CD8+ cells. Combinations of radiation with cytokines and/or chemokines and anti-programmed death 1 and anticytotoxic T-lymphocyte antigen 4 therapies have demonstrated safety and feasibility, as well as the potential to improve long-term outcomes and possibly induce out of irradiated field or abscopal responses. Novel immunoradiotherapy combinations represent a promising therapeutic approach to overcome radioresistance and further enhance systemic immunotherapy. Potential benefits include reversing CD8+ T-cell exhaustion, inhibiting myeloid-derived suppressor cells, and reversing M2 macrophage polarization as well as decreasing levels of colony-stimulating factor-1 and transforming growth factor-β. Here, we discuss current data and mechanistic rationale for combining novel immunotherapy agents with radiation therapy.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Uzoma K Iheagwara
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Olson
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Heath K Skinner
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Foote MB, Argilés G, Rousseau B, Segal NH. Facts and Hopes in Colorectal Cancer Immunotherapy. Clin Cancer Res 2023; 29:4032-4039. [PMID: 37326624 DOI: 10.1158/1078-0432.ccr-22-2176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Although a minority of colorectal cancers exhibit mismatch repair deficiency and associated sensitivity to immune checkpoint inhibitors (ICI), the vast majority of colorectal cancers arise in a tolerogenic microenvironment with mismatch repair proficiency, low tumor-intrinsic immunogenicity, and negligible immunotherapy responsiveness. Treatment strategies to augment tumor immunity with combination ICIs and chemotherapy have broadly failed in mismatch repair-proficient tumors. Similarly, although several small single-arm studies have shown that checkpoint blockade plus radiation or select tyrosine kinase inhibition may show improved outcomes compared with historical controls, this finding has not been clearly validated in randomized trials. An evolving next generation of intelligently engineered checkpoint inhibitors, bispecific T-cell engagers, and emerging CAR-T cell therapies may improve immunorecognition of colorectal tumors. Across these modalities, ongoing translational efforts to better define patient populations and biomarkers associated with immune response, as well as combine biologically sound and mutually amplifying therapies, show promise for a new era of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guillem Argilés
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neil H Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
40
|
Kim JS, Chang AR. Abscopal effect in metastatic breast cancer treated with stereotactic body radiotherapy in the absence of immunotherapy. Front Oncol 2023; 13:1243053. [PMID: 37869087 PMCID: PMC10587686 DOI: 10.3389/fonc.2023.1243053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose In this study, we aimed to assess the abscopal effect (AE) after CyberKnife stereotactic body radiotherapy (SBRT) in metastatic breast cancer patients without immunotherapy. Methods We reviewed breast cancer patients who received SBRT with a fraction size of ≥ 6 Gy for metastatic lesions between July 2008 and December 2021. We selected patients who had at least one measurable extracranial lesion in addition to SBRT target lesions and were not treated with immunotherapy. A total of 40 SBRT cases from 34 patients were included in the analysis. The AE was defined as occurring before the overall progression of the disease, regardless of the use of systemic treatment. Results The median follow-up duration was 16.4 months. Among 40 SBRT cases, the AE was observed in 10 (25.0%) with a median interval of 2.1 months. Of these lesions, 70.0% did not progress for one year. In multivariate logistic regression analysis, no change in systemic treatment after SBRT was significantly associated with an increase in the AE (odds ratio [OR] = 1.428, 95% confidence interval [CI] = 1.108 - 1.841, p = 0.009). A post-SBRT neutrophil-to-lymphocyte ratio (NLR) of < 2 marginally increased the AE (OR = 1.275, 95% CI = 0.998 - 1.629, p = 0.060). However, a high SBRT dose and large planning target volume did not (p = 0.858 and 0.152, respectively) in univariate analysis. Conclusions One out of four patients experienced the AE after SBRT in the absence of immunotherapy. The AE could occur more frequently when systemic treatment remains unchanged, and patients have a low NLR after SBRT.
Collapse
Affiliation(s)
| | - Ah Ram Chang
- Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Martin-Morales N, Padial-Molina M, Tovar I, De Araujo Farias V, Hernández-Cortés P, Ramirez-Moreno E, Caba-Molina M, Davis J, Carrero Castaño A, Ruiz de Almodovar JM, Galindo-Moreno P, Oliver-Pozo J, O'Valle Ravassa FJ. IMP3 Immunohistochemical Expression Is Related with Progression and Metastases in Xenografted and Cutaneous Melanomas. Pathobiology 2023; 91:132-143. [PMID: 37797584 DOI: 10.1159/000533916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/19/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Insulin-like growth factor-II messenger RNA-binding protein-3 (IMP3) over-expression is a predictor of tumor recurrence and metastases in some types of human melanoma. Our objective was to evaluate the immunohistochemical expression of IMP3 and other molecules related to tumor prognosis in melanoma-xeno-tumors undergoing treatment. We test the effect of radiotherapy (RT) and mesenchymal stromal cells (MSCs) treatment, analyzing the tumorigenic and metastatsizing capacity in a mice melanoma xenograft model. MATERIALS AND METHODS We inoculated A375 and G361 human melanoma cell lines into NOD/SCID gamma mice (n = 64). We established a control group, a group treated with MSCs, a group treated with MSCs plus RT, and a group treated with RT. We assessed the immunohistochemical expression of IMP3, E-cadherin, N-cadherin, PARP1, HIF-1α, and the proliferation marker Ki-67. Additionally, we performed a retrospective study including 114 histological samples of patients diagnosed with malignant cutaneous superficial spreading melanoma (n = 104) and nodular melanoma (n = 10) with at least 5 years of follow-up. RESULTS Most morphological and immunohistochemical features show statistically significant differences between the 2 cell lines. The A375 cell line induced the formation of metastases, while the G361 cell line provoked tumor formation but not metastases. All three treatments reduced the cell proliferation evaluated by the Ki-67 nuclear antigen (p = 0.000, one-way ANOVA test) and reduced the number of metastases (p = 0.004, one-way ANOVA test). In addition, the tumor volumes reduced in comparison with the control groups, 31.74% for RT + MSCs in the A357 tumor cell line, and 89.84% RT + MSCs in the G361 tumor cell line. We also found that IMP3 expression is associated with greater tumor aggressiveness and was significantly correlated with cell proliferation (measured by the expression of Ki-67), the number of metastases, and reduced expression of adhesion molecules. CONCLUSIONS The combined treatment of RT and MSCs on xenografted melanomas reduces tumor size, metastases frequency, and the epithelial to mesenchymal transition/PARP1 metastatic phenotype. This treatment also reduces the expression of molecules related to cellular proliferation (Ki-67), molecules that facilitate the metastatic process (E-cadherin), and molecules related with prognosis (IMP3).
Collapse
Affiliation(s)
- Natividad Martin-Morales
- Department of Pathology, University of Granada, Granada, Spain,
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain,
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
| | - Isabel Tovar
- Department of Oncology and Radiotherapy, Virgen de las Nieves University Hospital, Granada, Spain
| | - Virginea De Araujo Farias
- Institute of Biopathology and Medicine Regenerative (IBIMER, CIBM), University of Granada, Granada, Spain
| | - Pedro Hernández-Cortés
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
- Department of Orthopedic Surgery, Clinic San Cecilio University Hospital, Granada, Spain
| | | | - Mercedes Caba-Molina
- Department of Pathology, University of Granada, Granada, Spain
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
- Intercentre Provincial Pathological Anatomy Unit of the San Cecilio Clinical University Hospital, Granada, Spain
| | - Justin Davis
- Department of Business Administration, Washington and Lee University, Lexington, Virginia, USA
| | - Alejandro Carrero Castaño
- Intercentre Provincial Pathological Anatomy Unit of the San Cecilio Clinical University Hospital, Granada, Spain
| | | | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
| | - Javier Oliver-Pozo
- Institute of Parasitology and Biomedicine López Neyra, CSIC, Granada, Spain
| | - Francisco Javier O'Valle Ravassa
- Department of Pathology, University of Granada, Granada, Spain
- Biosanitary Institute (Ibs.GRANADA), Granada, Spain
- Institute of Biopathology and Medicine Regenerative (IBIMER, CIBM), University of Granada, Granada, Spain
| |
Collapse
|
42
|
Ali Mohammad S, Hak A, Pogu SV, Rengan AK. Radiotherapy, photodynamic therapy, and cryoablation-induced abscopal effect: Challenges and future prospects. CANCER INNOVATION 2023; 2:323-345. [PMID: 38090387 PMCID: PMC10686191 DOI: 10.1002/cai2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 10/15/2024]
Abstract
Local therapy modalities such as radiation therapy, photodynamic therapy, photothermal therapy, and cryoablation have been used to treat localized tumors for decades. The discovery of the abscopal effect causes a paradigm shift where local therapy also causes systemic effects and leads to the remission of nonirradiated tumors. The abscopal effect of radiation therapy, alone or in combination with other treatments, has been extensively studied over the last six decades. However, the results are unsatisfactory in producing robust, reproducible, and long-lasting systemic effects. Although immunotherapy and radiation therapy are promising in producing the abscopal effect, the abscopal effect's mechanism is still unclear, owing to various factors such as irradiation type and dose and cancer type. This article reviews the research progress, clinical and preclinical evidence of the abscopal effect by various local therapies alone and in combination with chemotherapy and immunotherapy, case reports, and the current challenges in producing the abscopal effect by various local therapies, focusing on radiotherapy, photodynamic therapy, cryoablation, and the prospects for obtaining a robust, reproducible, and long-lasting abscopal effect.
Collapse
Affiliation(s)
| | - Arshadul Hak
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Sunil V. Pogu
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Aravind K. Rengan
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| |
Collapse
|
43
|
Xiao L, Chen B, Wang W, Tian T, Qian H, Li X, Yu Y. Multifunctional Au@AgBiS 2 Nanoparticles as High-Efficiency Radiosensitizers to Induce Pyroptosis for Cancer Radioimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302141. [PMID: 37688340 PMCID: PMC10602534 DOI: 10.1002/advs.202302141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Radiotherapy (RT), a widely used clinical treatment modality for cancer, uses high-energy irradiation for reactive oxygen species (ROS) production and DNA damage. However, its therapeutic effect is primarily limited owing to insufficient DNA damage to tumors and harmful effects on normal tissues. Herein, a core-shell structure of metal-semiconductors (Au@AgBiS2 nanoparticles) that can function as pyroptosis inducers to both kill cancer cells directly and trigger a robust anti-tumor immune against 4T1 triple-negative murine breast cancer and metastasis is rationally designed. Metal-semiconductor composites can enhance the generation of considerable ROS and simultaneously DNA damage for RT sensitization. Moreover, Au@AgBiS2 , a pyroptosis inducer, induces caspase-3 protein activation, gasdermin E cleavage, and the release of damage-associated molecular patterns. In vivo studies in BALB/c mice reveal that Au@AgBiS2 nanoparticles combined with RT exhibit remarkable antitumor immune activity, preventing tumor growth, and lung metastasis. Therefore, this core-shell structure is an alternative for designing highly effective radiosensitizers for radioimmunotherapy.
Collapse
Affiliation(s)
- Liang Xiao
- Department of RadiologyResearch Center of Clinical Medical ImagingAnhui Province Clinical Image Quality Control CenterThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022P. R. China
| | - Benjin Chen
- Department of PharmacologySchool of Basic Medical SciencesAnhui Medical UniversityHefei230032P. R. China
| | - Wanni Wang
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Engineering Research Center for Medical Micro‐Nano DevicesAnhui Medical UniversityHefei230011P. R. China
| | - Tian Tian
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230036P. R. China
| | - Haisheng Qian
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Engineering Research Center for Medical Micro‐Nano DevicesAnhui Medical UniversityHefei230011P. R. China
| | - Xiaohu Li
- Department of RadiologyResearch Center of Clinical Medical ImagingAnhui Province Clinical Image Quality Control CenterThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022P. R. China
| | - Yongqiang Yu
- Department of RadiologyResearch Center of Clinical Medical ImagingAnhui Province Clinical Image Quality Control CenterThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022P. R. China
| |
Collapse
|
44
|
Kemmotsu N, Zhu L, Nagasaki J, Otani Y, Ueda Y, Dansako H, Fang Y, Date I, Togashi Y. Combination therapy with hydrogen peroxide and irradiation promotes an abscopal effect in mouse models. Cancer Sci 2023; 114:3848-3856. [PMID: 37485636 PMCID: PMC10551598 DOI: 10.1111/cas.15911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Hydrogen peroxide (H2 O2 ) induces oxidative stress and cytotoxicity, and can be used for treating cancers in combination with radiotherapy. A product comprising H2 O2 and sodium hyaluronate has been developed as a radiosensitizer. However, the effects of H2 O2 on antitumor immunity remain unclear. To investigate the effects of H2 O2 , especially the abscopal effect when combined with radiotherapy (RT), we implanted murine tumor cells simultaneously in two locations in mouse models: the hind limb and back. H2 O2 mixed with sodium hyaluronate was injected intratumorally, followed by irradiation only at the hind limb lesion. No treatment was administered to the back lesion. The H2 O2 /RT combination significantly reduced tumor growth at the noninjected/nonirradiated site in the back lesion, whereas H2 O2 or RT individually did not reduce tumor growth. Flow cytometric analyses of the tumor-draining lymph nodes in the injected/irradiated areas showed that the number of dendritic cells increased significantly with maturation in the H2 O2 /RT combination group. In addition, analyses of tumor-infiltrating lymphocytes showed that the number of CD8+ (cluster of differentiation 8) T cells and the frequency of IFN-γ+ (interferon gamma) CD8+ T cells were higher in the noninjected/nonirradiated tumors in the H2 O2 /RT group compared to those in the other groups. PD-1 (programmed death receptor 1) blockade further increased the antitumor effect against noninjected/nonirradiated tumors in the H2 O2 /RT group. Intratumoral injection of H2 O2 combined with RT therefore induces an abscopal effect by activating antitumor immunity, which can be further enhanced by PD-1 blockade. These findings promote the development of H2 O2 /RT therapy combined with cancer immunotherapies, even for advanced cancers.
Collapse
Affiliation(s)
- Naoya Kemmotsu
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Li Zhu
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Microbial and Biochemical Pharmacy, School of PharmacyChina Medical UniversityShenyangLiaoningChina
| | - Joji Nagasaki
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Youki Ueda
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hiromichi Dansako
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of PharmacyChina Medical UniversityShenyangLiaoningChina
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
45
|
Xie Y, Lecoester B, Boustani J. Contribution of chemotherapy in immunoradiotherapy combinations. Cancer Radiother 2023; 27:519-523. [PMID: 37495428 DOI: 10.1016/j.canrad.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023]
Abstract
Several preclinical data have suggested the ability of radiation therapy to modulate the intrinsic immunogenicity of cancer cells and the tumor microenvironment, with the aim of increasing responses to checkpoint inhibitors. Early results showing a restoration of checkpoint inhibitors response in patients following irradiation have generated a lot of enthusiasm around radiation therapy beyond its usual role in local disease control. Prospective clinical trials evaluating immunoradiotherapy combinations have provided proof-of-concept that radiation therapy may induce tumor-specific T immune responses in patients treated with checkpoint inhibitors. However, these results are not always reproducible, reflecting the existence of factors related to either radiation therapy, immunotherapy and/or the host, which influence the efficacy of these combinations. Anticancer chemotherapy can play a role in amplifying the immune-radiation response by promoting tumor immunogenicity and modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Y Xie
- Inserm, EFS BFC, UMR 1098, RIGHT, greffon-hôte-tumeur interactions/ingénierie cellulaire et génique, université de Franche-Comté, Besançon, France
| | - B Lecoester
- Inserm, EFS BFC, UMR 1098, RIGHT, greffon-hôte-tumeur interactions/ingénierie cellulaire et génique, université de Franche-Comté, Besançon, France
| | - J Boustani
- Inserm, EFS BFC, UMR 1098, RIGHT, greffon-hôte-tumeur interactions/ingénierie cellulaire et génique, université de Franche-Comté, Besançon, France; Department of Radiation Therapy, Besançon University Hospital, Besançon, France.
| |
Collapse
|
46
|
Liu J, West H, McGee HM, Williams TM, Lee P, Amini A. Challenges in synergizing radiotherapy with immunotherapy to unlock the abscopal effect in metastatic NSCLC: A systematic review. Neoplasia 2023; 43:100914. [PMID: 37348427 PMCID: PMC10314288 DOI: 10.1016/j.neo.2023.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND With the recent success of immunotherapy, there is a growing interest in combining radiation with immunotherapy to boost abscopal response rates. Several challenges exist in determining how to synergize these two modalities in the treatment of metastatic NSCLC. METHODS References for this review were identified through searches of MEDLINE/PubMed and Clinicaltrials.gov databases with the search terms "abscopal", "radiation OR radiotherapy," "NSCLC", and "lung" on the index date of July 2022 from 2000-2022. This systematic review focuses primarily on clinical papers. DISCUSSION Early work combining radiotherapy with immunotherapy show promise in unlocking the abscopal effect. Preliminary evidence suggests that radiotherapy regimens with <5 fractions and smaller fields may be superior to regimens with 15 fractions and larger fields. There does not appear to be enough evidence to draw conclusions about the optimal timing of radiotherapy in relation to immunotherapy or the optimal anatomical location of radiation to induce the abscopal effect. Several studies suggest selecting patients with a higher absolute lymphocyte count (ALC) and lower neutrophil-to-lymphocyte ratio (NLR) may help to further boost abscopal response rates. Furthermore, selecting tumors with programmed death ligand-1 (PD-L1) expression, mismatch repair deficiency, and higher tumor mutational burden may similarly achieve this goal. Lastly, additional work is needed to minimize and predict for severe toxicity associated with combination therapy.
Collapse
Affiliation(s)
- Jason Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Howard West
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Heather M McGee
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States; Department of Immuno-Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County, Irvine, CA 92618, United States
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| |
Collapse
|
47
|
Verma S, Young S, Louie AV, Palma D, Breadner D. The role of thoracic consolidative radiotherapy in the setting of immunotherapy in extensive stage small cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231192399. [PMID: 37655208 PMCID: PMC10467203 DOI: 10.1177/17588359231192399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
The improvement in treatment strategies and outcomes in small cell lung cancer (SCLC) has lagged behind other cancers. The addition of immune checkpoint inhibitors (ICIs), durvalumab and atezolizumab, to the platinum-based chemotherapy in frontline setting has improved the survival in extensive stage SCLC, (ES-SCLC), albeit modestly, and is now the new standard of care. Prior to advent of immunotherapy into the therapeutic armamentarium in ES-SCLC, consolidative thoracic radiotherapy (TRT) was associated with improved thoracic control and survival outcomes. In the era of ICIs, the role of TRT is not well defined, chiefly because TRT was not incorporated in any immunotherapy trials, secondly due to concerns regarding the increased risks of pneumonitis, and finally uncertain magnitude of benefit with this combined approach. In principle, radiation can increase in the immunogenicity of tumor and hence the activity of immune checkpoint blockade, thereby increasing efficacy both locally and distantly. Such an approach has been promising in non-small cell lung cancer with ICIs improving outcomes after concurrent chemoradiation, but remains unanswered in ES-SCLC. It is, thus, possible that the modest improvement in survival by addition of ICIs to chemotherapy in ES-SCLC can be further improved by the incorporation of consolidative TRT in selected patients. Several early phase trials and retrospective studies have suggested that such an approach may be feasible and safe. Prospective trials are ongoing to answer whether adding radiation therapy to chemoimmunotherapy will improve outcomes in ES-SCLC.
Collapse
Affiliation(s)
- Saurav Verma
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program at London Health Sciences Center, London, ON, Canada
| | - Sympascho Young
- Division of Radiation Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program at London Health Sciences Center, London, ON, Canada
| | - Alexander V. Louie
- Division of Radiation Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - David Palma
- Division of Radiation Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program at London Health Sciences Center, London, ON, Canada
| | - Daniel Breadner
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, A3-913 800 Commissioners Road East, London, ON N6A5W9, Canada
- London Regional Cancer Program at London Health Sciences Center, London, ON, Canada
| |
Collapse
|
48
|
An L, Li M, Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer 2023; 22:140. [PMID: 37598158 PMCID: PMC10439611 DOI: 10.1186/s12943-023-01839-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the sixth most common cause of cancer-related mortality worldwide, with more than half of them occurred in China. Radiotherapy (RT) has been widely used for treating ESCC. However, radiation-induced DNA damage response (DDR) can promote the release of cytokines and chemokines, and triggers inflammatory reactions and changes in the tumor microenvironment (TME), thereby inhibiting the immune function and causing the invasion and metastasis of ESCC. Radioresistance is the major cause of disease progression and mortality in cancer, and it is associated with heterogeneity. Therefore, a better understanding of the radioresistance mechanisms may generate more reversal strategies to improve the cure rates and survival periods of ESCC patients. We mainly summarized the possible mechanisms of radioresistance in order to reveal new targets for ESCC therapy. Then we summarized and compared the current strategies to reverse radioresistance.
Collapse
Affiliation(s)
- Lingbo An
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
49
|
Zhao M, Gao Z, Gu X, Yang X, Wang S, Fu J. Predictive significance of lymphocyte level and neutrophil-to-lymphocyte ratio values during radiotherapy in cervical cancer treatment. Cancer Med 2023; 12:15820-15830. [PMID: 37325889 PMCID: PMC10469726 DOI: 10.1002/cam4.6221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE The objective of this research was to analyze the prognostic significance of the minimum count of lymphocytes (LY) and the corresponding ratio of neutrophil-to-lymphocyte (NLR) in cervical cancer (CC) patients receiving radiotherapy. METHODS We retrospectively collected data from 202 CC patients who received concurrent chemoradiotherapy or radiotherapy alone at our hospital. Statistical methods including the Kaplan-Meier method, log-rank test and the Cox proportional hazards model were included to examine survival differences and identify independent factors that may affect overall survival (OS) and progression-free survival (PFS). RESULTS The research enrolled a total of 202 patients. Patients with higher LY levels and lower NLR values during radiotherapy had significantly better survival prognosis than those with lower LY levels and higher NLR values. Multivariate COX regression analysis revealed that FIGO stage I, pathological types of SqCC, absence of lymph node metastasis, concurrent chemoradiotherapy, higher LY levels during radiotherapy, and lower NLR values before radiotherapy were independently associated with poorer PFS. Similarly, FIGO stage I, absence of lymph node metastasis and lower NLR values during and before radiotherapy were independently linked with poorer OS. CONCLUSION Minimum LY value and its corresponding NLR during radiotherapy serve as prognostic factors for CC.
Collapse
Affiliation(s)
- Mengli Zhao
- Department of Radiation OncologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongrong Gao
- Department of Radiation OncologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaowei Gu
- Department of Radiation OncologyJiangyin Hospital Affiliated to Nantong UniversityJiangyinChina
| | - Xiaojing Yang
- Department of Radiation OncologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shanshan Wang
- Department of Radiation OncologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Fu
- Department of Radiation OncologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
50
|
Hoshi S, Yaginuma K, Meguro S, Onagi A, Matsuoka K, Hata J, Sato Y, Akaihata H, Kataoka M, Ogawa S, Uemura M, Kojima Y. PSMA Targeted Molecular Imaging and Radioligand Therapy for Prostate Cancer: Optimal Patient and Treatment Issues. Curr Oncol 2023; 30:7286-7302. [PMID: 37623010 PMCID: PMC10453875 DOI: 10.3390/curroncol30080529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Theranostics (therapy + diagnosis) targeting prostate-specific membrane antigen (PSMA) is an emerging therapeutic modality that could alter treatment strategies for prostate cancer. Although PSMA-targeted radioligand therapy (PSMA-RLT) has a highly therapeutic effect on PSMA-positive tumor tissue, the efficacy of PSMA-RLT depends on PSMA expression. Moreover, predictors of treatment response other than PSMA expression are under investigation. Therefore, the optimal patient population for PSMA-RLT remains unclear. This review provides an overview of the current status of theranostics for prostate cancer, focusing on PSMA ligands. In addition, we summarize various findings regarding the efficacy and problems of PSMA-RLT and discuss the optimal patient for PSMA-RLT.
Collapse
Affiliation(s)
- Seiji Hoshi
- Departments of Urology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (K.Y.); (S.M.); (A.O.); (K.M.); (J.H.); (Y.S.); (H.A.); (M.K.); (S.O.); (M.U.); (Y.K.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|